|
||||||||||||||||||||||||||||||||||||||
|
Курсовая работа: Основные этапы развития биологии. Реферат история развития биологииКраткая история развития биологии. Перспективы развития биологииБиология – одна из важнейших наук, напрямую связанная с многими другими дисциплинами и способная рассказать о человеке не меньше, чем история. Предметом изучения являются живые организмы, закономерности их существования и развития, взаимоотношений со средой и происхождения. Вместе с физикой и химией наука относится к естественным, направленным на работу с природой. Изучая основные этапы развития биологии, можно получить представление о том, какой внушительный путь проделала эта дисциплина. Кроме того, стоит ознакомиться и с дальнейшими ее перспективами. Появление терминаБезусловно, наука является одной из старейших в естественном направлении. Но термин появился не так давно. Краткая история развития биологии начинается лишь с 1797 года, когда немецкий профессор анатомии по имени Теодор Руз предложил такое обозначение для этой науки. В 1800 году им пользовался также профессор Дерптского университета Бурдах, а в 1802 его можно было обнаружить в важных работах Ламарка и Тревирануса. Напрямую связанная с условиями жизни общества, биология стала стремительно развиваться. Новые методы исследований появляются регулярно, современные знания позволяют иначе смотреть на старые теории, но без изучения предыдущих этапов развития знания о науке будут неполными. Древнейший периодСобирать сведения о живых существах люди начали сразу после того, как стали воспринимать себя одной из уникальных частей окружающего мира. В древних литературных памятниках Египта, Индии и Вавилона можно найти разнообразные данные о строении животных или растений, о их свойствах и применении в медицине или сельском хозяйстве. В четырнадцатом веке до нашей эры жители Месопотамии использовали клинописные таблички, на которых содержалась систематизация видов организмов. Развитие эволюционных идей в биологии было на тот момент еще в далеком будущем, но уже тогда люди научились разделять животных на плотоядных и травоядных, определили, что растения могут быть лекарственными и сельскохозяйственными, даже смогли проследить некоторые причины наследственного сходства детей и родителей. В частности, индийские медицинские сочинения, датированные четвертым веком до нашей эры, описывают особенности жизни разнообразных организмов и передачи информации из поколения в поколение. Полезные сведения есть и в «Махабхарате» и «Рамаяне». Возникновение научных школИсторическое развитие биологии напрямую связано с появлением определенных течений. Научные школы возникли в период рабовладельческого строя в Греции, Александрии и Риме. Ионийская школа разрабатывала «естественные законы», управляющие миром – уже тогда философы отрицали сверхъестественное происхождение жизни. Более того, Алкмеону удалось изучить зрительные нервы, развитие эмбрионов у птиц и определить важную роль мозга как центра мышления. Известнейший ученый Гиппократ впервые в истории описал строение человека и животных, указал на воздействие среды и наследственности на организм при возникновении болезней. Это во многом определило перспективы развития биологии. В Афинской школе трудился Аристотель, создавший четыре важных трактата с разнообразными сведениями о животных. Он впервые выделил несколько царств, взаимосвязанных между собой. В будущем эта система превратится в «лестницу существ» и предопределит классификацию организмов, выделяющую четвероногих, пернатых, летающих и рыб. Изучение анатомии человекаКраткое развитие биологии в рабовладельческий период может быть описано не только как время изучения всевозможных классификаций, но и как момент важнейших работ по анатомии. Ученый Герофил сравнил устройство организмов животных и человека, указав различие вен и артерий. Эразистрату удалось детально описать полушария головного мозга, выделить наличие извилин и мозжечка. Систематизировали эти данные ученые из Рима, например Плиний Старший, ставший автором «Естественной истории». В этот додарвинский период развития биологии ведущие специалисты уже заметили сходство человека и обезьяны. К примеру, Клавдий Гален проводил вскрытия млекопитающих и составлял сравнительно-анатомические описания людей и приматов. Эти работы серьезно повлияли на развитие физиологии и анатомии, поэтому краткая история развития биологии будет без них неполной. Средневековый периодСредние века связаны с господством религии. Краткая история развития биологии не включает в себя практически никаких новых достижений, связанных с этим периодом. Знания основывались на работах Аристотеля, Галена и Плиния. Восприятие мира было искажено религиозно-философскими взглядами. Главный ученый и мыслитель Абу-Али Ибн Сина, известный также как Авиценна, занимался изучением причинных закономерностей в природе и философствовал о вечности. Научных прорывов не происходило, и в следующий исторический период биология вошла в своем античном виде. Ренессанс или ВозрождениеПосле долгих лет диктатуры теологов пришло время крушения прежних устоев и норм феодального общества. Краткая история развития биологии отмечает этот период как серьезный скачок в развитии науки, тогда называвшейся естествознанием. Выдающимся ученым Возрождения стал Леонардо да Винчи. Он описывал растения и технику полета птиц, изучил деятельность сердца и принцип соединения костей и суставов, работал над зрительной функцией глаза и гомологией органов, подчеркнул сходство устройства человека и некоторых животных. Важной работой стал также труд Андреаса Везалия, так называемые «Семь книг о строении человеческого тела». Гарвеем было открыто кровообращение, а Борели изучил механизмы движения. Перед людьми открылись совершенно новые перспективы развития биологии, недоступные во время религиозного господства. Значительный прорывВозрождение дало ученым новые возможности. Результатом стал скачок в научных знаниях, который привел к их дифференциации. Краткая история биологии может отметить этот период как момент разделения на несколько отдельных дисциплин. Например, стала развиваться ботаника, а изобретение микроскопа позволило продвинуться в анатомии и физиологии. Карл Линней стал создателем подробной классификации животных, введя подразделения на классы, отряды, роды и виды. Именно он выделил млекопитающих, птиц, амфибий, рыб, насекомых и червей. Человека он отнес к приматам. Еще одним видным деятелем стал Лейбниц, разработавший учение о «лестнице существ», теории, которая во многом опиралась на прошлые данные, но при этом была достаточно инновационной. Появление клеточных теорийОписывая краткое развитие биологии, можно отметить девятнадцатый век как время появления эволюционных трактатов и основ эмбриологии. Ученые Шванн и Шлейден сформулировали клеточную теорию, благодаря трудам Пастера, Мечникова, Коха и Листера развилась бактериология. Главным событием стал трактат «Происхождение видов», предопределивший дальнейшее развитие науки. Вклад сделал не только Дарвин, но и Мендель, описывавший существование генов и законы их воздействия на наследственность. Тогда же стали появляться идеи о применении физики и химии для изучения жизненных явлений. Двадцатый векПоследнее столетие стало самым насыщенным новой информацией временем, которое только переживала наука биология, 9 класс любой современной школы теперь изучает данные, не доступные даже передовым умам девятнадцатого века. В сороковые была открыта роль ДНК, в 1953 ученым удалось определить ее структуру, а в 1961 – расшифровать ее. Механизмы синтеза белка позволили появиться молекулярной генетике, работающей с нуклеиновыми кислотами. Все это стало гигантским шагом, позволившим человеку перейти к новому способу изучения явлений жизни. В апреле 1961 человек впервые оказался в космосе. Этот день можно назвать моментом появления космической отрасли науки. В додарвинский период развития биологии такое было невозможно и представить. Уже в семидесятые ученые стали работать над генетической инженерией, что позволило медицине открыть для себя совершенно новые перспективы. Современный период и будущее наукиДвадцать первый век сделал знания невероятно доступными для человека. Повсеместно изучается биология, 9 класс средней школы позволяет детям узнавать о зоологии, ботанике и анатомии больше, чем прежде удавалось изучить за столетие, а перспективы науки кажутся по-настоящему блестящими. Продолжается разделение отдельных направлений на новые дисциплины – развиваются гельминтология, арахноэнтомология, орнитология, микология, бриология, иммунология, бактериология и множество других наук. Такая дифференциация позволяет специалистам сконцентрироваться на каждой конкретной задаче, ускоряя ход получения информации о тех или иных явлениях. Вместе с тем происходит интеграция наук, отчего возникают биохимия, цитогенетика и другие направления. Тем не менее современные методы работы напрямую связаны с историей. Ученые применяют те же способы, что и несколько веков назад, но преобразовать полученные данные им помогают новые технологии. Уникальное оборудование позволяет совершенно иначе проводить эксперименты, которые раньше были лишь простыми опытами, а теперь могут приводить к революционным результатам. Дальнейшие перспективы предполагают впечатляющий научно-технический прогресс, который позволит еще лучше изучить генетику, физиологию и многие другие ответвления биологии, что дает возможность также надеяться на максимальное развитие медицины, которая сможет изменить как продолжительность, так и условия человеческой жизни. fb.ru Краткая история развития биологииВспомните! Какие достижения современной биологии вам известны? рентгенология аппараты УЗИ, ЭМРТ установление молекулярной структуры ДНК расшифровка генома человека и других организмов генная инженерия 3D-биопринтеры Электронные сканирующие микроскопы ГМО Экстракорпоральное оплодотворение и др. Каких ученых-биологов вы знаете? Линней, Ламарк, Дарвин, Мендель, Морган, Павлов, Пастер, Гук, Левенгук, Броун, Пурнинье, Бэр, Мечников, Мичурин, Вернадский, Ивановский, Флеминг, Тенсли, Сукачев, Четвериков, Лайль, Опарин, Шванн, Шлейден, Чаграфф, Навашин, Тимирязев, Мальпиги, Гольджи и др. Вопросы для повторения и задания 1. Расскажите о вкладе в развитие биологии древнегреческих и древне-римских философов и врачей. Первым учёным, создавшим научную медицинскую школу, был древнегреческий врач Гиппократ (ок. 460 — ок. 370 до н. э.). Он считал, что у каждой болезни есть естественные причины и их можно узнать, изучая строение и жизнедеятельность человеческого организма. С древних времён и по сей день врачи торжественно произносят клятву Гиппократа, обещая хранить врачебную тайну и ни при каких обстоятельствах не оставлять больного без медицинской помощи. Великий энциклопедист древности Аристотель (384—322 до н. э.). Стал одним из основателей биологии как науки, впервые обобщив биологические знания, накопленные до него человечеством. Он разработал систематику животных, определив в ней место и человеку, которого он называл «общественным животным, наделённым разумом». Многие труды Аристотеля были посвящены происхождению жизни. Древнеримский учёный и врач Клавдий Гален (ок. 130 — ок. 200), изучая строение млекопитающих, заложил основы анатомии человека. В течение следующих пятнадцати веков его труды были основным источником знаний по анатомии. 2. Охарактеризуйте особенности воззрений на живую природу в Средние века, эпоху Возрождения. Резко возрос интерес к биологии в эпоху Великих географических открытий (XV в.). Открытие новых земель, налаживание торговых отношений между государствами расширяли сведения о животных и растениях. Ботаники и зоологи описывали множество новых, неизвестных ранее видов организмов, принадлежащих к различным царствам живой природы. Один из выдающихся людей этой эпохи — Леонардо да Винчи (1452—1519) — описал многие растения, изучал строение человеческого тела, деятельность сердца и зрительную функцию. После того как был снят церковный запрет на вскрытие человеческого тела, блестящих успехов достигла анатомия человека, что получило отражение в классическом труде Андреаса Везалия (1514—1564) «Строение человеческого тела» (рис. 1). Величайшее научное достижение — открытие кровообращения — совершил в XVII в. английский врач и биолог Уильям Гарвей (1578—1657). 3. Используя знания, полученные на уроках истории, объясните, почему в Средние века в Европе наступил период застоя во всех областях знаний. После падения Западной Римской империи в Европе наступил застой в развитии наук и ремесла. Этому способствовали феодальные порядки, установившиеся во всех европейских странах, постоянные войны между феодалами, нашествия полудиких народов с востока, массовые эпидемии, а главное — идеологическое закабаление умов широких народных масс римско-католической церковью. В этот период римско-католическая церковь, несмотря на многие неудачи в борьбе за политическое господство, распространила свое влияние во всей Западной Европе. Имея огромную армию духовенства различных рангов, папство фактически добилось полного господства христианской римско-католической идеологии среди всех западноевропейских народов. Проповедуя смирение и покорность, оправдывая существующие феодальные порядки, римско-католическое духовенство вместе с тем жестоко преследовало все новое и прогрессивное. Естественные науки и вообще так называемое светское образование были полностью подавлены. 4. Какое изобретение XVII в. дало возможность открыть и описать клетку? Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ — простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов. 5. Каково значение для биологической науки работ Л. Пастера и И. И. Мечникова? Труды Луи Пастера (1822—1895) и Ильи Ильича Мечникова (1845—1916) определили появление иммунологии. В 1876 г. Пастер полностью посвятил себя иммунологии, окончательно установив специфичность возбудителей сибирской язвы, холеры, бешенства, куриной холеры и других болезней, развил представления об искусственном иммунитете, предложил метод предохранительных прививок, в частности от сибирской язвы, бешенства. Первая прививка против бешенства была сделана Пастером 6 июля 1885 г. В 1888 г. Пастер создал и возглавил научно-исследовательский институт микробиологии (Пастеровский институт), в котором работали многие известные ученые. Мечников, обнаружив в 1882 г. явление фагоцитоза, разработал на его основе сравнительную патологию воспаления, а в дальнейшем — фагоцитарную теорию иммунитета, за что получил в 1908 г. Нобелевскую премию совместно с П. Эрлихом. Многочисленные работы Мечникова по бактериологии посвящены вопросам эпидемиологии холеры, брюшного тифа, туберкулеза и других инфекционных заболеваний. Мечников создал первую русскую школу микробиологов, иммунологов и патологов; активно участвовал в создании научно-исследовательских учреждений, разрабатывающих различные формы борьбы с инфекционными заболеваниями. 6. Перечислите основные открытия, сделанные в биологии в XX в. В середине XX в. в биологию начали активно проникать методы и идеи других естественных наук. Достижения современной биологии открывают широкие перспективы для создания биологически активных веществ и новых лекарственных препаратов, для лечения наследственных заболеваний и осуществления селекции на клеточном уровне. В настоящее время биология стала реальной производительной силой, по развитию которой можно судить об общем уровне развития человеческого общества. – Открытие витаминов – Открытие пептидных связей в молекулах белков – Изучение химической природы хлорофилла – Описали основные ткани растений – Открытие структуры ДНК – Исследование фотосинтеза – Открытие ключевого этапа в дыхании клеток — цикла трикарбоновых кислот, или цикла Кребса – Исследование физиологии пищеварения – Наблюдал клеточное строение тканей – Наблюдал одноклеточных организмов, клетки животных (эритроциты) – Открытие ядра в клетке – Открытие аппарата Гольджи — органоида клетки, метод приготовления микроскопических препаратов нервной ткани, исследование строения нервной системы – Установил, что одни части зародыша имеют влияние на развитие других его частей – Сформулировал мутационную теорию – Создание хромосомной теории наследственности – Сформулировал закон гомологических рядов в наследственной изменчивости – Обнаружили усиление мутационного процесса под действием радиоактивного излучения – Открыл сложную структуру гена – Открыл значение мутационного процесса в процессах, происходящих в популяциях, для эволюции вида – Установил филогенетический ряд лошадиных как типовой ряд постепенных эволюционных изменений родственных видов – Разработали теорию зародышевых листков для позвоночных – Выдвинул теорию происхождения многоклеточных организмов от общего предка — гипотетического организма фагоцителлы – Обосновывает наличие в прошлом предка многоклеточных — фагоцителлы и предлагает считать его живой моделью многоклеточное животное — трихоплакса – Обосновали биологический закон «Онтогенез есть краткое повторение филогенеза» – Написал и опубликовал работу «Географическое распространение животных» — труд, убедительно показавший, как велико значение генетической связи вымершей и современной фауны – Утверждал, что многие органы многофункциональны; в новых условиях среды одна из второстепенных функций может стать более важной и заменить прежнюю главную функцию органа – Выдвинул гипотезу возникновения билатеральной симметрии живых организмов 7. Назовите известные вам естественные науки, составляющие биологию. Какие из них возникли в конце XX в.? На границах смежных дисциплин возникали новые биологические направления: вирусология, биохимия, биофизика, биогеография, молекулярная биология, космическая биология и многие другие. Широкое внедрение математики в биологию вызвало рождение биометрии. Успехи экологии, а также всё более актуальные проблемы охраны природы способствовали развитию экологического подхода в большинстве отраслей биологии. На рубеже XX и XXI вв. с огромной скоростью начала развиваться биотехнология — направление, которому, несомненно, принадлежит будущее. Подумайте! Вспомните! 1. Проанализируйте изменения, произошедшие в науке в XVII—XVIII вв. Какие возможности они открыли перед учёными? Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ — простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов. В XVIII в. шведский натуралист Карл Линней (1707—1778) предложил систему классификации живой природы и ввёл бинарную (двойную) номенклатуру для наименования видов. Карл Эрнст Бэр (Карл Максимович Бэр) (1792—1876), профессор Петербургской медико-хирургической академии, изучая внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства и вошёл в историю науки как основатель эмбриологии. Первым биологом, который попытался создать стройную и целостную теорию эволюции живого мира, стал французский учёный Жан Батист Ламарк (1774—1829). Палеонтологию, науку об ископаемых животных и растениях, создал французский зоолог Жорж Кювье (1769—1832). Огромную роль в понимании единства органического мира сыграла клеточная теория зоолога Теодора Шванна (1810—1882) и ботаника Маттиаса Якоба Шлейдена (1804—1881). 2. Как вы понимаете выражение «прикладная биология»? Прикладная биология – это отрасль биологии, которая определяется потребностями общества. Из практически важных дисциплин быстро развиваются бионика (изучение технических приложений биологических закономерностей), космическая биология (изучение биологического действия факторов мирового пространства в проблем освоения космоса), астробиология или экзобиология (исследование жизни вне Земли), а также регенеративная биология и медицина. Многие современные науки, такие как генетика, молекулярная биология, экология, решают свои актуальные задачи, используя для исследования животных. Тесно связана с практической деятельностью человека прикладная зоология, которая включает сельскохозяйственную, лесную, медицинскую зоологию, паразитологию и другие разделы. В настоящее время активно развиваются прикладные отрасли ботаники: растениеводство, лесное хозяйство, фармакология и парфюмерная промышленность. Велика роль ботаники в увеличении продуктивности культурных растений, в решении мировой продовольственной проблемы. На первый план выходят такие задачи, как рациональное использование и сохранение растительного мира, защита растений от неблагоприятных факторов. 3. Решение, каких проблем человечества зависит от уровня биологических знаний?
4. Проанализируйте материал параграфа. Составьте хронологическую таблицу крупных достижений в области биологии. Какие страны в какие временные периоды были основными «поставщиками» новых идей и открытий? Сделайте вывод о связи между развитием науки и другими характеристиками государства и общества.
Страны, в которых произошли основные биологические открытия относятся к развитым и активно развивающимся странам. 5. Приведите примеры современных дисциплин, возникших на стыке биологии и других наук, не упомянутые в параграфе. Что является предметом их изучения? Попробуйте предположить, какие разделы биологии могут возникнуть в будущем. Примеры современных дисциплин, возникших на стыке биологии и других наук: палеобиология, биомедицина, социобиология, психобиология, бионика, физиология труда, радиобиология. Разделы биологии могут возникнуть в будущем: биопрограммирование, ИТ-медицина, биоэтика, биоинформатика, биотехнология. 6. Обобщите информацию о системе биологических наук и представьте её в виде сложной иерархической схемы. Сравните схему, созданную вами, с результатами, которые получились у ваших одноклассников. Одинаковы ли ваши схемы? Если нет, объясните, в чём их принципиальные отличия.
7. Оцените роль биологических знаний в формировании мировоззрения современного человека. Составьте 10—15 тезисов, раскрывающих значимость биологической информации в жизни каждого. 1) Человечество не может существовать без живой природы. Отсюда жизненно необходимо сохранять ее 2) Биология возникла в связи с решением очень важных для людей проблем. 3) Одной из них всегда было более глубокое постижение процессов в живой природе, связанных с получением пищевых продуктов, т.е. знание особенностей жизни растений и животных, их изменение под воздействием человека, способов получения надежного и все более богатого урожая. 4) Человек – продукт развития живой природы. Все процессы нашей жизнедеятельности подобны тем, которые происходят в природе. И поэтому глубокое понимание биологических процессов служит научным фундаментом медицины. 5) Появление сознания, означающее гигантский шаг вперед в самопознании материи, тоже не может быть понято без глубоких исследований живой природы, по крайней мере, в 2-х направлениях – возникновение и развитие мозга как органа мышления (до сих пор загадка мышления остается неразрешенной) и возникновение социальности, общественного образа жизни. 6) Живая природа является источником многих необходимых для человечества материалов и продуктов. Нужно знать их свойства, чтобы правильно использовать, знать, где искать их в природе, как получать. 7) Та вода, которую мы пьем, точнее - чистота этой воды, ее качество тоже определяется в первую очередь живой природой. Наши очистные сооружения лишь завершают тот огромный процесс, который незримо для нас происходит в природе: вода в почве или водоеме многократно проходит через тела мириадов беспозвоночных, фильтруется ими и, освобождаясь от органических и неорганических остатков, становится такой, какой мы знаем ее в реках, озерах и ключах. 8) Проблема качества воздуха и воды – одна из экологических проблем, а экология – биологическая дисциплина, хотя современная экология давно перестала быть только ею и включает в себя много самостоятельных разделов, зачастую принадлежащих к разным научным дисциплинам. 9) В результате освоения человеком всей поверхности планеты, развития сельского хозяйства, промышленности, вырубки лесов, загрязнения материков и океанов все большее число видов растений, грибов, животных исчезает с лица Земли. Исчезнувший вид восстановить невозможно. Он является продуктом миллионов лет эволюции и обладает уникальным генофондом. 10) В данный момент особенно быстро развиваются молекулярная биология, биотехнология и генетика. 8. Организационный проект. Выберите важное событие в истории биологии, годовщина которого приходится на текущий или следующий год. Разработайте программу вечера (конкурса, викторины), посвящённого этому событию. Примеры ближайших событий 2016-2017 гг.
Викторина: – Разделение на группы – Вступительное слово – описание события, историческая справка события, ученого – Придумать название команд (по теме викторины) – 1 раунд – простой: например, закончить предложение: Защитная реакция растений на изменение длины светового дня (листопад). – 2 раунд – двойной: например, найди пару. – 3 раунд – сложный: например, изобразить схему процесса, нарисовать явление. resheba.com Краткая история развития биологии. Методы биологии - Лекции - Каталог файловБиология (от греч. bios - жизнь, logos - наука) - наука о жизни, об общих закономерностях существования и развития живых существ. Предметом ее изучения являются живые организмы, их строение, рост, функции, развитие, взаимоотношения со средой и происхождение. Подобно физике и химии, она относится к естественным наукам, предмет изучения которых - природа.
Биология - одна из старейших естественных наук, хотя термин «биология» для ее обозначения впервые был предложен лишь в 1797 г. немецким профессором анатомии Теодором Рузом (1771-1803).
Биология, как и другие науки, возникла и всегда развивалась в связи с материальными условиями жизни общества, развитием общественного производства, медициной, практическими потребностями людей.
В наше время она характеризуется исключительно широким перечнем разрабатываемых фундаментальных проблем, начиная с исследований элементарных клеточных структур и реакций, протекающих в клетках, и заканчивая познанием процессов, развернутых и развивающихся на глобальном (биосферном) уровне. В относительно короткие исторические сроки были разработаны принципиально новые методы исследований, вскрыты молекулярные основы строения и активности клеток, установлена генетическая роль нуклеиновых кислот, расшифрован генетический код и сформулирована теория генетической информации, появились новые обоснования теории эволюции, возникли новые биологические науки. Новейший революционный этап в развитии биологии - это создание методологии генетической инженерии, которая открыла принципиально новые возможности для проникновения в глубь биологических процессов с целью дальнейшей характеристики живой материи.
ЭТАПЫ РАЗВИТИЯ БИОЛОГИИ
Самые первые сведения о живых существах человек стал собирать, вероятно, с тех пор, когда он осознал свое отличие от окружающего мира. Уже в литературных памятниках египтян, вавилонян, индийцев и других народов содержатся сведения о строении многих растений и животных, о применении этих знаний в медицине и сельском хозяйстве. В XIV в. до н. э. многие клинописные таблички, найденные в Месопотамии, содержали сведения о животных и растениях, о систематизации животных путем разделения их на плотоядных и травоядных, а растений - на деревья, овощи, лекарственные травы и т. д. В медицинских сочинениях, созданных в IV-I вв. до н. э. в Индии, содержатся представления о наследственности как причине сходства родителей и детей, а в памятниках «Махабхарата» и «Рамаяна» дано описание ряда особенностей жизни многих животных и растений.
В период рабовладельческого строя возникают ионийская, афинская, александрийская и римская школы в изучении животных и растений.
Ионийская школа возникла в Ионии (VII-IV вв. до н. э.). Не веря в сверхъестественное происхождение жизни, философы этой школы признавали причинность явлений, движение жизни по определенному пути, доступность для изучения «естественного закона», который, по их утверждению, управляет миром. В частности, Алкмеон (конец VI - начало V в. до н. э.) описал зрительный нерв и развитие куриного эмбриона, признавал мозг в качестве центра ощущений и мышления, а Гиппократ (460-370 гг. до н. э.) дал первое относительно подробное описание строения человека и животных, указал на роль среды и наследственности в возникновении болезней.
Афинская школа сложилась в Афинах. Наиболее выдающийся представитель этой школы Аристотель (384-322 гг. до н. э.) создал четыре биологических трактата, в которых содержались разносторонние сведения о животных. Аристотель подразделял окружающий мир на четыре царства (неодушевленный мир земли, воды и воздуха, мир растений, мир животных и мир человека), между которыми устанавливалась последовательность. В дальнейшем эта последовательность превратилась в «лестницу существ» (XVIII в.). Аристотелю принадлежит, вероятно, и самая первая классификация животных, которых он подразделял на четвероногих, летающих, пернатых и рыб. Китообразных он объединил с сухопутными животными, но не с рыбами, которых классифицировал на костных и хрящевых. Аристотелю были известны основные признаки млекопитающих. Он дал описание наружных и внутренних органов человека, половых различий у животных, их способов размножения и образа жизни, происхождения пола, наследования отдельных признаков, уродств, многоплодия и т. д. Аристотеля считают основоположником зоологии. Другой представитель этой школы - Теофраст (372-287 гг. до н. э.) оставил сведения о строении и размножении многих расте- ний, о различиях между однодольными и двудольными растениями, ввел в употребление термины «плод», «околоплодник», «сердцевина». Его считают основоположником ботаники.
Александрийская школа вошла в историю биологии благодаря ученым, занимающимся в основном изучением анатомии. Герофил (расцвет творчества на 300-е гг. до н. э.) оставил сведения по сравнительной анатомии человека и животных, впервые указал на различия между артериями и венами, а Эразистрат (около 250 г. до н. э.) описал полушария головного мозга, его мозжечок и извилины.
Римская школа не дала самостоятельных разработок в изучении живых организмов, ограничившись коллекционированием сведений, добытых греками. Плиний Старший (23-79) - автор «Естественной истории» в 37 книгах, в которой содержались также и сведения о животных и растениях. Диоскорид (I в. н. э.) оставил описание около 600 видов растений, обращая внимание на их целебные свойства. Клавдий Гален (130-200) широко проводил вскрытия млекопитающих (крупный и мелкий рогатый скот, свиньи, собаки, медведи и др.), первым дал сравнительно-анатомическое описание человека и обезьяны. Он был последним великим биологом древности, оказавшим исключительно большое влияние на анатомию и физиологию.
В Средние века господствующей идеологией была религия. По образному выражению классика, наука в те времена превратилась в «служанку богословия». Биологические знания, основанные на описаниях Аристотеля, Плиния, Галена, были отражены в основном в энциклопедии Альберта Великого (1206-1280). На Руси сведения о животных и растениях были обобщены в «Поучении Владимира Мономаха» (XI в.). Выдающийся ученый и мыслитель Средних веков Абу-Али Ибн Сина (980-1037), известный в Европе под именем Авиценны, развивал взгляды о вечности и несотворенности мира, признавал причинные закономерности в природе.
В этот период биология еще не выделилась в самостоятельную науку, но отделилась от восприятия мира на основе искаженных религиозно-философских взглядов.
Начала биологии, как и всего естествознания, связаны с эпохой Возрождения (Ренессанса). В этот период происходит крушение феодального общества, уничтожение диктатуры церкви. Как отмечал Энгельс, настоящее «естествознание начинается со второй половины XV в., и с этого времени оно непрерывно делает все более быстрые успехи». Например, Леонардо да Винчи (1452-1519) открыл гомологию органов, описал многие растения, птиц в полете, щитовидную железу, способ соединения костей суставов, деятельность сердца и зрительной функции глаза, отметил сходство костей человека и животных. Андреас Везалий (1514-1564) создал анатомический труд «Семь книг о строении человеческого тела», заложивший основы научной анатомии. В. Гарвей (1578-1657) открыл кровообращение, а Д. Борели (1608-1679) описал механизм движения животных, что заложило научные основы физиологии. С того времени анатомия и физиология развивались вместе в течение многих десятков лет.
Чрезвычайно быстрое накопление научных данных о живых организмах вело к дифференциации биологических знаний, к разделению биологии на отдельные науки. В XVI-XVII вв. стала стремительно развиваться ботаника, с изобретением микроскопа (начало XVII в.) возникла микроскопическая анатомия растений, закладываются основы физиологии растений. С XVI в. стала быстрее развиваться зоология. Большое влияние на нее в последующем оказала система классификации животных, созданная К. Линнеем (1707-1778). Введя четырехчленные таксономические подразделения (класс - отряд - род - вид), К. Линней разделил животных на шесть классов (млекопитающие, птицы, амфибии, рыбы, насекомые, черви). Человека и человекообразных обезьян он отнес к приматам. Значительное влияние на биологию того времени оказал немецкий ученый Г. Лейбниц (1646-1716), который разработал учение о «лестнице существ».
В XVIII-XIX вв. закладываются научные основы эмбриологии - К.Ф. Вольф (1734-1794), К.М. Бэр (1792-1876). В 1839 г. Т. Шванн и М. Шлейден формулируют клеточную теорию.
В 1859 г. Ч. Дарвин (1809-1882) публикует «Происхождение видов». В этом труде была сформулирована теория эволюции.
В первой половине XIX в. возникает бактериология, которая благодаря трудам Л. Пастсра, Р. Коха, Д. Листера и И.И. Мечникова
в последующем перерастает в микробиологию как самостоятельную науку. К концу XIX в. в качестве самостоятельных наук оформляются паразитология и экология.
В 1865 г. опубликована работа Г. Менделя (1822-1884) «Опыт над растительными гибридами», в которой обосновывалось существование генов и сформулированы закономерности, в настоящее время известные как законы наследственности. После повторного открытия законов в XX в. оформляется в качестве самостоятельной науки генетика.
Еще в первой половине XIX в. возникли идеи об использовании физики и химии для изучения явлений жизни (Г. Деви, Ю. Либих). Реализация этих идей привела к тому, что в середине XIX в. физиология обособилась от анатомии, причем физико-химическое направление заняло в ней ведущее место. На рубеже XIX-XX вв. сформировалась современная биологическая химия. В первой половине XX в. оформляется в качестве самостоятельной науки биологическая физика.
Важнейшим рубежом в развитии биологии в XX в. стали 40-50-е гг., когда в биологию хлынули идеи и методы физики и химии, а в качестве объектов стали использовать микроорганизмы. В 1944 г. была открыта генетическая роль ДНК, в 1953 г. выяснена ее структура, а в 1961 г. был расшифрован генетический код. С открытием генетической роли ДНК и механизмов синтеза белков из генетики и биохимии произошло вычленение молекулярной биологии и молекулярной генетики, которые часто называют физико-химической биологией, основным предметом изучения которых стали структура и функция нуклеиновых кислот (генов) и белков. Возникновение этих наук означало гигантский шаг в изучении явлений жизни на молекулярном уровне организации живой материи.
12 апреля 1961 г. впервые в истории человек поднялся в космос. Этим первым космонавтом был гражданин СССР Юрий Алексеевич Гагарин. В Советском Союзе этот день стал Днем космонавтики, а в мире - Всемирным днем авиации и космонавтики. Но можно сказать, что этот день является днем космической биологии, родиной которой по праву является Советский Союз.
В 1970-е гг. появляются первые работы по генетической инженерии, которая подняла на новый уровень биотехнологию и открыла новые перспективы перед медициной.
Биология - это комплексная наука, ставшая таковой в результате дифференцирования и интеграции разных биологических наук.
Процесс дифференциации начался с разделения зоологии, ботаники и микробиологии на ряд самостоятельных наук. В пределах зоологии возникли зоология позвоночных и беспозвоночных, протозоология, гельминтология, арахноэнтомология, ихтиология, орнитология и т. д. В ботанике выделились микология, альгология, бриология и другие дисциплины. Микробиология разделилась на бактериологию, вирусологию и иммунологию. Одновременно с дифференциацией шел процесс возникновения и оформления новых наук, которые расчленились на более узкие науки. Например, генетика, возникнув в качестве самостоятельной науки, разделилась на общую и молекулярную, на генетику растений, животных и микроорганизмов. В то же время появились генетика пола, генетика поведения, популяционная генетика, эволюционная генетика и т. д. В недрах физиологии возникли сравнительная и эволюционная физиология, эндокринология и другие физиологические науки. В последние годы отмечается тенденция оформления узких наук, получающих название по проблеме (объекту) исследования. Такими науками являются энзимология, мембранология, кариология, плазмидология и др.
В результате интеграции наук возникли биохимия, биофизика, радиобиология, цитогенетика, космическая биология и другие науки.
Ведущее положение в современном комплексе биологических наук занимает физико-химическая биология, новейшие данные которой вносят существенный вклад в представления о научной картине мира, в дальнейшее обоснование материального единства мира. Продолжая отражать живой мир и человека как часть этого мира, глубоко развивая познавательные идеи и совершенствуясь в качестве теоретической основы медицины, биология приобрела исключительно большое значение в научно-техническом прогрессе, стала произ- водительной силой.
МЕТОДЫ ИССЛЕДОВАНИЙ
Новые теоретические представления и продвижение биологического познания вперед всегда определялись и определяются созданием и использованием новых методов исследования.
Основными методами, используемыми в биологических науках, являются описательный, сравнительный, исторический и экспери- ментальный.
Описательный метод является самым старым и заключается в сборе фактического материала и его описании. Возникнув в самом начале биологического познания, этот метод долгое время оставался един- ственным в изучении строения и свойств организмов. Поэтому старая биология была связана с простым отражением живого мира в виде описания растений и животных, т. е. она являлась, по существу, описательной наукой. Использование этого метода позволило заложить основы биологических знаний. Достаточно вспомнить, насколько успешным оказался этот метод в систематике организмов.
Описательный метод широко используется и сейчас. Изучение клеток с помощью светового или электронного микроскопа и описание выявленных при этом микроскопических или субмикроскопических особенностей в их строении представляет собой один из примеров использования описательного метода в настоящее время.
Сравнительный метод заключается в сравнении изучаемых организмов, их структур и функций между собой с целью выявления сходств и различий. Этот метод утвердился в биологии в XVIII в. и оказался очень плодотворным в решении многих крупнейших проблем. С помощью этого метода и в сочетании с описательным методом были получены сведения, позволившие в XVIII в. заложить основы систематики растений и животных (К. Линней), а в XIX в. сформулировать клеточную теорию (М. Шлейден и Т. Шванн) и учение об основных типах развития (К. Бэр). Метод широко применялся в XIX в. в обосновании теории эволюции, а также в перестройке ряда биологических наук на основе этой теории. Однако использование этого метода не сопровождалось выходом биологии за пределы описательной науки.
Сравнительный метод широко применяется в разных биологических науках и в наше время. Сравнение приобретает особую цен- ность тогда, когда невозможно дать определение понятия. Например, с помощью электронного микроскопа часто получают изображения, истинное содержание которых заранее неизвестно. Только сравнение их со светомикроскопическими изображениями позволяет получить желаемые данные.
Во второй половине XIX в. благодаря Ч. Дарвину в биологию входит исторический метод, который позволил поставить на научные основы исследование закономерностей появления и развития организмов, становления структуры и функций организмов во времени и пространстве. С введением этого метода в биологию немедленно произошли значительные качественные изменения. Исторический метод превратил биологию из науки чисто описательной в науку, объясняющую, как произошли и как функционируют многообразные живые системы. Благодаря этому методу биология поднялась сразу на несколько ступеней выше. В настоящее время исторический метод вышел, по существу, за рамки метода исследования. Он стал всеобщим подходом к изучению явлений жизни во всех биологических науках.
Экспериментальный метод заключается в активном изучении того или иного явления путем эксперимента. Нельзя не отметить, что вопрос об опытном изучении природы как новом принципе естественно-научного познания, т. е. вопрос об эксперименте как одной из основ в познании природы, был поставлен еще в XVII в. английским философом Ф. Бэконом (1561-1626). Его введение в биологию связано с работами В. Гарвея в XVII в. по изучению кровообращения. Однако экспериментальный метод широко вошел в биологию лишь в начале XIX в., причем через физиологию, в которой стали использовать большое количество инструментальных методик, позволявших регистрировать и количественно характе- ризовать приуроченность функций к структуре. Благодаря трудам Ф. Мажанди (1783-1855), Г. Гельмгольца (1821-1894), И.М. Сеченова (1829-1905), а также классиков эксперимента К. Бернара (1813-1878) и И.П. Павлова (1849-1936) физиология, вероятно, первой из биологических наук стала экспериментальной наукой.
Другим направлением, по которому в биологию вошел экспериментальный метод, оказалось изучение наследственности и изменчивости организмов. Здесь главнейшая заслуга принадлежит Г. Менделю, который, в отличие от своих предшественников, использовал эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основе получаемых данных. Работа Г. Менделя явилась классическим образцом методологии экспериментальной науки.
В обосновании экспериментального метода важное значение имели работы, выполненные в микробиологии Л. Пастером (1822-1895), который впервые ввел эксперимент для изучения брожения и опро- вержения теории самопроизвольного зарождения микроорганизмов, а затем для разработки вакцинации против инфекционных болезней. Во второй половине XIX в. вслед за Л. Пастером значительный вклад в разработку и обоснование экспериментального метода в микробиологии внесли Р. Кох (1843-1910), Д. Листер (1827-1912), И.И. Мечников (1845-1916), Д.И. Ивановский (1864-1920), С.Н. Виноградский (1856- 1890), М. Бейерник (1851-1931) и др. В XIX в. биология обогатилась также созданием методических основ моделирования, которое является также высшей формой эксперимента. Изобретение Л. Пастером, Р. Кохом и другими микробиологами способов заражения лабораторных животных патогенными микроорганизмами и изучение на них патогенеза инфекционных болезней - это классический пример моделирования, перешедшего в XX в. и дополненного в наше время моделированием не только разных болезней, но и различных жизненных процессов, включая происхождение жизни.
Начиная, например, с 40-х гг. XX в. экспериментальный метод в биологии подвергся значительному усовершенствованию за счет повышения разрешающей способности многих биологических методик и разработки новых экспериментальных приемов. Так, была повышена разрешающая способность генетического анализа, ряда иммунологических методик. В практику исследований были введены культивирование соматических клеток, выделение биохимических мутантов микроорганизмов и соматических клеток и т. д. Экспериментальный метод стал широко обогащаться методами физики и химии, которые оказались исключительно ценными не только в качестве самостоятельных методов, но и в сочетании с биологическими методами. Например, структура и генетическая роль ДНК были выяснены в результате сочетанного использования химических методов выделения ДНК, химических и физических методов определения ее первичной и вторичной структуры и биологических методов (трансформации и генетического анализа бактерий), доказательства ее роли как генетического материала.
В настоящее время экспериментальный метод характеризуется исключительными возможностями в изучении явлений жизни. Эти возможности определяются использованием микроскопии разных видов, включая электронную с техникой ультратонких срезов, биохимических методов, высокоразрешающего генетического анализа, иммунологических методов, разнообразных методов культивирования и прижизненного наблюдения в культурах клеток, тканей и органов, маркировки эмбрионов, оплодотворения в пробирке, метода меченых атомов, рентгеноструктурного анализа, ультрацентрифугирования, спектрофотометрии, хроматографии, электрофореза, секвенирования, конструкции биологически активных рекомбинантных молекул ДНК и т. д. Новое качество, заложенное в экспериментальном методе, вызвало качественные изменения и в моделировании. Наряду с моделированием на уровне органов в настоящее время развивается моделирование на молекулярном и клеточном уровнях.
Оценивая методологию изучения природы в XV-XIX вв., Ф. Энгельс отмечал, что «разложение природы на ее определенные части, разделение различных процессов и предметов природы на определенные классы, исследование внутреннего строения органических тел по их многообразным анатомическим формам - все это было основным условием тех исполинских успехов, которые были достигнуты в области познания природы за последние четыреста лет». Методология «разделения» перешла и в XX в. Однако в подходах к изучению жизни произошли несомненные изменения. Новое, заложенное в экспериментальном методе и его техническом оснащении, определило и новые подходы к изучению явлений жизни. Продвижение вперед биологических наук в XX в. во многом определилось не только экспериментальным методом, но и системно- структурным подходом к изучению организации и функций живых организмов, анализом и синтезом данных о структуре и функциях исследуемых объектов. Экспериментальный метод в современном оснащении и в сочетании со системно-структурным подходом в корне преобразил биологию, расширил ее познавательные возможности, еще больше связал ее с медициной, с производством.
БИОЛОГИЯ - ТЕОРЕТИЧЕСКАЯ ОСНОВА МЕДИЦИНЫ
Связи биологического познания с медициной уходят в далекое прошлое и датируются тем же временем, что и возникновение самой биологии. Многие выдающиеся медики прошлого были одновременно и выдающимися биологами (Гиппократ, Герофил, Эразистрат, Гален, Авиценна, Мальпиги и др.). Тогда и позднее биология стала обслуживать медицину путем «доставки» ей сведений о строении организма. Однако роль биологии как теоретической основы медицины в современном понимании стала формироваться лишь в XIX в.
Создание в XIX в. клеточной теории заложило подлинно научные основы связи биологии с медициной. В 1858 г. Р. Вирхов (1821-1902) опубликовал «Целлюлярную патологию», в которой было сформу-
лировано положение о связи патологического процесса с клетками, с изменениями в строении последних. Соединив клеточную теорию с патологией, Р. Вирхов прямым образом «подвел» биологию под медицину в качестве теоретической основы. Значительные заслуги в укреплении связей биологии и медицины в XIX в. и начале XX в. принадлежат К. Бернару и И.П. Павлову, которые раскрыли и общебиологические основы физиологии и патологии, Л. Пастеру, Р. Коху, Д.И. Ивановскому и их последователям, создавшим учение об инфекционной патологии, на основе которой возникли представления об асептике и антисептике, приведшие к ускорению развития хирургии. Исследуя процессы пищеварения у низших многоклеточных животных, И.И. Мечников заложил биологические основы учения об иммунитете, имеющего большое значение в медицине. В укреплении связей биологии и медицины существенный вклад принадлежит генетике. Исследуя биохимические проявления действия генов у человека, английский врач А. Гаррод в 1902 г. сообщил о «врожденных пороках метаболизма», чем было положено начало изучению наследственной патологии человека.
На основе анатомии, физиологии, биохимии и других медикобиологических наук развиваются терапия и хирургия. На основе микробиологии, иммунологии и паразитологии разрабатываются диагностика и профилактика инфекционных и паразитарных болезней, развивается эпидемиология. Учение об антибиозе лежит в основе производства антибиотиков, являющихся важнейшей частью современного арсенала химиотерапевтических средств. Данные общей и молекулярной генетики, анатомии, физиологии и биохимии составляют теоретические основы диагностики, лечения и профилактики наследственных болезней.
БИОЛОГИЯ И ПРОИЗВОДСТВО
Впервые практика стала формулировать свои заказы биологии с введением в эту науку экспериментального метода. Тогда биология оказывала влияние на практику опосредованно, через медицину. Прямое влияние на материальное производство началось с создания биотехнологии в тех областях промышленности, которые основываются на биосинтезирующей деятельности микроорганизмов. Уже давно в промышленных условиях осуществляется микробиологический синтез многих органических кислот, которые исполь-
зуются в пищевой и медицинской промышленности и медицине. В 40-50-е гг. XX в. была создана промышленность для производства антибиотиков, а в начале 60-х гг. XX в. - с целью производства аминокислот. Важное место в микробиологической промышленности занимает производство ферментов. Микробиологическая промышленность выпускает сейчас в больших количествах также витамины и другие вещества, необходимые в народном хозяйстве и медицине. На основе трансформирующей способности микроорганизмов основано промышленное производство веществ с фармакологическими свойствами из стероидного сырья растительного происхождения.
Наибольшие успехи в производстве различных веществ, в том числе лекарственных (инсулин, соматостатин, интерферон и др.), связаны с генетической инженерией, составляющей сейчас основу биотехнологии. Генетическая инженерия оказывает существенное влияние и на производство пищи, поиск новых источников энергии, сохранение окружающей среды. Развитие биотехнологии, теоретическую основу которой составляет биология, а методическую - генетическая инженерия, является новым этапом в развитии материального производства. Появление этой технологии есть один из моментов новейшей революции в производительных силах (А.А. Баев).
В недрах генетической инженерии и биотехнологии в XXI в. делаются первые шаги в разработке методических основ бионанотехнологии. www.biokan.ru Краткая история развития биологииБиология |
|
||||||||||||||||||||||||||||||||||||
|
|