Курсовая работа: Генная инженерия и биотехнологии. Их роль в выживании человечества. Реферат генная инженерия и биотехнология


Курсовая работа - Генная инженерия и биотехнологии. Их роль в выживании человечества

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ С. А. ЕСЕНИНА

РЕФЕРАТ

На тему: «Генная инженерия и биотехнологии. Их роль в выживании человечества»

По дисциплине: «Концепция современного естествознания»

Выполнила: студентка 1-го курса естественно-географического факультета отделения социально-культурного сервиса и туризма Калугина П.

Проверил: Золотов Г.В.

Рязань 2009

ПЛАН

Введение

I.ГЕННАЯ ИНЖЕНЕРИЯ

1. Исторический аспект

2. Новые характеристики «привитые» растениям посредством генной инженерии

3. Наиболее впечатляющие достижения

4. Преимущества генной инженерии

5. Проблемы и перспективы

5.1. Экологические риски

5.2. Медицинские риски

5.3. Социально- экономические риски

6. Перспективы генной инженерии

II .БИОТЕХНОЛОГИИ

1. История биотехнологии

2. Микробиологический синтез

3. Плазмиды

4. Биотехнологическая промышленность

Заключение. Роль генной инженерии и биотехнологий в выживании человечества.

Введение

В данном реферате рассматриваются основные характеристики, проблемы и перспективы такой новейшей технологии, как генная инженерия. В настоящее время эта тема весьма актуальна. По прогнозам учёных к концу 21-го века население Земли может увеличиться до 10 миллиардов. Как прокормить такое количество людей качественной пищей, если и при 6 миллиардах в некоторых регионах население голодает? Впрочем, даже если бы такой проблемы не существовало, то человечество, для решения других своих проблем, стремилось бы внедрять в сельское хозяйство наиболее производительные биотехнологии. Одной из таких технологий как раз и является генная инженерия.

Любое растение или животное имеет различные признаки. За наличие каждого признака отвечает определённый ген. Ген — от греческого genos, и переводится как «род», «происхождение». Ген — это маленький сегмент молекулы ДНК и он порождает определённый признак растения или животного. Если убрать ген, отвечающий за появление определённого признака, то исчезнет и сам признак. И, наоборот, если добавить, например, растению новый ген, то у растения появится и новый признак. Изменённое же растение может теперь именоваться мутантом (с лат.- изменённый).

В 1962 г. Уотсон и Крик совершили одно из величайших открытий, установив молекулярную структуру ДНК (дезоксирибонуклеиновой кислоты) и определив ее роль в передаче наследственной информации. Позднее группа американских исследователей сообщила о выделении в лаборатории первой гибридной (рекомбинантной) молекулы ДНК – то есть вещества, объединившего в себе гены разных организмов. С этого момента формально и взяла старт генная инженерия. Притягательность трансгенов кроется в том существенном факте, что биотехнологии позволяют выводить новые культуры за 2-3 года. Обычные же методы селекции путем отбора и скрещивания — 10 и более лет.

На сегодняшний день существует несколько сотен генетически изменённых продуктов. Чаще всего культурные растения наделяют устойчивостью к насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. Устойчивая к насекомым флора становится бесстрашной: колорадский жук, съедая листик картофеля, погибает. Основная масса трансгенов культивируется в США, в Канаде, Аргентине, Китае. Однако в некоторых странах ЕС введен мораторий на ввоз таких продуктов. Соя — единственная трансгенная культура, разрешенная к применению в России.

Первым искусственно изменённым продуктом стал помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде. Но как только такой помидор помещался в тепло, он за несколько часов становится спелым. Оказалось, что в этот помидор для увеличения морозоустойчивости вживили ген североамериканской плоской рыбы.

Американские компании планируют наладить массовое производство клонированных цыплят.

Ученые размножают эмбриональные стволовые клетки донора, из которых развиваются все ткани. Затем эти клетки имплантируются в обычное яйцо. Ученые добились, чтобы донорских клеток было более 95 %, и даже создали 100-процентного клона.

Американцы добились изменения клубники, тюльпанов. Они планируют получить помидоры кубической формы, чтобы их было легче упаковывать в ящики. Швейцарцы начали выращивать кукурузу, которая выделяет собственный яд против вредителей. Идут работы по созданию пластмассы, которая бы разрушалась, попадая в окружающую среду.

1.С помощью генной инженерии можно увеличить в генетически измененной продукции содержание полезных веществ и витаминов по сравнению с «чистыми» сортами. Например, можно «вставить» витамин А в рис, с тем чтобы выращивать его в регионах, где люди испытывают его нехватку.

2.Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами и гербицидами.

3.Генетически измененным продуктам могут быть приданы лечебные свойства. Ученым уже удалось создать банан с содержанием анальгина и салат, вырабатывающий вакцину против гепатита B.

5.Модифицированные виды помогут решить и некоторые экологические проблемы. Конструируются растения, эффективно поглощающие цинк, кобальт, кадмий, никель и прочие металлы из загрязненных промышленными отходами почв.

5.Проблемы и перспективы

Выведение генетически модифицированных видов растений и животных представляет определенную опасность, обусловленную непредсказуемостью их развития и поведения в естественной среде. Риски, связанные с применением генной инженерии, разделяют на три категории: экологические, медицинские и социально-экономические.

1. Появление супервредителей. Как известно, в экстремальных условиях, таких как процесс вытеснения вредителей, скорость мутаций растет, и неизвестно, сколько понадобится насекомым времени для того, чтобы приспособиться к новым условиям окружающей среды.

2. Нарушение природного баланса. Уже доказано, что многие ГМ-растения, такие, как ГМ-табак или технический рис, применяемый для производства пластика и лекарственных веществ, смертельно опасны для живущих на поле или рядом с ним грызунов.

1.Повышенная аллергеноопасность. В 1996 году генный инженер Университета штата Небраска, подтвердил: при попытке повысить содержание белка в ГМ-сое в нее вместе с геном бразильского ореха был перенесен аллерген. Тестирование ГМ-продуктов на аллергиках не входит в обязательную программу испытаний новых продуктов, а поэтому то, что аллерген был вовремя замечен, можно назвать счастливой случайностью.

2.Возможная токсичность и опасность для здоровья. В 1989 году одна из японских химических компаний поставила на американский рынок новый ГМ-вариант известной пищевой добавки L-tryptophan. В результате 37 человек погибли, а более 5000 стали инвалидами с потенциально смертельным диагнозом — синдром эозиафильной миалгии (неизлечимое заболевание крови).

3.Возникновение новых и опасных вирусов. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов. Такие новые вирусы могут быть более агрессивными, чем исходные.

Сторонники генной инженерии заявляют, что создаваемые с ее помощью продукты могут решить проблему мирового голода. Однако их оппоненты подчеркивают потенциальную опасность сосредоточения генетических технологий в руках частных компаний через патентование определенных жизненных форм, которые могут вытеснить традиционные сельскохозяйственные культуры и породы животных.

Особенности новых технологий могут привести к большим опасностям. Разрушающий самовоспроизводящийся объект, специально созданный и оказавшийся вне контроля, может стать средством массового поражения. Угрозой будет само знание. Однако успех в этой отрасли науки сможет поднять производительность труда и способствовать решению многих существующих проблем,; но, в то же время, создать новые разрушительные средства.

II .БИОТЕХНОЛОГИИ

Биотехнология — интеграция естественных и инженерных наук, реализующая возможности живых организмов для создания и модификации продуктов или процессов различного назначения. Она представляет собой систему приёмов использования процессов жизнедеятельности живых организмов для получения промышленным способом ценных продуктов.

1.История биотехнологии

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Но отдельные элементы биотехнологии появились достаточно давно. Это были попытки использовать в производстве отдельные клетки (микроорганизмы) и ферменты, способствующие протеканию химических процессов. В начале XX века активно развивалась микробиологическая промышленность, были предприняты попытки использовать ферменты в текстильной промышленности. Вклад в дело практического использования достижений биохимии внёс академик А. Н. Бах.

Были разработаны рекомендации по улучшению технологий обработки биохимического сырья, совершенствованию технологий хлебопечения, производства чая и табака и т. п., а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами.

В производственном отношении основой биотехнологии стала микробиологическая промышленность. Микроорганизмы использовали как средство повышения интенсивности биохимических процессов и как миниатюрные синтетические фабрики, способные синтезировать внутри своих клеток сложнейшие химические соединения.

Перелом в науке был связан с открытием и началом производства антибиотиков. Первый — пенициллин — был выделен в 1940 году.

Затем были открыты и другие антибиотики. Позднее появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами; работа над повышением уровня доступности новых лекарств. Синтезировать антибиотики химически было очень дорого и почти невозможно. Было решено использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

2. Микробиологический синтез. Развитие микробиологической промышленности, выпускающей продукты биосинтеза, позволило накопить очень важный опыт конструирования и эксплуатации нового промышленного оборудования. В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, и другие. Сейчас химическая промышленность для производства горючего, ацетона и других веществ использует как исходное сырьё нефть, газ и уголь. Но их запасы не безграничны.

А в микробиологической промышленности для производства химических продуктов могут использоваться неограниченные массы органического сырья, отходов, образующихся в сельском хозяйстве, лесной промышленности, очистных сооружениях городов и т. п. Разработка и внедрение эффективных технологий такого производства — задача, имеющая большое значение для экономики народного хозяйства.

Важным направлением биотехнологии является производство и использование так называемых иммобилизованных ферментов. Эти ферменты обеспечивают осуществление химических реакций без высоких температур и давлений и ускоряют их в миллионы и миллиарды раз. При этом каждый фермент катализирует только одну определённую реакцию. Биологические катализаторы можно использовать также не извлекая их из живых организмов, прямо в бактериальных клетках. Этот способ — основа всякого микробиологического производства.

Для того чтобы стабилизировать (иммобилизовать) ферменты, сделать их пригодными для многократного промышленного использования, их присоединяют с помощью прочных химических связей к нерастворимым или растворимым носителям — ионообменным полимерам, пористому стеклу, полисахаридам и т. п. В результате ферменты становятся устойчивыми и могут быть использованы многократно. Разработка способа повышения устойчивости ферментов значительно расширяет возможности их использования. С помощью ферментов можно, например, получать сахар из растительных отходов.

3. Плазмиды

Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью кольцеобразных молекул ДНК — плазмид, присутствующих в бактериальных клетках.

В них «вклеивают» гены, и такие гибридные плазмиды добавляют к культуре бактерий, например кишечной палочки. Некоторые из этих бактерий поглощают плазмиды целиком. Затем она начинает реплицироваться в клетке, воспроизводя в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков.

4. Биотехнологическая промышленность

Биотехнологическую промышленность разделяют на четыре направления:

Очевидно, что биотехнология имеет огромное будущее. И дальнейшее её развитие тесно связано с одновременным развитием всех важнейших отраслей биологической науки, исследующих живые организмы на разных уровнях их организации.

Заключение

Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон (интерферон – возможное средство лечения рака и СПИДа). И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Развитие генной инженерии сделает возможным улучшение генотипа человека. Масштабные задачи, стоящие сегодня перед человечеством требуют людей талантливых во многих отраслях, совершенных и высокоразвитых личностей, обладающих идеальным здоровьем, высочайшими физическими и умственными способностями. Таких людей можно будет создать методами генной, генетической и клеточной инженерии. Эти методы будут применимы как к только появляющимся на свет детям, так и к уже взрослым людям.

Человек сможет многократно усилить свои собственные способности, и увеличить способности своих детей. Уже сегодня многие всемирно известные учёные, такие как Уотсон, один из первооткрывателей ДНК, говорят о том, что человеческая глупость, например, является по сути своей генетическим заболеванием и в будущем будет излечима.

Будут полностью ликвидированы генетические причины заболеваний, все люди будут совершенно здоровыми. Старение будет остановлено и никому не придётся сталкиваться с увяданием, дряхлостью. Люди станут практически бессмертными — смерть будет становиться всё более редким явлением, перестав быть неизбежностью.

Прогресс вряд ли остановится на исправлении недостатков. Излечив болезни и остановив старение, человек примется за улучшение собственного организма, за его перестройку по собственным планам и желаниям. Люди смогут произвольным образом лепить свое собственное тело и мозг, добавлять себе новые способности, возможность жить под водой, летать, питаться энергией солнечного света, добавлять новые отделы мозга, новые органы тела.

Но человек вряд ли ограничится собственной перестройкой. Любой организм, существование которого не противоречит законам природы, сможет быть создан. Новые виды животных, растений и даже совершенно новых существ будут создаваться в промышленных целях, как форма творчества, для освоения космоса. Кроме того, человек наверняка захочет помочь братьям своим меньшим подняться с животного уровня. С помощью генной модификации можно будет усилить интеллект собак, шимпанзе, дельфинов, других животных.

Таким образом, биотехнология в совокупности с другими научными направлениями открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.

Литература

1. Сингер М., Берг П. Гены и геномы. — Москва, 1998.

2. Стент Г., Кэлиндар Р. Молекулярная генетика. — Москва, 1981.

3. Патрушев Л. И. Искусственные генетические системы. — М.: Наука, 2004

4. Веб-адрес: www.transhumanism-russia.ru

www.ronl.ru

Курсовая работа - Генетическая инженерия и биотехнология

Вертьянов С. Ю.

Генетическая инженерия (ГИ) — совокупность методов, позволяющих искусственно переносить генетическую информацию из одного организма в другой с помощью специально созданных генетических конструкций. Одна из задач ГИ — получение организмов с желаемыми свойствами. Основным подходом ГИ является конструирование in vitro (вне организма) рекомбинантных молекул ДНК (искусственно скомбинированных из фрагментов) с заданными наследственными свойствами, поэтому ГИ также называют технологией рекомбинантных ДНК. Организмы, в которые с помощью методов ГИ введены несвойственные им гены, носят название трансгенных.

Основные принципы ГИ

Бурное развитие ГИ началось после 1970 г., когда из клеток бактерий научились выделять рестриктазы — ферменты, защищающие бактерии от бактериофагов. Узнавая в чужеродной ДНК специфичный для каждой рестриктазы сайт (последовательность из 4—6 нуклеотидов), рестриктазы делают в этом сайте разрывы обеих цепей ДНК. В результате чужеродная ДНК оказывается разрезанной на фрагменты и нефункциональной. На сегодня известно около 3500 рестриктаз. Например, рестриктаза Eco RI («еко-эр-один») из кишечной палочки (Escherichia coli) узнает сайт ГААТТЦ:

В результате ступенчатого разреза образуются фрагменты ДНК с выступающими однонитевыми концами, комплементарными друг другу. Эти концы могут вновь соединяться, поэтому их называют «липкими концами». Если взять ДНК, например, человека и моркови, обработать одной и той же рестриктазой и смешать, то фрагменты ДНК моркови и человека будут соединяться липкими концами. Но такая связь будет непрочной: водородные связи между всего лишь четырьмя парами оснований могут легко разойтись. Слипшиеся фрагменты ДНК можно зафиксировать, если добавить в раствор ДНК-лигазу (второй по значимости фермент ГИ), сшивающую цепи ДНК, разрезанные рестриктазой. В результате получится стабильная рекомбинантная ДНК.

Далее необходимо сохранить и размножить полученные рекомбинантные молекулы. С этой целью их встраивают в специальные конструкции, называемые векторными молекулами ДНК, или векторами. Обычно векторы конструируют из бактериальных плазмид. Типичный вектор включает:

1. Сайт узнавания определенной рестриктазой для встраивания в вектор целевой ДНК.

2. Ген устойчивости к одному из антибиотиков для последующего отбора клеток, получивших рекомбинантный вектор.

3. Промотор, обеспечивающий экспрессию целевой ДНК.

Приведем пример использования вектора для получения штамма кишечной палочки, продуцирующей целевой белок. Для встраивания в вектор смесь фрагментов целевой ДНК (с геном, кодирующим целевой белок) и ДНК вектора обрабатывают сначала одной и той же рестриктазой, затем ДНК-лигазой. В результате образуется рекомбинантный вектор. Для размножения его вводят в клетки кишечной палочки или дрожжей. На поверхности твердой питательной среды с антибиотиком каждая клетка, несущая рекомбинантный вектор, размножается и образует колонию из одинаковых клеток — клон. Каждая клетка-родоначальница клона получила одну молекулу рекомбинантного вектора, которая реплицируется и передается всем клеткам колонии. Поэтому такую процедуру называют молекулярным клонированием.

Первой реакцией научной общественности на создание ГИ-технологии было введение ограничений на эксперименты с рекомбинантными ДНК. Ученые полагали, что объединение генов разных организмов может привести к появлению нового организма с нежелательными или даже опасными свойствами. Прошло несколько лет, и исследователи убедились, что их опасения сильно преувеличены. Микроорганизмы, измененные с помощью генно-инженерных манипуляций, во внешней среде не выдерживают конкуренции, поскольку значительную часть своих ресурсов они затрачивают на синтез целевого белка, в ущерб собственной конкурентоспособности.

Достижения ГИ

С развитием ГИ ученые получили возможность синтезировать, выделять, комбинировать и перемещать гены и любые другие фрагменты ДНК. ГИ внесла революционный вклад в развитие многих биологических дисциплин: молекулярной биологии, микробиологии, вирусологии, цитологии, эмбриологии, медицинской генетики и генетики человека. Появилась ранее недоступная возможность изучения молекулярной организации геномов (в том числе высших эукариот), что привело к возникновению геномики — раздела генетики, изучающего структурную организацию и функционирование геномов.

ГИ-методы позволили реализовать программы секвенирования (определения полных нуклеотидных последовательностей ДНК) геномов многих организмов. Уже секвенированы ДНК сотен видов бактерий, дрожжей, плазмодия, риса, кукурузы, картофеля, дрозофилы, мыши; завершена международная программа «Геном человека».

Для чего же нужно секвенирование геномов? Одна из основных задач — выяснить строение генома и его работу как единого целого. Полная нуклеотидная последовательность — это предварительная карта генома организма. В первоначальном виде это просто длинная последовательность нуклеотидов, ни о чем не говорящая. Для того чтобы с ней можно было работать, в ней выявляют гены, регуляторные элементы, мобильные элементы и другие последовательности ДНК, функция которых еще не известна. Для медицинской генетики важно нанести на нуклеотидную карту гены, ответственные за различные болезни, чтобы разрабатывать методы молекулярной диагностики, искать способы лечения и предотвращения заболеваний. На карту человека уже нанесены многие гены наследственных заболеваний.

Генная терапия наследственных заболеваний человека. Развитие этой перспективной области стало возможным после секвенирования генома человека. Генная терапия включает следующие этапы:

1. Получение клеток от больного (в генной терапии разрешено использовать только соматические клетки человека).

2. Введение в клетки лечебного гена для исправления генетического дефекта.

3. Отбор и размножение «исправленных» клеток.

4. Введение «исправленных» клеток в организм пациента.

Впервые успешно применить генную терапию удалось в 1990 г. Четырехлетней девочке, страдающей тяжелым иммунодефицитом (дефект фермента аденозиндезаминазы), были введены собственные лимфоциты со встроенным нормальным геном аденозиндезаминазы. Лечебный эффект сохранялся в течение нескольких месяцев, после чего процедуру пришлось регулярно повторять, поскольку исправленные клетки, как и другие клетки организма, имеют ограниченный срок жизни. В настоящее время генную терапию используют для лечения более десятка наследственных заболеваний, в т. ч. гемофилии, талассемии, муковисцидоза.

Метод полимеразной цепной реакции (ПЦР)

Для получения целевой ДНК в достаточных для работы количествах в ГИ широко используется метод ПЦР, разработанный в 1985 г. Метод позволяет размножить в миллионы раз любой участок ДНК размером до 5 тысяч пар нуклеотидов (см. с. 142). Первым практическим использованием ПЦР была разработка тест-системы для диагностики серповидноклеточной анемии (нарушенные участки ДНК размножали до обнаружимых при электрофорезе количеств). С помощью ПЦР получают фрагменты ДНК для клонирования, секвенируют целевые ДНК, выявляют патогенные вирусы или бактерии, а также наследственные заболевания и аномалии. В судебной медицине ПЦР используют для идентификации личности, для установления родственных связей. В настоящее время метод ПЦР стал обыденной процедурой, повседневно используемой в тысячах лабораторий.

Таким образом, разработка методов ГИ и ПЦР привела к бурному прогрессу в биологии, но самые глубокие преобразования произошли в биотехнологии.

Биотехнология — отрасль науки, занимающаяся промышленным использованием биологических процессов и живых организмов для производства лекарств и вакцин, сельскохозяйственных и потребительских продуктов.

Биотехнологические процессы люди использовали издревле, занимаясь хлебопечением, виноделием, пивоварением, приготовлением кисломолочных продуктов. Сущность этих процессов была выявлена лишь в XIX в. после научных открытий Л. Пастера. Работы ученого послужили развитию различных производств с использованием микроорганизмов.

В конце 1970-х гг. на стыке традиционной биотехнологии и ГИ возникла молекулярная биотехнология. В ее основе лежит процедура переноса генов из одного организма в другой посредством методов ГИ с целью создания принципиально нового продукта или промышленного производства уже известного продукта. Первая фирма, производящая лекарственные соединения с помощью методов ГИ, была создана в 1976 году.

Производство лекарственных препаратов

Микроорганизмы после введения соответствующих генов становятся продуцентами ценных для медицины белков. В биореакторах на специальных питательных средах выращивают бактерии; грибы; дрожжи, продуцирующие антибиотики; ферменты; гормоны; витамины и другие биологически активные соединения. Например, клетки кишечной палочки служат биологическими фабриками по производству человеческого инсулина. До 1982 г. инсулин получали весьма трудоемким способом из поджелудочной железы свиней и обеспечивали только 10 % больных сахарным диабетом. С 1982 г. этой работой «занимается» кишечная палочка и обеспечивает инсулином десятки миллионов больных по всему свету (в том числе и тех, у кого аллергия на животный инсулин). Кишечная палочка производит человеческий гормон роста соматотропин (ранее его получали из трупного материала).

Противовирусный препарат интерферон в организме человека вырабатывается в крайне незначительных количествах. После выявления аминокислотной последовательности интерферона ген был искусственно синтезирован и встроен в вектор, затем вектор ввели в клетки бактерии и получили штамм-продуцент интерферона.

Производство генно-инженерных вакцин

Традиционные вакцины изготавливаются из вирусов, инактивированных нагреванием или химическим воздействием. Иногда вирус остается жизнеспособным и может при вакцинации вызвать заболевание. Применение ГИ-вакцин не имеет такого недостатка. Например, создан продуцент белка поверхностной капсулы вируса гепатита. Этот белок достаточен для выработки в организме человека иммунитета против вируса гепатита, и такая вакцинация не в вызовет инфекцию. В настоящее время активно ведутся генно-инженерные разработки вакцины против СПИДа.

Производство ГИ-микроорганизмов, способных расти на несвойственных для них средах, открывает ряд новых возможностей. Такие микроорганизмы используют для биологической очистки окружающей среды (в т.ч. от нефти и нефтепродуктов). На отходах производства нефтепродуктов, гидролизатах древесины, на метаноле, этаноле, метане успешно культивируют дрожжи. Использование их в качестве кормового белка (дрожжи содержат до 60 % белка) позволяет получать дополнительно до 1 млн т мяса в год. Ведутся работы по созданию микроорганизмов, производящих ацетон, спирт и другие горючие материалы на отходах сельского хозяйства, лесной и деревообрабатывающей промышленности, а также на сточных водах. В будущем, при истощении ресурсов нефти, этот путь получения горючих веществ может оказаться весьма актуальным. Созданы установки, в которых бактерии перерабатывают навоз в биогаз. Из 1 т навоза получают 500 м3 биогаза, что эквивалентно 350 л бензина.

Биотехнология растений

Получены формы растений с ускоренным ростом, большей массой плодов, увеличенной продолжительностью хранения плодов; устойчивые к гербицидам, к патогенным вирусам и грибам, к вредным насекомым, а также к засухе и засоленности почв. Растения продуцируют для человека вакцины, фармакологические белки и антитела. Например, внедрение гена биосинтеза каротина в геном риса позволило вывести «золотой» рис, богатый этим ценным для человека провитамином.

В природе существует бактерия Bacillus thuringiensis, вырабатывающая эндотоксин белковой природы, действующий на насекомых. Ген, кодирующий этот токсин, был выделен и встроен в ДНК картофеля. Такой картофель личинки колорадского жука в пищу употреблять не могут. Аналогичным образом удалось получить устойчивые к сельскохозяйственным вредителям трансгенные формы хлопка, кукурузы, томатов и рапса. После внедрения в геном винограда гена морозоустойчивости от дикорастущей капусты брокколи трансгенный виноград стал морозоустойчивым. Эта процедура заняла всего год. Обычно на выведение новых сортов винограда уходит 25—35 лет.

Существенные посевные площади заняты под трансгенные растения в США (68 % мировых посевов трансгенных культур), Аргентине (22 %), Канаде (6 %) и Китае (3 %). В основном выращивают трансгенную сою (62 %), кукурузу (24 %), хлопок (9 %) и рапс (4 %).

Большое значение в сельском хозяйстве имеет производство незаменимых аминокислот, не синтезирующихся в организмах животных. В традиционных кормах их недостаточно, поэтому приходится увеличивать количество пищи. Добавление в пищу 1 т синтезированной микробиологическим путем аминокислоты лизин экономит десятки тонн кормов.

Биотехнология животных

Получение трансгенных животных начинают с создания генетических конструкций, в которых целевой ген находится под контролем промотора, активного в определенной ткани организма, например в клетках молочной железы. Такую конструкцию вводят в оплодотворенную яйцеклетку и помещают животным для вынашивания. Выход здоровых животных пока невелик (менее 1 % эмбрионов), но ученые продолжают исследования. Получены трансгенные коровы, овцы, козы, свиньи, птицы, рыбы.

От 20 трансгенных коров можно получить до 100 кг целевого белка в год. Именно столько белка, применяемого для предотвращения тромбов в кровеносных сосудах, требуется человечеству ежегодно. Для получения необходимого людям белка-фактора свертывания крови (его применяют для повышения свертываемости крови у больных гемофилией) достаточно одной трансгенной коровы.

Актуально создание пород домашних животных, устойчивых к паразитам, бактериальным и вирусным инфекциям. Встраивая гены устойчивости к наиболее распространенным заболеваниям, можно значительно сэкономить на вакцинах и сыворотках (до 20 % от стоимости конечного продукта).

Трансгенных млекопитающих используют в качестве модельных систем для поиска способов лечения наследственных заболеваний человека. На мышах отрабатывают методы борьбы со СПИДом, муковисцидозом, болезнью Альтцгеймера, на кроликах — с онкологическими заболеваниями.

Выводы

В результате применения биотехнологии появились бактерии, растения, животные, которые являются естественными биореакторами. Они продуцируют новые или измененные генные продукты, которые не могут быть созданы традиционными методами скрещивания, мутагенеза и селекции. Кроме того, молекулярная биотехнология дает принципиально новые методы диагностики и лечения различных заболеваний. Однако в ряде случаев рекламируемые перспективы оказываются преувеличенными и не всегда соответствуют реальным возможностям биотехнологии.

Сорта, полученные методами классической селекции, менее впечатляющи, но имеют свои достоинства, они более устойчивы и надежны в использовании. Если классическая селекция остается в естественных природных рамках, то современные технологии, оперируя на уровне клеток, хромосом и отдельных генов, выходят за пределы природных закономерностей. Эти методы используют природные компоненты (клетки, гены и т. д.), но комбинируют их произвольно. Возможные побочные эффекты во многих случаях трудно предсказуемы. Необходимы длительные эксперименты на животных и растениях и серьезные исследования. Известно негативное отношение СМИ и широких слоев общественности в разных странах к продукции молекулярной биотехнологии — генно-модифицированным (ГМ) продуктам. Вместе с тем становится все более понятным, что использование методов ГИ — один из возможных путей обеспечения продуктами питания стремительно возрастающего населения планеты. Для определения возможных границ использования методов ГИ важно разобраться и в нравственных аспектах вторжения человека в мир Божий.

www.ronl.ru

Дипломная работа - Генная инженерия и биотехнологии. Их роль в выживании человечества

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ С. А. ЕСЕНИНА

РЕФЕРАТ

На тему: «Генная инженерия и биотехнологии. Их роль в выживании человечества»

По дисциплине: «Концепция современного естествознания»

Выполнила: студентка 1-го курса естественно-географического факультета отделения социально-культурного сервиса и туризма Калугина П.

Проверил: Золотов Г.В.

Рязань 2009

ПЛАН

Введение

I.ГЕННАЯ ИНЖЕНЕРИЯ

1. Исторический аспект

2. Новые характеристики «привитые» растениям посредством генной инженерии

3. Наиболее впечатляющие достижения

4. Преимущества генной инженерии

5. Проблемы и перспективы

5.1. Экологические риски

5.2. Медицинские риски

5.3. Социально- экономические риски

6. Перспективы генной инженерии

II .БИОТЕХНОЛОГИИ

1. История биотехнологии

2. Микробиологический синтез

3. Плазмиды

4. Биотехнологическая промышленность

Заключение. Роль генной инженерии и биотехнологий в выживании человечества.

Введение

В данном реферате рассматриваются основные характеристики, проблемы и перспективы такой новейшей технологии, как генная инженерия. В настоящее время эта тема весьма актуальна. По прогнозам учёных к концу 21-го века население Земли может увеличиться до 10 миллиардов. Как прокормить такое количество людей качественной пищей, если и при 6 миллиардах в некоторых регионах население голодает? Впрочем, даже если бы такой проблемы не существовало, то человечество, для решения других своих проблем, стремилось бы внедрять в сельское хозяйство наиболее производительные биотехнологии. Одной из таких технологий как раз и является генная инженерия.

Любое растение или животное имеет различные признаки. За наличие каждого признака отвечает определённый ген. Ген — от греческого genos, и переводится как «род», «происхождение». Ген — это маленький сегмент молекулы ДНК и он порождает определённый признак растения или животного. Если убрать ген, отвечающий за появление определённого признака, то исчезнет и сам признак. И, наоборот, если добавить, например, растению новый ген, то у растения появится и новый признак. Изменённое же растение может теперь именоваться мутантом (с лат.- изменённый).

В 1962 г. Уотсон и Крик совершили одно из величайших открытий, установив молекулярную структуру ДНК (дезоксирибонуклеиновой кислоты) и определив ее роль в передаче наследственной информации. Позднее группа американских исследователей сообщила о выделении в лаборатории первой гибридной (рекомбинантной) молекулы ДНК – то есть вещества, объединившего в себе гены разных организмов. С этого момента формально и взяла старт генная инженерия. Притягательность трансгенов кроется в том существенном факте, что биотехнологии позволяют выводить новые культуры за 2-3 года. Обычные же методы селекции путем отбора и скрещивания — 10 и более лет.

На сегодняшний день существует несколько сотен генетически изменённых продуктов. Чаще всего культурные растения наделяют устойчивостью к насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. Устойчивая к насекомым флора становится бесстрашной: колорадский жук, съедая листик картофеля, погибает. Основная масса трансгенов культивируется в США, в Канаде, Аргентине, Китае. Однако в некоторых странах ЕС введен мораторий на ввоз таких продуктов. Соя — единственная трансгенная культура, разрешенная к применению в России.

Первым искусственно изменённым продуктом стал помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде. Но как только такой помидор помещался в тепло, он за несколько часов становится спелым. Оказалось, что в этот помидор для увеличения морозоустойчивости вживили ген североамериканской плоской рыбы.

Американские компании планируют наладить массовое производство клонированных цыплят.

Ученые размножают эмбриональные стволовые клетки донора, из которых развиваются все ткани. Затем эти клетки имплантируются в обычное яйцо. Ученые добились, чтобы донорских клеток было более 95 %, и даже создали 100-процентного клона.

Американцы добились изменения клубники, тюльпанов. Они планируют получить помидоры кубической формы, чтобы их было легче упаковывать в ящики. Швейцарцы начали выращивать кукурузу, которая выделяет собственный яд против вредителей. Идут работы по созданию пластмассы, которая бы разрушалась, попадая в окружающую среду.

1.С помощью генной инженерии можно увеличить в генетически измененной продукции содержание полезных веществ и витаминов по сравнению с «чистыми» сортами. Например, можно «вставить» витамин А в рис, с тем чтобы выращивать его в регионах, где люди испытывают его нехватку.

2.Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами и гербицидами.

3.Генетически измененным продуктам могут быть приданы лечебные свойства. Ученым уже удалось создать банан с содержанием анальгина и салат, вырабатывающий вакцину против гепатита B.

5.Модифицированные виды помогут решить и некоторые экологические проблемы. Конструируются растения, эффективно поглощающие цинк, кобальт, кадмий, никель и прочие металлы из загрязненных промышленными отходами почв.

5.Проблемы и перспективы

Выведение генетически модифицированных видов растений и животных представляет определенную опасность, обусловленную непредсказуемостью их развития и поведения в естественной среде. Риски, связанные с применением генной инженерии, разделяют на три категории: экологические, медицинские и социально-экономические.

1. Появление супервредителей. Как известно, в экстремальных условиях, таких как процесс вытеснения вредителей, скорость мутаций растет, и неизвестно, сколько понадобится насекомым времени для того, чтобы приспособиться к новым условиям окружающей среды.

2. Нарушение природного баланса. Уже доказано, что многие ГМ-растения, такие, как ГМ-табак или технический рис, применяемый для производства пластика и лекарственных веществ, смертельно опасны для живущих на поле или рядом с ним грызунов.

1.Повышенная аллергеноопасность. В 1996 году генный инженер Университета штата Небраска, подтвердил: при попытке повысить содержание белка в ГМ-сое в нее вместе с геном бразильского ореха был перенесен аллерген. Тестирование ГМ-продуктов на аллергиках не входит в обязательную программу испытаний новых продуктов, а поэтому то, что аллерген был вовремя замечен, можно назвать счастливой случайностью.

2.Возможная токсичность и опасность для здоровья. В 1989 году одна из японских химических компаний поставила на американский рынок новый ГМ-вариант известной пищевой добавки L-tryptophan. В результате 37 человек погибли, а более 5000 стали инвалидами с потенциально смертельным диагнозом — синдром эозиафильной миалгии (неизлечимое заболевание крови).

3.Возникновение новых и опасных вирусов. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов. Такие новые вирусы могут быть более агрессивными, чем исходные.

Сторонники генной инженерии заявляют, что создаваемые с ее помощью продукты могут решить проблему мирового голода. Однако их оппоненты подчеркивают потенциальную опасность сосредоточения генетических технологий в руках частных компаний через патентование определенных жизненных форм, которые могут вытеснить традиционные сельскохозяйственные культуры и породы животных.

Особенности новых технологий могут привести к большим опасностям. Разрушающий самовоспроизводящийся объект, специально созданный и оказавшийся вне контроля, может стать средством массового поражения. Угрозой будет само знание. Однако успех в этой отрасли науки сможет поднять производительность труда и способствовать решению многих существующих проблем,; но, в то же время, создать новые разрушительные средства.

II .БИОТЕХНОЛОГИИ

Биотехнология — интеграция естественных и инженерных наук, реализующая возможности живых организмов для создания и модификации продуктов или процессов различного назначения. Она представляет собой систему приёмов использования процессов жизнедеятельности живых организмов для получения промышленным способом ценных продуктов.

1.История биотехнологии

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Но отдельные элементы биотехнологии появились достаточно давно. Это были попытки использовать в производстве отдельные клетки (микроорганизмы) и ферменты, способствующие протеканию химических процессов. В начале XX века активно развивалась микробиологическая промышленность, были предприняты попытки использовать ферменты в текстильной промышленности. Вклад в дело практического использования достижений биохимии внёс академик А. Н. Бах.

Были разработаны рекомендации по улучшению технологий обработки биохимического сырья, совершенствованию технологий хлебопечения, производства чая и табака и т. п., а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами.

В производственном отношении основой биотехнологии стала микробиологическая промышленность. Микроорганизмы использовали как средство повышения интенсивности биохимических процессов и как миниатюрные синтетические фабрики, способные синтезировать внутри своих клеток сложнейшие химические соединения.

Перелом в науке был связан с открытием и началом производства антибиотиков. Первый — пенициллин — был выделен в 1940 году.

Затем были открыты и другие антибиотики. Позднее появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами; работа над повышением уровня доступности новых лекарств. Синтезировать антибиотики химически было очень дорого и почти невозможно. Было решено использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

2. Микробиологический синтез. Развитие микробиологической промышленности, выпускающей продукты биосинтеза, позволило накопить очень важный опыт конструирования и эксплуатации нового промышленного оборудования. В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, и другие. Сейчас химическая промышленность для производства горючего, ацетона и других веществ использует как исходное сырьё нефть, газ и уголь. Но их запасы не безграничны.

А в микробиологической промышленности для производства химических продуктов могут использоваться неограниченные массы органического сырья, отходов, образующихся в сельском хозяйстве, лесной промышленности, очистных сооружениях городов и т. п. Разработка и внедрение эффективных технологий такого производства — задача, имеющая большое значение для экономики народного хозяйства.

Важным направлением биотехнологии является производство и использование так называемых иммобилизованных ферментов. Эти ферменты обеспечивают осуществление химических реакций без высоких температур и давлений и ускоряют их в миллионы и миллиарды раз. При этом каждый фермент катализирует только одну определённую реакцию. Биологические катализаторы можно использовать также не извлекая их из живых организмов, прямо в бактериальных клетках. Этот способ — основа всякого микробиологического производства.

Для того чтобы стабилизировать (иммобилизовать) ферменты, сделать их пригодными для многократного промышленного использования, их присоединяют с помощью прочных химических связей к нерастворимым или растворимым носителям — ионообменным полимерам, пористому стеклу, полисахаридам и т. п. В результате ферменты становятся устойчивыми и могут быть использованы многократно. Разработка способа повышения устойчивости ферментов значительно расширяет возможности их использования. С помощью ферментов можно, например, получать сахар из растительных отходов.

3. Плазмиды

Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью кольцеобразных молекул ДНК — плазмид, присутствующих в бактериальных клетках.

В них «вклеивают» гены, и такие гибридные плазмиды добавляют к культуре бактерий, например кишечной палочки. Некоторые из этих бактерий поглощают плазмиды целиком. Затем она начинает реплицироваться в клетке, воспроизводя в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков.

4. Биотехнологическая промышленность

Биотехнологическую промышленность разделяют на четыре направления:

Очевидно, что биотехнология имеет огромное будущее. И дальнейшее её развитие тесно связано с одновременным развитием всех важнейших отраслей биологической науки, исследующих живые организмы на разных уровнях их организации.

Заключение

Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон (интерферон – возможное средство лечения рака и СПИДа). И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Развитие генной инженерии сделает возможным улучшение генотипа человека. Масштабные задачи, стоящие сегодня перед человечеством требуют людей талантливых во многих отраслях, совершенных и высокоразвитых личностей, обладающих идеальным здоровьем, высочайшими физическими и умственными способностями. Таких людей можно будет создать методами генной, генетической и клеточной инженерии. Эти методы будут применимы как к только появляющимся на свет детям, так и к уже взрослым людям.

Человек сможет многократно усилить свои собственные способности, и увеличить способности своих детей. Уже сегодня многие всемирно известные учёные, такие как Уотсон, один из первооткрывателей ДНК, говорят о том, что человеческая глупость, например, является по сути своей генетическим заболеванием и в будущем будет излечима.

Будут полностью ликвидированы генетические причины заболеваний, все люди будут совершенно здоровыми. Старение будет остановлено и никому не придётся сталкиваться с увяданием, дряхлостью. Люди станут практически бессмертными — смерть будет становиться всё более редким явлением, перестав быть неизбежностью.

Прогресс вряд ли остановится на исправлении недостатков. Излечив болезни и остановив старение, человек примется за улучшение собственного организма, за его перестройку по собственным планам и желаниям. Люди смогут произвольным образом лепить свое собственное тело и мозг, добавлять себе новые способности, возможность жить под водой, летать, питаться энергией солнечного света, добавлять новые отделы мозга, новые органы тела.

Но человек вряд ли ограничится собственной перестройкой. Любой организм, существование которого не противоречит законам природы, сможет быть создан. Новые виды животных, растений и даже совершенно новых существ будут создаваться в промышленных целях, как форма творчества, для освоения космоса. Кроме того, человек наверняка захочет помочь братьям своим меньшим подняться с животного уровня. С помощью генной модификации можно будет усилить интеллект собак, шимпанзе, дельфинов, других животных.

Таким образом, биотехнология в совокупности с другими научными направлениями открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.

Литература

1. Сингер М., Берг П. Гены и геномы. — Москва, 1998.

2. Стент Г., Кэлиндар Р. Молекулярная генетика. — Москва, 1981.

3. Патрушев Л. И. Искусственные генетические системы. — М.: Наука, 2004

4. Веб-адрес: www.transhumanism-russia.ru

www.ronl.ru

Доклад - Генная инженерия и биотехнологии. Их роль в выживании человечества

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ С. А. ЕСЕНИНА

РЕФЕРАТ

На тему: «Генная инженерия и биотехнологии. Их роль в выживании человечества»

По дисциплине: «Концепция современного естествознания»

Выполнила: студентка 1-го курса естественно-географического факультета отделения социально-культурного сервиса и туризма Калугина П.

Проверил: Золотов Г.В.

Рязань 2009

ПЛАН

Введение

I.ГЕННАЯ ИНЖЕНЕРИЯ

1. Исторический аспект

2. Новые характеристики «привитые» растениям посредством генной инженерии

3. Наиболее впечатляющие достижения

4. Преимущества генной инженерии

5. Проблемы и перспективы

5.1. Экологические риски

5.2. Медицинские риски

5.3. Социально- экономические риски

6. Перспективы генной инженерии

II .БИОТЕХНОЛОГИИ

1. История биотехнологии

2. Микробиологический синтез

3. Плазмиды

4. Биотехнологическая промышленность

Заключение. Роль генной инженерии и биотехнологий в выживании человечества.

Введение

В данном реферате рассматриваются основные характеристики, проблемы и перспективы такой новейшей технологии, как генная инженерия. В настоящее время эта тема весьма актуальна. По прогнозам учёных к концу 21-го века население Земли может увеличиться до 10 миллиардов. Как прокормить такое количество людей качественной пищей, если и при 6 миллиардах в некоторых регионах население голодает? Впрочем, даже если бы такой проблемы не существовало, то человечество, для решения других своих проблем, стремилось бы внедрять в сельское хозяйство наиболее производительные биотехнологии. Одной из таких технологий как раз и является генная инженерия.

Любое растение или животное имеет различные признаки. За наличие каждого признака отвечает определённый ген. Ген — от греческого genos, и переводится как «род», «происхождение». Ген — это маленький сегмент молекулы ДНК и он порождает определённый признак растения или животного. Если убрать ген, отвечающий за появление определённого признака, то исчезнет и сам признак. И, наоборот, если добавить, например, растению новый ген, то у растения появится и новый признак. Изменённое же растение может теперь именоваться мутантом (с лат.- изменённый).

В 1962 г. Уотсон и Крик совершили одно из величайших открытий, установив молекулярную структуру ДНК (дезоксирибонуклеиновой кислоты) и определив ее роль в передаче наследственной информации. Позднее группа американских исследователей сообщила о выделении в лаборатории первой гибридной (рекомбинантной) молекулы ДНК – то есть вещества, объединившего в себе гены разных организмов. С этого момента формально и взяла старт генная инженерия. Притягательность трансгенов кроется в том существенном факте, что биотехнологии позволяют выводить новые культуры за 2-3 года. Обычные же методы селекции путем отбора и скрещивания — 10 и более лет.

На сегодняшний день существует несколько сотен генетически изменённых продуктов. Чаще всего культурные растения наделяют устойчивостью к насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. Устойчивая к насекомым флора становится бесстрашной: колорадский жук, съедая листик картофеля, погибает. Основная масса трансгенов культивируется в США, в Канаде, Аргентине, Китае. Однако в некоторых странах ЕС введен мораторий на ввоз таких продуктов. Соя — единственная трансгенная культура, разрешенная к применению в России.

Первым искусственно изменённым продуктом стал помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде. Но как только такой помидор помещался в тепло, он за несколько часов становится спелым. Оказалось, что в этот помидор для увеличения морозоустойчивости вживили ген североамериканской плоской рыбы.

Американские компании планируют наладить массовое производство клонированных цыплят.

Ученые размножают эмбриональные стволовые клетки донора, из которых развиваются все ткани. Затем эти клетки имплантируются в обычное яйцо. Ученые добились, чтобы донорских клеток было более 95 %, и даже создали 100-процентного клона.

Американцы добились изменения клубники, тюльпанов. Они планируют получить помидоры кубической формы, чтобы их было легче упаковывать в ящики. Швейцарцы начали выращивать кукурузу, которая выделяет собственный яд против вредителей. Идут работы по созданию пластмассы, которая бы разрушалась, попадая в окружающую среду.

1.С помощью генной инженерии можно увеличить в генетически измененной продукции содержание полезных веществ и витаминов по сравнению с «чистыми» сортами. Например, можно «вставить» витамин А в рис, с тем чтобы выращивать его в регионах, где люди испытывают его нехватку.

2.Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами и гербицидами.

3.Генетически измененным продуктам могут быть приданы лечебные свойства. Ученым уже удалось создать банан с содержанием анальгина и салат, вырабатывающий вакцину против гепатита B.

5.Модифицированные виды помогут решить и некоторые экологические проблемы. Конструируются растения, эффективно поглощающие цинк, кобальт, кадмий, никель и прочие металлы из загрязненных промышленными отходами почв.

5.Проблемы и перспективы

Выведение генетически модифицированных видов растений и животных представляет определенную опасность, обусловленную непредсказуемостью их развития и поведения в естественной среде. Риски, связанные с применением генной инженерии, разделяют на три категории: экологические, медицинские и социально-экономические.

1. Появление супервредителей. Как известно, в экстремальных условиях, таких как процесс вытеснения вредителей, скорость мутаций растет, и неизвестно, сколько понадобится насекомым времени для того, чтобы приспособиться к новым условиям окружающей среды.

2. Нарушение природного баланса. Уже доказано, что многие ГМ-растения, такие, как ГМ-табак или технический рис, применяемый для производства пластика и лекарственных веществ, смертельно опасны для живущих на поле или рядом с ним грызунов.

1.Повышенная аллергеноопасность. В 1996 году генный инженер Университета штата Небраска, подтвердил: при попытке повысить содержание белка в ГМ-сое в нее вместе с геном бразильского ореха был перенесен аллерген. Тестирование ГМ-продуктов на аллергиках не входит в обязательную программу испытаний новых продуктов, а поэтому то, что аллерген был вовремя замечен, можно назвать счастливой случайностью.

2.Возможная токсичность и опасность для здоровья. В 1989 году одна из японских химических компаний поставила на американский рынок новый ГМ-вариант известной пищевой добавки L-tryptophan. В результате 37 человек погибли, а более 5000 стали инвалидами с потенциально смертельным диагнозом — синдром эозиафильной миалгии (неизлечимое заболевание крови).

3.Возникновение новых и опасных вирусов. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов. Такие новые вирусы могут быть более агрессивными, чем исходные.

Сторонники генной инженерии заявляют, что создаваемые с ее помощью продукты могут решить проблему мирового голода. Однако их оппоненты подчеркивают потенциальную опасность сосредоточения генетических технологий в руках частных компаний через патентование определенных жизненных форм, которые могут вытеснить традиционные сельскохозяйственные культуры и породы животных.

Особенности новых технологий могут привести к большим опасностям. Разрушающий самовоспроизводящийся объект, специально созданный и оказавшийся вне контроля, может стать средством массового поражения. Угрозой будет само знание. Однако успех в этой отрасли науки сможет поднять производительность труда и способствовать решению многих существующих проблем,; но, в то же время, создать новые разрушительные средства.

II .БИОТЕХНОЛОГИИ

Биотехнология — интеграция естественных и инженерных наук, реализующая возможности живых организмов для создания и модификации продуктов или процессов различного назначения. Она представляет собой систему приёмов использования процессов жизнедеятельности живых организмов для получения промышленным способом ценных продуктов.

1.История биотехнологии

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Но отдельные элементы биотехнологии появились достаточно давно. Это были попытки использовать в производстве отдельные клетки (микроорганизмы) и ферменты, способствующие протеканию химических процессов. В начале XX века активно развивалась микробиологическая промышленность, были предприняты попытки использовать ферменты в текстильной промышленности. Вклад в дело практического использования достижений биохимии внёс академик А. Н. Бах.

Были разработаны рекомендации по улучшению технологий обработки биохимического сырья, совершенствованию технологий хлебопечения, производства чая и табака и т. п., а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами.

В производственном отношении основой биотехнологии стала микробиологическая промышленность. Микроорганизмы использовали как средство повышения интенсивности биохимических процессов и как миниатюрные синтетические фабрики, способные синтезировать внутри своих клеток сложнейшие химические соединения.

Перелом в науке был связан с открытием и началом производства антибиотиков. Первый — пенициллин — был выделен в 1940 году.

Затем были открыты и другие антибиотики. Позднее появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами; работа над повышением уровня доступности новых лекарств. Синтезировать антибиотики химически было очень дорого и почти невозможно. Было решено использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

2. Микробиологический синтез. Развитие микробиологической промышленности, выпускающей продукты биосинтеза, позволило накопить очень важный опыт конструирования и эксплуатации нового промышленного оборудования. В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, и другие. Сейчас химическая промышленность для производства горючего, ацетона и других веществ использует как исходное сырьё нефть, газ и уголь. Но их запасы не безграничны.

А в микробиологической промышленности для производства химических продуктов могут использоваться неограниченные массы органического сырья, отходов, образующихся в сельском хозяйстве, лесной промышленности, очистных сооружениях городов и т. п. Разработка и внедрение эффективных технологий такого производства — задача, имеющая большое значение для экономики народного хозяйства.

Важным направлением биотехнологии является производство и использование так называемых иммобилизованных ферментов. Эти ферменты обеспечивают осуществление химических реакций без высоких температур и давлений и ускоряют их в миллионы и миллиарды раз. При этом каждый фермент катализирует только одну определённую реакцию. Биологические катализаторы можно использовать также не извлекая их из живых организмов, прямо в бактериальных клетках. Этот способ — основа всякого микробиологического производства.

Для того чтобы стабилизировать (иммобилизовать) ферменты, сделать их пригодными для многократного промышленного использования, их присоединяют с помощью прочных химических связей к нерастворимым или растворимым носителям — ионообменным полимерам, пористому стеклу, полисахаридам и т. п. В результате ферменты становятся устойчивыми и могут быть использованы многократно. Разработка способа повышения устойчивости ферментов значительно расширяет возможности их использования. С помощью ферментов можно, например, получать сахар из растительных отходов.

3. Плазмиды

Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью кольцеобразных молекул ДНК — плазмид, присутствующих в бактериальных клетках.

В них «вклеивают» гены, и такие гибридные плазмиды добавляют к культуре бактерий, например кишечной палочки. Некоторые из этих бактерий поглощают плазмиды целиком. Затем она начинает реплицироваться в клетке, воспроизводя в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков.

4. Биотехнологическая промышленность

Биотехнологическую промышленность разделяют на четыре направления:

Очевидно, что биотехнология имеет огромное будущее. И дальнейшее её развитие тесно связано с одновременным развитием всех важнейших отраслей биологической науки, исследующих живые организмы на разных уровнях их организации.

Заключение

Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон (интерферон – возможное средство лечения рака и СПИДа). И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Развитие генной инженерии сделает возможным улучшение генотипа человека. Масштабные задачи, стоящие сегодня перед человечеством требуют людей талантливых во многих отраслях, совершенных и высокоразвитых личностей, обладающих идеальным здоровьем, высочайшими физическими и умственными способностями. Таких людей можно будет создать методами генной, генетической и клеточной инженерии. Эти методы будут применимы как к только появляющимся на свет детям, так и к уже взрослым людям.

Человек сможет многократно усилить свои собственные способности, и увеличить способности своих детей. Уже сегодня многие всемирно известные учёные, такие как Уотсон, один из первооткрывателей ДНК, говорят о том, что человеческая глупость, например, является по сути своей генетическим заболеванием и в будущем будет излечима.

Будут полностью ликвидированы генетические причины заболеваний, все люди будут совершенно здоровыми. Старение будет остановлено и никому не придётся сталкиваться с увяданием, дряхлостью. Люди станут практически бессмертными — смерть будет становиться всё более редким явлением, перестав быть неизбежностью.

Прогресс вряд ли остановится на исправлении недостатков. Излечив болезни и остановив старение, человек примется за улучшение собственного организма, за его перестройку по собственным планам и желаниям. Люди смогут произвольным образом лепить свое собственное тело и мозг, добавлять себе новые способности, возможность жить под водой, летать, питаться энергией солнечного света, добавлять новые отделы мозга, новые органы тела.

Но человек вряд ли ограничится собственной перестройкой. Любой организм, существование которого не противоречит законам природы, сможет быть создан. Новые виды животных, растений и даже совершенно новых существ будут создаваться в промышленных целях, как форма творчества, для освоения космоса. Кроме того, человек наверняка захочет помочь братьям своим меньшим подняться с животного уровня. С помощью генной модификации можно будет усилить интеллект собак, шимпанзе, дельфинов, других животных.

Таким образом, биотехнология в совокупности с другими научными направлениями открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.

Литература

1. Сингер М., Берг П. Гены и геномы. — Москва, 1998.

2. Стент Г., Кэлиндар Р. Молекулярная генетика. — Москва, 1981.

3. Патрушев Л. И. Искусственные генетические системы. — М.: Наука, 2004

4. Веб-адрес: www.transhumanism-russia.ru

www.ronl.ru

Доклад - Генетическая инженерия и биотехнология

Вертьянов С. Ю.

Генетическая инженерия (ГИ) — совокупность методов, позволяющих искусственно переносить генетическую информацию из одного организма в другой с помощью специально созданных генетических конструкций. Одна из задач ГИ — получение организмов с желаемыми свойствами. Основным подходом ГИ является конструирование in vitro (вне организма) рекомбинантных молекул ДНК (искусственно скомбинированных из фрагментов) с заданными наследственными свойствами, поэтому ГИ также называют технологией рекомбинантных ДНК. Организмы, в которые с помощью методов ГИ введены несвойственные им гены, носят название трансгенных.

Основные принципы ГИ

Бурное развитие ГИ началось после 1970 г., когда из клеток бактерий научились выделять рестриктазы — ферменты, защищающие бактерии от бактериофагов. Узнавая в чужеродной ДНК специфичный для каждой рестриктазы сайт (последовательность из 4—6 нуклеотидов), рестриктазы делают в этом сайте разрывы обеих цепей ДНК. В результате чужеродная ДНК оказывается разрезанной на фрагменты и нефункциональной. На сегодня известно около 3500 рестриктаз. Например, рестриктаза Eco RI («еко-эр-один») из кишечной палочки (Escherichia coli) узнает сайт ГААТТЦ:

В результате ступенчатого разреза образуются фрагменты ДНК с выступающими однонитевыми концами, комплементарными друг другу. Эти концы могут вновь соединяться, поэтому их называют «липкими концами». Если взять ДНК, например, человека и моркови, обработать одной и той же рестриктазой и смешать, то фрагменты ДНК моркови и человека будут соединяться липкими концами. Но такая связь будет непрочной: водородные связи между всего лишь четырьмя парами оснований могут легко разойтись. Слипшиеся фрагменты ДНК можно зафиксировать, если добавить в раствор ДНК-лигазу (второй по значимости фермент ГИ), сшивающую цепи ДНК, разрезанные рестриктазой. В результате получится стабильная рекомбинантная ДНК.

Далее необходимо сохранить и размножить полученные рекомбинантные молекулы. С этой целью их встраивают в специальные конструкции, называемые векторными молекулами ДНК, или векторами. Обычно векторы конструируют из бактериальных плазмид. Типичный вектор включает:

1. Сайт узнавания определенной рестриктазой для встраивания в вектор целевой ДНК.

2. Ген устойчивости к одному из антибиотиков для последующего отбора клеток, получивших рекомбинантный вектор.

3. Промотор, обеспечивающий экспрессию целевой ДНК.

Приведем пример использования вектора для получения штамма кишечной палочки, продуцирующей целевой белок. Для встраивания в вектор смесь фрагментов целевой ДНК (с геном, кодирующим целевой белок) и ДНК вектора обрабатывают сначала одной и той же рестриктазой, затем ДНК-лигазой. В результате образуется рекомбинантный вектор. Для размножения его вводят в клетки кишечной палочки или дрожжей. На поверхности твердой питательной среды с антибиотиком каждая клетка, несущая рекомбинантный вектор, размножается и образует колонию из одинаковых клеток — клон. Каждая клетка-родоначальница клона получила одну молекулу рекомбинантного вектора, которая реплицируется и передается всем клеткам колонии. Поэтому такую процедуру называют молекулярным клонированием.

Первой реакцией научной общественности на создание ГИ-технологии было введение ограничений на эксперименты с рекомбинантными ДНК. Ученые полагали, что объединение генов разных организмов может привести к появлению нового организма с нежелательными или даже опасными свойствами. Прошло несколько лет, и исследователи убедились, что их опасения сильно преувеличены. Микроорганизмы, измененные с помощью генно-инженерных манипуляций, во внешней среде не выдерживают конкуренции, поскольку значительную часть своих ресурсов они затрачивают на синтез целевого белка, в ущерб собственной конкурентоспособности.

Достижения ГИ

С развитием ГИ ученые получили возможность синтезировать, выделять, комбинировать и перемещать гены и любые другие фрагменты ДНК. ГИ внесла революционный вклад в развитие многих биологических дисциплин: молекулярной биологии, микробиологии, вирусологии, цитологии, эмбриологии, медицинской генетики и генетики человека. Появилась ранее недоступная возможность изучения молекулярной организации геномов (в том числе высших эукариот), что привело к возникновению геномики — раздела генетики, изучающего структурную организацию и функционирование геномов.

ГИ-методы позволили реализовать программы секвенирования (определения полных нуклеотидных последовательностей ДНК) геномов многих организмов. Уже секвенированы ДНК сотен видов бактерий, дрожжей, плазмодия, риса, кукурузы, картофеля, дрозофилы, мыши; завершена международная программа «Геном человека».

Для чего же нужно секвенирование геномов? Одна из основных задач — выяснить строение генома и его работу как единого целого. Полная нуклеотидная последовательность — это предварительная карта генома организма. В первоначальном виде это просто длинная последовательность нуклеотидов, ни о чем не говорящая. Для того чтобы с ней можно было работать, в ней выявляют гены, регуляторные элементы, мобильные элементы и другие последовательности ДНК, функция которых еще не известна. Для медицинской генетики важно нанести на нуклеотидную карту гены, ответственные за различные болезни, чтобы разрабатывать методы молекулярной диагностики, искать способы лечения и предотвращения заболеваний. На карту человека уже нанесены многие гены наследственных заболеваний.

Генная терапия наследственных заболеваний человека. Развитие этой перспективной области стало возможным после секвенирования генома человека. Генная терапия включает следующие этапы:

1. Получение клеток от больного (в генной терапии разрешено использовать только соматические клетки человека).

2. Введение в клетки лечебного гена для исправления генетического дефекта.

3. Отбор и размножение «исправленных» клеток.

4. Введение «исправленных» клеток в организм пациента.

Впервые успешно применить генную терапию удалось в 1990 г. Четырехлетней девочке, страдающей тяжелым иммунодефицитом (дефект фермента аденозиндезаминазы), были введены собственные лимфоциты со встроенным нормальным геном аденозиндезаминазы. Лечебный эффект сохранялся в течение нескольких месяцев, после чего процедуру пришлось регулярно повторять, поскольку исправленные клетки, как и другие клетки организма, имеют ограниченный срок жизни. В настоящее время генную терапию используют для лечения более десятка наследственных заболеваний, в т. ч. гемофилии, талассемии, муковисцидоза.

Метод полимеразной цепной реакции (ПЦР)

Для получения целевой ДНК в достаточных для работы количествах в ГИ широко используется метод ПЦР, разработанный в 1985 г. Метод позволяет размножить в миллионы раз любой участок ДНК размером до 5 тысяч пар нуклеотидов (см. с. 142). Первым практическим использованием ПЦР была разработка тест-системы для диагностики серповидноклеточной анемии (нарушенные участки ДНК размножали до обнаружимых при электрофорезе количеств). С помощью ПЦР получают фрагменты ДНК для клонирования, секвенируют целевые ДНК, выявляют патогенные вирусы или бактерии, а также наследственные заболевания и аномалии. В судебной медицине ПЦР используют для идентификации личности, для установления родственных связей. В настоящее время метод ПЦР стал обыденной процедурой, повседневно используемой в тысячах лабораторий.

Таким образом, разработка методов ГИ и ПЦР привела к бурному прогрессу в биологии, но самые глубокие преобразования произошли в биотехнологии.

Биотехнология — отрасль науки, занимающаяся промышленным использованием биологических процессов и живых организмов для производства лекарств и вакцин, сельскохозяйственных и потребительских продуктов.

Биотехнологические процессы люди использовали издревле, занимаясь хлебопечением, виноделием, пивоварением, приготовлением кисломолочных продуктов. Сущность этих процессов была выявлена лишь в XIX в. после научных открытий Л. Пастера. Работы ученого послужили развитию различных производств с использованием микроорганизмов.

В конце 1970-х гг. на стыке традиционной биотехнологии и ГИ возникла молекулярная биотехнология. В ее основе лежит процедура переноса генов из одного организма в другой посредством методов ГИ с целью создания принципиально нового продукта или промышленного производства уже известного продукта. Первая фирма, производящая лекарственные соединения с помощью методов ГИ, была создана в 1976 году.

Производство лекарственных препаратов

Микроорганизмы после введения соответствующих генов становятся продуцентами ценных для медицины белков. В биореакторах на специальных питательных средах выращивают бактерии; грибы; дрожжи, продуцирующие антибиотики; ферменты; гормоны; витамины и другие биологически активные соединения. Например, клетки кишечной палочки служат биологическими фабриками по производству человеческого инсулина. До 1982 г. инсулин получали весьма трудоемким способом из поджелудочной железы свиней и обеспечивали только 10 % больных сахарным диабетом. С 1982 г. этой работой «занимается» кишечная палочка и обеспечивает инсулином десятки миллионов больных по всему свету (в том числе и тех, у кого аллергия на животный инсулин). Кишечная палочка производит человеческий гормон роста соматотропин (ранее его получали из трупного материала).

Противовирусный препарат интерферон в организме человека вырабатывается в крайне незначительных количествах. После выявления аминокислотной последовательности интерферона ген был искусственно синтезирован и встроен в вектор, затем вектор ввели в клетки бактерии и получили штамм-продуцент интерферона.

Производство генно-инженерных вакцин

Традиционные вакцины изготавливаются из вирусов, инактивированных нагреванием или химическим воздействием. Иногда вирус остается жизнеспособным и может при вакцинации вызвать заболевание. Применение ГИ-вакцин не имеет такого недостатка. Например, создан продуцент белка поверхностной капсулы вируса гепатита. Этот белок достаточен для выработки в организме человека иммунитета против вируса гепатита, и такая вакцинация не в вызовет инфекцию. В настоящее время активно ведутся генно-инженерные разработки вакцины против СПИДа.

Производство ГИ-микроорганизмов, способных расти на несвойственных для них средах, открывает ряд новых возможностей. Такие микроорганизмы используют для биологической очистки окружающей среды (в т.ч. от нефти и нефтепродуктов). На отходах производства нефтепродуктов, гидролизатах древесины, на метаноле, этаноле, метане успешно культивируют дрожжи. Использование их в качестве кормового белка (дрожжи содержат до 60 % белка) позволяет получать дополнительно до 1 млн т мяса в год. Ведутся работы по созданию микроорганизмов, производящих ацетон, спирт и другие горючие материалы на отходах сельского хозяйства, лесной и деревообрабатывающей промышленности, а также на сточных водах. В будущем, при истощении ресурсов нефти, этот путь получения горючих веществ может оказаться весьма актуальным. Созданы установки, в которых бактерии перерабатывают навоз в биогаз. Из 1 т навоза получают 500 м3 биогаза, что эквивалентно 350 л бензина.

Биотехнология растений

Получены формы растений с ускоренным ростом, большей массой плодов, увеличенной продолжительностью хранения плодов; устойчивые к гербицидам, к патогенным вирусам и грибам, к вредным насекомым, а также к засухе и засоленности почв. Растения продуцируют для человека вакцины, фармакологические белки и антитела. Например, внедрение гена биосинтеза каротина в геном риса позволило вывести «золотой» рис, богатый этим ценным для человека провитамином.

В природе существует бактерия Bacillus thuringiensis, вырабатывающая эндотоксин белковой природы, действующий на насекомых. Ген, кодирующий этот токсин, был выделен и встроен в ДНК картофеля. Такой картофель личинки колорадского жука в пищу употреблять не могут. Аналогичным образом удалось получить устойчивые к сельскохозяйственным вредителям трансгенные формы хлопка, кукурузы, томатов и рапса. После внедрения в геном винограда гена морозоустойчивости от дикорастущей капусты брокколи трансгенный виноград стал морозоустойчивым. Эта процедура заняла всего год. Обычно на выведение новых сортов винограда уходит 25—35 лет.

Существенные посевные площади заняты под трансгенные растения в США (68 % мировых посевов трансгенных культур), Аргентине (22 %), Канаде (6 %) и Китае (3 %). В основном выращивают трансгенную сою (62 %), кукурузу (24 %), хлопок (9 %) и рапс (4 %).

Большое значение в сельском хозяйстве имеет производство незаменимых аминокислот, не синтезирующихся в организмах животных. В традиционных кормах их недостаточно, поэтому приходится увеличивать количество пищи. Добавление в пищу 1 т синтезированной микробиологическим путем аминокислоты лизин экономит десятки тонн кормов.

Биотехнология животных

Получение трансгенных животных начинают с создания генетических конструкций, в которых целевой ген находится под контролем промотора, активного в определенной ткани организма, например в клетках молочной железы. Такую конструкцию вводят в оплодотворенную яйцеклетку и помещают животным для вынашивания. Выход здоровых животных пока невелик (менее 1 % эмбрионов), но ученые продолжают исследования. Получены трансгенные коровы, овцы, козы, свиньи, птицы, рыбы.

От 20 трансгенных коров можно получить до 100 кг целевого белка в год. Именно столько белка, применяемого для предотвращения тромбов в кровеносных сосудах, требуется человечеству ежегодно. Для получения необходимого людям белка-фактора свертывания крови (его применяют для повышения свертываемости крови у больных гемофилией) достаточно одной трансгенной коровы.

Актуально создание пород домашних животных, устойчивых к паразитам, бактериальным и вирусным инфекциям. Встраивая гены устойчивости к наиболее распространенным заболеваниям, можно значительно сэкономить на вакцинах и сыворотках (до 20 % от стоимости конечного продукта).

Трансгенных млекопитающих используют в качестве модельных систем для поиска способов лечения наследственных заболеваний человека. На мышах отрабатывают методы борьбы со СПИДом, муковисцидозом, болезнью Альтцгеймера, на кроликах — с онкологическими заболеваниями.

Выводы

В результате применения биотехнологии появились бактерии, растения, животные, которые являются естественными биореакторами. Они продуцируют новые или измененные генные продукты, которые не могут быть созданы традиционными методами скрещивания, мутагенеза и селекции. Кроме того, молекулярная биотехнология дает принципиально новые методы диагностики и лечения различных заболеваний. Однако в ряде случаев рекламируемые перспективы оказываются преувеличенными и не всегда соответствуют реальным возможностям биотехнологии.

Сорта, полученные методами классической селекции, менее впечатляющи, но имеют свои достоинства, они более устойчивы и надежны в использовании. Если классическая селекция остается в естественных природных рамках, то современные технологии, оперируя на уровне клеток, хромосом и отдельных генов, выходят за пределы природных закономерностей. Эти методы используют природные компоненты (клетки, гены и т. д.), но комбинируют их произвольно. Возможные побочные эффекты во многих случаях трудно предсказуемы. Необходимы длительные эксперименты на животных и растениях и серьезные исследования. Известно негативное отношение СМИ и широких слоев общественности в разных странах к продукции молекулярной биотехнологии — генно-модифицированным (ГМ) продуктам. Вместе с тем становится все более понятным, что использование методов ГИ — один из возможных путей обеспечения продуктами питания стремительно возрастающего населения планеты. Для определения возможных границ использования методов ГИ важно разобраться и в нравственных аспектах вторжения человека в мир Божий.

www.ronl.ru

Лекция - Биотехнология, генная инженерия и биобезопасность

Понятие о биотехнологии. Существуют несколько трактовок термина биотехнология [43]. Часто под биотехнологией понимается наука, изучающая возможности использования организмов, биологических процессов и систем в производстве, включая превращение различных видов сырья в высококачественные продукты. Ее основой являются генетическая и клеточная инженерия в сочетании с микробиологическим синтезом и широким набором методов биохимии, биоорганической химии и биопроцессорной инженерии. Кроме того, биотехнология трактуется как совокупность промышленных методов, использующих для производства живые организмы и биологические процессы, например в хлебопечении, виноделии, производстве медпрепаратов (эндокринных и т.п.), биологической очистке сточных вод и т.д.

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 г. Однако отдельные элементы биотехнологии появились достаточно давно. Фактически, это были попытки использовать в промышленном производстве отдельные клетки (микроорганизмы) и некоторые ферменты, способствующие протеканию ряда химических процессов. Современную биотехнологическую промышленность иногда разделяют на четыре направления:

· «Красная» биотехнология – производство биофармацевтических препаратов (протеинов, ферментов, антител) для человека, а также коррекция генетического кода.

· «Зеленая» биотехнология – разработка и внедрение в культуру генетически модифицированных растений.

· «Белая» биотехнология – производство биотоплива, ферментов и биоматериалов для различных отраслей промышленности.

· «Академическая и правительственная» биотехнология – например, расшифровка генома риса.

Для ознакомления с основными направлениями и методами биотехнологии сельскохозяйственных растений рекомендуем учебник Н.А.Картеля и А.В.Кильчевского «Биотехнология в растениеводстве» [44].

Микробиологическая индустрия России, относящаяся к «красному и «белому» направлениям биотехнологии, выпускает 150 видов продукции, ее гордость – кормовой белок, получаемый на основе выращивания дрожжей. В год его производят более 1 млн. т. Другое важное достижение – это выпуск ценнейшей кормовой добавки – незаменимой аминокислоты лизина. Усвояемость белковых веществ, содержащихся в продукции микробиологического синтеза, такова, что 1 т кормового белка экономит 5–8 т зерна. Добавка 1 т биомассы дрожжей в рацион птиц, например, позволяет получить дополнительно 1,5–2 т мяса или 25–35 тыс. яиц, а в свиноводстве – высвободить 5–7 т фуражного зерна. Кормовой белок может быть получен также и путем выращивания микроскопических зеленых водорослей, различных простейших и других микроорганизмов. В России уже разработаны технологии их использования, проектируются и строятся предприятия-гиганты мощностью от 50 до 300 тыс. т продукции в год.

Особенно интенсивно биотехнология стала развиваться с 1981 г. в связи с открытием методов рекомбинантных РНК и ДНК и прогрессом генной инженерии. Стремительно расширяющиеся знания о процессах жизнедеятельности позволяют не только приспосабливать эти процессы и управлять ими, но также создавать весьма перспективные в практическом плане новые системы, до того не существовавшие в природе.

Биотехнология и генная инженерия. Основой современной биотехнологии является генная, или генетическая инженерия – совокупность приемов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы, имеющая своим результатом создание генетически модифицированных организмов (ГМО). Рекомбинантная ДНК – это искусственно созданная человеком последовательность ДНК, части которой синтезируются химическим путем, с помощью полимеразной цепной реакции (ПЦР) или клонированы из ДНК различных организмов. Эти рекомбинантные ДНК встраивают в состав бактериальных плазмид или вирусных векторов, которыми затем трансформируют клетки живых организмов (микроорганизмов, растений, животных). Генетически модифицированные животные и растения обычно содержат рекомбинантные гены, встроенные непосредственно в их хромосомы.

Генная инженерия микроорганизмов. Методом генной инженерии уже получен ряд препаратов медицинского назначения, в том числе инсулин человека и противовирусный препарат интерферон. В основе этих достижений лежит создание рекомбинантных плазмид, несущих соответствующие целевые гены. Поскольку плазмидная ДНК представляет собой замкнутую кольцевую молекулу, кольцо сначала разрывают, чтобы свободные концы были в химическом отношении реакционноспособными. Это достигается с помощью различных ферментов, называемых нуклеазами (рестриктазами). Затем фрагменты ДНК соединяют с помощью лигаз – ферментов, исправляющих повреждения в ДНК и сшивающих концы ее разорванных нитей. Именно таким путем на заре генной инженерии плазмиды из штамма E. coli, устойчивого к тетрациклину, и плазмиды из штамма, устойчивого к другому антибиотику, каномицину, были соединены и получили штамм E. coli, устойчивый к обоим антибиотикам.

После переноса плазмид с нужными генами в микроорганизмы последние становятся биореакторами по производству ряда соответствующих веществ. Их производство составило важную отрасль биотехнологии. В частности, начиная с 1982 г. фирмы США, Японии, Великобритании и других стран производят генно-инженерный инсулин для лечения диабета. Из 1000 литров бактериальной культуры получают приблизительно 200 г инсулина, что равно количеству, получаемому из 1600 кг поджелудочной железы животных [45].

Интерферон – белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Всего 1 л бактериальной культуры дает такое количество интерферона, для получения которого потребовалось бы ~10 тыс. л крови человека. Методами генной инженерии удалось создать также ряд вакцин, которые испытываются для проверки их эффективности против вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, являющийся единственным средством лечения редкой детской болезни – гипофизарной карликовости.

Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, – генная терапия (см. главу 4).

Перенос генов в растения. Первые трансгенные растения были получены с помощью технологии рекомбинантной ДНК в 1982 г. учеными из Института растениеводства в Кельне (ФРГ) и компании Monsanto (США), а история их промышленного использования насчитывает около 15 лет.

До последнего времени большинство выращиваемых сельском хозяйстве трансгенных сортов растений содержали либо ген устойчивости к гербицидам (71%), либо ген устойчивости к вредителям (18%) и лишь немногие (11%) – оба гена одновременно. Сейчас создаются генетически модифицированные растения, которые будут устойчивы не только к биотическим факторам (фитопатогенным вирусам, бактериям, грибам, нематодам и насекомым), но и к факторам абиотическим (засухе, заморозкам, засолению и т.д.). Эти генетически модифицированные растения будут также обладать пониженной аллергенностью и повышенной пищевой ценностью и усвояемостью. Так, уже созданы салат с увеличенным содержанием железа, обогащенная лизином кукуруза, рис, содержащий большее количество триптофана, а также “золотой рис”, названный так из-за ярко-желтой окраски эндосперма, в составе которого много β-каротина.

Чтобы дать представление о способах создания генетически модифицированных растений, на рис. 3.13 приведена принципиальная схема получения трансгенного табака, устойчивого к вирусам [46]. В качестве основных элементов генетической конструкции использованы гены неспецифической нуклеазы из генома бактерии Serratia marcescens и панкреатической рибонуклеазы быка, которые обладают противовирусной активностью. На первом этапе осуществляется выделение трансгена из геномной ДНК (или кДНК) организма-донора. На рис. 3.13 приведены два основных варианта генетических конструкций: содержащих белок-кодирующие трансгены (конструкция 1) или участки генов, расположенные в антисмысловой ориентации (конструкции 2 и 3). Использованы следующие обозначения: RB, LB – повторы, маркирующие участок ДНК в векторе, который переносится в геном растений ферментами агробактерии; NPTII – ген, экспрессия которого позволяет растениям-трансформантам расти на антибиотике канамицине; РНКаза – ген панкреатической рибонуклеазы быка; ПДГ – участки гена пролиндегидрогеназы арабидопсиса, размещенные в антисмысловой ориентации; pMAS, p35S – промоторы, управляющие экспрессией трансгенов. В конструкции использован промотор гена маннопинсинтазы (pMAS), обеспечивающий средний уровень экспрессии трансгена в листьях и корнях растения и высокий в клетках, окружающих поврежденные ткани.

 

Рис. 3.13. Схема получения генетически модифицированных вирусоустойчивых растений табака.

 

Использованный способ трансгеноза определяется тем, что табак относится к двудольным растениям, для которых наиболее эффективным способом генетической трансформации считается перенос генетического материала с помощью почвенной бактерии Agrobacterium tumefaciens. Специфические белковые комплексы агробактерий вырезают генетическую конструкцию, переносят ее из бактерии в клетку растений и встраивают в геномную ядерную ДНК. Затем кусочки листьев табака, обработанные суспензией агробактерий, помещали на среды, содержащие гормоны роста растений и один из антибиотиков. Для отбора трансформантов в данном случае был использован ген неомицинфосфотрансферазы II (NPTII), обеспечивающий устойчивость клеток растений к антибиотику канамицину.

Для однодольных растений применяются другие способы доставки векторов с целевыми генами – например, баллистический метод (метод ДНК-пушки). В этом случае векторная ДНК наносится на микроскопические металлические частицы, которые затем выстреливаются в растительную мишень (кусочки листьев).

В табл. 3.5 показаны объемы посевных площадей, занятых трансгенными культурами (по данным International Service for the Acquisition of Agri-biotech Applications (ISAAA) за 2006 г.). Как видим, с момента появления первых генетически модифицированных растений прошло более 25 лет, а площади под ними перешагнули рубеж 100 млн. га. За это время не было зарегистрировано ни одного научно подтвержденного случая отрицательных эффектов ГМО или продуктов с генетически модифицированными компонентами на человека или окружающую среду. Однако внесение в растения чужеродной ДНК из микроорганизмов или животных продолжает вызывать возражения у противников генной инженерии.

 

Таблица 3.5. Посевные площади, занятые трансгенными растениями в 2006 г. (по данным [47]).

 

Страна Площадь, млн. га Генетически модифицированное растение
США 54,6 Соя, кукуруза, хлопчатник, рапс (канола), папайа, люцерна
Аргентина 18,0 Соя, кукуруза, хлопчатник
Бразилия 11,5 Соя, хлопчатник
Канада 6,1 Канола, кукуруза, соя
Индия 3,8 Хлопчатник
Китай 3,5 Хлопчатник
Парагвай 2,0 Соя
Южная Африка 1,4 Кукуруза, соя, хлопчатник
Уругвай 0,4 Соя, кукуруза
Филиппины 0,2 Кукуруза
Австралия 0,2 Хлопчатник
Румыния 0,1 Соя
Мексика 0,1 Хлопчатник, соя
Испания 0,1 Кукуруза
Колумбия <0,1 Хлопчатник
Франция <0,1 Кукуруза
Иран <0,1 Рис
Гондурас, Чехия, Португалия, Германия, Словакия <0,1 в каждой стране Кукуруза

 

Их опасения помогает рассеять еще один вариант создания генетически модифицированных растений, при котором генетическая конструкция не содержит трансгенов, кодирующих белок. В этом случае используется феномен РНК-интерференции (о нем мы будем говорить в следующей главе), позволяющий отключить или снизить активность одного из собственных генов растения. Принципиальная схема выключения гена-мишени выглядит так: выделяется необходимый фрагмент ДНК из генома и помещается в генетическую конструкцию в перевернутом (антисмысловом) положении. Такая конструкция синтезирует РНК, которая ничего не кодирует, но связывается с мРНК гена-мишени и по механизму РНК-интерференции запускает целый каскад событий – остановку трансляции, разрушение мРНК и резкое снижение или даже полное прекращение экспрессии гена-мишени.

Перенос генов животных.Первыми из генов животных были введены в бактерию гены шпорцевой лягушки Xenopus laevis. Эти гены хорошо изучены и легко поддаются идентификации. Когда их ввели в клетки штамма E. coli, устойчивого к тетрациклину, они устойчиво реплицировались в новом окружении, причем у полученных клонов ДНК соединяла в себе характеристики X. laevis и E. coli.

В настоящее время уже умеют переносить гены от одного животного к другому и, как мы видели выше, от животного к растениям. Получены «трансгенные» мыши, свиньи, овцы, коровы и рыбы. Существует несколько методов трансгеноза целевых генов у животных. Первый метод связан с прямой инъекцией ДНК в оплодотворенную яйцеклетку вида-реципиента. Кроме того можно использовать в качестве вектора вирус, который, проникнув в клетку, внесет с собой соответствующий ген. Третий метод связан с использованием неспециализированных стволовых клеток эмбриона. Гены вводят в стволовые клетки путем инъекции или с помощью вируса, а полученные трансгенные клетки инъецируют другому зародышу, который включает их в свои ткани.

В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока… Получена вакцина против герпеса у свиней, созданная с помощью генетически измененного вируса.

Реализуются проекты создания трансгенных млекопитающих, способных синтезировать факторы свертывания человеческой крови и другие жизненно важные для нас продукты и выделять их в составе своего молока. Широкомасштабное развитие такой биотехнологии сэкономило бы огромные количества донорской крови, запасы которой ограничены и могли бы использоваться более эффективно.

В конце 2007 г. в Научно-практическом центре НАН Беларуси по животноводству объявлено, что в ходе выполнения российско-белорусского проекта «Создание высокоэффективных и биологически безопасных лекарственных препаратов нового поколения на основе белков человека, получаемых из молока трансгенных животных» получены два трансгенных козленка с геном лактоферрина человека – белка, отвечающего за иммунитет. Предварительные расчеты показывают, что при кормлении новорожденных козьим молоком с лактоферрином детская смертность в России и Беларуси снизится в десять раз. Кроме того, на основе лактоферрина планируется создать высокоэффективные лекарственные препараты 4-го поколения, косметику и специальные продукты питания, повышающие иммунитет человека любого возраста.

Биотехнология и биобезопасность. Если экономическая выгода от использования ГМО в целом очевидна, то их безопасность по-прежнему вызывает жаркие споры, давно вышедшие за пределы лабораторий и научных форумов. Особенно это касается генетически модифицированных растений, бесконтрольное широкомасштабное использование которых может быть, в принципе, чревато неблагоприятными последствиями для окружающей среды и здоровья человека. К числу таких потенциальных опасностей мировое сообщество относит [48]:

· разрушительное воздействие на биологические сообщества и утрата ценных биологических ресурсов в результате засорения местных видов генами, перенесенными от ГМО;

· создание новых более вредоносных паразитов, прежде всего сорняков, и усиление вредоносности уже существующих;

· выработка веществ, которые могут быть токсичными для организмов, не являющихся их мишенями, живущих или питающихся на ГМО;

· неблагоприятное воздействие на экосистемы токсичных веществ, производных неполного разрушения опасных химикатов (поскольку, как мы видели, большинство создаваемых в настоящее время ГМО – это формы, устойчивые к гербицидам).

Во избежание негативных последствий от бесконтрольного применения генетически модифицированных организмов, 29 января 2000 года в Монреале (Канада), более 130 стран приняли Протокол по биологической безопасности. Он называется “Картахенский протокол по биологической безопасности” по имени г. Картахена (Колумбия), который принимал участников Чрезвычайной конференции, подписавших в 1999 г. Конвенцию по биологическому разнообразию (КБР). Цель этого первого Протокола к КБР состояла в том, чтобы внести вклад в безопасную передачу живых модифицированных организмов, пересекающих международные границы, безопасное обращение с ними и их безопасное применение. К числу таких организмов относятся растения, животные и микробы, полученные с помощью методов генной инженерии. Кроме того, Протокол по биологической безопасности имеет своей целью предотвращение неблагоприятного воздействия на охрану природы и устойчивое использование биологического разнообразия без необходимого нарушения мировой торговли продовольственнымитоварами[49].

Наибольшее беспокойство, как мы видели выше, вызывает вероятность переноса генетического материала трансгенного растения в геномы других дикорастущих или сельскохозяйственных организмов в результате их скрещиваний с ГМО. Для предотвращения таких ситуаций используют растения-самоопылители, изолируют посевы трансгенных растений, тщательно анализируют возможные последствия такого переноса и вероятность фиксации трансгена в природных популяциях и т.д.

Другой «больной вопрос» – это опасность внедрения трансгенов в геномы почвенных микроорганизмов, организмов-симбионтов желудочно-кишечного тракта животных (в том числе человека) и, наконец, в геном самого человека. Человек, как и другие гетеротрофные организмы, постоянно сталкивается с огромным количеством чужеродной ДНК. Часть ее способна попадать в клетки человека. В частности, в 2003 г. немецкие исследователи из Кельна и Эрлангена опубликовали результаты экспериментов, в которых в рацион мышей добавляли препараты, содержащие маркерные ДНК, – их фрагменты были найдены в ядрах некоторых клеток эпителия желудка и кишечника, а также клеток крови (лейкоцитов), печени, почек и селезенки мышей [50]. В других экспериментах, проведенных в университете Уппсала (Швеция) в клетках крови людей–добровольцев, которые питались приготовленным мясом кролика, были найдены небольшие фрагменты как геномной, так и митохондриальной ДНК кролика [51].

Пока еще никому не удалось обнаружить экспрессию проникших с пищей фрагментов генов или какие-то негативные последствия их присутствия. Однако ряд специалистов-биоинформатиков и молекулярных биологов считает, что в исследованиях по ГМО не дается оценка риска от неизученных пока механизмов действия РНК и ДНК. По их мнению, человек является самым уязвимым видом среди живых существ именно потому, что доля внегенной ДНК у него составляет, как мы видели выше, до 98% генома, а механизмы действия малых и микро-РНК еще недостаточно изучены. Об одном из таких эффектов – РНК-интерференции мы будем говорить в главе 4. В последние годы появились публикации о связи РНК с канцерогенезом – как с развитием рака, так и с его предотвращением. С эффектами внеклеточных РНК и ДНК могут быть, по последним данным, связаны некоторые эндокринные нарушения при беременности (см. материалы Рабочего совещания «Оценка эффектов ГМО на здоровье человека», Вена, 23–24 ноября 2003 г. [52]). В целом, по словам Эрика Нейманна, вице-президента по биоинофрматике фирмы Beyond Genomics Inc., «на самом деле мы имеем плохое представление о том, что ген на самом деле делает и где и когда ему это следовало бы делать. Вы можете понимать весь геном в целом и все же понимать менее 1% того, что происходит в клетке» [53].

Опасения противников генетической трансформации растений по части непредсказуемого влияния трансгена на метаболизм и биохимию самого растения (новый ген может вызвать нарушение работы генов, что теоретически способно привести к синтезу метаболита с токсическим или онкогенным эффектом) заставили по-новому взглянуть даже на обычную селекцию. В частности, во многих схемах традиционной селекции используется химический или радиационный мутагенез, ведущий к появлению организмов с непредсказуемыми свойствами, проверка опасности которых не проводится. Как отмечает новосибирский генетик В.Н.Кочетов [46], «даже если мутагенез не используется, любой новый сорт представляет собой оригинальную уникальную комбинацию аллелей (природных вариантов генов), полученную при скрещивании различных (непохожих друг на друга) представителей данного вида. Вероятность того, что в результате этих манипуляций в метаболизме растения нового сорта произойдут сдвиги с негативным эффектом, точно такая же, как при трансгенозе или даже выше. Однако в данном случае никто не обсуждает эту потенциальную опасность всерьез, поскольку селекция сельскохозяйственных растений практикуется человеком тысячи лет и рассматривается в качестве одного из ключевых достижений нашей цивилизации».

Национальный координационный центр биобезопасности. Продолжая обзор применения информационных технологий белорусскими биологами, следует отметить деятельность Национального координационного центра биобезопасности, который проводит большую работу по разъяснению реального положения дел в сфере создания и использования генетически модифицированных организмов… Центр организован на базе Института генетики и цитологии НАН Беларуси в 1998 г. для предоставления информации заинтересованным министерствам и республиканским органам государственного управления, международным и национальным организациям по биобезопасности и средствам массовой информации по законодательству, научным исследованиям, полевым испытаниям, ввозе/вывозе и коммерческом использовании ГМО и их продуктов в Беларуси. Среди прочих информационных материалов на сайте центра представлены различные национальные и международные документы, относящиеся к проблемам биобезопасности, содержатся ответы на наиболее часто задаваемые вопросы по биобезопасности и генно-инженерной деятельности, а также приведены ссылки на национальные и международные Web-сайты организаций и учреждений по биобезопасности, другие ссылки по вопросам биобезопасности и биотехнологии [54]. Кроме того, с 2006 г. при центре действует хозрасчетная лаборатория по тестированию наличия генетически модифицированных компонентов в сельскохозяйственной продукции и продуктах питания, аккредитованная Госстандартом для проведения таких работ.

www.ronl.ru


Смотрите также