Аварии на всех радиационно опасных объектах приводят к загрязнению окружающей среды радиоактивными веществами и поражению населения. И ведущее место среди этих объектов занимают атомные электростанции.
В основном это связано с тем, что в процессе работы АЭС образуется много искусственных радиоактивных элементов. Помимо этого, 9 из 10 российских АЭС (за исключением Билибинской) расположены в густонаселенной европейской части страны, а в 30-киллометровой зоне вокруг этих станций проживает более 4 миллионов человек.
Чернобыльская катастрофа показала всему миру, какими масштабными могут быть последствия аварий на АЭС. Например, в России, загрязненными оказались 16 областей, что составляет около 0,6% территории Российской Федерации и около трех миллионов проживающих на этих территориях людей. В соседней Республике Беларусь, эти цифры еще больше.
Несмотря на разнообразие исходных причин аварий на ядерных объектах, их условно делят на три группы:
· отказ оборудования из-за несовершенства конструкции установки, нарушения в технологии ее изготовления, монтажа и эксплуатации;
· ошибочные действия персонала или преднамеренные нарушения правил эксплуатации;
· внешние события, такие как падение самолета, стихийные бедствия, террористические акты и т.п.
При авариях на АЭС с выбросом радиоактивных веществ образуются районы радиоактивного загрязнения местности и находящихся на ней объектов радиоактивными веществами. В районе аварии происходит заражение местности в форме окружности, а по следу облака — в форме вытянутого эллипса правильной или неправильной формы, в зависимости от метеоусловий и топографии местности.
В целях организации и проведения защитных мероприятий, районы радиационного загрязнения подразделяют на отдельные зоны — зона внешнего облучения и зона внутреннего облучения.
В свою очередь, зона внутреннего облучения делится на 2 под-зоны: чрезвычайно опасное облучение и опасное облучение.
А зона внешнего облучения на 4 под-зоны: чрезвычайно опасное, опасное, сильное и умеренное облучение.
Если авария на АЭС происходит с разрушением реактора, то образуются все зоны облучения. При этом наибольшую опасность представляет именно внешнее облучение.
После стабилизации радиационной обстановки в районе аварии в период ликвидации ее долговременных последствий могут устанавливаться зоны: отчуждения, временного отселения, жесткого контроля.
Аварии могут начинаться и сопровождаться взрывами и пожарами.
При этом радиационному заражению подвергаются большие территории, прилегающие к месту аварии и отдаленные от нее на многие сотни километров.
Так, например, 29 сентября 1957 года произошла первая в СССР радиационная чрезвычайная ситуация техногенного характера на химическом комбинате «Маяк», расположенном в закрытом городе Челябинск-40.
Она получила название «Кыштымская авария» по ближайшему к Озерску городу Кыштыму, который был обозначен на картах.
В результате мощного взрыва, произошедшего из-за выхода из строя системы охлаждения, в атмосферу было выброшено около 20 миллионов кюри радиоактивных веществ на высоту от 1 до 2 километров, и произошел сброс радиоактивных отходов в реку Теча.
В результате аварии была загрязнена территория площадью около 23000 квадратных километров с населением более 270000 человек в 217 населенных пунктах. От радиационного облучения только в течение первых 10 дней погибло около 200 человек. В ходе ликвидации последствий аварии 23 деревни с населением от 10 до 12 тысяч человек были эвакуированы, а строения, имущество и скот уничтожены.
Характерной особенностью радиоактивного загрязнения местности является то, что основная масса продуктов деления ядерного топлива находится в парообразном или аэрозольном состоянии. Их выброс в атмосферу может продолжаться от нескольких суток до нескольких недель (например, как это было в результате взрыва 4 энергоблока Чернобыльской АЭС).
Все радиоактивные вещества имеют специфические свойства:
Во-первых, у них нет ни цвета, ни запаха, ни каких-либо вкусовых качеств или других внешних признаков, из-за чего только приборы, такие как счетчик Гейгера, могут указать на заражение людей, животных, местности, воздуха, транспортных средств и продуктов питания.
Во-вторых, они способны вызывать поражение не только при непосредственном контакте, но и на расстоянии до нескольких сотен метров от источника загрязнения.
И в-третьих, любые поражающие свойства радиоактивных веществ не могут быть уничтожены каким-либо способом. Все дело в том, что радиоактивный распад никак не зависит от внешних факторов, а определяется периодом полураспада данного вещества.
Период полураспада — это промежуток времени, в течение которого распадается половина, от первоначального количества ядер радиоактивного вещества.
При авариях на ядерных объектах практически невозможно создать условия для защиты живых организмов, в том числе и людей, от действия радиоактивного облучения.
Загрязнению подвергается все — поверхность земли, здания, транспорт и техника, продукты питания и вода. Наиболее крупные радиоактивные частички оседают на землю вблизи места аварии, а затем разносятся животными и людьми на значительные расстояния, прилипая, например, к колесам транспорта.
Чтобы уменьшить зону заражения таким способом, во время аварии создаются специальные отряды, которые обрабатывают транспорт и строения, смывая с них радиоактивную грязь и пыль.
Но, как мы уже говорили, радиоактивные частицы в виде аэрозолей витают и в воздухе. Поэтому они могут распространяться на значительные расстояния, забиваться в любые трещинки и щели. Например, после аварии на чернобыльской атомной электростанции, мельчайшие радиоактивные частицы пересекли границы многих европейских государств — Польши, Венгрии, Румынии, Финляндии и Швеции. Повышенный радиационный фон был даже зафиксирован во Франции, Испании и Великобритании.
Степень радиационных поражений зависит от полученной дозы облучения и времени, в течение которого человек ему подвергался.
Наибольшую опасность для человека представляет попадание радиоактивных веществ внутрь организма с зараженной пищей, водой, при вдыхании загрязненного воздуха.
Причем поступление их в количествах более установленных величин вызывает лучевую болезнь. Поэтому в целях исключения опасного внутреннего облучения организма человека установлены допустимые пределы радиоактивного загрязнения продуктов питания и воды.
Но следует помнить, что воздействие радиоактивного излучения на различные органы и ткани человеческого организма различно — одни органы более чувствительны к воздействию излучения, другие менее чувствительны. В связи с этим, разделяют три группы критических органов. К первой из них относят красный костный мозг и половые органы.
Ко второй — щитовидную железу, печень, почки, жировую ткань, хрусталики глаз, легкие и желудочно-кишечный тракт.
Третью группу составляют наименее чувствительные органы — это кожный покров, костная ткань, предплечья, кисти рук, голени и стопы.
Различают следующие радиационные эффекты облучения животных и людей:
Во-первых, это соматические эффекты, являющиеся последствием воздействия облучения на самом облученном. К ним относятся острая лучевая болезнь, хроническая лучевая болезнь и локальные лучевые повреждения (например, лучевой ожог, катаракта глаз и т.п.)
Во-вторых, это соматико-стохастические эффекты. Их еще называют трудно обнаружимыми, так как они незначительны и имеют длительный скрытый период. К таким эффектам относятся: сокращение продолжительности жизни, злокачественные изменения кроветворных клеток, злокачественные опухоли различных органов и клеток.
И в-третьих, это генетические эффекты. К ним относятся врожденные уродства, возникающие в результате мутаций изменения наследственных свойств и т.д.
Основными способами защита от воздействия радиации являются:
— защита временем: чем меньше вы находитесь в зоне облучения, тем меньшую дозу радиации получит ваш организм;
— защита расстоянием: чем дальше вы от источника радиоактивного излучения, тем меньше полученная доза;
— и защита экранированием: т.е. использование материалов, способных поглощать радиоактивные излучения. Это, например, использование свинца или толстых железобетонных конструкций.
В настоящее время в Российской Федерации действует Федеральный закон «О радиационной безопасности населения», принятый в 1996 году. Он устанавливает правовые основы обеспечения радиационной безопасности населения в целях охраны его здоровья. Помимо этого, ряд статей закона посвящены правам и обязанностям граждан в области радиационной безопасности.
Итоги урока:
· Радиоактивное загрязнение — это загрязнение местности и находящихся в ней объектов радиоактивными веществами.
· Последствия радиационных аварий оценивается по масштабам и степенью воздействия радиации на людей, животных, растения и радиоактивного загрязнения окружающей среды.
· Характерной особенностью радиоактивного загрязнения является то, что большая часть продуктов деления радиоактивных элементов находятся в воздухе в виде пара и аэрозолей. Вследствие чего, их воздействие на живые организмы определяется внешним облучением от радиоактивного облака и радиоактивных осадков на местности, а также внутренним облучением в результате попадания радиоактивных нуклидов в организм человека при дыхании и употреблении загрязненных продуктов питания и воды.
videouroki.net
Известно, что во время работы реактора в нем накапливается много стронция-90 и цеэия-137. Кроме них, в активной зоне много других изотопов, в большинстве радиоактивных (изотопы плутония, тритий, радиоуглерод и т. д.). В результате взрыва (аварии) на АЭС часть радиоактивных веществ выбрасывается из реактора и загрязняет окружающую среду.
На территории тогдашнего СССР радиоактивные вещества после чернобыльской аварии выпали в основном тремя крупными пятнами - на Украине, Белоруссии и западных областях России. В Белоруссии изотопами цезия и стронция загрязнено 37500 км² (18 % территории), причем 7000 км² с плотностью активности выше 15 Ки/км². В первое время после аварии плотность активности зависит в основном от короткоживущих изотопов (йод-131, стронций-89, теллур-132, ксенон-133, криптон-85 и др.). Наибольшую опасность представляют цеэий-137 и -134, стронций-90 и плутониевые радионуклиды. Стронций и цезий химически очень активны, поэтому, легко включаясь в биологический цикл, накапливаются в травах и других растениях.
На загрязненной территории наиболее опасным в поражении людей и животных является внутреннее облучение в результате попадания радионуклидов в организм.
С воздухом в организм человека поступает около 1 % всей накапливающейся в организме радиоактивности, примерно 5 % - с питьевой водой, остальная часть - с пищей (молоко, мясо, рыба, растительная пища). Поэтому основная защита людей и сельскохозяйственных животных от поражения - потребление чистых продуктов и кормов. Снизить радиоактивность продуктов питания можно путем технологической обработки. При чистке картофеля и свеклы с кожурой удаляется до 40 % стронция-90 и почти столько же цеэия-137, а после варки их еще удаляется 50-85 % цезия. Очень мало накапливают в себе радионуклидов фрукты. Например, яблоки урожая 1989 г. из загрязненных после катастрофы на ЧАЭС районов республики были практически „чистыми".
Накопление радионуклидов зависит и от типа почвы: меньше всего радиоактивные вещества всасываются растениями из черноземов, а больше всего - из торфоболотистых, песчаных и подзолистых почв. Наибольшее количество радионуклидов из почвы забирают лишайники, мхи, грибы, бобовые и злаки. Повышенное содержание стронция бывает в укропе, петрушке, шпинате и другой ароматической зелени.
Разведка — важнейший вид обеспечения успешных действий сил ГО. Она ведется в целях своевременного получения данных об обстановке, сложившейся в районе стихийного бедствия, аварии или катастрофы, а также в очаге поражения.
Для выявления радиационной и химической обстановки на промышленных предприятиях. в колхозах, совхозах, учебных заведениях создаются посты радиационного и химического наблюдения (ПРХН).
На посту оборудуются место для наблюдателя и укрытие для личного состава. Место для наблюдателя выбирается с таким расчетом, чтобы обеспечивался хороший обзор территории объекта (местности в районе размещения рабочих и служащих в загородной зоне).
Задачу посту радиационного и химического наблюдения ставит начальник штаба ГО объекта. В ней он указывает: место расположения поста и порядок его оборудования; район (полосу) и задачи наблюдения; порядок действий при ядерном взрыве, обнаружении радиоактивного или химического заражения, а также при появлении признаков бактериологического заражения; сигналы оповещения и порядок доклада о результатах наблюдения
Пост оснащается: измерителем мощности дозы, прибором химической разведки, индивидуальными дозиметрами, средствами индивидуальной защиты, АИ (аптечка индивидуальная), ИПП (индивидуальный противохимический пакет), секундомером, защитными очками, средствами оповещения и связи, биноклем. Кроме того, на посту должен быть журнал для записи результатов наблюдения и азимутальный планшет
Дежурный наблюдатель выполняет свои задачи в надетых средствах защиты кожи, противогаз носит в положении «наготове». Он обязан неотлучно находиться в указанном месте и непрерывно следить за изменением воздушной и наземной обстановки. Приборы радиационной и химической разведки должны быть подготовлены к работе.
При вспышке ядерного взрыва наблюдатель принимает меры защиты (ложится на дно укрытия), после прохождения ударной волны он по внешним признакам определяет вид взрыва, а по схеме ориентиров - направление (азимут) на ядерный взрыв, докладывает эти данные начальнику поста и продолжает вести наблюдение за направлением движения радиоактивного облака и изменениями в обстановке на прилегающей местности.
При выпадении радиоактивных осадков наблюдатель определяет по показанию прибора мощность дозы излучения; докладывает начальнику поста и по его команде подает звуковой или световой сигнал оповещения о радиоактивном заражении, переводит противогаз в «боевое» положение и продолжает следить за показаниями прибора. При возрастании мощности дозы излучения наблюдатель докладывает начальнику поста и с его разрешения укрывается в убежище.
При применении противником химического оружия или появлении признаков отравляющих (ядовитых) веществ в воздухе дежурный наблюдатель подает звуковой или световой сигнал оповещения, переводит средства индивидуальной защиты в «боевое» положение, докладывает начальнику поста и действует по его указанию. Обследуя территорию, наблюдатель с помощью прибора химической разведки определяет тип отравляющего (ядовитого) вещества, места застоя зараженного воздуха, концентрацию 0В в нем. обозначает зараженный участок знаками ограждения, непрерывно следит за изменениями химической обстановки на территории объекта и в прилегающих районах, докладывает начальнику поста о результатах наблюдения.
Результаты наблюдения начальник поста записывает в журнал наблюдения. В нем указываются время, место наблюдения, результаты наблюдения (что наблюдал, мощность дозы излучения тип 0В, СДЯВ).
Таблица предельно допустимых величины заражённости различных объектов:
Наименование объектов | Мощность дозы, мР/ч |
Поверхность тела человека Нательное белье Лицевая часть противогаза Обмундирование, обувь, индивидуальные средства защиты Поверхность тела животного Техника | 20 20 10 30 50 200 |
studfiles.net
13
ГОУ ВПО «Ивановская государственная медицинская академия Росздрава»
Кафедра экстремальной и военной медицины
«УТВЕРЖДАЮ»
Заведующий кафедры экстремальной и военной медицины
П.Л.Колесниченко
« ___ » __________________ 2008 г.
Автор: Степович Сергей Адольфович
ЛЕКЦИЯ
по циклу «Токсикология и медицинская защита от радиационных и химических поражений»
ТЕМА № 15 Медико-тактическая характеристика очагов поражения при авариях на АЭС
г. Иваново
УЧЕБНЫЕ ЦЕЛИ:
1. Ознакомить студентов с медико-тактической характеристикой очагов поражения при авариях на атомных энергетических установках.
2. Ознакомить с особенностями проведения защитных и лечебно-профилактических мероприятий при авариях на АЭС.
УЧЕБНЫЕ ВОПРОСЫ:
Введение
1. Особенности аварий на радиационно-опасных объектах.
2. Основные факторы радиационной опасности при авариях на АЭС
3. Нестохастичекие и стохастические эффекты воздействия
ионизирующего излучения на организм
4. Риск радиационных воздействий на человека в условиях
профессиональной деятельности и повседневной жизни
5. Особенности проведения защитных и лечебно-профилактических
мероприятий при авариях на АЭС
ЛИТЕРАТУРА:
Аварии и катастрофы. Предупреждение и ликвидация последствий /
Под ред. Кочеткова К.Е. – М.: Изд-во А.С.В. – 1995г.- Т. 1.
Барабой В.А. Ионизирующая радиация в нашей жизни. – М.: Наука, 1991г.
Белозерский Н.Г. Радиоэкология. – СПб., 1994г.
Зеленков А.Г. Некоторые вопросы радиационной экологии. – М.: МИФИ, 1990г.
Москалев Ю.И. Отдаление последствия воздействия ионизирующих излучений. – М.: Медицина, 1991г.
Мотузко Ф.Я. Основы экологии. Защита биосферы от излучений. – М., 1995г.
Новожилов Г.Н. Радиационно-гигиенические аспекты безопасности при авариях на АЭС //ВМЖ. – 1991г.- №4. – С.63-67.
НРБ –99.
Радиация. Дозы. Эффекты. Риск. –М.: Мир, 1988г.
Руководство по организации медицинской помощи при радиационных авариях. – М: Минэнергоатомиздат, 1989г.
Лужников Е.А. Клиническая токсикология.- М.: Медицина, 1994.-
Ефимова Л.К. Лекарственные отравления у детей. К. Здоровье, 1995 г.
Голиков С.Н., Саноцкий И.В., Тиунов Л.А. Общие механизмы токсического действия.- Л.: Медицина, 1986.- 356 с.
УЧЕБНО – МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ:
А) Наглядные пособия: комплект таблиц по теме, таблицы для кодаскопа.
Б) Технические средства обучения: кодаскоп.
Время: 90 минут.
№ п/п | Содержание занятия | Время, мин. |
1 | Вступительная часть | 5 мин. |
2 | Основная часть Вопросы лекции: ОСОБЕННОСТИ АВАРИЙ НА РАДИАЦИОННО-ОПАСНЫХ ОБЪЕКТАХ ОСНОВНЫЕ ФАКТОРЫ РАДИАЦИОННОЙ ОПАСНОСТИ ПРИ АВАРИЯХ НА АЭС НЕСТОХАСТИЧЕСКИЕ И СТОХАСТИЧЕСКИЕ ЭФФЕКТЫ ВОЗДЕЙСТВИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОРГАНИЗМ. РИСК РАДИАЦИОННЫХ ВОЗДЕЙСТВИЙ НА ЧЕЛОВЕКА В УСЛОВИЯХ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ И ПОВСЕДНЕВНОЙ ЖИЗНИ. ОСОБЕННОСТИ ПРОВЕДЕНИЯ ЗАЩИТНЫХ И ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКИХ МЕРОПРИЯТИЙ ПРИ АВАРИЯХ НА А Э С | 25 мин. 10 мин. 10 мин. 15 мин. 20 мин. |
3 | Заключительная часть | 5 мин. |
Одним из важнейших факторов, определяющих научно-технический прогресс в нынешнем столетии и предвидимом будущем, является использование энергии атомного ядра. На ближайшие десятилетия прогнозируется интенсивное развитие атомной энергетики, обусловленное истощением источников органического топлива. У человечества в настоящее время нет других альтернативных подготовленных, крупномасштабных, экологически обоснованных источников энергии и, по-видимому, не будет в ближайшее десятилетие. Доля электроэнергии, вырабатываемой на АЭС в мире в настоящее время, составляет 16%, а в таких странах , как Франция и Бельгия, достигает 50-70%.
Ядерная энергия основана на использовании трех делящихся радионуклидов: уран-235 - естественный элемент, два других - плутоний-239 и уран-233 получают искусственным путем в процессе ядерного топливного цикла. На всех этапах ядерного топливного цикла, начиная с добычи урановой руды, её обогащения, переработки ТВЭЛов, получения энергии в ядерных реакторах, транспортировки, переработки топлива и захоронении радиоактивных отходов существует риск попадания радиоактивных веществ (РВ) в окружающую среду и облучения людей.
По данным МАГАТЭ, за период с 1971 по 1985гг в 14 странах мира на АЭС имели место более 150 аварий различной тяжести. Среди причин аварий наибольшее значение имеют ошибки в проектах (30,7%).износ оборудования, коррозийные процессы (25,5%), ошибки оператора (17,5%), ошибки в эксплуатации (14,7%).
Наиболее серьезные аварии, с точки зрения ухудшения экологической обстановки и влияния на здоровье людей, имели место на атомных электростанциях Великобритании (Уиндскейл 1957г.), США (Три-Майл-Айленд , 1979г) и СССР (Чернобыль , 1986г.).
studfiles.net
Типы радиационных аварийопределяются используемыми в народном хозяйстве источниками ионизирующего излучения, которые условно можно разделить на: ядерные, радиоизотопные и создающие ионизирующее излучение за счет ускорения (замедления) заряженных частиц в электромагнитном поле (электрофизические). Такое деление достаточно условно, поскольку, например, атомные электростанции (АЭС) одновременно являются и ядерными, и радиоизотопными объектами. К чисто радиоизотопным объектам можно отнести, например, пункты захоронения радиоактивных отходов (ПЗРО) или радиоизотопные технологические медицинские облучательные установки.
Имеются также специальные технологии, связанные с уничтожением ядерных боеприпасов, снятием с эксплуатации ядерных реакторов, исчерпавших эксплуатационный ресурс, ядерными взрывами, проводящимися в интересах народного хозяйства, и др.
На ядерных энергетических установках (ЯЭУ)в результате аварийного выброса возможны следующие факторы радиоактивного воздействия на население:
- внешнее облучение от радиоактивного облака и от радиоактивно загрязненной поверхности земли, зданий, сооружений и других поверхностей;
- внутреннее облучение при вдыхании находящихся в воздухе радиоактивных веществ и при потреблении загрязненных радионуклидами продуктов питания и воды;
- контактное облучение за счет загрязнения радиоактивными веществами кожных покровов.
При планировании медицинских мероприятий для населения прямым облучением от ЯЭУ можно пренебречь. В зависимости от состава выброса может преобладать (т.е. приводить к наибольшим дозовым нагрузкам) тот или иной из вышеперечисленных путей воздействия. Радионуклидами, вносящими существенный вклад в облучение организма и его отдельных органов (щитовидной железы и легких) при авариях на ЯЭУ являются: 131I, 132I, 133I,134I, 135I, 132Te, 133Xe,134Xe, 134Cs, 137Cs, 88Ru, 144Ce, 238Pu (аэрозоль), 239Pu(аэрозоль).
Аварии на хранилищах радиоактивных отходовпредставляют большую опасность, т.к. они могут привести к радиоактивному загрязнению обширных территорий и вызвать необходимость широкомасштабного вмешательства. Радиационное воздействие на население на первом этапе аварии обусловлено внешним излучением от облака и внутренним облучением от вдыхаемых нуклидов из облака; на втором - внешним облучением от радиоактивных выпадений на территории и внутренним облучением радионуклидами, поступившими в организм с пищевым регионом, в основном 90Sr.
При аварии на радиохимическом производстверадионуклидный состав и величина аварийного выброса существенно зависят от технологического участка процесса и участка радиохимического производства. Основной вклад в формирование радиоактивного загрязнения местности, в случае радиоактивной аварии на радиохимическом производстве могут вносить изотопы 90Sr, 134Cs, 137Cs, 238Pu, 239Pu, 240Pu, 241Pu, 241Am, 244Cm. Повышенный фон гамма-излучения на местности создают в основном 134Cs, 137Cs.
Многообразие химических форм, в которых радиоактивные продукты могут попадать в окружающую среду, и наличие в выбросе высокотоксичных соединений требует дифференциального подхода к оценке последствий аварии на радиохимическом производстве, даже если по величине радиоактивного выброса авария не рассматривается, как тяжелая.
Аварии с радионуклидными источниками (РНИ)связанные с их использованием в промышленности, газо – и нефтедобыче, строительстве, в исследовательских и медицинских учреждениях. Эти аварии могут происходить с разгерметизацией и без разгерметизации. Характер радиационного воздействия определяется видом РНИ, пространственными и временными условиями облучения. При аварии с ампулированным источником переоблучению может подвергнуться ограниченное число лиц, имевших непосредственный контакт с РНИ, с преобладающей клиникой общего неравномерного облучения и местного (локального) радиационного поражения отдельных органов и тканей. В разгерметизации РНИ возможно радиоактивное загрязнение значительной территории.
Особенностью аварии с РНИ является сложность установления факта аварии. К сожалению, часто подобная авария устанавливается после регистрации тяжелого радиационного поражения.
При аварии с ядерными боеприпасамив случае диспергирования делящегося материала (механическое разрушение, пожар) основными факторами радиационного воздействия являются изотопы 239Puи 141Amс преобладанием внутреннего облучения за счет ингаляции. При пожаре возможен сценарий, когда основным поражающим фактором будет выделение окиси трития ( молекулярного трития).
Возможность радиационной аварии на космических аппаратахобусловлена наличием на их борту:
- радиоактивных изотопов в генераторах электрической и тепловой энергии, в различных контрольно-измерительных приборах и системах;
- ядерных бортовых электроэнергетических установок;
- ядерных установок в качестве двигательных систем.
Радиационные аварии возможны на различных этапах: при транспортировке ЯЭУ до установки в аппарат, предпусковом периоде, выведении на орбиту, неконтролируемом участке траектории, конечной стадии вывода на орбиту, возвращения в атмосферу. Наибольшая опасность связана с выходом реактора в надкритичное состояние.
Аварии при перевозке радиоактивных материаловтакже возможны, несмотря на то, что практика транспортировки радиоактивных материалов базируется на нормативно- правовых документах, регламентирующих их безопасную транспортировку.
Классы радиационных аварийсвязаны, прежде всего, с их масштабом. По границам распространения радиоактивных веществ и по возможным последствиям аварии подразделяются на: локальную, местную и общую.
Локальная авария – это авария, при которой произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих регламентированные для нормальной эксплуатации значения и при котором возможно облучение персонала, находящегося в данном здании или сооружении в дозах, превышающие допустимые.
Местная авария – это авария, при которой произошел выход радиоактивных продуктов в пределах санитарно-защитной зоны в количествах, превышающих регламентированные для нормальной эксплуатации значения и при котором возможно облучение персонала в дозах, превышающие допустимые.
Общая авария – это авария, при которой произошел выход радиоактивных продуктов за границу санитарно-защитной зоны в количествах, превышающих регламентированные для нормальной эксплуатации значения и при котором возможно облучение населения и загрязнение окружающей среды выше установленных норм.
В общем, виде события на ЯЭУ классифицируются следующим образом: глобальная авария; тяжелая авария; авария с риском для окружающей среды; авария в пределах ЯЭУ; серьезное происшествие; происшествие средней тяжести; незначительное происшествие; происшествия, не имеющие значения для безопасности.
При решении вопросов организации медицинской помощи населению в условиях крупномасштабной радиационной аварии необходим анализ путей и факторов радиационного воздействия в различные временные периоды развития аварийной ситуации, формирующих медико-санитарные последствия. С этой целью рассматривают три временные фазы: раннюю, промежуточную и позднюю (восстановительную). Ранняя фаза - это период от начала аварии до момента прекращения выброса радиоактивных веществ в атмосферу и окончания формирования радиоактивного следа на местности. Продолжительность этой фазы в зависимости от характера, масштаба аварии и метеоусловий может быть от нескольких часов до нескольких суток. На ранней фазе доза внешнего облучения формируется гамма- и бета излучением радиоактивных веществ, содержащихся в облаке. Возможно также контактное обучение за счет излучения радионуклидов, осевших на кожу и слизистые. Внутренне облучение обусловлено ингаляционным поступлением в организм человека радиоактивных продуктов из облака. Промежуточная фаза аварии начинается от момента завершения формирования радиоактивного следа и продолжается до принятия всех необходимых мер защиты населения, проведения необходимого объема санитарно-гигиенических и лечебно-профилактических мероприятий. В зависимости от характера и масштаба аварии длительность промежуточной фазы может быть от нескольких дней до нескольких месяцеb после возникновения аварии. Во время промежуточной фазы основными причинами поражающего действия являются внешнее облучение от радиоактивных веществ, осевших из облака на поверхность земли, зданий, сооружений и т.п. и сформировавших радиоактивный след, внутреннее облучение за счет поступления радионуклидов в организм человека с питьевой водой и пищевыми продуктами. Значение ингаляционного фактора определяется возможностью вдыхания загрязненных мелкодисперсных частиц почвы, пыльцы растений и т.п., поднятых в воздух в результате вторичного ветрового переноса. Поздняя (восстановительная) фаза может продолжаться от нескольких недель нескольких лет после аварии (до момента, когда отпадает необходимость выполнения мер по защите населения) в зависимости от характера и масштабов радиоактивного загрязнения. Фаза заканчивается одновременно с отменой всех ограничений жизнедеятельности населения на загрязненной территории и переходом к обычному санитарно-дозиметрическому контролю радиационной обстановки, характерной для условий «контролируемого облучения». На поздней фазе источники и пути внешнего и внутреннего облучения те же, что и на промежуточной фазе. В результате крупномасштабных радиационных аварий из поврежденного ядерно-энергетического реактора в окружающую среду выбрасываются радиоактивные вещества в виде газов и аэрозолей, которые образуют радиоактивное облако. Это облако, перемещаясь в атмосфере по направлению ветра, вызывает по пути своего движения радиоактивное загрязнение местности и атмосферы. Местность, загрязненная в результате выпадения радиоактивных веществ из облака, называется следом облака. Характер и масштабы последствий радиационных аварий в значительной степени зависят от вида (типа) ядерного энергетического реактора, характера его разрушения, а также метеоусловий в момент выброса радиоактивных веществ из поврежденного реактора.
Радиационная обстановка представляет собой совокупность условий, возникающих в результате загрязнения местности, приземного слоя воздуха и водоисточников радиоактивными веществами (газами) и оказывающих влияние на аварийно-спасательные работы и жизнедеятельность населения. Выявление наземной радиационной обстановки предусматривает определение масштабов и степени радиоактивного загрязнения местности и приземного слоя атмосферы. Оценка наземной радиационной обстановки осуществляется с целью определения степени влияния радиоактивного загрязнения на лиц, занятых в ликвидации последствий чрезвычайной ситуации, и населения. Оценка радиационной обстановки может быть выполнена путем расчета с использованием формализованных документов и справочных таблиц (прогнозирование), а также по данным разведки (оценка фактической обстановки), К исходным данным для оценки радиационной обстановки при аварии на АЭС относятся: координаты реактора, его тип и мощность, время аварии и реальные метеоусловия, прежде всего направление и скорость ветра, облачность, температура воздуха и его вертикальная устойчивость, а также степень защиты людей от ионизирующего излучения, При оценке фактической обстановки, кроме вышеупомянутых исходных данных, обязательно учитывают данные измерения уровня ионизирующего излучения и степени радиоактивного загрязнения местности и объектов.
Метод оценки радиационной обстановки по данным радиационной разведки используется после аварии на радиационно- опасном объекте. Он основан на выявлении реальной (фактической) обстановки путем измерения уровней ионизирующего излучения и степени радиоактивного загрязнения местности и объектов. В выводах, которые формулируются силами РСЧС в результате оценки радиационной обстановки, для службы медицины катастроф должно быть указано: число людей, пострадавших от ионизирующего излучения; требуемые силы и средства здравоохранения; наиболее целесообразные действия персонала АЭС, ликвидаторов, личного состава формирований службы медицины катастроф; дополнительные меры защиты различных контингентов людей.
studfiles.net
Предприятия народного хозяйства, производящие, хранящие и использующие АОХВ, при аварии на которых может произойти массовое поражение людей, являются химически опасными объектами (ХОО).
К объектам, имеющим, использующим или транспортирующим АОХВ, относятся: предприятия химической, нефтеперерабатывающей, нефтеперегонной и других видов родственной промышленности; предприятия, оснащенные холодильными установками; предприятия с большими количествами аммиака; водопроводные станции и очистные сооружения, использующие хлор; железнодорожные станции с местом для отстоя подвижного состава с АОХВ, составы с цистернами для перевозки АОХВ; склады и базы с запасами веществ для дезинфекции, дезинсекции и дератизации хранилищ с зерном или продуктами его переработки; склады и базы с запасами ядохимикатов, используемых в сельском хозяйстве.
На территории России находится более 3000 химически опасных объектов. За период 1985-1991 гг. в стране произошло 240 аварий с АОХВ (около 1/3 всех технических аварий), в результате которых пострадало 2300 чел., из них 105 чел. погибли. До 50% аварий происходит при перевозке ядовитых веществ железнодорожным транспортом, остальные возникают на ХОО. Отравления людей вызывают самые различные АОХВ (более 30 наименований), но наиболее часто - аммиак (до 25%), хлор (до 20%о) и серная кислота (до 15%). На отравления ртутью и ее соединениями, а также фенолом приходится 5-7%, сернистым ангидридом - 3%, другими токсическими веществами - по 1-2% случаев.
Аварии могут возникнуть в результате нарушений технологии производства на химическом предприятии, при нарушении техники безопасности на объектах хранения химических веществ или объектах уничтожения химического оружия. Массовые поражения при разрушении ХОО или применении химического оружия возможны также в ходе войны и вооруженного конфликта или в результате террористического акта.
По данным Н.И. Патрикеевой, в нашей стране в 58% случаев причинами химических аварий являются неисправности оборудования, в 38% - ошибки операторов, в 6%о - ошибки при проектировании производств.
Расширяющееся внедрение источников ионизирующих излучений в промышленность, в медицину и научные исследования, наличие на вооружении армий ядерного оружия, а также работа человека в космическом пространстве увеличивают число людей, подвергающихся воздействию ионизирующих излучений.
Несмотря на достаточно совершенные технические системы по обеспечению радиационной безопасности персонала и населения, разработанные в последние годы, сохраняется определенная вероятность повторения крупномасштабных радиационных аварий.
На территории Российской Федерации в настоящее время функционирует порядка 400 «стационарных» радиационно опасных объектов (атомные электростанции, заводы по переработке ядерного топлива, хранилища радиоактивных отходов, ядерные объекты Министерства обороны России и др.). Не исключена возможность транспортных радиационных аварий (в том числе с ядерным оружием), локальных аварий, связанных с хищением и утерей различных приборов, работающих на основе радионуклидных источников, а также в результате использования радиоактивных веществ в диверсионных целях.
Радиационная авария - событие, которое могло привести или привело к незапланированному облучению людей или к радиоактивному загрязнению окружающей среды с превышением величин, регламентированных нормативными документами для контролируемых условий, происшедшее в результате потери управления источником ионизирующего излучения, вызванное неисправностью оборудования, неправильными действиями персонала, стихийны- Iми бедствиями или иными причинами. |
Различают очаг аварии и зоны радиоактивного загрязнения местности.
Очаг аварии - территория разброса конструкционных материалов аварийных объектов и действия альфа-, бета-, и гамма-излучения
Типы радиационных аварий определяются используемыми в народном хозяйстве источниками ионизирующего излучения, которые можно условно разделить на следующие группы: ядерные, радиоизотопные и создающие ионизирующее излучение за счет ускорения (замедления) заряженных частиц в электромагнитном поле (электрофизические). Такое деление достаточно условно, поскольку, например, атомные электростанции (АЭС) одновременно являются и ядерными, и радиоизотопными объектами. К чисто радиоизотопным объектам можно отнести, например, пункты захоронения радиоактивных отходов или радиоизотопные технологические медицинские облучательные установки.
Имеются также специальные технологии, связанные с уничтожением ядерных боеприпасов, снятием с эксплуатации исчерпавших эксплуатационный ресурс реакторов, проводящимися в интересах народного хозяйства ядерными взрывами и др.
На ядерных энергетических установках в результате аварийного выброса возможны следующие факторы радиационного воздействия на население:
внешнее облучение от радиоактивного облака и от радиоактивно загрязненных поверхностей земли, зданий, сооружений и др.;
внутреннее облучение при вдыхании находящихся в воздухе радиоактивных веществ и при потреблении загрязненных радионуклидами продуктов питания и воды;
контактное облучение за счет загрязнения радиоактивными веществами кожных покровов.
В зависимости от состава выброса может преобладать (то есть приводить к наибольшим дозовым нагрузкам) тот или иной из вышеперечисленных путей воздействия. Радионуклидами, вносящими существенный вклад в облучение организма и его отдельных органов (щитовидной железы и легких) при авариях на ядерных энергетических установках, являются: ,3,1, ,321, 1331, 1341, 135Г, шТе, ,33Хе, 135Хе, ,?4Сs, ,37Сs,90 Sг, 88Кг, 10бRи, И4Се, 238Ри (аэрозоль), 239Ри (аэрозоль).
Аварии на хранилищах радиоактивных отходов представляют большую опасность, так как они могут привести к длительному радиоактивному загрязнению обширных территорий высокотоксичными радионуклидами и вызвать необходимость широкомасштабного вмешательства.
Подобный аварийный выброс произошел 29 сентября 1957 г. на комбинате «Маяк» (Челябинск-40). Был загрязнен участок местности шириной 9 км, длиной более 100 км. След протянулся через Челябинскую, Свердловскую и Тюменскую области. Было эвакуировано 10 700 человек, проживающих на этой территории.
Ситуация, характерная для поверхностного хранения жидких радиоактивных отходов, возникла в 1967 г. на хранилище в районе озера Карачай, когда в результате ветрового подъема высохших иловых отложений оказалась значительно загрязнена прилегающая территория.
Аварийная ситуация при глубинном захоронении жидких радиоактивных отходов в подземные горизонты возможна при внезапном разрушении оголовка скважины, находящейся под давлением.
В случае размыва и растворения пород пласта-коллектора агрессивными композитами радиоактивных отходов, например кислотами, увеличивается пористость пород, что может приводить к утечке газообразных радиоактивных отходов. В этом случае переоблучению, как правило, может подвергнуться персонал хранилища.
При аварии па радиохимическом производстве радионуклидный состав и величина аварийного выброса (сброса) существенно зависят от технологического участка процесса и участка радиохимического производства. Основной вклад в формирование радиоактивного загрязнения местности в случае радиационной аварии на радиохимическом производстве могут вносить изотопы У0Sг, |34Сs, |37Сs, 23хРи, 239Ри, 240Ри, 24|Ри, 24|Аm, 244Ст. Повышенный фон гамма-излучения на местности создают в основном |34Сs, |37Сs.
На заводе по переработке радиационных отходов в Томскс-7 6 апреля 1993 г. произошла авария. След радиоактивного облака шириной 9-10 км распространился на 100-120 км.
Аварии с радионуклидными источниками связаны с их использованием в промышленности, газо- и нефтедобыче, строительстве, исследовательских и медицинских учреждениях. Аварии с радиоактивными источниками могут происходить без их разгерметизации и с разгерметизацией. Характер радиационного воздействия определяется видом радиоактивного источника, пространственными и временными условиями облучения. При аварии с ампулированным источником переоблучению может подвергнуться ограниченное число лиц, имевших непосредственный контакт с радиоактивным источником, с преобладающей клиникой общего неравномерного облучения и местного (локального) радиационного поражения отдельных органов и тканей. В случае разгерметизации радиоактивного источника возможно радиоактивное загрязнение значительной территории (Гояния, Бразилия, 1987 г.).
Особенностью аварии с радиоактивным источником является сложность установления факта аварии. К сожалению, часто подобная авария устанавливается после регистрации тяжелого радиационного поражения.
При аварии с ядерными боеприпасами в случае диспергирования делящегося материала (механическое разрушение, пожар) основным фактором радиационного воздействия являются изотопы 239Ри и 24|Ат с преобладанием внутреннего облучения за счет ингаляции. При пожаре возможен сценарий, когда основным поражающим фактором будет выделение оксида трития (молекулярного трития).
Возможность радиационной аварии на космических аппаратах обусловлена наличием на их борту:
радиоактивных изотопов в генераторах электрической и тепловой энергии, в различных контрольно-измерительных приборах и системах;
ядерных бортовых электроэнергетических установок;
ядерных установок в качестве двигательных систем.
Аварии при перевозке радиоактивных материалов также возможны, несмотря на то, что практика транспортировки радиоактивных материалов базируется на нормативно-правовых документах, регламентирующих ее безопасность.
Распространенными в перевозках и наиболее опасными являются гексафторид урана и соединения плутония. Соединения долгоживущего (более 2000 лет!) плутония (обычно диоксид плутония) представляют опасность из-за длительного альфа - излучения и высокой токсичности. Основным путем поступления аэрозоля диоксида плутония является ингаляционный.
Примером сложной радиационной ситуации, связанной с переоблучением людей и обширным радиоактивным загрязнением территории вследствие нарушения хранения радиоактивных веществ, может быть облучение |37Сs группы людей в городе Гояния (Бразилия). 12 сентября 1987 г. два человека обнаружили ампулу с порошком 137Сs. В результате разноса порошка в городе образовалось 7 относительно больших и до 50 мелких участков загрязнения. Загрязнению кожи и одежды, а также внутреннему облучению подверглись 249 чел., из числа которых у 129 развились острые радиационные поражения средней и тяжелой степеней тяжести, и 4 чел. погибли от острой лучевой болезни.
Классы радиационных аварий связаны, прежде всего, с их масштабами. По границам распространения радиоактивных веществ и по возможным последствиям радиационные аварии подразделяются на локальные, местные, общие.
Локальная авария - это авария с выходом радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих регламентированные для нормальной эксплуатации значения, при котором возможно облучение персонала, находящегося в данном здании или сооружении, в дозах, превышающих допустимые.
Местная авария - это авария с выходом радиоактивных продуктов в пре- делах санитарно-защитной зоны в количествах, превышающих регламентированные для нормальной эксплуатации значения, при котором возможно облучение персонала в дозах, превышающих допустимые.
Общая авария - это авария с выходом радиоактивных продуктов за границу санитарно-защитной зоны в количествах, превышающих регламентированные для нормальной эксплуатации значения, при котором возможно облучение населения и загрязнение окружающей среды выше установленных норм.
По техническим последствиям выделяются следующие виды радиационных аварий.
Проектная авария. Это предвиденные ситуации, то есть возможность возникновения такой аварии заложена в техническом проекте ядерной установки. Она относительно легко устранима.
Запроектная авария - возможность такой аварии в техническом проекте не предусмотрена, однако она может произойти.
Гипотетическая ядерная авария - авария, последствия которой трудно предугадать.
Реальная авария - это состоявшаяся как проектная, так и запроектная авария. Практика показала, что реальной может стать и гипотетическая авария (в частности, на Чернобыльской АЭС).
Аварии могут быть без разрушения и с разрушением ядерного реактора.
Отдельно следует указать на возможность возникновения аварии реактора с развитием цепной ядерной реакции - активного аварийного взрыва, сопровождающегося не только выбросом радиоактивных веществ, но и мгновенным гамма - нейтронным излучением, подобного взрыву атомной бомбы. Данный взрыв может возникнуть только при аварии реакторов на быстрых нейтронах.
Международным агентством по атомной энергии (МАГАТЭ) в 1990 г. была разработана и рекомендована универсальная шкала оценки тяжести и опасности аварий на АЭС. Классифицируемые шкалой события относятся только к ядерной или радиационной безопасности. Шкала разделена на две части: нижняя охватывает уровни 1-3 и относится к инцидентам, а верхняя часть из четырех уровней (4-7) соответствует авариям. События, не являющиеся важными с точки зрения безопасности, интерпретируются как события нулевого уровня. Шкала является приблизительно логарифмической. Так, ожидается, что число событий должно примерно в 10 раз уменьшаться для каждого более высокого уровня.
При решении вопросов организации медицинской помощи населению в условиях крупномасштабной радиационной аварии необходим анализ путей и факторов радиационного воздействия в различные временные периоды развития аварийной ситуации, формирующих медико-санитарные последствия. С этой целью рассматривают три временные фазы: раннюю, промежуточную и позднюю (восстановительную).
Ранняя фаза - это период от начала аварии до момента прекращения выброса радиоактивных веществ в атмосферу и окончания формирования радиоактивного следа на местности. Продолжительность этой фазы в зависимости от характера, масштаба аварии и метеоусловий может быть от нескольких часов до нескольких суток.
На ранней фазе доза внешнего облучения формируется гамма- и бета -излучением радиоактивных веществ, содержащихся в облаке. Возможно также контактное облучение за счет излучения радионуклидов, осевших на кожу и слизистые. Внутреннее облучение обусловлено ингаляционным поступлением в организм человека радиоактивных продуктов из облака.
Промежуточная фаза аварии начинается от момента завершения формирования радиоактивного следа и продолжается до принятия всех необходимых мер защиты населения, проведения необходимого объема санитарно-гигиенических и лечебно-профилактических мероприятий. В зависимости от характера и масштаба аварии длительность промежуточной фазы может быть от нескольких дней до нескольких месяцев после возникновения аварии.
Во время промежуточной фазы основными причинами поражающего действия являются внешнее облучение от радиоактивных веществ, осевших из облака на поверхность земли, зданий, сооружений и т.п. и сформировавших радиоактивный след, и внутреннее облучение за счет поступления радионуклидов в организм человека с питьевой водой и пищевыми продуктами. Значение ингаляционного фактора определяется возможностью вдыхания загрязненных мелкодисперсных частиц почвы, пыльцы растений и т.п., поднятых в воздух в результате вторичного ветрового переноса.
Поздняя (восстановительная) фаза может продолжаться от нескольких недель до нескольких лет после аварии (до момента, когда отпадает необходимость выполнения мер по защите населения) в зависимости от характера и масштабов радиоактивного загрязнения. Фаза заканчивается одновременно с отменой всех ограничений на жизнедеятельность населения на загрязненной территории и переходом к обычному санитарно-дозиметрическому контролю радиационной обстановки, характерной для условий «контролируемого облучения». На поздней фазе источники и пути внешнего и внутреннего облучения тс же, что и на промежуточной фазе.
В результате крупномасштабных радиационных аварий из поврежденного ядерного энергетического реактора в окружающую среду выбрасываются радиоактивные вещества в виде газов и аэрозолей, которые образуют радиоактивное облако. Это облако, перемещаясь в атмосфере по направлению ветра, вызывает по пути своего движения радиоактивное загрязнение местности и атмосферы. Местность, загрязненная в результате выпадения радиоактивных веществ из облака, называется следом облака.
Характер и масштабы последствий радиационных аварий в значительной степени зависят от вида (типа) ядерного энергетического реактора, характера его разрушения, а также метеоусловий в момент выброса радиоактивных веществ из поврежденного реактора.
Радиационная обстановка за пределами АЭС, на которой произошла авария, определяется характером радиоактивных выбросов из реактора (типом аварии), движением в атмосфере радиоактивного облака, величиной районов радиоактивного загрязнения местсности, составом радиоактивных веществ.
Так, например, при аварии на Чернобыльской АЭС в мае 1986 г. в результате взрыва реактора 4 энергоблока станции произошло частичное разрушение реакторного здания и кровли машинного зала. В реакторном зале возник пожар. Через пролом в здании на территорию станции было выброшено значительное количество твердых материалов: обломки рабочих каналов, таблеток диоксида урана, кусков графита и обломков конструкций. Образовалось гидроаэрозольное облако с мощным радиационным действием. Территория перемещения этого облака прошла вблизи г. Припять вне населенных пунктов, первоначально в северном, а затем в западном направлениях.
По оценкам специалистов, всего в период с 26 апреля по 6 мая 1986 г. из топлива освободились все благородные газы, примерно 10-20% летучих радиоизотопов йода, цезия и теллура и 3-6% более стабильных радионуклидов бария, стронция, плутония, цезия и др.
Длительный характер выбросов, проникновение части аэрозолей в нижние слои атмосферы обусловили создание обширных зон радиоактивного загрязнения, выходящих за пределы нашей страны. Сформировались значительные по площади зоны, внутри которых были превышены допустимые уровни загрязнения по наиболее радиационно опасным радионуклидам - 239Ри, 90Sг. Все это привело к радиоактивному загрязнению воды и пищевых продуктов (особенно молочных), во много раз превышающему не только фоновые, но и нормативные показатели. Заметное радиоактивное загрязнение коснулось нескольких областей Белоруссии, Украины и России, отмечалось также в Прибалтике, Австрии, ФРГ, Италии, Норвегии, Швеции, Польше, Румынии, Финляндии. Столь обширное загрязнение значительно осложнило организацию защиты населения от радиационного воздействия и проведение мероприятии по ликвидации загрязнения.
Масштабы и степень загрязнения местности и воздуха определяют радиационную обстановку.
Радиационная обстановка представляет собой совокупность условий, возникающих в результате загрязнения местности, приземного слоя воздуха и водоисточников радиоактивными веществами (газами) и оказывающих влияние на аварийно-спасательные работы и жизнедеятельность населения.
Оценка радиационной обстановки может быть выполнена путем расчета с использованием формализованных документов и справочных таблиц (прогнозирование), а также по данным разведки (оценка фактической обстановки).
К исходным данным для оценки радиационной обстановки при аварии на АЭС относятся: координаты реактора, его тип и мощность, время аварии и реальные метеоусловия, прежде всего направление и скорость ветра, облачность, температура воздуха и его вертикальная устойчивость, а также степень защиты людей от ионизирующего излучения.
При оценке фактической обстановки, кроме вышеупомянутых исходных данных, обязательно учитывают данные измерения уровня ионизирующего излучения и степени радиоактивного загрязнения местности и объектов.
Метод оценки радиационной обстановки по данным радиационной разведки используется после аварии на радиационно опасном объекте. Он основан на выявлении реальной (фактической) обстановки путем измерения уровней ионизирующего излучения и степени радиоактивного загрязнения местности и объектов.
В выводах, которые формулируются силами РСЧС в результате оценки радиационной обстановки, для службы медицины катастроф должно быть указано:
число людей, пострадавших от ионизирующего излучения; требуемые силы и средства здравоохранения;
наиболее целесообразные действия персонала АЭС, ликвидаторов, личного состава формирований службы медицины катастроф;
дополнительные меры защиты различных контингентов людей.
Характерной особенностью следа радиоактивного облака при авариях на АЭС является пятнистость (локальность) и мозаичность загрязнения, обусловленная многократностью выбросов, дисперсным составом радиоактивных частиц, разными метеоусловиями во время выброса, а также значительно более медленное снижение уровня радиации, чем при ядерных взрывах, обусловленное большим количеством долгоживущих изотопов. По опыту Чернобыля установлено, что уровень радиации за первые сутки снижается в 2 раза, за месяц - в 5, за квартал - в 11, за полгода - в 40 и за год - в 85 раз. При ядерных взрывах при семикратном увеличении времени радиоактивность за счет большого количества (более 50%) сверхкоротко- и короткоживущих изотопов уменьшается в 10 раз. Например, если уровень радиации через 1 ч с момента взрыва — 1000 мР/ч, то через 7 ч он составит 100, а через 49 ч — 10 мР/ч.
Характер радиационного воздействия на людей, животных и окружающую среду при авариях на АЭС существенно зависит от состава радиоактивного выброса. В процессе ядерных реакций в реакторе создастся большой комплекс радионуклидов, период полураспада которых лежит в пределах от нескольких секунд до нескольких сотен тысяч лет. Так, 92Кг имеет период полураспада 1,84 с; 92Rи - 5,9 с; 'I - 8,1 сут; 90Sг - 28 лет; 137Сs - 30,2 года; 239Ри - 2,4-104 года, |43Се - 5• 106 лет и т.д.
Для оценки поражающего действия и обеспечения эффективности последующего лечения важно знать еще некоторые характеристики представленных радионуклидов. Так, |311 имеет период полувыведения 120 сут, выводится преимущественно с мочой; 137Сз - 140 сут, выводится с мочой и калом; 908г - 10 лет, выводится с мочой.
Основными направлениями предотвращения и снижения потерь и ущерба при радиационных авариях являются:
рациональное размещение радиационно опасных объектов с учетом возможных последствий аварии;
специальные меры по ограничению распространения выброса радиоактивных веществ за пределы санитарно-защитной зоны;
меры по защите персонала и населения.
При размещении радиационно опасного объекта должны учитываться факторы безопасности. Расстояние от АЭС до городов с населением от 500 тыс. до 1 млн. чел. - 30 км, от 1 до 2 млн. - 50 км, а с населением более 2 млн. - 100 км. Также учитываются роза ветров, сейсмичность зоны, ее геологические, гидрологические и ландшафтные особенности.
Особенно важная роль по предотвращению и снижению радиационных поражений отводится следующим мероприятиям по защите персонала АЭС и населения.
Использование защищающих от ионизирующего излучения материалов с учетом их коэффициента ослабления (Косл), позволяющего определить, в какой степени уменьшится воздействие ионизирующего излучения на человека. Использование коллективных средств защиты (герметизированных помещений, укрытий).
Увеличение расстояния от источника ионизирующего излучения, при необходимости - эвакуация населения из зон загрязнения.
Сокращение времени облучения и соблюдение правил поведения персонала, населения, детей, сельскохозяйственных работников и других контингентов в зоне возможного радиоактивного загрязнения.
Проведение частичной или полной дезактивации одежды, обуви, имущества, местности и др.
Повышение морально-психологической устойчивости спасателей, персонала и населения.
Организация санитарно-просветительной работы, проведение занятий, выпуск памяток и др.
Установление временных и постоянных предельно допустимых доз (уровней концентрации) загрязнения радионуклидами пищевых продуктов и воды; исключение или ограничение потребления с пищей загрязненных радиоактивными веществами продуктов питания и воды.
Эвакуация и переселение населения.
Простейшая обработка продуктов питания, поверхностно загрязненных радиоактивными веществами (обмыв, удаление поверхностного слоя и т.п.), использование незагрязненных продуктов.
Использование средств индивидуальной защиты (костюмы, респираторы).
Использование средств медикаментозной защиты (фармакологическая противолучевая защита) - фармакологических препаратов или рецептур для повышения радиорезистентности организма, стимуляции иммунитета и кроветворения.
Санитарная обработка людей.
studfiles.net