|
|||||||||||||||||||||||||||||||||||||||
|
Эволюция микроорганизмов. Реферат этапы эволюции микроорганизмовЭволюция микроорганизмовЭволюция микроорганизмовПредположение, что в основе эволюции прокариот лежит совершенствование способов получения энергии, достаточно четко прослеживается на современном материале у эубактерий . Имеющиеся данные можно интерпретировать в эволюционном плане, если допустить, что существующие группы эубактерий дошли до нас в основном неизменными с того времени, когда они впервые были сформированы. Представление о том, что первыми формами жизни были анаэробы , получающие энергию в процессе брожения за счет субстратного фосфорилирования , согласуется с общей теорией происхождения жизни, выдвинутой А.И.Опариным и Дж.Холдейном. Наиболее древними из существующих эубактерий, вероятно, являются группы организмов, получающие энергию в результате функционирования гликолитического пути сбраживания углеводов. Можно предполагать, что гликолиз - первый сформированный механизм получения клеточной энергии. (Вероятно, гликолизу - сложной системе последовательных ферментативных реакций - предшествовали более простые пути получения энергии. Однако нет четких доказательств существования среди современных эубактерий форм с энергетическим метаболизмом догликолитического типа). Основная проблема на этом этапе сводилась к тому, чтобы создать "ловушки" для возникающего при окислительных преобразованиях субстрата водорода. Источником энергии и всех органических соединений, необходимых для построения веществ клетки, первоначально служили органические субстраты абиогенного происхождения. Поскольку извлечение энергии из органического субстрата (преимущественно углеводов) при его метаболизировании по гликолитическому пути было весьма незначительным, это привело к довольно быстрой переработке доступных органических субстратов и обеднению ими окружающей среды. Поиск новых источников энергии и углерода привел к созданию метаболических систем, осуществляющих использование света и углекислоты. Важными моментами в формировании механизма использования световой энергии были: создание фоторецепторов, сформирование фотосинтетической цепи переноса электронов и нового механизма фосфорилирования, сопряженного с переносом электронов, - фотосинтетического фосфорилирования . Использование углекислоты в качестве основного или единственного источника углерода привело к созданию эффективного циклического механизма ее фиксации - восстановительного пентозофосфатного цикла , расширившего конструктивные возможности живых организмов. Таким образом, на этом этапе эволюции прослеживается четкая тенденция создания энергетических и конструктивных систем, обеспечивающих наибольшую независимость существующих эубактериальных форм от внешней среды. Вершина эволюции в этом направлении - цианобактерии , у которых такая независимость достигается максимально, и в первую очередь за счет создания механизма, позволяющего использовать воду в качестве донора электронов. С цианобактериями связаны два момента, оказавшие решающее влияние на дальнейший ход эволюции эубактерий. Первый обусловлен появлением молекулярного кислорода. Второй - тем, что цианобактерии явились на Земле первыми интенсивными продуцентами органического вещества. Появление О2 открыло новые возможности для совершенствования системы получения живой клеткой энергии из химических соединений. Формируется способ получения энергии, основанный на глубоком окислении неорганических и органических соединений окружающей среды. (Органические соединения - теперь соединения, имеющие биогенное происхождение). Этот способ связан с созданием новой системы электронного транспорта, в принципе сходной, но не идентичной фотосинтетической системе переноса электронов, и сопряженного с ней механизма фосфорилирования - окислительного фосфорилирования . Последний, по современным представлениям, аналогичен механизму фотофосфорилирования . В группах эубактерий обнаружено огромное разнообразие типов жизни, у которых основным источником энергии служит окислительное фосфорилирование. Различия заключаются в природе доноров и акцепторов электронов. Таким образом, все современные способы получения энергии живыми организмами сформировались на уровне прокариотной клеточной организации и их становление может быть прослежено в эубактериальной ветви. В процессе дальнейшей эволюции развитие получили только наиболее совершенные варианты. В мире эукариот развились два полярных способа существования: хемоорганогетеротрофия и фотолитоавтотрофия . Первый лег в основу метаболизма представителей царств Animalia и Fungi , второй - Plantae . Все животные и грибы получают энергию в результате функционирования механизмов субстратного и окислительного фосфорилирования. Высшие растения сочетают оба типа метаболизма и получают энергию за счет функционирования всех механизмов фосфорилирования: фотосинтетического, субстратного и окислительного. Доминирующим у них является фотолитоавтотрофный тип метаболизма и сопряженный с ним механизм фотосинтетического фосфорилирования . Ссылки:medbiol.ru Эволюция микроорганизмовРеферат на тему«Эволюция микроорганизмов» Выполнил: Никоненко Е.В.10б Проверил: Кулик Н.И. Челябинск 2003 гГеологическая летопись нашей планеты – останки вымерших существ - неопровержимо доказывает, что жизнь на планете менялась: одни виды животных и растений исчезали, другие возникали, видоизменялись, порождая новые формы. То же, но в меньших масштабах можно наблюдать на изолированных островах или других замкнутых территориях: через несколько тысяч или даже сотен лет такой изоляции животные и растения уже заметно отличаются от живущих по другую сторону водной или иной преграды. Исторические изменения наследственных признаков организмов называются эволюцией ( от лат. evolutio – «развертывание»). Этот процесс имеет три очень важных следствия. Во-первых, в ходе эволюции возникают новые виды, т.е. увеличивается разнообразие форм организмов. Во-вторых, организмы адаптируются к изменениям условий внешней среды; поэтому говорят, что эволюция имеет приспособительный характер. И наконец, в-третьих, в результате эволюции постепенно повышается общий уровень организации живых существ: они усложняются и совершенствуются. В те времена – более четырех млрд лет назад – наша еще очень молодая планета была мало похожа на современную: температура ее поверхности была очень высокой(до 8000 градусов Цельсия), все слагающие планету породы – расплавлены. Даже диаметр Земли был меньше, чем сейчас, и полный оборот вокруг своей оси она совершала за восемнадцать часов, а не за двадцать четыре, как сейчас. Поверхность планеты непрерывно бомбардировали метеориты, в том числе и очень крупные (диаметром несколько сотен километров!). Чем крупнее они были, тем сильнее разогревалась земная кора. Когда закончилась эпоха «великой бомбардировки», Земля начала постепенно остывать. Породы, слагавшие планету, становились твердыми и образовывали неровную поверхность. Когда температура упала ниже ста градусов Цельсия, вода, бывшая до того паром, пролилась на Землю дождями и заполнила впадины. Так возник первобытный океан. Атмосфера того времени тоже разительно отличалась от нынешней: основными ее составляющими были аммиак, метан, водород и водяные пары. Такая атмосфера почти не задерживала солнечные лучи, особенно ультрафиолетовые, губительные для живых организмов. Как в такой обстановке могла зародиться жизнь? В 1923 г. российский ученый Александр Иванович Опарин предположил, что в условиях первобытной Земли органические вещества возникали из простейших соединений – аммиака, метана, водорода и воды. Энергия, необходимая для подобных превращений, могла быть получена или от ультрафиолетового излучения, или от частых грозовых электрических разрядов – молний. Возможно, эти органический вещества постепенно накапливались в древнем океане, образуя «первичный бульон», в котором зародилась жизнь. По гипотезе А.И.Опарина, в «первичном бульоне» длинные нитеобразные молекулы белков могли сворачиваться в шарики, «склеиваться» друг с другом, укрупняясь. Благодаря этому они становились устойчивыми к разрушающему действию прибоя и ультрафиолетового излучения. Белковые «шарики» в «первичном бульоне» притягивали к себе, связывали молекулы воды, а также жиров. Жиры оседали на поверхности белковых тел, обволакивая их слоем, структура которого отдаленно напоминала клеточную мембрану. Этот процесс Опарин назвал коацервацией (от лат. coacervus – «сгусток»), а получившиеся тела – коацерватными каплями, или просто коацерватами. С течением времени коацерваты поглощали из окружавшего их раствора все новые порции вещества, их структура усложнялась до тех пор, пока они не превратились в очень примитивные, но уже живые клетки. В древней атмосфере не было кислорода. Поэтому первые одноклеточные организмы, подобно современным бактериям, использовали в качестве окислителя для процессов дыхания и источника энергии ионы железа и других химических элементов. Более того, кислород оказался бы губителен для этих древнейших существ: появившись, он немедленно разрушил бы их клетки. Однако около 3,5 млрд лет назад произошла первая революция. Клетки некоторых примитивных существ приобрели способность использовать энергию солнечного света, т.е. фотосинтезировать, создавая органическое вещество из неорганического. Вероятно, они напоминали современные синезеленые водоросли. Одновременно эти необычные организмы стали выделять в атмосферу кислород. Первые живые существа, спасаясь от ядовитого для них газа, исчезли с поверхности планеты и из верхних слоев воды в озерах и морях, сохранившись лишь в глубине геологических пород, где были защищены слоем минеральных веществ. Древние синезеленые водоросли полностью изменили Землю: насыщенная кислородом атмосфера изгнала с поверхности примитивных бактерий, но сделала возможным дальнейшее совершенствование других форм, от которых произошли все современные организмы. Однако до этого было еще далеко, ведь совершенствование живых существ шло крайне медленно. Вторая (после возникновения фотосинтеза) революция произошла около 2,5 млрд лет назад, когда наряду с прокариотическими клетками бактерий и синезеленых водорослей появились эукариотические одноклкточные организмы. Ученые полагают, что они произошли от прокариотов. Главное отличие эукариотической клетки – наличие в ней внутриклеточных мембран. Возможно, они возникли в клетках древних бактерий благодаря впячиваниям их оболочек внутрь. Такие пузырьки превратились в пищеварительные вакуоли, лизосомы и цистерны эндоплазматической сети. Это приобретение дало древним организмам явное преимущество: они меньше зависели от окружающей среды, так как создавали запасы пищи внутри клеток. Такой организм уже мог перейти к питанию бактериями и синезелеными водорослями, захватывая их выпячиваниями клеточной оболочки и заключая в образующиеся пищеварительные вакуоли, чтобы потом переварить. Возможно, этот «хищник» был так прожорлив, что не сразу переваривал «проглоченные» жертвы и сохранял их какое-то время внутри своего одноклеточного тела. Попавшие в плен бактерии и одноклеточные синезеленые водоросли научились размножаться внутри большой клетки хищника, а со временем даже заключили с ним мир, основанный на взаимной выгоде: бактерии превратились в митохондрии, обеспечивающие клетку-хозяина энергией, а синезеленые водоросли – в пластиды (хлоропласты и хромопласты) и стали выполнять фотосинтез и некоторые другие обязанности. Третья революция случилась около 1,2 млрд лет назад, когда появилось половое размножение. В результате резко увеличился обмен наследственным материалом между организмами и как следствие возросло их многообразие, создавшее предпосылки для дальнейшего совершенствования жизни. Типичным представителем живого организма того времени был воротничковый жгутиконосец – существо, сочетавшее в себе черты современных жгутиконосцев и амеб. Вероятно, этот организм жил, прикрепившись ко дну океана или моря. Можно вообразить также и то, как это создание питалось. Колеблющийся жгутик направлял воду сквозь отверстия воротничка (вырост клетчатой стенки в виде кольцевой пластинки). Вода пригоняла мелкие частицы пищи, и они оседали на воротничке, как на ситечке. Эти частицы захватывало служившее для питания приспособление – ложноножка. В клетке жгутиконосца образовывалась пищеварительная вакуоль, в которой происходило переваривание частиц, - так же, как это происходит у амеб. В дальнейшем одноклеточные организмы соединялись и жили вместе, образовывая колонию. В такой колонии при многократном делении клеток становится тесно. Организмы-соседи мешают друг другу добывать необходимую пищу. Справиться с проблемой помогает специализация: какие-то одноклеточные сохраняют только воротнички и жгутики, какие-то, напротив, теряют жгутики, но сохраняют ложноножку. Т.е. разные клетки колонии объединяются в устойчивые слои. Каждый такой слой, или ткань, имеет определенную функцию. Так начинается эволюция многоклеточных организмов. Список литературы: 1. М.Аксенова, Г.Вильчек «Энциклопедия для детей» том 2 Биология 2. Энциклопедия Кирилла и Мефодия 2 CD www.coolreferat.com Эволюция микроорганизмов — реферат | Биохимическое единство, мысль о котором еще несколько десятилетий назад казалась столь невероятной, в настоящее время-твердо установленный факт. Клетки всех живых существ, от самых примитивных форм до наиболее высокоразвитых животных и растений, состоят из од них и тех же структурных элементов и используют одни и те же механизмы для получения энергии и для роста. По сравнению с этим фунда ментальным единством существующие различия и отклонения кажутся незначительными. Можно считать, что все ныне живущие организмы проделали вместе длинный путь развития. Из простейших форм посте пенно развились формы более сложные и специализированные, а потом, наконец, и те, которые населяют нашу планету сегодня. Этот процесс эволюционного развития организмов - одна из центральных проблем биологии. Первичная атмосфера Земли. Наша Земля кардинальным образом отличается от других планет Солнечной системы. По сравнению с Юпитером и Солнцем она содержит лишь незначительные количества инертных газов. По-видимому, она образовалась в результате объединения множества метеоритов; вследствие нагрева и расплавления внутреннего ядра Земли вода и газы были вытеснены к ее поверхности. Первичная атмосфера, вероятно, содержала много водорода, метана, азота и С02, но в ней не было кислорода. При фотолизе водяных паров, разумеется, освобождался кислород, но он вновь переходил в связанное состояние. Химическая эволюция могла происходить только в бескислородной атмосфере. Химическая эволюция. Гипотеза, согласно которой жизнь была зане сена на нашу планету извне, вряд ли заслуживает в настоящее время серьезного обсуждения. Самовоспроизводящиеся биологические единицы должны были возникнуть на самой Земле в ранний период ее существования. Согласно представлению, выдвинутому Холдейном и Опариным, в то время на Земле накопились большие количества органических веществ, но еще не было организмов, способных их использовать и минерализовать. Когда после первых попыток Миллера уда лось неоднократно подтвердить в эксперименте, что из неорганических веществ (Н2, С02, Nh4, Н20) и метана при подходящих условиях могут синтезироваться простые органические молекулы, сомнения в реальности химической эволюции полностью отпали. Как полагают, в восстановительной первичной атмосфере (в которой не было кислорода) под действием солнечной радиации и в результате электрических разрядов образовывались органические вещества, которые затем попадали в воду и в ней накапливались. Когда они накопились в большом количестве, видимо, возникли условия, при которых мог совершиться переход от химической эволюции к возникновению первых самовоспроизводящихся живых существ. Биологическая эволюция. Переход от неживой органической материи к живой клетке потребовал длительного времени (от 3,1 до 4,5 млрд. лет). Появившиеся клеточные организмы получили, очевидно, столь большое селективное преимущество, что все предшествующие формы организации оказались вытесненными. Поскольку доклеточные формы жизни (если они существовали) не сохранились даже в ископаемом виде, переход от неживого к живому представляется нам чрезвычайно быстрым. Эволюция прокариот. Согласно распространенному, хотя и весьма гипотетическому представлению, в восстановительной первичной атмосфере происходило развитие прокариотических организмов (рис. 17.5). Первыми прокариотами, которые могли появиться в водоемах, богатых органическими веществами, были организмы, существовавшие за счет брожения и обладавшие основными функциями анаэробного обмена (фруктозобисфосфатный и пентозофосфатный пути). Если предположить, что в водоемах имелись тогда и сульфаты, то следующим достижением органической эволюции мог быть эффективный транспорт электронов с созданием протонного потенциала как источника энергии для регенерации АТР. На этом этапе эволюции, вероятно, возникли производные тетрапиррола, содержащие железо или никель, а также автотрофный способ ассимиляции углерода (путь ацетил-СоА). Как реликты тех времен могут рассматриваться метанобразующие и ацетогенные бактерии, а также бактерии, восстанавливающие сульфаты до сульфида, которые, за рядом исключений, могут использовать Н2, СО2 и некоторые продукты брожения. После «изобретения» фосфорилирования, сопряженного с переносом электронов, могла возникнуть также фотосистема I - «протонный насос, приводимый в действие светом», что позволило использовать свет в качестве источника энергии. Реакционными центрами служили магнийпорфирины (хлорофиллы). Первые фототрофные организмы, вероятно, ассимилировали углерод на свету подобно Rhodospirillaceae. С приобретением способности фиксировать СО2 в рибулозобисфосфатном цикле и использовать неорганические доноры электронов (Н2, h3S, S) выработался тип метаболизма, характерный для пурпурных серных бактерий (Chromatiaceae). К еще большей независимости от растворенных в воде веществ привело затем появление фотосистемы II: стал возможен нециклический перенос электронов с использованием воды в качестве их донора. Этот процесс был неизбежно связан с выделением кислорода. Оксигенный фотосинтез привел к тому, что земная атмосфера приобрела окислительный характер. Представителями первых микроорганизмов, осуществлявших фотосинтез с выделением О2, являются цианобактерии.
Переход от первичной восстановительной атмосфры к атмосфере, содержащей кислород, несомненно, был величайшим событием как в эволюции живых существ, так и в преобразовании минералов. В результате превращения цитохромов в терминальные оксидазы и использования молекулярного кислорода в качестве акцептора электронов у бактерий стал возможным новый тип метаболизма - аэробное дыхание. Как полагают, 2,1 млрд. лет назад уже существовали все фототрофные дышащие прокариоты, известные в настоящее время. Согласно геологическим данным, уже 2,7 млрд. лет назад имелся в небольшом количестве кислород. На протяжении последних 1,2 млрд. лет вся жизнь на Земле зависит от биологического фотосинтеза и от кислорода, выделяемого растениями. Вызвав накопление кислорода в атмосфере, развитие жизни тем самым - через окисление металлов и минералов повлияло и на неживую природу. В период до 0,6 млрд. лет назад содержание кислорода в атмосфере увеличилось, вероятно, всего лишь до 2%. И только после того, как растения завоевали сушу и покрыли ее густым зеленым ковром, концентрация кислорода в воздухе резко повысилась и достигла современного уровня (21%). Накопление О2 сопровождалось образованием отложений углерода в форме каменного угля, нефти, природного газа и углеродсодержащих осадочных пород. Ископаемые остатки, относящиеся к раннему докембрию, чрезвычайно редки. Из-за малой величины примитивных организмов и отсутствия у них каких-либо твердых компонентов остатки их могли сохраниться лишь при исключительных обстоятельствах. В штате Миннесота (США) в отложениях, возраст которых оценивают в 2,7 млрд. лет, были обнаружены структуры, интерпретируемые как остатки бактерий (в том числе цианобактерий). Возраст южноафриканских отложений, в которых тоже были найдены структуры, напоминающие бактерии, достигает 3,1 млрд. лет. Это самые древние из всех известных следов жизни. Бактерии - это сохранившиеся до наших дней живые свидетели ран ней эволюции жизни. Многие в прошлом широко распространенные и господствовавшие бактерии в настоящее время ведут весьма скромное существование. В экологических нишах, обеспечивающих им подходящие условия жизни, сохранились также и анаэробные бактерии. Эволюция эукариот. Эукариотические клетки, видимо, возникли лишь тогда, когда в атмосфере появился кислород. Все эукариоты, за очень малым исключением, -аэробные организмы. Прокариоты занимали много различных экологических ниш. Выработка разнообразных типов метаболизма у прокариот была, по-видимому, обусловлена простой структурой клетки, высокоразвитыми системами регуляции, быстрым ростом и наличием нескольких механизмов переноса генов. На пути дальнейшей эволюции прокариот стояли непреодолимые трудности, связанные прежде всего с малыми размерами генома, его гаплоидным состоянием и малой величиной клеток. Новая окружающая среда с аэробными условиями позволяла получать больше энергии, но для ее использования нужны были более крупные клетки, широкие возможности структурной дифференцировки и соответственно во много раз больший геном, который обеспечивал бы хранение большого объема информации. Величина генома 5-109 Да была, вероятно, верхним пределом молекулярной массы бактериальной хромосомы, состоящей из одной-единственной двойной цепи. Для дальнейшей эволюции требовалось создание новой модели. Различия между прокариотической и эукариотической клетками (эуцитом и протоцитом) огромны. Еще раз перечислим важнейшие особенности клеток эукариот: 1. Носитель наследственной информации (ДНК) отделен от «метаболических пространств» ядерной оболочкой. 2. Вследствие этого транскрипция (в ядре) отделена от трансляции (в цитоплазме). 3. Геном разделен на части, имеется несколько (часто много) линейных хромосом вместо одной кольцевой. 4. Репликация ДНК происходит только в интерфазе; каждая хромосома имеет по нескольку репликонов; дочерние хромосомы распределяются путем митоза. 5. Существуют внутриклеточные механизмы с использованием актина и тубулина для перемещения хромосом во время митоза и мейоза, а также структуры типа пузырьков (лизосомы, пероксисомы и другие «микро тельца»). 6. В генах имеются некодирующие вставки - интроны. 7. ДНК образует комплекс с гистонами, по структуре напоминающий нитку жемчуга (цепь из нуклеосом). 8. Жизненный цикл включает мейоз, при котором из диплоидных клеток образуются гаплоидные. Это позволяет осуществить половой процесс с перекомбинированием генов и смену гаплофазы и диплофазы. 9. Экзоцитоз: внеклеточные ферменты синтезируются не прямо на плазматической мембране (с одновременным выведением их из клетки), а на внутренних мембранах, после чего в цистернах доставляются на поверхность. 10. Эндоцитоз (в форме фагоцитоза и пиноцитоза), позволяющий приобретать внутриклеточных симбионтов. 11. Наличие митохондрий и хлоропластов, которые служат для получения энергии (ресинтеза АТР). 12. Жгутики (или реснички) типа 9 + 2. Итак, эуцит отличается от протоцита многими функциями и структурами. Хотя и известны отдельные эукариоты, у которых тот или иной признак отсутствует, нет таких примитивных форм, по которым можно было бы определить, в какой последовательности появлялись новые признаки. По-видимому, каждый этап эволюции приносил с собой лишь очень небольшое селективное преимущество, по крайней мере по сравнению с ближайшей предшествующей ступенью. Таким образом, промежуточные формы не сохранялись и, вероятно, были такими нестойкими, что сейчас нет даже ископаемых остатков, которые позволяли бы судить об их функциональных особенностях. В настоящее время имеется лишь небольшое число организмов, которые можно считать развившимися из промежуточных форм. Возможность когда-либо установить последовательность появления перечисленных выше новых признаков следует оценить пессимистически. Но все же можно предположить, что на ранних этапах эволюции эукариотической клетки возникали различные модели ее организации, прежде чем появились многоклеточные организмы. Следует отметить, что эукариоты специализировались в основном на фотосинтезе и существовании в аэробных условиях, а целый ряд других важных экологических функций остался за прокариотами. К ним относятся фиксация азота, нитрификация, денитрификация, сульфатное и серное дыхание, окисление серы и металлов, образование и использование метана. Круговорот азота и серы полностью или преимуществен но находится «в ведении» прокариот. Таким образом, прокариоты могли бы поддерживать круговороты веществ и сохранять биосферу, тогда как эукариоты одни не справились бы с этой задачей. Если прокариоты в течение миллиардов лет развивались сами по себе, то эукариоты никогда не оставались одни. Им приходилось все время противостоять прокариотам. Они предоставляли последним новые экологические ниши, защиту и были их жертвами. Многоклеточные организмы своими высокоразвитыми защитными и иными приспособлениями отчасти обязаны агрессивности прокариот. С другой стороны, эукариоты научились извлекать пользу из тесной ассоциации с прокариотами и поставили их себе на службу в качестве эктосимбионтов (в кишечном тракте, на коже, у жвачных в рубце) и эндосимбионтов (для фиксации азота, продукции биомассы путем фотосинтеза, использова ния h3S, удаления Н2). Эволюция живых организмов предлагает для решения массу увлекательных проблем. Их исследование только начинается. |
|
||||||||||||||||||||||||||||||||||||
|
|