referatzone.com

Химическая картина мира

Химия – наука о превращениях веществ, сопровождающихся изменением их состава и строения.

Явления, при которых из одних веществ образуются другие, называются химическими. Естественно, что, с одной стороны, в этих явлениях можно обнаружить чисто физические изменения, а, с другой стороны, химические явления всегда присутствуют во всех биологических процессах. Таким образом, очевидна связь химии с физикой и биологией.

Эта связь, по-видимому, была одной из причин того, почему химия долго не могла стать самостоятельной наукой. Хотя уже Аристотель разделял вещества на простые и сложные, чистые и смешанные и пытался объяснить возможность одних превращений и невозможность других, химические явления в целом он считал качественными изменениями и потому относил к одному из родов движения. Химия Аристотеля была частью его физики – знания о природе ( ).

Другая причина несамостоятельности античной химии связана с теоретичностью, созерцательностью всей древнегреческой науки в целом. В вещах и явлениях искали неизменное – идею. Теория химических явлений приводила к идее элемента ( ) как некоего начала природы или к идее атома как неделимой частицы вещества. Согласно атомистической концепции, особенности форм атомов во множестве их сочетаний обуславливают разнообразие качеств тел макромира.

Эмпирический опыт относился в Древней Греции к области искусств и ремесел. Он включал также и практические знания о химических процессах: выплавке металлов из руд, крашении тканей, выделке кожи.

Вероятно, из этих древних ремесел, известных еще в Египте и Вавилоне, возникло «тайное» герметическое искусство Средневековья – алхимия, наиболее распространенное в Европе в IX-XVI веках.

Зародившись в Египте в III-IV веках, это направление практической химии было связано с магией и астрологией. Целью ее было разработать способы и средства превращения менее благородных веществ в более благородные, чтобы достичь реального совершенства, как материального, так и духовного. В ходе поисков универсальных средств таких превращений арабские и европейские алхимики получили много новых и ценных продуктов, а также усовершенствовали лабораторную технику.

Если считать, что химия становится наукой в XVII-XVIII веках, то можно выделить три периода формирования современной химической картины мира.

1. Период зарождения научной химии (XVII – конец XVIII в.; Парацельс, Бойль, Кавендиш, Шталь, Лавуазье, Ломоносов). Характеризуется тем, что химия выделяется из естествознания в качестве самостоятельной науки. Ее цели определяются развитием промышленности в Новое время. Однако, теории этого периода, как правило, используют либо античные, либо алхимические представления о химических явлениях. Завершился период открытием закона сохранения массы при химических реакциях.

Например, ятрохимия Парацельса (XVI в.) была посвящена приготовлению лекарств и лечению болезней. Парацельс объяснял причины болезней нарушением химических процессов в организме. Как и алхимики, он сводил разнообразие веществ к нескольким элементам – носителям основных свойств материи. Следовательно, восстановление их нормального соотношения приемом лекарств излечивает болезнь.

Теория флогистона Шталя (XVII-XVIII вв.) обобщала множество химических реакций окисления, связанных с горением. Шталь предположил существование во всех веществах элемента «флогистон» – начала горючести.

Тогда реакция горения выглядит так: горючее тело → остаток + флогистон; возможен и обратный процесс: если остаток насытить флогистоном, т.е. смешать, например, с углем, то снова можно получить металл.

2. Период открытия основных законов химии (1800-1860 гг.; Дальтон, Авогадро, Берцелиус). Итогом периода стала атомно-молекулярная теория:

а) все вещества состоят из молекул, которые находятся в непрерывном хаотическом движении;

б) все молекулы состоят из атомов;

в) атомы представляют собой мельчайшие, далее неделимые составные части молекул.

3. Современный период (начался в 1860 гг.; Бутлеров, Менделеев, Аррениус, Кекуле, Семенов). Характеризуется выделением разделов химии в качестве самостоятельных наук, а также развитием смежных дисциплин, например, биохимии. В этот период были предложены периодическая система элементов, теории валентности, ароматических соединений, электрохимической диссоциации, стереохимия, электронная теория материи.

Современная химическая картина мира выглядит так:

1. Вещества в газообразном состоянии состоят из молекул. В твердом и жидком состоянии из молекул состоят только вещества с молекулярной кристаллической решеткой (СО2, h3O). Большинство твердых тел имеет структуру либо атомную, либо ионную и существует в виде макроскопических тел (NaCl, CaO, S).

2. Химический элемент – определенный вид атомов с одинаковым зарядом ядра. Химические свойства элемента определяются строением его атома.

3. Простые вещества образованы из атомов одного элемента (N2, Fe). Сложные вещества или химические соединения образованы атомами разных элементов (CuO, h3O).

4. Химические явления или реакции – это процессы, в которых одни вещества превращаются в другие по строению и свойствам без изменения состава ядер атомов.

5. Масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции (закон сохранения массы).

6. Всякое чистое вещество независимо от способа получения всегда имеет постоянный качественный и количественный состав (закон постоянства состава).

Основная задача химии – получение веществ с заранее заданными свойствами и выявление способов управления свойствами вещества.

 

 

studopedya.ru

Курсовая работа (теория): Современная химическая картина мира

Тема

Современная химическая картина мира

1. Предмет познания и важнейшие особенности химический науки

.1 Специфика химии как науки

Для человека одной из важнейших естественных наук является химия - наука о составе, внутреннем строении и превращении вещества, а также о механизмах этих превращений.

«Химия - наука, изучающая свойства и превращения веществ, сопровождающиеся изменением их состава и строения». Она изучает природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов и т.д.

Химия всегда была нужна человечеству для того, чтобы получать из природных веществ материалы со свойствами, необходимыми для повседневной жизни и производства. Получение таких веществ - производственная задача, и, чтобы ее реализовать, надо уметь осуществлять качественные превращения вещества, т. е. из одних веществ получать другие. Чтобы этого добиться, химия должна справиться с теоретической проблемой генезиса (происхождения) свойств вещества.

Таким образом, основанием химии выступает двуединая проблема - получение веществ с заданными свойствами (на достижение ее направлена производственная деятельность человека) и выявление способов управления свойствами вещества (на реализацию этой задачи направлена научно-исследовательская работа ученых). Эта же проблема является одновременно и системообразующим началом химии.

.2 Важнейшие особенности современной химии

. В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия).

. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия - закономерности поведения химических элементов в земной коре.

Биогеохимия - это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский.

Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам.

. В химии появляются принципиально новые методы исследования (рентгеновский структурный анализ, масс-спектроскопия, радиоспектроскопия и др.)?

Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными:

) введение в практику эфирного наркоза, а затем и других наркотических веществ;

) использование антисептических средств для предупреждения инфекции;

) получение новых, не имеющихся в природе аллопластических материалов-полимеров.

В химии весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) - это органические соединения. В их основе лежат 18 элементов (наибольшее распространение имеют всего 6 из них).

Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство.

Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение.

В последнее время химия все чаще предпринимает штурм соседних с нею уровней структурной организации природы. Например, химия все более и более вторгается в биологию, пытаясь объяснить основы жизни.

В развитии химии происходит не смена, а строго закономерное, последовательное появление концептуальных систем. При этом вновь появляющаяся система опирается на предыдущую и включает ее в себя в преобразованном виде. Таким образом, появляется система химии - единая целостность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концептуальные системы знаний, которые находятся между собой в отношениях иерархии.

2. Концептуальные системы химии

.1 Понятие о химическом элементе

Концепция химического элемента появилась в химии в результате стремления человека обнаружить первоэлемент природы. Р. Бойль положил начало современному представлению о химическом элементе как о простом теле, пределе химического разложения вещества, переходящем без изменения из состава одного сложного тела в другое. Но еще целый век после этого химики делали ошибки в выделении химических элементов: сформулировав понятие химического элемента, ученые еще не знали ни одного из них.

Химические знания до определенного времени накапливались эмпирически, пока не назрела необходимость в их классификации и систематизации, т.е. в теоретическом обобщении. Основоположником системного освоения химических знаний явился Д. И. Менделеев. Попытки объединения химических элементов в группы предпринимались и ранее, однако не были найдены определяющие причины изменений свойств химических веществ. Д. И. Менделеев исходил из принципа, что любое точное знание представляет систему. Такой подход позволил ему в 1869 г. открыть периодический закон и разработать Периодическую систему химических элементов. В его системе основной характеристикой элементов являются атомные веса. Периодический закон Д. И. Менделеева сформулирован в следующем виде:

«Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

Это обобщение давало новые представления об элементах, но в силу того, что еще не было известно строение атома, физический смысл его был недоступен. В современном представлении этот периодический закон выглядит следующим образом:

«Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера)».

Простейшим химическим элементом является водород (1H), состоящий из одного протона (ядра атома, имеющего положительный заряд) и одного электрона, имеющего отрицательный заряд.

Баланс взаимоотношений в атоме водорода, между протоном и электроном, можно описать тождеством

Если учесть отношение масс

то мы получим первое представление о балансе взаимоотношений между протонами и электронами в химических элементах.

.2 Магическая матрица периодической системы химических элементов

Приводится следующая структура Периодической таблицы Д.И.Менделеева. Приводимая ниже информация приводится только для ознакомления и последующего осознания, что современные представления о тайнах Периодической системы химических элементов еще далеки от Истины.

Рис. 1-1

Этот рисунок дает четкие представления о строго эволюционном формировании Периодической таблицы, в полном соответствии с законами сохранения симметрии. Все оболочки, подоболочки оказываются здесь строго взаимосвязаны и взаимообусловлены. Каждый химический элемент занимает в этом многомерном и многоуровневом "кубе" строго определенную эволюционную нишу.

Рис. 1-2

В монографиях "Основы миологии", "Миология" были рассмотрены свойства магической матрицы, отражающей свойства подоболочек и оболочек Периодической системы химических элементов.

Рис. 1-3

Из этой матрицы непосредственно видно

. Количественный состав подоболочек и по горизонтали, и по вертикали матрицы одинаковы.

. Группировки чисел, отражающие состав подоболочек Периодической системы характеризуют группировки этих подоболочек, разные по структуре. Но это так и должно быть, т.к. матрица является "отпечатком" пространственной структуры (монадного кристалла) на плоскость.

. Главная диагональ матрицы является суммой всех чисел по горизонтали и по вертикали.

Эта магическая матрица химических элементов заслуживает самого пристального изучения.

Рис. 1-4

Разве здесь не видно двойной спирали, в которой каждое число есть матрица строго определенной размерности?

Рис. 1-5

Из этой матрицы, используя многомерные весы, можно непосредственно увидеть баланс взаимоотношений между подоболочками.

Рис. 1-6

В этих матричных весах неукоснительно соблюдаются правила матричного умножения вектора-столбца на вектор-строку. Данные весы отражают баланс взаимоотношений между оболочками и подоболочками на восходящем участке эволюции химических элементов.

Здесь философским категориям восходящей и нисходящей спиралям нет места, ибо эти категории здесь имеют не философский, а чисто "химический" смысл. Теперь мы можем записать Периодическую систему в форме матричных тождеств, отражающих баланс взаимоотношений ее подоболочек и оболочек.

Рис. 1-7

Нижеприведенный рисунок дает более полное представление о Периодической системе химических элементов.

Рис. 2

Напомним, что здесь каждая клетка матрицы является двойственным числом, отражающим смысл взаимоотношения человека и общества. Этот рисунок более глубоко отражает сущность и собственно Периодической системы химических элементов, подтверждая справедливость высказывания: "В каждой самой элементарной частице содержится полная информация о всей вселенной".

Приведенные выше матричные тождества несут в себе самые сокровенные тайны не только химических элементов, но и вообще самых сокровенных тайн мироздания. Эти матричные тождества составлены в полном соответствии с законами сохранения симметрии.

Эта матрица несет в себе информацию не только о "проявленной" Периодической системе химических элементов, но и о ее "непроявленном", волновом "двойнике

Периодическая система химических элементов еще раз утверждает справедливость принципа корпускулярно-волнового дуализма, принцип единства "прерывного" и "непрерывного".

И сегодня наукой уже установлено, что у Периодической таблицы химических элементов (вещественных) есть двойник - Периодическая система химических элементов (волновых).

.3 Современная картина химических знаний

Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения вопроса. Свойства вещества зависят от четырех факторов:

) от элементного и молекулярного состава вещества;

) от структуры молекул вещества;

) от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции;

) от уровня химической организации вещества.

Поскольку эти способы появлялись последовательно, мы можем в истории химии выделить четыре последовательно сменявших друг друга этапа ее развития. В то же время с каждым из названных способов решения основной проблемы химии связана своя концептуальная система знаний. Эти четыре концептуальных системы знания находятся в отношениях иерархии (субординации). В системе химии они являются подсистемами, так же как сама химия представляет собой подсистему всего естествознания в целом.

Современную картину химических знаний объясняют с позиций четырех концептуальных систем, которые схематично представлены на рис. I.

Рис. 3

На рисунке показано последовательное появление новых, концепций в химической науке, которые опирались на предыдущие достижения, сохраняя в себе все необходимое для дальнейшего развития.

Даже невооруженным взглядом в этих этапах видна симметрия этапов.

В левой части тождества отношение отражает структурный аспект эволюции химии, правая часть тождества, напротив, отражает уже функциональный (процессы) аспект эволюции химии.

.3.1 Первый уровень химического знания. Учение о составе вещества

Учение о составе веществ является первым уровнем химических знаний. До 20-30-х гг. XIX в. вся химия не выходила за пределы этого подхода. Но постепенно рамки состава (свойств) - стали тесны химии, и во второй половине XIX в. главенствующую роль в химии постепенно приобрело понятие «структура», ориентированное, что и отражено непосредственно в самом понятии, на структуру молекулы реагента.

Первый действенный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие частички (атомы), которые могли связываться друг с другом, образуя более крупные соединения - кластеры (по терминологии Бойля). В зависимости от объема и формы кластеров, от того, находились они в движении или покоились, зависели и свойства природных тел. Сегодня мы вместо термина «кластер» используем понятие «молекула».

В период с середины XVII в. до первой половины XIX в. учение о составе вещества представляло собой всю химию того времени. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне химического знания Ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с вновь открытыми химическими элементами.

Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и тоже место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. английским радиохимиком Ф. Содди. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы.

С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т. д.

Первое научное определение химического элемента, когда еще не было открыто ни одного из них, сформулировал английский химик и физик Р. Бойль. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие. Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений об «огненной материи» (флогистоне).

В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном. В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Концепция химических соединений. Долгое время химики эмпирическим путем определяли, что относится к химическим соединениям, а что - к простым телам или смесям. В начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое индивидуальное химическое соединение обладает строго определенным, неизменным составом и тем самым отличается от смесей.

Теоретическое обоснование закона Пруста было дано Дж. Дальтоном в законе кратных отношений. Согласно этому закону состав любого вещества можно было представить как простую формулу, а эквивалентные составные части молекулы - атомы, обозначавшиеся соответствующими символами, - могли замещаться на другие атомы.

Химическое соединение - понятие более широкое, чем «сложное вещество», которое должно состоять из двух и более разных химических элементов. Химическое соединение может состоять и из одного элемента. Это О2, графит, алмаз и другие кристаллы без посторонних включений в их решетку в идеальном случае».

Дальнейшее развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими определенный состав, существуют еще и соединения переменного состава - бертоллиды. В результате были переосмыслены представления о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно. Но в XX в. была понята сущность химической связи, которая стала пониматься как вид взаимодействия между атомами и атомно-молекулярными частицами, обусловленный совместным использованием их электронов.

На этой концептуальной основе была разработана стройная атомно-молекулярная теория того времени, которая впоследствии оказалась не в состоянии объяснить многие экспериментальные факты конца XIX - начала XX вв. Картина прояснилась с открытием сложного строения атома, когда стали ясны причины связи атомов, взаимодействующих друг с другом. В частности, химические связи указывают на взаимодействие атомных электрических зарядов, носителями которых оказываются электроны и ядра атомов.

Существуют ковалентные, полярные, ионные и ионно-ковалентные химические связи, отличающиеся характером физического взаимодействия частиц между собой. Поэтому теперь под химическим соединением понимают определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой: молекулу, комплекс, монокристалл или иной агрегат.

Осуществляют химические связи между атомами электроны, расположенные на внешней оболочке и связанные с ядром наименее прочно. Их назвали валентными электронами. В зависимости от характера взаимодействия между этими электронами различают ковалентную, ионную и металлическую химические связи.

Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам.

Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов.

Металлическая связь - это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.

Химическая связь является таким взаимодействием, которое связывает отдельные атомы в более сложные образования, в молекулы, ионы, кристаллы, т.е. в те структурные уровни организации материи, которые изучает химическая наука. Химическую связь объясняют взаимодействием электрических полей, образующихся между электронами и ядрами атомов в процессе химических преобразований. Прочность химической связи зависит от энергии связи.

Основываясь на законах термодинамики, химия определяет возможность того или иного процесса, условия его осуществления, внутреннюю энергию. «Внутренняя энергия - это общий запас энергии системы, который складывается из энергии движения и взаимодействия молекул, энергии движения и взаимодействия ядер и электронов в атомах, в молекулах и т.п.».

2.3.2 Второй уровень химического знания

Многочисленные эксперименты по изучению свойств химических элементов в первой половине XIX в. привели ученых к убеждению, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. К этому времени в химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. Их качественное разнообразие потрясающе велико - сотни тысяч химических соединений, состав которых крайне однообразен, так как они состоят из нескольких элементов-органогенов (углерода, водорода, кислорода, серы, азота, фосфора).

Наука считает, что только эти шесть элементов составляют основу живых систем, из-за чего они получили название органогенов. Весовая доля этих элементов в живом организме составляет 97,4%. Кроме того, в состав биологически важных компонентов живых систем входят еще 12 элементов: натрий, калий, кальций, магний, железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор.

Особая роль отведена природой углероду. Этот элемент способен организовать связи с элементами, противостоящими друг другу, и удерживать их внутри себя. Атомы углерода образуют почти все типы химических связей. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения.

Объяснение необычайно широкому разнообразию органических соединений при столь бедном элементном составе было найдено в явлениях изомерии и полимерии. Так было положено начало второму уровню развития химических знаний, который получил название структурной химии.

Структура - это устойчивая упорядоченность качественно неизменной системы (молекулы). Под данное определение подпадают все структуры, которые исследуются в химии: квантово-механические, основанные на понятиях валентности и химического сродства, и др.

Она стала более высоким уровнем по отношению к учению о составе вещества, включив его в себя. При этом химия из преимущественно аналитической науки превратилась в синтетическую. Главным достижением этого этапа развития химии стало установление связи между структурой молекул и реакционной способностью веществ.

Термин «структурная химия» условен. В нем подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, для создания схемы синтеза любых химических соединений, в том числе и ранее неизвестных.

Основы структурной химии были заложены Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. Затем И.-Я. Берцелиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами.

Важнейшим шагом в развитии структурной химии стало появление теории химического строения органических соединений русского химика A.M. Бутлерова, который считал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но при этом он указывал на то, с какой энергией (большей или меньшей) это сродство связывает вещества между собой. Иными словами, Бутлеров впервые в истории химии обратил внимание на энергетическую неравноценность разных химических связей. Эта теория позволила строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, а через это объясняла химическую активность одних веществ и пассивность других.

В XX в. структурная химия получила дальнейшее развитие. В частности, было уточнено понятие структуры, под которой стали понимать устойчивую упорядоченность качественно неизменной системы. Также было введено понятие атомной структуры - устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, - и молекулярной структуры - сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов.

Однако дальнейшее развитие химической науки и основанного на ее достижениях производства показали более точно возможности и пределы структурной химии.

Например, многие реакции органического синтеза на основе структурной химии давали очень низкие выходы необходимого продукта и большие отходы в виде побочных продуктов. Вследствие этого их нельзя было использовать в промышленном масштабе.

Структурная химия неорганических соединений ищет пути получения кристаллов для производства высокопрочных материалов с заданными свойствами, обладающих термостойкостью, сопротивлением агрессивной среде и другими качествами, предъявляемыми сегодняшним уровнем развития науки и техники. Решение этих вопросов наталкивается на различные препятствия. Выращивание, например, некоторых кристаллов требует исключения условий гравитации. Поэтому такие кристаллы выращивают в космосе, на орбитальных станциях.

.3.3 Третий уровень химического знания. Учение о химических процессах

Учение о химических процессах - область науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основе этого учения находятся химическая термодинамика и кинетика, поэтому оно в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов, основатель химической физики.

Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций, которые могут оказывать воздействие на характер и результаты этих реакций.

Важнейшей задачей химиков становится умение управлять химическими процессами, добиваясь нужных результатов. В самом общем виде методы управления химическими процессами можно подразделить на термодинамические (влияют на смещение химического равновесия реакции) и кинетические (влияют на скорость протекания химической реакции).

Для управления химическими процессами разработаны термодинамический и кинетический методы.

Французский химик А. Лее Шателье в конце XIX в. сформулировал принцип подвижного равновесия, обеспечив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических. Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий процесса.

Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость.

Скоростью химических процессов управляет химическая кинетика, в которой изучается зависимость протекания химических процессов от строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т. п.

Химическая кинетика. Объясняет качественные и количественные изменения в химических процессах и выявляет механизм реакции. Реакции проходят, как правило, ряд последовательных стадий, которые составляют полную реакцию. Скорость реакции зависит от условий протекания и природы веществ, вступивших в нее. К ним относятся концентрация, температура и присутствие катализаторов. Описывая химическую реакцию, ученые скрупулезно отмечают все условия ее протекания, поскольку в других условиях и при иных физических состояниях веществ эффект будет разный.

Задача исследования химических реакций является очень сложной. Ведь практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.

Катализ - ускорение химической реакции в присутствии особых веществ - катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в конечный состав продуктов. Он был открыт в 1812 г. российским химиком К. Г. С. Кирхгофом.

Сущность катализа сводится к следующему:

) активная молекула реагента достигается за счет их неполновалентного взаимодействия с веществом катализатора и состоит в расслаблении химических связей реагента;

) в общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение расслабленных (неполновалентных) химических связей.

Каталитические процессы различаются по своей физической и химической природе на следующие типы:

гетерогенный катализ - химическая реакция взаимодействия жидких или газообразных реагентов на поверхности твердого катализатора;

гомогенный катализ - химическая реакция в газовой смеси или в жидкости, где растворены катализатор и реагенты;

электрокатализ - реакция на поверхности электрода в контакте с раствором и под действием электрического тока;

фотокатализ - реакция на поверхности твердого тела или в жидком растворе, стимулируется энергией поглощенного излучения.

Применение катализаторов изменило всю химическую промышленность. Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (60-80 %) основаны на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.

С участием катализаторов скорость некоторых реакций возрастает в 10 млрд раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность).

В современных условиях одно из важнейших направлений развития учения о химических процессах - создание методов управления этими процессами. Поэтому сегодня химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.

Химия плазмы изучает химические процессы в низкотемпературной плазме при 1000-10 000 °С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока, поэтому они очень производительны.

Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок - стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.

Еще одна область развития учения о химических процессах - химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм - к химии сверхвысоких давлений.

При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102-103 атм исчезает различие между жидкой и газовой фазами, а при 103-105 атм - междутвердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства вещества. Например, при давлении 20 000 атм. металл становится эластичным, как каучук.

Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Эти процессы изучают химия, физика и биология. Перед химической наукой стоит принципиальная задача - научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить, хотя в принципе они осуществимы, другие трудно остановить - реакции горения, взрывы, а часть из них трудноуправляема, поскольку они самопроизвольно создают массу побочных продуктов.

.3.4 Четвертый уровень химического знания. Эволюционная химия

Эволюционная химия зародилась в 1950 - 1960 гг. В основе эволюционной химии лежат процессы биокатализа, ферментологии; ориентирована она главным образом на исследование молекулярного уровня живого, что основой живого является биокатализ, т.е. присутствие различных природных веществ в химической реакции, способных управлять ею, замедляя или ускоряя ее протекание. Эти катализаторы в живых системах определены самой природой, что и служит идеалом для многих химиков.

Идея концептуального представления о ведущей роли ферментов, биорегуляторов в процессе жизнедеятельности, предложенная французским естествоиспытателем Луи Пастером в ХIX веке, остается основополагающей и сегодня. Чрезвычайно плодотворным с этой точки зрения является исследование ферментов и раскрытие тонких механизмов их действия.

Ферменты- это белковые молекулы, синтезируемые живыми клетками. В каждой клетке имеются сотни различных ферментов. С их помощью осуществляются многочисленные химические реакции, которые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма, т.е. в пределах примерно от 5 до 40 градусов. Можно сказать, что ферменты - это биологические катализаторы.

В основе эволюционной химии принцип использования таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т. е. к самоорганизации химических систем.

В эволюционной химии существенное место отводится проблеме «самоорганизации» систем. Теория самоорганизации «отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности в системной упорядоченности, или материальной организации». В сущности, речь идет об использовании химического опыта живой природы. Это своеобразная биологизация химии. Химический реактор предстает как некое подобие живой системы, для которой характерны саморазвитие и определенные черты поведения. Так появилась эволюционная химия как высший уровень развития химического знания.

Под эволюционными проблемами понимают проблемы самопроизвольного синтеза новых химических соединений (без участия человека). Эти соединения являются более сложными и более высокоорганизованными продуктами по сравнению с исходными веществами. Поэтому эволюционную химию заслуженно считают предбиологией, наукой о самоорганизации и саморазвитии химических систем.

До последней трети XX в. об эволюционной химии ничего не было известно. В отличие от биологов, которые вынуждены были использовать эволюционную теорию Дарвина для объяснения происхождения многочисленных видов растений и животных, химики не интересовались вопросом происхождения вещества, потому что получение любого нового химического соединения всегда было делом рук и разума человека.

Постепенное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. Для освоения опыта живой природы и реализации полученных знания в промышленности химики наметили ряд перспективных путей.

Во-первых ведутся исследования в области металлокомплексного катализа, который обогащается приемами, используемыми живыми организмами в реакциях с участием ферментов (биокатализаторов).

Во-вторых, ученые пытаются моделировать биокатализаторы. Уже удалось создать модели многих ферментов, которые извлекаются из живой клетки и используются в химических реакциях. Но проблема осложняется тем, что ферменты, устойчивые внутри клетки, вне нее быстро разрушаются.

В-третьих, развивается химия иммобилизованных систем, благодаря которой биокатализаторы стали стабильными, устойчивыми в химических реакциях, появилась возможность их многократного использования.

В-четвертых, химики пытаются освоить и использовать весь опыт живой природы. Это позволит ученым создать полные аналоги живых систем, в которых будут синтезироваться самые разнообразные вещества. Таким образом, будут созданы принципиально новые химические технологии.

Изучение процессов самоорганизации в химии привело к формированию двух подходов к анализу предбиологических систем: субстратного и функционального.

Результатом субстратного подхода стала информация об отборе химических элементов и структур.

Химикам важно понять, каким образом из минимума химических элементов (основу жизнедеятельности живых организмов составляют 38 химических элементов) и химических соединений (большинство образовано на основе 6-18 элементов) образовались сложнейшие биосистемы.

Функциональный подход в эволюционной химии. В рамках этого подхода также изучается роль катализа и выявляются законы, которым подчиняются процессы самоорганизации химических систем.

Роль каталитических процессов усиливалась по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые стали связывать химическую эволюцию с самоорганизацией и саморазвитием каталитических систем.

На основе этих наблюдений профессор МГУ А.П. Руденко выдвинул теорию саморазвития открытых каталитических систем. Очень скоро она была преобразована в общую теорию химической эволюции и биогенеза. В ней решены вопросы о движущих силах и механизмах эволюционного процесса, т. е. о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.

Сущность этой теории состоит в том, что эволюционирующим веществом являются катализаторы, а не молекулы. При катализе идет реакция химического взаимодействия катализатора с реагентами с образованием при этом промежуточных комплексов со свойствами переходного состояния. Именно такой комплекс Руденко назвал элементарной каталитической системой. Если в ходе реакции идет постоянный приток извне новых реактивов, отвод готовой продукции, а также выполняются некоторые дополнительные условия, реакция может идти неограниченно долго, находясь на одном и том же стационарном уровне. Такие многократно возобновляемые комплексы являются элементарными открытыми каталитическими системами.

Саморазвитие, самоорганизация и самоусложнение каталитических систем происходят за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальное эволюционное преимущество получают каталитические системы, развивающиеся на базе экзотермических реакций. Таким образом, реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.

Тем самым Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализаторов, которые связаны с ростом их абсолютной каталитической активности. При этом по параметру абсолютной каталитической активности складываются механизмы конкуренции и естественного отбора.

Теория саморазвития каталитических систем дает следующие возможности: выявлять этапы химической эволюции и на этой основе классифицировать катализаторы по уровню их организации; использовать принципиально новый метод изучения катализа; дать конкретную характеристику пределов в химической эволюции и перехода от химогенеза (химического становления) к биогенезу, связанного с преодолением второго кинетического предела саморазвития каталитических систем.

Набирает теоретический и практический потенциал новейшее направление, расширяющее представление об эволюции химических систем, нестационарная кинетика.

Развитие химических знаний позволяет надеяться на разрешение многих проблем, которые встали перед человечеством в результате его наукоемкой и энергоемкой практической деятельности.

Химическая наука на ее высшем эволюционном уровне углубляет представления о мире. Концепции эволюционной химии, в том числе о химической эволюции на Земле, о самоорганизации и самосовершенствовании химических процессов, о переходе от химической эволюции к биогенезу, являются убедительным аргументом, подтверждающим научное понимание происхождения жизни во Вселенной.

Химическая эволюция на Земле создала все предпосылки для появления живого из неживой природы.

Жизнь во всем ее многообразии возникла на Земле самопроизвольно из неживой материи, она сохранилась и функционирует уже миллиарды лет.

Жизнь полностью зависит от сохранения соответствующих условий ее функционирования. А это во многом зависит от самого человека.

элемент ковалентный биорегулятор полярный

Список использованной литературы

1. Краткая химическая энциклопедия, гл. ред. И. Л. Кнунянц, т. 1-5, М., 1961-67;

. Краткий справочник по химии, под ред. О. Д. Куриленко, 4 изд.. К., 1974;

. Общая химия, Полинг Л., пер. с англ., М., 1974;

. Современная общая химия, Кемпбел Дж., пер. с англ., [т.] 1-3, М., 1975.

Теги: Современная химическая картина мира  Курсовая работа (теория)  Химия

dodiplom.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Химическая картина мира. Реферат химическая картина мира


ХИМИЧЕСКАЯ КАРТИНА МИРА | Бесплатные курсовые, рефераты и дипломные работы

Отсутствие в химии теоретических основ, позволяющих точно предсказывать и рассчитывать протекание химических реакций, не позволяло ставить её в ряд с науками, обосновывающими само бытие.

Именно сведение химических процессов к совокупности физических как бы прямо указывало на ненужность химических воззрений при анализе первооснов бытия. Кстати, когда химики пытались защитить специфику своей науки доводами о статистическом характере химических взаимодействий в отличие большинства взаимодействий в физике, обусловленных динамическими законами, физики тут же указывали на статистическую физику, которая якобы более полно описывает подобные процессы.

Специфика химии терялась, хотя наличие строгой геометрии связей взаимодействующих частиц в химических процессах вносило в статистическое рассмотрение специфический для химии информационный аспект.

Анализ сущности информационно-фазового состояния материальных систем резко подчёркивает информационный характер химических взаимодействий. … Вода как химическая среда, оказавшись первым примером информационно-фазового состояния материальных систем, соединила в себе два состояния: жидкое и информационно-фазовое именно по причине близости химических взаимодействий к информационным.

Вакуум как электромагнитная среда физического пространства, проявившая свойства информационно-фазового состояния, скорее всего, ближе к среде, в которой протекают процессы, по форме напоминающие химические. Давно замеченное терминологическое совпадение при описании соответствующих процессов превращения частиц в химии и в физике элементарных частиц как реакций дополнительно подчёркивает роль химических представлений в физике.

Предполагаемая взаимосвязь между информационно-фазовыми состояниями водной среды и электромагнитной среды физического вакуума свидетельствует о сопутствующих химическим процессам изменениях в физическом вакууме, что, вероятно, и ощущал Д.И. Менделеев в своих экспериментах.

Следовательно, в вопросе о природе мирового эфира химия в каких-то моментах выступает даже определяющей по отношению к физическому воззрению.

Поэтому говорить о приоритете физических или химических представлений в выработке научной картины мира, вероятно, не стоит.

 

ВЫВОДЫ

 

Открытие информационно-фазового состояния материальных систем существенно дополняет и во многом изменяет существующие представления о мироустройстве.

Философско-методологический анализ открытия информационно-фазового состояния материальных систем с учётом новейших естественнонаучных представлений в области физики, химии и биологии показывает, что современная научная картина мира представляет наше бытие как информационно-управляемый материальный мир, позволяющий по своей структуре осуществлять его бесконечное познание любому разумному объекту, достигшему соответствующего уровня развития, т.е. осознавшему своё подключение к единому информационному полю материальных систем.

Не менее важную роль в формировании новой научной картины мира играет теория самоорганизации. Особенно ее интересует согласованное состояние процессов самоорганизации в сложных системах различной природы.

Довольно долго способными к самоорганизации считали только живые системы, а объекты неживой природы, как полагали, если и эволюционируют, то лишь в сторону хаоса и беспорядка. Оставалось непонятным, как из подобного рода систем могли возникнуть объекты живой природы, способные к самоорганизации, и как взаимодействует живая и неживая материя.

Современные концепции самоорганизации позволяют разрешить противоречие между теорией биологической эволюции и термодинамикой. Теперь эти теории не исключают, а предполагают друг друга, если классическую термодинамику рассматривать как своего рода частный случай более общей теории — термодинамики неравновесных процессов. Впервые возникает научно обоснованная возможность преодолеть традиционный разрыв между представлениями о живой и неживой природе. Жизнь больше не выглядит как островок сопротивления второму началу термодинамики.

В свете этих идей и открытий новую актуальность обрела концепция биосферы и ноосферы В. Вернадского. В ней жизнь предстает как целостный эволюционный процесс (физический, геохимический, биологический), заключенный как особая составляющая в космическую эволюцию. Осознание этой целостности во многом определяет стратегию дальнейшего развития человечества. Проблемы коэволюции человека и биосферы постепенно становятся доминирующими не только в современной науке и философии, но и в стратегии практической деятельности человека.

Специальные научные картины мира со второй половины ХХ века значительно снижают уровень своей автономности и превращаются в аспекты и фрагменты целостной общенаучной картины мира. Они соединяются в блоки этой картины, характеризующие неживую природу, органический мир и социальную жизнь и реализуют (каждая в своей области) идеи универсального эволюционизма…

На первый взгляд, как бы повторяется ситуация, характерная для ранних этапов развития новоевропейской науки, когда механическая картина мира, функционируя как общенаучная, обеспечивала синтез достижений науки XVII — XVIII столетий. Но сходство лишь внешнее. Современная научная картина мира основана не на стремлении к унификации всех областей знания, их редукции к принципам одной какой-либо науки, а на единстве и многообразии разных наук. Известно, что специальные картины мира, как и самостоятельные научные дисциплины, существовали не всегда. Их не было в период становления естествознания. Возникнув в эпоху дифференциации науки, они затем постепенно начинают утрачивать самостоятельность, превращаясь в аспекты или фрагменты современной общенаучной картины мира.

 

СПИСОК ЛИТЕРАТУРА

 

1. Что такое научная картина мира? Моисеев В.И., 1999

2. Социологические аспекты изучения научной картины мира. А.В.Шкурко // Наука и повседневность, Вып.8.: Наука и национальная культура, – Нижний Новгород, 2006

3. Картина мира и ее виды. Погосова К.О..

4. Астрономия и современная картина мира (Ф.А. Цицин Астрономическая картина мира: новые аспекты). Интернет-ИСТОЧНИК1982г

Введение

Переход науки к постнеклассической стадии развития создал новые предпосылки формирования единой научной картины мира. Длительное время идея этого единства существовала как идеал. Но в последней трети XX века возникли реальные возможности объединения представлений о трех основных сферах бытия — неживой природе, органическом мире и социальной жизни — в целостную научную картину на основе базисных принципов, имеющих общенаучный статус.

Эти принципы, не отрицая специфики каждой конкретной отрасли знания, в то же время выступают в качестве инварианта в многообразии различных дисциплинарных онтологий. Формирование таких принципов было связано с переосмыслением оснований многих научных дисциплин. Одновременно они выступают как один из аспектов великой культурной трансформации, происходящей в нашу эпоху.

Если кратко охарактеризовать современные тенденции синтеза научных знаний, то они выражаются в стремлении построить общенаучную картину мира на основе принципов универсального эволюционизма, объединяющих в единое целое идеи системного и эволюционного подходов. Этой теме и посвящена моя работа.

 

refac.ru

Химическая картина мира.

Лекция 10. Система химии.

1. Основная проблема химии. Концептуальные системы химии.

2. Учение о составе вещества. Решение проблем химического элемента и химического соединения. Периодическая система элементов.

3. Структурная химия.

4. Кинетическая химия.

5. Эволюционная химия.

Основная проблема химии как науки. Концептуальные системы химии. Д. И. Менделеев называл химию «наукой о химических элементах и их соединениях». В одних учебниках химию определяют как «науку о веществах и их превращениях», в других - как “науку, изучающую процессы качественного превращения веществ” и т.д. Все эти определения по своему хороши, но они не учитывают тот факт, чтохимия является не просто суммой знаний о веществах, а упорядоченной, постоянно развивающейся системой знаний, имеющей определенное социальное назначение и свое место в ряду других наук.

Вся история развития химии является закономерным процессом смены способов решения ее основной проблемы. Все химические знания, которые были приобретены в течение многих веко, подчинены единственной главной задаче химии - задаче получения веществ с необходимыми свойствами.

Итак, основная двуединая проблема химии- это :

1. Получение веществ с заданными свойствами - производственная задача.

2. Выявление способов управления свойствами вещества - задача научного исследования.

По мере развития науки изменялись представления об организации материи, составе веществ, структуре молекул, были получены новые данные о самих химических процессах, что, конечно же, в корне изменяло и способы синтеза новых соединений, и методы исследования их свойств. Существует только четыре способа решения этой проблемы, которые связаны, прежде всего, с наличием всего четырех основных природных факторов, от которых зависят свойства получаемых веществ:

1. Состав вещества (элементарный, молекулярный).

2. Структура молекул.

3. Термодинамические и кинетические условия химической реакции, в процессе которой это вещество получается.

4. Уровень организации вещества.

Последовательное появление сначала первого, затем второго, третьего и, наконец, четвертого способов решения основной проблемы химии приводит к последовательному появлению и сосуществованию четырех уровней развития химических знаний, или, как принято теперь их называть, четырех концептуальных систем, находящихся в отношениях иерархии, т. е. субординации. В системе всей химии они являются подсистемами так же как сама химия представляет собой подсистему всего Естествознания в целом. Существование всего четырех способов решения основной проблемы химии нашло свое отражение в делении Системы химии на четыре подсистемы.

Таким образом, в развитии химии происходит не смена, а строго закономерное, последо­ва­тельное появление концептуальных систем. При этом каждая вновь появляю­щаяся система не отрицает предыдущую, а, наоборот, опирается на нее и включает в себя в преобразованном виде.

Подводя некоторые итоги, можно дать следующее определение: Система химии -единая целост­ность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концепту­альные системы химических знаний, которые находятся между собой в отношениях иерархии.

На каждом из четырех исторических этапов добычи химических знаний возникали свои задачи, которые требовали решения.

Первый этап развития химии - XVII в: Учение о составе вещества. Основные проблемы, стоявшие перед учеными на самом первом этапе - этапеизучения состава вещества:

1.Проблема химического элемента.

2.Проблема химического соединения.

3.Проблема создания новых материалов, в состав которых входят вновь открываемые химические элементы.

Действенный способ решения проблемы происхождения свойств веществапоявился во второй половине XVII в. в работах английского ученогоРоберта Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких материальных элементов эти тела составлены.

Бойль тем самым способствовал решению основной проблемы химии посредством установления взаимосвязи:

СОСТАВ ВЕЩЕСТВА —————————> СВОЙСТВА ВЕЩЕСТВА

Этот способ положил начало учению о составе веществ, которое явилось первым уровнем научных химических знаний. Вплоть до первой половины XIX в. учение о составе веществ представляло собой всю тогдашнюю химию.

Решение проблемы химического элемента. Исторические корни решения этой проблемы уходят в глубокую древность. В Древней Греции возникают первые атомистические теории о строении мира и в противовес им - представления об элементах; свойствах и элементах, - качествах, подхваченных позже ложными учениями алхимиков.

Р.Бойльположил начало современному представлению о химическом элементе как о «простом» теле или как о пределе химического разложения вещества. Химики, стремясь получить «простые вещества», пользовались при этом самым распространенным в то время методом - прокаливанием «сложных веществ». Прокаливание же приводило к окалине, которую и принимали за новый элемент. Соответственно, металлы - железо, например, принимали за сложные тела, состоящие из соответствующего элемента и универсального «невесомого тела» -флогистона (флогистос - греч. зажженный). Теория флогистона (ложная по своей сути) была первой научной химической теорией и послужила толчком к множеству исследований.

В 1680-1760 гг. появились точные количественные методы анализавещества, а они, в свою очередь, способствовали открытию истинных химических элементов. В это время были открытыфосфор, кобальт, никель, водород, фтор, азот, хлор и марганец.

В 1772-1776 гг. одновременно в Швеции, Англии и Франции был открыт кислород. Во Франции его первооткрывателем был замечательный химикА.Л. Лавуазье(1743-1794 гг.). Он установил роль кислорода в образовании кислот, оксидов и воды, опроверг теорию флогистона и создал принципиально новую теорию химии. Ему принадлежала также первая попытка систематизации химических элементов, которая в дальнейшем была исправлена Д. И. Менделеевым.

Периодический закон и периодическая система химических элементов Д.И. Менделеева. Русский химик Д. И. Менделеев сделал это открытие в 1869 г., совершив революцию в естествознании, т.к. оно не просто устанавливало связь между химическими и физическими свойствами отдельных элементов, но и взаимную связь между всеми химическими элементами. Группы и ряды периодической системы стали надежной основой для выявления семейств родственных элементов.

N.B! Первым практическим применением периодического закона было исправление величин валентности и атомных весов некоторых элементов, для которых в то время принимались неверные значения. Это относилось, в частности, к индию, церию, другим редкоземельным элементам: торию, урану.

Основным принципом, по которому Менделеев строил свою таблицу, было размещение элементов в порядке возрастания их атомных весов. Основываясь на валентности и химических свойствах элементов, Менделеев расположил все элементы по 8 группам, в каждой из которых размещались элементы со сходными свойствами.

Причина периодических изменений физических и химических свойств элементов кроется впериодичности строения электронных оболочек атомов.

N.B!В начале каждого периода валентные электроны находятся на s-подуровнях соответствующих уровней энергии в атомах. Затем в малых периодах происходит заполнение электронами s и p-подуровней, а в больших периодах также и d-подуровней. В VI и VII периодах, кроме того, наблюдается заполнение f-подуровней. Атомы инертных газов содержат наружные электроны всегда на полностью сформированных s и p-подуровнях. Таким образом, химические элементы одинаковых подгрупп периодической системы характеризуются аналогичным строением электронных оболочек атома.

Одними из наиболее важных свойств атомов, связанных со строением их электронных оболочек, являются эффективные атомные и ионные радиусы. Оказывается, что они также периодически изменяются в зависимости от величины атомного номера элемента. Для элементов одного периода по мере увеличения порядкового номера сначала наблюдается уменьшение атомных радиусов, а затем, к концу периода, их увеличение. Это необычное физическое свойство находит простое объяснение, основанное на знании строения внешней электронной оболочки атомов, принадлежащих одному периоду: все дело в электростатике.

Но самое главное заключалось в том, что таблица Менделеева не просто давала объяснение физическим свойствам элементов, а ставила им в соответствие и их химические свойства. Основным постулатом таблицы являлось то, что валентность химического элемента определяется числом электронов на внешней электронной оболочке(эти электроны так и называются -валентные электроны).

Важная роль периодического закона заключается в том, что в нем устанавливается связь между строением атомов и влиянием этого строения на физические и химические свойства элементов.

Решение проблемы химического соединения. Начало решению этой проблемы было положено благодаря работам французского химикаЖ. Пруста, который в 1801-1808 гг. установилзакон постоянства состава, согласно которомулюбое индивидуальное химическое соединение обладает строго определенным, неизменным составом - прочным притяжением составных частей (атомов) и тем самым отличается от смесей.

Теоретическое обоснование закона Пруста было дано англичанином Дж. Дальтоном, являющимся автором другого основополагающего закона в учении о составе веществ -закона кратных отношений. Он показал, что все вещества состоят из молекул, а все молекулы, в свою очередь, - из атомов, и что состав любого вещества можно представить себе как простую формулу типа АВ, АВ2, А2 В3 и т.д., где символы А и В обозначают названия двух атомов, из которых состоит молекула. Согласно этому закону эквивалентов «составные части молекулы» - атомы А и В могут замещаться на другие атомы - С и D, например, согласно реакциям:

АВ + С ——> АС + В или

А2В3 + 3D ———> А2D3 + 3В

Закон кратных отношений Дальтона(1803 г.) гласит:Если определенное количество одного элемента вступает в соединение с другим элементом в нескольких весовых отношениях, то количества второго элемента относятся между собой как целые числа.

Молекулярная теория строения вещества позволила по-новому взглянуть на процессы, происходящие в газовой фазе, и дала начало новой науке, стоящей на стыке химии и физики - молекулярной физике.Настоящей сенсацией стало откры­тиезакона Авогадро в 1811г. Итальянский ученыйАмадео Авогадро(1776-1856 гг.) установил, чтопри одинаковых физических условиях (давлении и температуре) равные объемы различных газов содержат равное число молекул. Другими словами, это означает, чтограмм-молекула любого газа при одинаковой температуре и давлении занимает один и тот же объем.

Однако, развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими определенный состав, существуют еще и соединенияпеременного состава- и это явилось причиной пересмотра представлений о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно, но теперь к молекулам стали относить и такие необычные квантово-механические системы, такие как ионные, атомные и металлическиемонокристаллы, а такжеполимеры, образованные за счет водородных связей.

В результате применения физических методов исследования вещества стало ясно, что свойства реального тела определяются не столько тем, постоянен или не постоянен состав химического соединения, а скорее физической природой химизма, т.е. природой тех сил, которые заставляют несколько атомов объединяться в одну молекулу. Поэтому теперь подхимическим соединениемпонимаютопределенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой - молекулу, комплекс, монокристалл или иной агрегат. Это более широкое понятие, чем понятие «сложное вещество». Действительно, ведь всем известны химические соединения, состоящие не из разных, а из одинаковых элементов. Это молекулы водорода, кислорода, хлора, графита, алмаза и т.д.

Особое положение в ряду молекулярных частиц занимают макромоле­кулы полимеров.Они содержат большое число повторяющихся, химически связанных друг с другом в единое целое структурных единиц -фрагментов мономерных молекул, обладающих одинаковыми химическими свойствами.

Дальнейшее усложнение химической организации материи идет по пути образования более сложной совокупности взаимодействующих атомных и молекулярных частиц, так называемых молекулярных ассоциатов и агрегатов, а также их комбинаций. При образовании агрегатов изменяется фазовое состояние системы, чего не происходит при образовании ассоциатов.Фазовое состояние-это основное физическое состояние, в котором может существовать любое вещество(газ, жидкость, твердое тело).

Проблема создания новых материалов. Природа щедро «разбросала» свои материальные ресурсы по всей планете. Но вот какую странную закономерность обнаружили ученые: оказывается, чаще всего в своей деятельности человек использует те вещества, запасы которых в природе ограничены.

Поэтому в настоящее время перед учеными-химиками стоят три задачи:

1. Приведение в соответствие практики использования химических элементов в производстве с их реальными ресурсами в природе.

2. Последовательная замена металлов различными видами керамики.

3. Расширение производства элементоорганических соединений на базе органического синтеза. Элементоорганические соединения-это соединения, в состав которых входят как органические элементы (углерод, водород, сера, азот, кислород), так и производ­ные ряда других химических элементов: кремния, фтора, магния, кальция, цинка, натрия, лития и т.д.

Предлагается сосредоточить внимание на увеличении использования на производстве таких элементов как алюминий, магний, кальций, кремний. В природе эти элементы встречаются довольно часто, и их добыча не составляет особого труда. Кроме того, использование этих веществ, составленных из наиболее часто встречающихся природных элементов, приведет к меньшему загрязнению окружающей среды отходами, - проблеме, так остро ощущаемой всеми в настоящее время.

Возросшая необходимость замены металлов керамикой вызвана тем, что производство керамики легче и экономически выгоднее и, кроме того, на некоторых производствах она просто не может быть заменена металлами. Химики научились получать огнеупорную, термостойкую, химически стойкую, высокотвердую керамику, а также керамику для электротехники. В последнее время было обнаружено удивительное свойство некоторых керамических изделий обладать высокотемпера­турной сверхпроводимостью, т.е. сверхпроводимостью при температурах выше температуры кипения азота. Открытию этого уникального физического свойства способствовали работы химиков по созданию новой керамики на основе комплексов с барием, лантаном и медью, взятых в едином комплексе.

Химия элементооргани­ческих материалов с применением крем­ния (кремнийорганическая химия) лежит в основе создания производства многих полимеров, обладающих ценными свойствами и незаменимых в авиации и энергети­ке. А фторорганичес­кие соединения обладают исключительной устойчивос­тью (даже в кислотах и щелочах) особой поверхностной активностью и поэтому могут переносить, например, кислород как молекула гемоглобина! Фторорганичес­кие соединения активно используются в медицине для создания всевозможных покрытий и т.д.

Решение практических задач, стоящих перед химиками в настоящее время сопряжено с синтезом новых веществ и анализом их химического состава. Поэтому, как и много лет тому назад, проблема состава веществ остается в химии по-прежнему актуальной.

Второй этап развития химии как науки - XIX в: Структурная химия.

В 1820 - 1830 гг. мануфактурная стадия производства с ее ручной техникой сменилась фабричной стадией. На производстве появились новые машины, возникла потребность в поиске новых сырьевых материалов для использования в промышленности. В химическом производстве стала преобладать переработка огромных масс веществ растительного и животного происхождения, качественное разнообразие которых было потрясающе велико, а состав однообразен: углерод, водород, кислород, сера, азот, фосфор. Значит, свойства веществ, определяется не одним только составом - сделали вывод химики.

Химики выяснили, что свойства веществ, а значит и их качествен­ное разнообразие обусловливается не только их составом, но и структурой молекул. Если знание состава вещества отвечает на вопрос о том, из каких химических элементов состоит молекула данного вещества, тознание структуры вещества дает представление о пространственном расположении атомов в этой самой молекуле.

Вместе с тем стало ясно, что не все атомы, входящие в состав моле­кулы данного вещества одинаково хорошо вступают во взаимодействие с атомами других молекул. Каждую молекулу можно условно подразделить на несколько так называемых функциональных или реактивных блоков, в которые входят группы атомов, просто отдельные атомы или даже отдельные химические связи. Каждая из таких структур обладает своей уникальной способностью вступать в химические реакции, т.е. своейреакционной способностью.

Второй уровень развития химических знаний получил условное название структурная химия. Главным достижением этого этапа можно было назвать установление связи между структурой молекулы и функциональной активностью соединения:

СТРУКТУРА МОЛЕКУЛЫ ———> ФУНКЦИЯ (РЕАКЦИОННАЯ СПОСОБНОСТЬ)

Таким образом, познание структуры молекул перевело химию на второй уровень развития химических знаний и способствовало превращению химии из преимущественно аналитическойнауки в наукусинтетическую. Возникла такжетехнология органических веществ, которой ранее не было.

Эволюция понятия «структура» в химии. Согласно теории, выдвинутойДж. Дальтоном,любое химическое вещество представляет собой совокупность молекул, обладающих строго определенным качественным и количественным составом, т. е. состоящих из определенного количества атомов одного, двух или трех химических элементов. Теория строения вещества Дж. Дальтона отвечала на вопрос:как можно отличить индивидуальное вещество от смесей веществ, но она не давала ответа на множество других вопросов: каким образом объединяются атомы в молекулу, существует ли какая-то упорядоченность в расположении атомов в молекуле или они объединены как попало, случайно?

На эти вопросы попытался дать ответ шведский химик И.Я. Берцелиус, живший в первой половине XIX в. И. Я. Берцелиус полагал, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами. Он предложил новуюмодель атомав видеэлектрического диполя. И.Я. Берцелиус выдвинул гипотезу, согласно которойвсе атомы разных химических элементов обладают различной электроотрицательностью и расположил их в своеобразный ряд по мере ее увеличения.

N.B! И.Я. Берцелиус на основании определения данного им процентного состава многих веществ и поиска элементарных стехиометрических закономернос­тей, а также изучения разложения сложных веществ в растворе под действием электрического тока, задался вопросом: что влияет на знак и величину электрического заряда конкретного вещества? Почему существуют электроположительные и электроотрицательные вещества? В чем различие в строении молекул кислоты и щелочи или щелочи и нейтральной соли?

В 1840 г. в работах французского ученого Ш. Жерарабыло показано, что структуры И. Я. Берцелиуса справедливы не во всех случаях: есть масса веществ, молекулы которых невозможно разложить на отдельные атомы под действием электрического тока, они представляют как бы единую целую систему и именно такуюнеделимую систему взаимосвязанных друг с другом атомовШ. Жерар и предлагал называтьмолекулой. Он разработал теорию типов органических соединений.

В 1857 г. немецкий химик А. Кекулеобнародовал свои наблюдения о свойствах отдельных элементов, которые могут замещать атомы водорода в ряде соединений. Он пришел к выводу о том, что некоторые из них могут замещать три атома водорода, другие же - только два или даже один. А.Кекуле также установил, что «один атом углерода ... эквивалентен четырем атомам водорода». Это были основополагающие положениятеории валентности веществ.

А. Кекуле ввел в обиход новый химический термин сродство, который и обозначал количество атомов водорода, которое может заместить данный химический элемент. Он приписал всем элементам соответственно три, две или одну единицу сродства. Углерод же находился при этом в необычном положении - его атом обладал четырьмя единицами сродства.Число единиц сродства, присущее данному химическому элементу ученый назвал валентностью атома.

При объединении атомов в молекулу происходит замыкание свободных единиц сродства.

Понятие структура молекулы с легкой руки А.Кекуле свелось к построению наглядных формульных схем, которые служили химикам руководством в их практической работе, конкретным указанием на то, какие исходные вещества следует брать для того, чтобы получить необходимый химический продукт.

N.B! Схемы А. Кекуле, однако, не всегда можно было осуществить на практике: хорошо продуманная (или придуманная) реакция не хотела протекать согласно красивой схеме. Это происходило потому, что формульный схематизм не учитывал реакционную способность веществ, вступающих в химическое взаимодействие друг с другом.

Ответы на волнующие практических химиков вопросы дала теория химического строения русского ученого Александра Михайловича Бутлерова.Бутлеров, так же как и Кекуле, признавал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но одновременно с этим он указывал на важность того, с каким «напряжением, большей или меньшей энергией (это сродство) связывает вещества между собой».

Теория А. М. Бутлерова стала для химиков руководством в их практической деятельности. Позже она нашла свое подтверждение и физическое обоснование в квантовой механике.

Химическая связь.Химической связью называется взаимодействие между атомами элементов, обуславливающее их соединение в молекулы и кристаллы.

Тип связи определяется характером физического взаимодействия атомно-молекулярных частиц друг с другом. Фундаментальную теорию химических связей создал в 30-е годы ХХ века американский химикЛайнус Полинг.

В настоящее время понятие «химическая связь» стало более широким. Теперь подхимической связью понимается такойвид взаимодействия не просто между отдельными атомами, а иногда и между атомно-молекулярными частицами, который обусловлен совместным использованием их электронов. При этом имеется в виду, что такое обобществление электронов взаимодействую­щими частицами может изменяться в широких пределах. Существуютковалентная (полярная, неполярная), водородная и ионная (ионно-ковалентная) связи, а также металлическая связь.

Ионная связьобразуется в том случае, когда, объединяясь в одну молекулу, один из атомов теряет электроны со своей внешней оболочки (катион), а другой их приобретает (анион) противоположно заряженные ионы притягиваются друг к другу, образуя прочные связи. Ионные соединения – как правило, твердые вещества, имеющие очень высокую температуру плавления (соли, щелочи, напр., поваренная соль).

Ковалентная связьобразуется в результате электронной пары, принадлежащей одновременно обоим атомам, создающим молекулу вещества. Поскольку такие молекулы удерживаются слабыми силами, они неустойчивы и существуют в виде жидкостей или газов с низкими температурами плавления и кипения (кислород, бутан).

Водородная связь обусловлена поляризацией ковалентных связей, когда совместные электроны большую часть времени находятся у атома элемента, связанного с атомом водорода. В результате такой атом получает небольшой отрицательный заряд, что делает соединения с водородными связями более крепкими по сравнению с другими ковалентными соединениями (вода).

Металлические связи обусловлены свободным перемещением электронов внешних оболочек атомов металлов. Атомы в металлах выстраиваются в точно подогнанные друг к другу ряды, удерживаемые вместе электронным полем.

Благодаря развитию структурных представлений в 1860-1880 гг. в химии появился термин органический синтез, обозначавший не только действия по получению новых органических веществ, но и целую область науки, названную так в противоположность всеобщему увлечению анализом природных веществ.

Итак, под валентностью атомных частиц понимается ихсвойство вступать в химическое взаимодействие, количественной мерой которого является суммарное число неспаренных электронов, неподеленных электронных пар и вакантных орбиталей, участвующих в образовании химических связей. Валентность атомной частички не является постоянной величиной и может изменяться от единицы до некоторого максимального значения в зависимости от природы частиц-партнеров и условий образования химического соединения.

Под понятием структурапонимаютустойчивую упорядоченность качественно неизменной системы.

Под молекулярной структурой понимаютсочетание ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов. Молекулярную структуру подразделяют наатомную(геометрическую) иэлектронную.

В первом приближении податомной структурой следует пониматьустойчивую совокупность ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом.

Третий этап развития химии как науки - первая половина XX в: Учение о химических процессах - кинетическая химия.

В связи с развитием техники и именно в это время химия становится наукой уже не только и не столько о веществах, сколько наукой о процессах и механизмах изменения веществ.

Интенсивное развитие автомобильной промышленности, авиации, энергетики и приборостроения в начале нашего века требовало качественного топлива для работы моторов. Специальные высокопрочные каучуки для шин автомобилей, пластмассы для облегчения их веса, всевозможные полимеры и полупроводники,- все это было необходимо получать в больших количествах, но, увы, развитие химических навыков не соответствовало запросам производства.

Дело в том, что сама по себе химическая реакция - вещь достаточно капризная. Взаимодействие веществ в ходе реакции приводит к изменению состава вещества. Для этого должна быть разрушена одна комбинация атомов и создана другая. Для разрушения старого соединения необходимо затратить энергию. Образование нового соединения, как правило, сопровождается выделением энергии.

Химические реакции описываются уравнениями, основанными назаконе сохранения вещества. Согласно этому закону, полная масса веществ, вступивших в реакцию, должна точно соответствовать массе образовавшихся веществ. Для расчетов массы используется счетная единица – моль, содержит одинаковое количество частиц (6 1023, число Авогадро)

Учение о химических процессах. Методы управления химическим процессом. Учение о химических процессах - это такая область науки, в которой существует наиболее глубокое взаимопроникновение физики, химии и биологии. В основе этого учения находятсяхимическая термодинамика и кинетика, поэтому все это учение о химических процессах в равной степени относится как к химии, так и к физике.

Существует большое количество решаемых проблем в связи с созданием учения о химических процессах. Подробное их описание можно найти в любом современном учебнике по физической химии. Но, пожалуй, одной из самых основных проблем являлась задача создания методов, позволяющих управлять химическими процессами.

В самом общем виде все методы управления можно подразделить на две большие группы: термодинамические и кинетические. Первая группа - термодинамические методы- этометоды, влияющие на смещение химического равновесия реакции; вторая группа - кинетические методы-это методы, влияющие на скорость протекания реакции.

В 1884 г. появляется книга выдающегося голландского химика Я. Вант-Гоффа, в которой он обосновал законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. В том же году французский химикА. Ле-Шательесформулировал свой знаменитыйпринцип подвижного равновесия, вооружив химиков методами смещения равновесия в сторону образования продуктов реакции. Основными управляющими рычагами в данном случае выступалитемпература, давление и концентрацияреагирующих веществ. Поэтому эти методы управления и получили свое название -термодинамические.

Вспомним, что любая химическая реакция обратима. Например, реакция типа:

AB + CD <=> AC + BD

Обратимость реакцийслужит основанием равновесия между прямой и обратной реакциями. На практике равновесие смещается в ту или иную сторону. Для того, чтобы химическая реакция пошла в сторону увеличения продуктов реакции АС и BD, необходимо либо увеличить концентрацию веществ AB и CD, либо изменить температуру или давление.

Но термодинамические методы позволяли управлять только направлениемреакций, а не их скоростями.Управлением скоростьюхимических реакций в зависимости от различных факторов занимается специальная наука -химическая кинетика. На скорость химической реакции может влиять очень многое, даже стенки сосуда, в котором протекает реакция.

Третий способ решения основной проблемы, учитывающий всю сложность организации химических процессов и обеспечивший экономически приемлемую производительность этих процессов в химических реакторах, может быть представлен схемой:

ОРГАНИЗАЦИЯ ХИМИЧЕСКОГО ———> ПРОИЗВОДИТЕЛЬНОСТЬ

ПРОЦЕССА В РЕАКТОРЕ РЕАКТОРА

Катализ и химия экстремальных состояний. В 1812 г. русским академикомК.С.Кирхгофомбыло открыто явлениехимического катализа.Катализ представляет собой наиболее общий и распространенный способ проведения химических реакций, особенность которого состоит в активации молекул реагента при их контакте с катализатором. При этом происходит как бы «расслабление» химических связей в исходном веществе, «растаскивание» его на отдельные части, которые затем легче вступают во взаимодействие друг с другом.

Нестационарная кинетика. Развитие представлений об эволюции систем. В 1970 годы было обнаружено много химических систем, в которых использовались катализаторы, в которых с течением времени все происходило наоборот, - процесс не стабилизировался, как обычно, а становилсянестационар­ным. Было открыто несколько типовавтоколебательных химических реакций, в которых с течением времени происходят периодические изменения выхода продуктов реакции. Другими словами, необходимый продукт химической реакции то выделяется в большом количестве, то, напротив, реакция почти не идет или даже изменяет свое направление, а затем все это повторяется вновь. Оказалось, что в ряде случаев общее количество вещества, получаемое в ходе такойнестабильнойхимической реакции, даже превышает то количество вещества, которое выделялось бы в ходе реакции, если бы она проходиластационарноили, т.е. имела быпостоянную скорость.

Изучение нестационарной кинетики началось недавно. Но уже есть и практические результаты. С ее помощью были исследованы некоторые энергетически сопряженные процессы, т.е. такие химические процессы, в которых принимают участие сразу несколько реакций, обменивающихся энергией друг с другом. Нестационарные химические процессы были обнаружены и в живой природе.

Четвертый этап развития химии как науки - вторая половина XX в: Эволюционная химия. В 1960 - 1979 г. г. появился новый способ решения основной проблемы химии, который получил названиеэволюционная химия. В основе этого способа лежит принцип использования в процессах получения химических продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем.

Таким образом, четвертый этап развития химии, который продолжает­ся и до настоящего времени, устанавливает связь самоорганизации системы реагентов с поведением этой системы:

САМООРГАНИЗАЦИЯ —————> ПОВЕДЕНИЕ СИСТЕМЫ РЕАГЕНТОВ СИСТЕМЫ РЕАГЕНТОВ

Эволюционные проблемы химии. Начало эволюционной химии связывают с 1950-1960 гг. Подэволюционными проблемами следует пониматьпроблемы синтеза новых сложных, высокоорганизо­ванных соединений без участия человека.

Теория химической эволюции и биогенеза А.П.Руденко. В 1960-х годах были отмечены случаи самосовершенствования некоторых химических катализаторов в ходе химической реакции. Обычные катализаторы со временем (как и все на свете) стареют и изнашиваются. Но химикам удалось обнаружить такие катализаторы, которые не только не старели, а, напротив, «молодели» с каждой химической реакцией. Ответ на этот вопрос попыталась дать теория химической эволюции и биогенеза, предложенная ученым мира в 1964 г. русским профессоромА. П. Руденко. Сущность этой теории состоит в том, что химическая эволюция представляет собойсаморазвитие каталитических систем. В ходе реакции происходит отбор тех каталитических центров, которые обладают наибольшей активностью (основной закон химической эволюции):Эволюционные изменения катализатора происходят в том направлении, где проявляется его максимальная активность. Саморазвитие систем происходит за счет постоянного поглощения катализаторами потока энергии, которая выделяется в ходе самой химической реакции, поэтому эволюционируют каталитические системы с большей энергией. Такие системы разрушают химическое равновесие и в результате являются инструментом отбора наиболее устойчивых эволюционных изменений в катализаторе.

Изучение строения и функционирования ферментов в живой природе - это такая ступень химического познания, которая откроет в дальнейшем создание принципиально новых химических технологий.

Несмотря на то, что химия в настоящее время все еще далека от совершенства, которым обладает «лаборатория живого организма», пути к этому идеалу намечены. Сегодня химики пришли к выводу, что используя те же принципы, на которых построена химия живых организмов, в будущем (не повторяя в точности природу) можно будет «построить» принципиально новую химию, новое управление химическими процессами - так, как это происходит в любой живой клетке. Химики надеются получить катализаторы нового поколения, которые бы позволили создавать, например, необычные преобразователи солнечного света.

Ученые стремятся создавать промышленные аналоги химических процессов, происходящих в живой природе. Они исследуют опыт работы биохимических катализаторов и создают такие катализаторы в лабораторных условиях. Особой сложностью работы с биохимическими катализаторами - ферментами, является то обстоятельство, что они очень неустойчивы при хранении и быстро портятся, теряя свою активность. Поэтому химики долгое время работали над созданием стабилизации ферментов и в результате научились получать так называемыеиммобилизованные ферменты - этоферменты, выделенные из живого организма и прикреплен­ные к твердой поверхности путем их адсорбции. Такие биокатализаторы очень стабильны и устойчивы в химических реакциях и их можно использовать многократно. Основоположникомхимии иммобилизованных системявляется русский химикИ. В. Березин.

  • Среди перспективных направлений химии XXIвека особый интерес вызывают:

  • Химия мозга

  • Макрохимия Земли

  • Когерентная химия

  • Спиновая химия и химическая радиофизика

  • Химия экстремальных состояний

  • Холодный синтез

  • Физика химических реакций.

studfiles.net

Современная химическая картина мира - Концепции современного естествознания

1. Предмет познания и важнейшие особенности химический науки1.1. Специфика химии как науки1.2. Важнейшие особенности современной химии2. Концептуальные системы химии2.1. Понятие о химическом элементе2.2. Магическая матрица периодической системы химических элементов2.3. Современная картина химических знаний2.3.1. Первый уровень химического знания. Учение о составе вещества2.3.2. Второй уровень химического знания2.3.3. Третий уровень химического знания. Учение о химических процессах2.3.4. Четвертый уровень химического знания. Эволюционная химия3. Список использованной литературы

1. Предмет познания и важнейшие особенности химический науки1.1. Специфика химии как науки

Для человека одной из важнейших естественных наук является химия - наука о составе, внутреннем строении и превращении вещества, а также о механизмах этих превращений.«Химия - наука, изучающая свойства и превращения веществ, сопровождающиеся изменением их состава и строения». Она изучает природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов и т.д.Химия всегда была нужна человечеству для того, чтобы получать из природных веществ материалы со свойствами, необходимыми для повседневной жизни и производства. Получение таких веществ - производственная задача, и, чтобы ее реализовать, надо уметь осуществлять качественные превращения вещества, т. е. из одних веществ получать другие. Чтобы этого добиться, химия должна справиться с теоретической проблемой генезиса (происхождения) свойств вещества.Таким образом, основанием химии выступает двуединая проблема - получение веществ с заданными свойствами (на достижение ее направлена производственная деятельность человека) и выявление способов управления свойствами вещества (на реализацию этой задачи направлена научно-исследовательская работа ученых). Эта же проблема является одновременно и системообразующим началом химии.

1. 2. Важнейшие особенности современной химии

1.В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия).2. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия - закономерности поведения химических элементов в земной коре. Биогеохимия - это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский. Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам.3. В химии появляются принципиально новые методы исследования (рентгеновский структурный анализ, масс-спектроскопия, радиоспектроскопия и др.)?Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными:1) введение в практику эфирного наркоза, а затем и других наркотических веществ; 2) использование антисептических средств для предупреждения инфекции;3) получение новых, не имеющихся в природе аллопластических материалов-полимеров.В химии весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) - это органические соединения. В их основе лежат 18 элементов (наибольшее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство.Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение.В последнее время химия все чаще предпринимает штурм соседних с нею уровней структурной организации природы. Например, химия все более и более вторгается в биологию, пытаясь объяснить основы жизни.В развитии химии происходит не смена, а строго закономерное, последовательное появление концептуальных систем. При этом вновь появляющаяся система опирается на предыдущую и включает ее в себя в преобразованном виде. Таким образом, появляется система химии - единая целостность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концептуальные системы знаний, которые находятся между собой в отношениях иерархии.

2. Концептуальные системы химии2. 1. Понятие о химическом элементе

Концепция химического элемента появилась в химии в результате стремления человека обнаружить первоэлемент природы. Р. Бойль положил начало современному представлению о химическом элементе как о простом теле, пределе химического разложения вещества, переходящем без изменения из состава одного сложного тела в другое. Но еще целый век после этого химики делали ошибки в выделении химических элементов: сформулировав понятие химического элемента, ученые еще не знали ни одного из них.Химические знания до определенного времени накапливались эмпирически, пока не назрела необходимость в их классификации и систематизации, т.е. в теоретическом обобщении. Основоположником системного освоения химических знаний явился Д. И. Менделеев. Попытки объединения химических элементов в группы предпринимались и ранее, однако не были найдены определяющие причины изменений свойств химических веществ. Д. И. Менделеев исходил из принципа, что любое точное знание представляет систему. Такой подход позволил ему в 1869 г. открыть периодический закон и разработать Периодическую систему химических элементов. В его системе основной характеристикой элементов являются атомные веса. Периодический закон Д. И. Менделеева сформулирован в следующем виде:«Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».Это обобщение давало новые представления об элементах, но в силу того, что еще не было известно строение атома, физический смысл его был недоступен. В современном представлении этот периодический закон выглядит следующим образом:«Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера)». Простейшим химическим элементом является водород (1H), состоящий из одного протона (ядра атома, имеющего положительный заряд) и одного электрона, имеющего отрицательный заряд.Баланс взаимоотношений в атоме водорода, между протоном и электроном, можно описать тождеством

Если учесть отношение масс

то мы получим первое представление о балансе взаимоотношений между протонами и электронами в химических элементах.

2. 2. Магическая матрица периодической системы химических элементов

Приводится следующая структура Периодической таблицы Д.И.Менделеева. Приводимая ниже информация приводится только для ознакомления и последующего осознания, что современные представления о тайнах Периодической системы химических элементов еще далеки от Истины.

рис. 1-1Этот рисунок дает четкие представления о строго эволюционном формировании Периодической таблицы, в полном соответствии с законами сохранения симметрии. Все оболочки, подоболочки оказываются здесь строго взаимосвязаны и взаимообусловлены. Каждый химический элемент занимает в этом многомерном и многоуровневом "кубе" строго определенную эволюционную нишу.

рис. 1-2В монографиях "Основы миологии", "Миология" были рассмотрены свойства магической матрицы, отражающей свойства подоболочек и оболочек Периодической системы химических элементов.

рис. 1-3Из этой матрицы непосредственно видно1. Количественный состав подоболочек и по горизонтали, и по вертикали матрицы одинаковы.2.Группировки чисел, отражающие состав подоболочек Периодической системы характеризуют группировки этих подоболочек, разные по структуре. Но это так и должно быть, т.к. матрица является "отпечатком" пространственной структуры (монадного кристалла) на плоскость.3. Главная диагональ матрицы является суммой всех чисел по горизонтали и по вертикали.Эта магическая матрица химических элементов заслуживает самого пристального изучения.

рис. 1-4Разве здесь не видно двойной спирали, в которой каждое число есть матрица строго определенной размерности?

рис. 1-5Из этой матрицы, используя многомерные весы, можно непосредственно увидеть баланс взаимоотношений между подоболочками.

рис. 1-6В этих матричных весах неукоснительно соблюдаются правила матричного умножения вектора-столбца на вектор-строку. Данные весы отражают баланс взаимоотношений между оболочками и подоболочками на восходящем участке эволюции химических элементов. Здесь философским категориям восходящей и нисходящей спиралям нет места, ибо эти категории здесь имеют не философский, а чисто "химический" смысл. Теперь мы можем записать Периодическую систему в форме матричных тождеств, отражающих баланс взаимоотношений ее подоболочек и оболочек.

рис. 1-7Нижеприведенный рисунок дает более полное представление о Периодической системе химических элементов.

рис. 2Напомним, что здесь каждая клетка матрицы является двойственным числом, отражающим смысл взаимоотношения человека и общества. Этот рисунок более глубоко отражает сущность и собственно Периодической системы химических элементов, подтверждая справедливость высказывания: "В каждой самой элементарной частице содержится полная информация о всей вселенной".Приведенные выше матричные тождества несут в себе самые сокровенные тайны не только химических элементов, но и вообще самых сокровенных тайн мироздания. Эти матричные тождества составлены в полном соответствии с законами сохранения симметрии. Эта матрица несет в себе информацию не только о "проявленной" Периодической системе химических элементов, но и о ее "непроявленном", волновом "двойнике

Периодическая система химических элементов еще раз утверждает справедливость принципа корпускулярно-волнового дуализма, принцип единства "прерывного" и "непрерывного".И сегодня наукой уже установлено, что у Периодической таблицы химических элементов (вещественных) есть двойник - Периодическая система химических элементов (волновых).

2. 3. Современная картина химических знаний

Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения вопроса. Свойства вещества зависят от четырех факторов:1) от элементного и молекулярного состава вещества;2) от структуры молекул вещества;3) от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции;4) от уровня химической организации вещества.Поскольку эти способы появлялись последовательно, мы можем в истории химии выделить четыре последовательно сменявших друг друга этапа ее развития. В то же время с каждым из названных способов решения основной проблемы химии связана своя концептуальная система знаний. Эти четыре концептуальных системы знания находятся в отношениях иерархии (субординации). В системе химии они являются подсистемами, так же как сама химия представляет собой подсистему всего естествознания в целом. Современную картину химических знаний объясняют с позиций четырех концептуальных систем, которые схематично представлены на рис. I.

рис. 3На рисунке показано последовательное появление новых, концепций в химической науке, которые опирались на предыдущие достижения, сохраняя в себе все необходимое для дальнейшего развития.Даже невооруженным взглядом в этих этапах видна симметрия этапов.

В левой части тождества отношение отражает структурный аспект эволюции химии, правая часть тождества, напротив, отражает уже функциональный (процессы) аспект эволюции химии.

2. 3. 1. Первый уровень химического знания. Учение о составе вещества

Учение о составе веществ является первым уровнем химических знаний. До 20-30-х гг. XIX в. вся химия не выходила за пределы этого подхода. Но постепенно рамки состава (свойств) - стали тесны химии, и во второй половине XIX в. главенствующую роль в химии постепенно приобрело понятие «структура», ориентированное, что и отражено непосредственно в самом понятии, на структуру молекулы реагента.Первый действенный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие частички (атомы), которые могли связываться друг с другом, образуя более крупные соединения - кластеры (по терминологии Бойля). В зависимости от объема и формы кластеров, от того, находились они в движении или покоились, зависели и свойства природных тел. Сегодня мы вместо термина «кластер» используем понятие «молекула».В период с середины XVII в. до первой половины XIX в. учение о составе вещества представляло собой всю химию того времени. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне химического знания Ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с вновь открытыми химическими элементами.

Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и тоже место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. английским радиохимиком Ф. Содди. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы.С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т. д.Первое научное определение химического элемента, когда еще не было открыто ни одного из них, сформулировал английский химик и физик Р. Бойль. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие. Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений об «огненной материи» (флогистоне). В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном. В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.Концепция химических соединений. Долгое время химики эмпирическим путем определяли, что относится к химическим соединениям, а что - к простым телам или смесям. В начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое индивидуальное химическое соединение обладает строго определенным, неизменным составом и тем самым отличается от смесей.Теоретическое обоснование закона Пруста было дано Дж. Дальтоном в законе кратных отношений. Согласно этому закону состав любого вещества можно было представить как простую формулу, а эквивалентные составные части молекулы - атомы, обозначавшиеся соответствующими символами, - могли замещаться на другие атомы.Химическое соединение - понятие более широкое, чем «сложное вещество», которое должно состоять из двух и более разных химических элементов. Химическое соединение может состоять и из одного элемента. Это О2, графит, алмаз и другие кристаллы без посторонних включений в их решетку в идеальном случае».Дальнейшее развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими определенный состав, существуют еще и соединения переменного состава - бертоллиды. В результате были переосмыслены представления о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно. Но в XX в. была понята сущность химической связи, которая стала пониматься как вид взаимодействия между атомами и атомно-молекулярными частицами, обусловленный совместным использованием их электронов. На этой концептуальной основе была разработана стройная атомно-молекулярная теория того времени, которая впоследствии оказалась не в состоянии объяснить многие экспериментальные факты конца XIX - начала XX вв. Картина прояснилась с открытием сложного строения атома, когда стали ясны причины связи атомов, взаимодействующих друг с другом. В частности, химические связи указывают на взаимодействие атомных электрических зарядов, носителями которых оказываются электроны и ядра атомов. Существуют ковалентные, полярные, ионные и ионно-ковалентные химические связи, отличающиеся характером физического взаимодействия частиц между собой. Поэтому теперь под химическим соединением понимают определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой: молекулу, комплекс, монокристалл или иной агрегат.Осуществляют химические связи между атомами электроны, расположенные на внешней оболочке и связанные с ядром наименее прочно. Их назвали валентными электронами. В зависимости от характера взаимодействия между этими электронами различают ковалентную, ионную и металлическую химические связи.Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам. Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов.Металлическая связь - это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.Химическая связь является таким взаимодействием, которое связывает отдельные атомы в более сложные образования, в молекулы, ионы, кристаллы, т.е. в те структурные уровни организации материи, которые изучает химическая наука. Химическую связь объясняют взаимодействием электрических полей, образующихся между электронами и ядрами атомов в процессе химических преобразований. Прочность химической связи зависит от энергии связи.Основываясь на законах термодинамики, химия определяет возможность того или иного процесса, условия его осуществления, внутреннюю энергию. «Внутренняя энергия - это общий запас энергии системы, который складывается из энергии движения и взаимодействия молекул, энергии движения и взаимодействия ядер и электронов в атомах, в молекулах и т.п.».

2. 3. 2. Второй уровень химического знания

Многочисленные эксперименты по изучению свойств химических элементов в первой половине XIX в. привели ученых к убеждению, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. К этому времени в химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. Их качественное разнообразие потрясающе велико - сотни тысяч химических соединений, состав которых крайне однообразен, так как они состоят из нескольких элементов-органогенов (углерода, водорода, кислорода, серы, азота, фосфора). Наука считает, что только эти шесть элементов составляют основу живых систем, из-за чего они получили название органогенов. Весовая доля этих элементов в живом организме составляет 97,4%. Кроме того, в состав биологически важных компонентов живых систем входят еще 12 элементов: натрий, калий, кальций, магний, железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор. Особая роль отведена природой углероду. Этот элемент способен организовать связи с элементами, противостоящими друг другу, и удерживать их внутри себя. Атомы углерода образуют почти все типы химических связей. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения.Объяснение необычайно широкому разнообразию органических соединений при столь бедном элементном составе было найдено в явлениях изомерии и полимерии. Так было положено начало второму уровню развития химических знаний, который получил название структурной химии.Структура - это устойчивая упорядоченность качественно неизменной системы (молекулы). Под данное определение подпадают все структуры, которые исследуются в химии: квантово-механические, основанные на понятиях валентности и химического сродства, и др. Она стала более высоким уровнем по отношению к учению о составе вещества, включив его в себя. При этом химия из преимущественно аналитической науки превратилась в синтетическую. Главным достижением этого этапа развития химии стало установление связи между структурой молекул и реакционной способностью веществ.Термин «структурная химия» условен. В нем подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, для создания схемы синтеза любых химических соединений, в том числе и ранее неизвестных.Основы структурной химии были заложены Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. Затем И.-Я. Берцелиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами.Важнейшим шагом в развитии структурной химии стало появление теории химического строения органических соединений русского химика A.M. Бутлерова, который считал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но при этом он указывал на то, с какой энергией (большей или меньшей) это сродство связывает вещества между собой. Иными словами, Бутлеров впервые в истории химии обратил внимание на энергетическую неравноценность разных химических связей. Эта теория позволила строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, а через это объясняла химическую активность одних веществ и пассивность других.В XX в. структурная химия получила дальнейшее развитие. В частности, было уточнено понятие структуры, под которой стали понимать устойчивую упорядоченность качественно неизменной системы. Также было введено понятие атомной структуры - устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, - и молекулярной структуры - сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов.Однако дальнейшее развитие химической науки и основанного на ее достижениях производства показали более точно возможности и пределы структурной химии. Например, многие реакции органического синтеза на основе структурной химии давали очень низкие выходы необходимого продукта и большие отходы в виде побочных продуктов. Вследствие этого их нельзя было использовать в промышленном масштабе.Структурная химия неорганических соединений ищет пути получения кристаллов для производства высокопрочных материалов с заданными свойствами, обладающих термостойкостью, сопротивлением агрессивной среде и другими качествами, предъявляемыми сегодняшним уровнем развития науки и техники. Решение этих вопросов наталкивается на различные препятствия. Выращивание, например, некоторых кристаллов требует исключения условий гравитации. Поэтому такие кристаллы выращивают в космосе, на орбитальных станциях.

2. 3. 3. Третий уровень химического знания. Учение о химических процессах

Учение о химических процессах - область науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основе этого учения находятся химическая термодинамика и кинетика, поэтому оно в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов, основатель химической физики.Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций, которые могут оказывать воздействие на характер и результаты этих реакций.Важнейшей задачей химиков становится умение управлять химическими процессами, добиваясь нужных результатов. В самом общем виде методы управления химическими процессами можно подразделить на термодинамические (влияют на смещение химического равновесия реакции) и кинетические (влияют на скорость протекания химической реакции).Для управления химическими процессами разработаны термодинамический и кинетический методы.Французский химик А. Лее Шателье в конце XIX в. сформулировал принцип подвижного равновесия, обеспечив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических. Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий процесса.Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость. Скоростью химических процессов управляет химическая кинетика, в которой изучается зависимость протекания химических процессов от строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т. п.Химическая кинетика. Объясняет качественные и количественные изменения в химических процессах и выявляет механизм реакции. Реакции проходят, как правило, ряд последовательных стадий, которые составляют полную реакцию. Скорость реакции зависит от условий протекания и природы веществ, вступивших в нее. К ним относятся концентрация, температура и присутствие катализаторов. Описывая химическую реакцию, ученые скрупулезно отмечают все условия ее протекания, поскольку в других условиях и при иных физических состояниях веществ эффект будет разный.Задача исследования химических реакций является очень сложной. Ведь практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реа¬гентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.Катализ - ускорение химической реакции в присутствии особых веществ - катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в конечный состав продуктов. Он был открыт в 1812 г. российским химиком К. Г. С. Кирхгофом.Сущность катализа сводится к следующему:1) активная молекула реагента достигается за счет их неполновалентного взаимодействия с веществом катализатора и состоит в расслаблении химических связей реагента;2) в общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение расслабленных (неполновалентных) химических связей.Каталитические процессы различаются по своей физической и химической природе на следующие типы:гетерогенный катализ - химическая реакция взаимодействия жидких или газообразных реагентов на поверхности твердого катализатора;гомогенный катализ - химическая реакция в газовой смеси или в жидкости, где растворены катализатор и реагенты;электрокатализ - реакция на поверхности электрода в контакте с раствором и под действием электрического тока;фотокатализ - реакция на поверхности твердого тела или в жидком растворе, стимулируется энергией поглощенно¬го излучения.Применение катализаторов изменило всю химическую промышленность. Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (60-80 %) основаны на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.С участием катализаторов скорость некоторых реакций возрастает в 10 млрд раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность).В современных условиях одно из важнейших направлений развития учения о химических процессах - создание методов управления этими процессами. Поэтому сегодня химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.Химия плазмы изучает химические процессы в низкотемпературной плазме при 1000-10 000 °С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока, поэтому они очень производительны.Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок - стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.Еще одна область развития учения о химических процессах - химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм - к химии сверхвысоких давлений.При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102-103 атм исчезает различие между жидкой и газовой фазами, а при 103-105 атм - междутвердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства вещества. Например, при давлении 20 000 атм. металл становится эластичным, как каучук. Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Эти процессы изучают химия, физика и биология. Перед химической наукой стоит принципиальная задача - научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить, хотя в принципе они осуществимы, другие трудно остановить - реакции горения, взрывы, а часть из них трудноуправляема, поскольку они самопроизвольно создают массу побочных продуктов.

2. 3. 4. Четвертый уровень химического знания. Эволюционная химия

Эволюционная химия зародилась в 1950 - 1960 гг. В основе эволюционной химии лежат процессы биокатализа, ферментологии; ориентирована она главным образом на исследование молекулярного уровня живого, что основой живого является биокатализ, т.е. присутствие различных природных веществ в химической реакции, способных управлять ею, замедляя или ускоряя ее протекание. Эти катализаторы в живых системах определены самой природой, что и служит идеалом для многих химиков.Идея концептуального представления о ведущей роли ферментов, биорегуляторов в процессе жизнедеятельности, предложенная французским естествоиспытателем Луи Пастером в ХIX веке, остается основополагающей и сегодня. Чрезвычайно плодотворным с этой точки зрения является исследование ферментов и раскрытие тонких механизмов их действия.Ферменты- это белковые молекулы, синтезируемые живыми клетками. В каждой клетке имеются сотни различных ферментов. С их помощью осуществляются многочисленные химические реакции, которые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма, т.е. в пределах примерно от 5 до 40 градусов. Можно сказать, что ферменты - это биологические катализаторы.В основе эволюционной химии принцип использования таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т. е. к самоорганизации химических систем.В эволюционной химии существенное место отводится проблеме «самоорганизации» систем. Теория самоорганизации «отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности в системной упорядоченности, или материальной организации». В сущности, речь идет об использовании химического опыта живой природы. Это своеобразная биологизация химии. Химический реактор предстает как некое подобие живой системы, для которой характерны саморазвитие и определенные черты поведения. Так появилась эволюционная химия как высший уровень развития химического знания.Под эволюционными проблемами понимают проблемы самопроизвольного синтеза новых химических соединений (без участия человека). Эти соединения являются более сложными и более высокоорганизованными продуктами по сравнению с исходными веществами. Поэтому эволюционную химию заслуженно считают предбиологией, наукой о самоорганизации и саморазвитии химических систем.До последней трети XX в. об эволюционной химии ничего не было известно. В отличие от биологов, которые вынуждены были использовать эволюционную теорию Дарвина для объяснения происхождения многочисленных видов растений и животных, химики не интересовались вопросом происхождения вещества, потому что получение любого нового химического соединения всегда было делом рук и разума человека.Постепенное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. Для освоения опыта живой природы и реализации полученных знания в промышленности химики наметили ряд перспективных путей.Во-первых ведутся исследования в области металлокомплексного катализа, который обогащается приемами, используемыми живыми организмами в реакциях с участием ферментов (биокатализаторов).Во-вторых, ученые пытаются моделировать биокатализаторы. Уже удалось создать модели многих ферментов, которые извлекаются из живой клетки и используются в химических реакциях. Но проблема осложняется тем, что ферменты, устойчивые внутри клетки, вне нее быстро разрушаются.В-третьих, развивается химия иммобилизованных систем, благодаря которой биокатализаторы стали стабильными, устойчивыми в химических реакциях, появилась возможность их многократного использования.В-четвертых, химики пытаются освоить и использовать весь опыт живой природы. Это позволит ученым создать полные аналоги живых систем, в которых будут синтезироваться самые разнообразные вещества. Таким образом, будут созданы принципиально новые химические технологии.Изучение процессов самоорганизации в химии привело к формированию двух подходов к анализу предбиологических систем: субстратного и функционального.Результатом субстратного подхода стала информация об отборе химических элементов и структур.Химикам важно понять, каким образом из минимума хими¬ческих элементов (основу жизнедеятельности живых организ¬мов составляют 38 химических элементов) и химических соединений (большинство образовано на основе 6—18 элементов) образовались сложнейшие биосистемы.Функциональный подход в эволюционной химии. В рамках этого подхода также изучается роль катализа и выявляются законы, которым подчиняются процессы самоорганизации химических систем.Роль каталитических процессов усиливалась по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые стали связывать химическую эволюцию с самоорганизацией и саморазвитием каталитических систем.На основе этих наблюдений профессор МГУ А.П. Руденко выдвинул теорию саморазвития открытых каталитических систем. Очень скоро она была преобразована в общую теорию химической эволюции и биогенеза. В ней решены вопросы о движущих силах и механизмах эволюционного процесса, т. е. о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.Сущность этой теории состоит в том, что эволюционирующим веществом являются катализаторы, а не молекулы. При катализе идет реакция химического взаимодействия катализатора с реагентами с образованием при этом промежуточных комплексов со свойствами переходного состояния. Именно такой комплекс Руденко назвал элементарной каталитической системой. Если в ходе реакции идет постоянный приток извне новых реактивов, отвод готовой продукции, а также выполняются некоторые дополнительные условия, реакция может идти неогра¬ниченно долго, находясь на одном и том же стационарном уровне. Такие многократно возобновляемые комплексы являются элементарными открытыми каталитическими системами.Саморазвитие, самоорганизация и самоусложнение каталитических систем происходят за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальное эволюционное преимущество получают каталитические системы, развивающиеся на базе экзотермических реакций. Таким образом, реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.Тем самым Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализаторов, которые связаны с ростом их абсолютной каталитической активности. При этом по параметру абсолютной каталитической активности складываются механизмы конкуренции и естественного отбора.Теория саморазвития каталитических систем дает следующие возможности: выявлять этапы химической эволюции и на этой основе классифицировать катализаторы по уровню их организации; использовать принципиально новый метод изучения катализа; дать конкретную характеристику пределов в химической эволюции и перехода от химогенеза (химического становления) к биогенезу, связанного с преодолением второго кинетического предела саморазвития каталитических систем.Набирает теоретический и практический потенциал новейшее направление, расширяющее представление об эволюции химических систем, - нестационарная кинетика.Развитие химических знаний позволяет надеяться на разрешение многих проблем, которые встали перед человечеством в результате его наукоемкой и энергоемкой практической деятельности.Химическая наука на ее высшем эволюционном уровне углубляет представления о мире. Концепции эволюционной химии, в том числе о химической эволюции на Земле, о самоорганизации и самосовершенствовании химических процессов, о переходе от химической эволюции к биогенезу, являются убедительным аргументом, подтверждающим научное понимание происхождения жизни во Вселенной.Химическая эволюция на Земле создала все предпосылки для появления живого из неживой природы.Жизнь во всем ее многообразии возникла на Земле самопроизвольно из неживой материи, она сохранилась и функционирует уже миллиарды лет.Жизнь полностью зависит от сохранения соответствующих условий ее функционирования. А это во многом зависит от самого человека.

3. Список использованной литературы

1. Краткая химическая энциклопедия, гл. ред. И. Л. Кнунянц, т. 1—5, М., 1961—67;2. Краткий справочник по химии, под ред. О. Д. Куриленко, 4 изд.. К., 1974;3. Общая химия, Полинг Л., пер. с англ., М., 1974;4. Современная общая химия, Кемпбел Дж., пер. с англ., [т.] 1—3, М., 1975.

Ключевые слова страницы: как, скачать, бесплатно, без, регистрации, смс, реферат, диплом, курсовая, сочинение, ЕГЭ, ГИА, ГДЗ


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.