Реферат на тему Теории возникновения Вселенной. Реферат теории возникновения вселенной


Реферат на тему Теории возникновения Вселенной

Содержание 1.     Основные космологические гипотезы 2.     Концепция Большого взрыва 3.     Проблема существования и поиска внеземных цивилизаций Список используемой литературы 1.                 Основные космологические гипотезы Результаты познания, получаемые в космологии, оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально. 1. Классическая космологическая модель. Успехи космологии и космогонии 18-19 вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Вселенная в этом представлении о мире считается бесконечной в пространстве и во времени, т.е. вечной. Основной закон, управляющий движением и развитием небесных тел, - закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Количество звезд, звездных систем и планет во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее погасшим, звездам приходят новые, молодые светила. В таком виде классическая космологическая модель Вселенной господствовала в науке вплоть до конца 19 в. К концу 19 века появились серьезные сомнения в классической модели, которые приняли форму космологических парадоксов - фотометрического, гравитационного и термодинамического. В 18 веке швейцарский астроном Р. Шезо высказал сомнения по поводу пространственной бесконечности Вселенной. Если предположить, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит, поэтому данное парадоксальное утверждение получило в астрономии название фотометрического парадокса Шезо-Ольберса. В конце 19в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также вытекающий из представлений о бесконечности Вселенной. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной (результат зависит от способа вычисления). Поскольку этого не происходит, Зеелигер сделал вывод, что кол-во небесных тел во Вселенной ограничено, а значит и сама Вселенная небесконечна. Это утверждение получило название гравитационного парадокса. Термодинамический парадокс был сформулирован также в 19в. Он вытекает из второго начала термодинамики- принципа возрастания энтропии. Мир полон энергии, которая подчиняется закону сохранения энергии. Кажется, что из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. Если в природе материя не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя пребывает в постоянном круговорте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Поэтому неожиданно прозвучал вывод из второго начала термодинамики, открытого в середине 19в. Кельвином и Р.Ю.Э. Клаузисом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся, наступит «тепловая смерть Вселенной». Таким образом, три космологических парадокса заставили ученных усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей. 4.                Релятивистская модель Вселенной. Новая модель Вселенной была создана в 1917 году А. Эйнштейном. Ее основу составила релятивистская теория тяготения. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства; материя распределена в нем равномерно; время бесконечно, а его течение не влияет на свойства Вселенной. На основании своих расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу. Объем такой Вселенной может быть выражен, хотя и очень большим, но конечным числом кубометров. Но конечная по объему Вселенная в то же время безгранична, как поверхность любой сферы. Вселенная Эйнштейна содержит ограниченное число звезд и звездных систем, и поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Вечность ей не присуща. Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку на статичность мира. 5.                Модель расширяющейся Вселенной. В 1922 г., советский геофизик и математик А.А. Фридман на основании строгих расчетов установил, что Вселенная никак не может быть стационарной. Фридман сделал это открытие, опираясь на сформулированный им космологический принцип, строящийся на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной. Фридман доказал, что уравнения Эйнштейна имеют решения, согласно которым Вселенная может расширяться либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются. Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э.П. Хаббл обнаружил эффект «красного смещения» спектральных линий. Это было истолковано как следствие эффекта Доплера – изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. Красное смещение было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием (примерно 55 км/с на каждый миллион парсек). В результате своих наблюдений Хаббл обосновал представление, согласно которому Вселенная – это множество галактик, разделенных между собой огромными расстояниями. Фридман предложил три модели Вселенной. 1.                                       Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, образуя сферу. 2.                                       Вселенная расширяется бесконечно, пространство искривлено и бесконечно. 3.                                       пространство плоское и бесконечное. По какому из этих вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлета вещества. Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют «открытой Вселенной». Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности. Такой вариант модели назван осциллирующей, или «закрытой Вселенной». В случае, когда силы гравитации равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю. 2. Концепция Большого взрыва Представление о развитии Вселенной привело к постановке вопроса о начале эволюции (рождении) Вселенной и ее конце (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причины и процесс рождения самой Вселенной. Только теория Большого взрыва Г.А. Гамова смогла к настоящему времени объяснить почти все факты, связанные с этой проблемой. Основные черты этой модели сохранились до сих пор, хотя она была позже дополнена теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейнхардтом, и дополненной советским физиком А.Д. Линде. В 1948 году Гамов выдвинул предположение, что Вселенная образовалась в результате гигантского взрыва, произошедшего примерно 15 млрд лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был равен нулю, а ее плотность – бесконечности. Это начальное состояние называется сингулярностью. Но по принципу неопределенности В. Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры. Долгое время ничего нельзя было сказать о причинах Большого взрыва, переходе к расширению Вселенной. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной. «Начало» Вселенной. Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии, возникшей из квантового излучения, т.е. из ничего. В вакууме отсутствуют фиксируемые частицы, поля и волны, но пока вакуум находится в равновесном состоянии, в нем существуют виртуальные частицы, которые берут у вакуума энергию на короткий промежуток времени, чтобы родиться, быстро вернуть занятую энергию и исчезнуть. Когда же вакуум по какой-то причине в некоторой исходной точке вышел из состояния равновесия, то виртуальные частицы стали схватывать энергию без отдачи и превращаться в реальные. Поэтому в определенной точке пространства образовалось огромное количество последних. Когда же возбужденный вакуум разрушился, высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Начинается стремительное расширение Вселенной, возникают время и пространство. Инфляционный период - с после начала расширения Вселенной, за которые ее размеры увеличились в раз. К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная стала чрезвычайно «горячей». С этого момента Вселенная развивается стандартно согласно теории «горячего» Большого взрыва. Ранний этап эволюции Вселенной. Эволюция Вселенной происходило поэтапно, и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением ее структур. Этапы различаются характеристиками взаимодействия элементарных частиц и называются эрами. Адронная эра продолжалась с. На этом этапе температура понизилась до К, появились все четыре фундаментальных взаимодействия, прекратилось свободное существование кварков. Лептонная эра, продолжалась 1 с. Температура Вселенной понизилась до К. Главными ее элементами были лептоны. В конце этой эры вещество стало прозрачным для нейтрино. Эра излучения продолжалась 1 млн лет. За это время температура Вселенной снизилась с 10 млрд К до 3000 К. На протяжении данного этапа происходило соединение протонов и нейтронов. К концу этого этапа Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало реликтовое излучение. Затем почти 500 тыс. лет не происходило никаких качественных изменений – шло медленное остывание и расширение Вселенной. Когда она остыла до 3000 к, образовалась однородная Вселенная. После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газовопылевое облако и электромагнитный фон. Спустя 1 млрд лет после образования Вселенной из случайных уплотнений вещества стали появляться галактики и звезды. Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояние между галактиками в группах и скоплениях в 10-20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн световых лет. Пространство между галактиками заполнено газом, пылью и разного рода излучениями. Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил. Рождение звезд в галактике происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Источник собственного свечения звезд – термоядерная реакция, превращающая водород в гелий. С момента начала этой реакции звезда переходит на главную последовательность, в соответствии с которой будут изменяться с течением времени ее характеристики: светимость, температура, радиус, химический состав и масса. 3. Проблема существования и поиска внеземных цивилизаций Эволюция Вселенной привела к образованию планет, на некоторых из которых могут появиться жизнь и разум. Для этого нужны разнообразные химические элементы, которые могут объединяться в молекулы и сложность которых может нарастать до очень высоких уровней. В основе этих процессов – химические силы, за которыми скрывается одна из фундаментальных сил природы – электромагнитное взаимодействие. Тема существования жизни на других планетах неоднократно обыгрывалась в научно-фантастических произведениях, но современная наука не позволяет дать ни положительного, ни отрицательного ответа на этот вопрос. Особенно остро вопрос о поиске внеземных цивилизаций – общества разумных существ, которые могут возникать и существовать вне Земли – встал во второй половине 20 века в связи с выходом человека в космос. Стала ясна потенциальная возможность космических полетов не только внутри Солнечной системы, но и за ее пределы. На этом основании заговорили не только о полетах человека в космос, но и о возможности посещения нашей планеты представителями других цивилизаций. В 1960-х гг. появились первые международные программы, ставящие своей целью поиск и контакт с внеземными цивилизациями – SETI (поиск внеземных цивилизаций) и CETI (связь с внеземными цивилизациями). А в 1982 г. Международный астрономический союз организовал специальную комиссию по этой проблеме. Основным методом работы этой комиссии и международных программ поиск радиосигналов от других цивилизаций, а также отправка собственных сообщений. Еще одним направлением работы стал поиск следов астроинженерной деятельности внеземных цивилизаций. Долгое время среди ученых господствовала идея о том, что высокоразвитые цивилизации должны располагать практически неограниченными источниками энергии, распоряжаясь полностью не только энергией своего солнца, но и энергией в масштабах всей своей галактики. Поэтому следы деятельности таких цивилизаций должны быть хорошо заметны. Считалось, что они могут перемещать планеты, звезды, взрывать ненужные звезды и зажигать новые. Поиск следов пребывания представителей внеземных цивилизаций на Земле – еще одно направление работы. Предполагалось, что в нашей галактике должно быть большое число старых цивилизаций, начавших свое развитие за несколько миллиардов лет до появления жизни на Земле. Поэтому, считалось, что Земля могла неоднократно посещаться представителями этих цивилизаций в прошлом. И наконец, ученых не оставляла надежда на возможный прилет представителей внеземных цивилизаций в наше время. С позиции современной науки предположение о возможности существования внеземных цивилизаций имеет под собой определенные основания. Физика и астрономия установили факт тождественности физических законов во всей видимой части Вселенной. Оптимисты считают,что у 1-2 % звезд в Галактике могут быть планетные системы, на которых появились жизнь, а затем и цивилизация. При самых оптимальных оценках таких звезд не более 1 млрд. Редкость внеземных цивилизаций может быть одной из причин, почему мы не фиксируем их существование. Другой причиной может быть недостаток наблюдаемых данных. Кроме того, мы можем не осознавать, что получаемые нами сигналы имеют искусственное происхождение. Также существует предположение, что жизнь в космосе не является уникальной, но что она возникла в разных местах Вселенной примерно в одно и то же время, около 4 млрд лет назад. Тогда во Вселенной нет слишком большой разницы в технических уровнях развившихся цивилизаций, и искать следы этих цивилизаций просто бессмысленно, так как их еще нет. Тем не менее поиск следов внеземных цивилизаций не прекращается. Более того, ученые думают о том, как передать им информацию о существовании земной цивилизации. Список используемой литературы: ·            Горелов А.А. Концепция современного естествознания. – М.: Центр, 1997 г. ·            Концепции современного естествознания: учеб. пособие/ А.П. Садохин. – 3-е изд., стер. – М.: Издательство «Омега», 2008 г.

bukvasha.ru

Реферат: Теории возникновения Вселенной

Содержание

1.   Основные космологические гипотезы

2.   Концепция Большого взрыва

3.   Проблема существования и поиска внеземных цивилизаций

Список используемой литературы

1.         Основные космологические гипотезы

Результаты познания, получаемые в космологии, оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально.

1. Классическая космологическая модель. Успехи космологии и космогонии 18-19 вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Вселенная в этом представлении о мире считается бесконечной в пространстве и во времени, т.е. вечной. Основной закон, управляющий движением и развитием небесных тел, - закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Количество звезд, звездных систем и планет во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее погасшим, звездам приходят новые, молодые светила. В таком виде классическая космологическая модель Вселенной господствовала в науке вплоть до конца 19 в.

К концу 19 века появились серьезные сомнения в классической модели, которые приняли форму космологических парадоксов - фотометрического, гравитационного и термодинамического.

В 18 веке швейцарский астроном Р. Шезо высказал сомнения по поводу пространственной бесконечности Вселенной. Если предположить, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит, поэтому данное парадоксальное утверждение получило в астрономии название фотометрического парадокса Шезо-Ольберса.

В конце 19в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также вытекающий из представлений о бесконечности Вселенной. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной (результат зависит от способа вычисления). Поскольку этого не происходит, Зеелигер сделал вывод, что кол-во небесных тел во Вселенной ограничено, а значит и сама Вселенная небесконечна. Это утверждение получило название гравитационного парадокса.

Термодинамический парадокс был сформулирован также в 19в. Он вытекает из второго начала термодинамики- принципа возрастания энтропии. Мир полон энергии, которая подчиняется закону сохранения энергии. Кажется, что из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. Если в природе материя не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя пребывает в постоянном круговорте. Таким образом, погасшие звезды снова превращаются в источник света и тепла.

Поэтому неожиданно прозвучал вывод из второго начала термодинамики, открытого в середине 19в. Кельвином и Р.Ю.Э. Клаузисом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся, наступит «тепловая смерть Вселенной».

Таким образом, три космологических парадокса заставили ученных усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.

4.         Релятивистская модель Вселенной. Новая модель Вселенной была создана в 1917 году А. Эйнштейном. Ее основу составила релятивистская теория тяготения. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства; материя распределена в нем равномерно; время бесконечно, а его течение не влияет на свойства Вселенной. На основании своих расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

Объем такой Вселенной может быть выражен, хотя и очень большим, но конечным числом кубометров. Но конечная по объему Вселенная в то же время безгранична, как поверхность любой сферы. Вселенная Эйнштейна содержит ограниченное число звезд и звездных систем, и поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку на статичность мира.

5.         Модель расширяющейся Вселенной. В 1922 г., советский геофизик и математик А.А. Фридман на основании строгих расчетов установил, что Вселенная никак не может быть стационарной. Фридман сделал это открытие, опираясь на сформулированный им космологический принцип, строящийся на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной.

Фридман доказал, что уравнения Эйнштейна имеют решения, согласно которым Вселенная может расширяться либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э.П. Хаббл обнаружил эффект «красного смещения» спектральных линий. Это было истолковано как следствие эффекта Доплера – изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. Красное смещение было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием (примерно 55 км/с на каждый миллион парсек).

В результате своих наблюдений Хаббл обосновал представление, согласно которому Вселенная – это множество галактик, разделенных между собой огромными расстояниями.

Фридман предложил три модели Вселенной.

1.                    Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, образуя сферу.

2.                    Вселенная расширяется бесконечно, пространство искривлено и бесконечно.

3.                    пространство плоское и бесконечное.

По какому из этих вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлета вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют «открытой Вселенной».

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности. Такой вариант модели назван осциллирующей, или «закрытой Вселенной».

В случае, когда силы гравитации равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю.

2. Концепция Большого взрыва

 

Представление о развитии Вселенной привело к постановке вопроса о начале эволюции (рождении) Вселенной и ее конце (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причины и процесс рождения самой Вселенной. Только теория Большого взрыва Г.А. Гамова смогла к настоящему времени объяснить почти все факты, связанные с этой проблемой. Основные черты этой модели сохранились до сих пор, хотя она была позже дополнена теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейнхардтом, и дополненной советским физиком А.Д. Линде.

В 1948 году Гамов выдвинул предположение, что Вселенная образовалась в результате гигантского взрыва, произошедшего примерно 15 млрд лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был равен нулю, а ее плотность – бесконечности. Это начальное состояние называется сингулярностью.

Но по принципу неопределенности В. Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры.

Долгое время ничего нельзя было сказать о причинах Большого взрыва, переходе к расширению Вселенной. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

«Начало» Вселенной. Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии, возникшей из квантового излучения, т.е. из ничего. В вакууме отсутствуют фиксируемые частицы, поля и волны, но пока вакуум находится в равновесном состоянии, в нем существуют виртуальные частицы, которые берут у вакуума энергию на короткий промежуток времени, чтобы родиться, быстро вернуть занятую энергию и исчезнуть. Когда же вакуум по какой-то причине в некоторой исходной точке вышел из состояния равновесия, то виртуальные частицы стали схватывать энергию без отдачи и превращаться в реальные. Поэтому в определенной точке пространства образовалось огромное количество последних. Когда же возбужденный вакуум разрушился, высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Начинается стремительное расширение Вселенной, возникают время и пространство.

Инфляционный период - с после начала расширения Вселенной, за которые ее размеры увеличились в раз.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная стала чрезвычайно «горячей». С этого момента Вселенная развивается стандартно согласно теории «горячего» Большого взрыва.

Ранний этап эволюции Вселенной. Эволюция Вселенной происходило поэтапно, и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением ее структур. Этапы различаются характеристиками взаимодействия элементарных частиц и называются эрами.

Адронная эра продолжалась с. На этом этапе температура понизилась до К, появились все четыре фундаментальных взаимодействия, прекратилось свободное существование кварков.

Лептонная эра, продолжалась 1 с. Температура Вселенной понизилась до К. Главными ее элементами были лептоны. В конце этой эры вещество стало прозрачным для нейтрино.

Эра излучения продолжалась 1 млн лет. За это время температура Вселенной снизилась с 10 млрд К до 3000 К. На протяжении данного этапа происходило соединение протонов и нейтронов. К концу этого этапа Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало реликтовое излучение.

Затем почти 500 тыс. лет не происходило никаких качественных изменений – шло медленное остывание и расширение Вселенной. Когда она остыла до 3000 к, образовалась однородная Вселенная.

После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газовопылевое облако и электромагнитный фон. Спустя 1 млрд лет после образования Вселенной из случайных уплотнений вещества стали появляться галактики и звезды.

Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояние между галактиками в группах и скоплениях в 10-20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн световых лет. Пространство между галактиками заполнено газом, пылью и разного рода излучениями.

Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил.

Рождение звезд в галактике происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Источник собственного свечения звезд – термоядерная реакция, превращающая водород в гелий.

С момента начала этой реакции звезда переходит на главную последовательность, в соответствии с которой будут изменяться с течением времени ее характеристики: светимость, температура, радиус, химический состав и масса.

3. Проблема существования и поиска внеземных цивилизаций

 

Эволюция Вселенной привела к образованию планет, на некоторых из которых могут появиться жизнь и разум. Для этого нужны разнообразные химические элементы, которые могут объединяться в молекулы и сложность которых может нарастать до очень высоких уровней. В основе этих процессов – химические силы, за которыми скрывается одна из фундаментальных сил природы – электромагнитное взаимодействие. Тема существования жизни на других планетах неоднократно обыгрывалась в научно-фантастических произведениях, но современная наука не позволяет дать ни положительного, ни отрицательного ответа на этот вопрос.

Особенно остро вопрос о поиске внеземных цивилизаций – общества разумных существ, которые могут возникать и существовать вне Земли – встал во второй половине 20 века в связи с выходом человека в космос. Стала ясна потенциальная возможность космических полетов не только внутри Солнечной системы, но и за ее пределы. На этом основании заговорили не только о полетах человека в космос, но и о возможности посещения нашей планеты представителями других цивилизаций.

В 1960-х гг. появились первые международные программы, ставящие своей целью поиск и контакт с внеземными цивилизациями – SETI (поиск внеземных цивилизаций) и CETI (связь с внеземными цивилизациями). А в 1982 г. Международный астрономический союз организовал специальную комиссию по этой проблеме. Основным методом работы этой комиссии и международных программ поиск радиосигналов от других цивилизаций, а также отправка собственных сообщений.

Еще одним направлением работы стал поиск следов астроинженерной деятельности внеземных цивилизаций. Долгое время среди ученых господствовала идея о том, что высокоразвитые цивилизации должны располагать практически неограниченными источниками энергии, распоряжаясь полностью не только энергией своего солнца, но и энергией в масштабах всей своей галактики. Поэтому следы деятельности таких цивилизаций должны быть хорошо заметны. Считалось, что они могут перемещать планеты, звезды, взрывать ненужные звезды и зажигать новые.

Поиск следов пребывания представителей внеземных цивилизаций на Земле – еще одно направление работы. Предполагалось, что в нашей галактике должно быть большое число старых цивилизаций, начавших свое развитие за несколько миллиардов лет до появления жизни на Земле. Поэтому, считалось, что Земля могла неоднократно посещаться представителями этих цивилизаций в прошлом.

И наконец, ученых не оставляла надежда на возможный прилет представителей внеземных цивилизаций в наше время.

С позиции современной науки предположение о возможности существования внеземных цивилизаций имеет под собой определенные основания. Физика и астрономия установили факт тождественности физических законов во всей видимой части Вселенной.

Оптимисты считают,что у 1-2 % звезд в Галактике могут быть планетные системы, на которых появились жизнь, а затем и цивилизация. При самых оптимальных оценках таких звезд не более 1 млрд.

Редкость внеземных цивилизаций может быть одной из причин, почему мы не фиксируем их существование. Другой причиной может быть недостаток наблюдаемых данных. Кроме того, мы можем не осознавать, что получаемые нами сигналы имеют искусственное происхождение. Также существует предположение, что жизнь в космосе не является уникальной, но что она возникла в разных местах Вселенной примерно в одно и то же время, около 4 млрд лет назад. Тогда во Вселенной нет слишком большой разницы в технических уровнях развившихся цивилизаций, и искать следы этих цивилизаций просто бессмысленно, так как их еще нет.

Тем не менее поиск следов внеземных цивилизаций не прекращается. Более того, ученые думают о том, как передать им информацию о существовании земной цивилизации.

Список используемой литературы:

 

·       Горелов А.А. Концепция современного естествознания. – М.: Центр, 1997 г.

·       Концепции современного естествознания: учеб. пособие/ А.П. Садохин. – 3-е изд., стер. – М.: Издательство «Омега», 2008 г.

5rik.ru

Реферат - Теории возникновения Вселенной

Содержание

1. Основные космологические гипотезы

2. Концепция Большого взрыва

3. Проблема существования и поиска внеземных цивилизаций

Список используемой литературы

1. Основные космологические гипотезы

Результаты познания, получаемые в космологии, оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально.

1. Классическая космологическая модель. Успехи космологии и космогонии 18-19 вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Вселенная в этом представлении о мире считается бесконечной в пространстве и во времени, т.е. вечной. Основной закон, управляющий движением и развитием небесных тел, — закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Количество звезд, звездных систем и планет во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее погасшим, звездам приходят новые, молодые светила. В таком виде классическая космологическая модель Вселенной господствовала в науке вплоть до конца 19 в.

К концу 19 века появились серьезные сомнения в классической модели, которые приняли форму космологических парадоксов — фотометрического, гравитационного и термодинамического.

В 18 веке швейцарский астроном Р. Шезо высказал сомнения по поводу пространственной бесконечности Вселенной. Если предположить, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит, поэтому данное парадоксальное утверждение получило в астрономии название фотометрического парадокса Шезо-Ольберса.

В конце 19в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также вытекающий из представлений о бесконечности Вселенной. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной (результат зависит от способа вычисления). Поскольку этого не происходит, Зеелигер сделал вывод, что кол-во небесных тел во Вселенной ограничено, а значит и сама Вселенная небесконечна. Это утверждение получило названиегравитационного парадокса.

Термодинамический парадокс был сформулирован также в 19в. Он вытекает из второго начала термодинамики- принципа возрастания энтропии. Мир полон энергии, которая подчиняется закону сохранения энергии. Кажется, что из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. Если в природе материя не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя пребывает в постоянном круговорте. Таким образом, погасшие звезды снова превращаются в источник света и тепла.

Поэтому неожиданно прозвучал вывод из второго начала термодинамики, открытого в середине 19в. Кельвином и Р.Ю.Э. Клаузисом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся, наступит «тепловая смерть Вселенной».

Таким образом, три космологических парадокса заставили ученных усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.

4. Релятивистская модель Вселенной. Новая модель Вселенной была создана в 1917 году А. Эйнштейном. Ее основу составила релятивистская теория тяготения. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства; материя распределена в нем равномерно; время бесконечно, а его течение не влияет на свойства Вселенной. На основании своих расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

Объем такой Вселенной может быть выражен, хотя и очень большим, но конечным числом кубометров. Но конечная по объему Вселенная в то же время безгранична, как поверхность любой сферы. Вселенная Эйнштейна содержит ограниченное число звезд и звездных систем, и поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку на статичность мира.

5. Модель расширяющейся Вселенной. В 1922 г., советский геофизик и математик А.А. Фридман на основании строгих расчетов установил, что Вселенная никак не может быть стационарной. Фридман сделал это открытие, опираясь на сформулированный им космологический принцип, строящийся на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной.

Фридман доказал, что уравнения Эйнштейна имеют решения, согласно которым Вселенная может расширяться либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э.П. Хаббл обнаружил эффект «красного смещения» спектральных линий. Это было истолковано как следствие эффекта Доплера – изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. Красное смещение было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием (примерно 55 км/с на каждый миллион парсек).

В результате своих наблюдений Хаббл обосновал представление, согласно которому Вселенная – это множество галактик, разделенных между собой огромными расстояниями.

Фридман предложил три модели Вселенной.

1. Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, образуя сферу.

2. Вселенная расширяется бесконечно, пространство искривлено и бесконечно.

3. пространство плоское и бесконечное.

По какому из этих вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлета вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют «открытой Вселенной».

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности. Такой вариант модели назван осциллирующей, или «закрытой Вселенной».

В случае, когда силы гравитации равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю.

2. Концепция Большого взрыва

Представление о развитии Вселенной привело к постановке вопроса о начале эволюции (рождении) Вселенной и ее конце (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причины и процесс рождения самой Вселенной. Только теория Большого взрыва Г.А. Гамова смогла к настоящему времени объяснить почти все факты, связанные с этой проблемой. Основные черты этой модели сохранились до сих пор, хотя она была позже дополнена теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейнхардтом, и дополненной советским физиком А.Д. Линде.

В 1948 году Гамов выдвинул предположение, что Вселенная образовалась в результате гигантского взрыва, произошедшего примерно 15 млрд лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был равен нулю, а ее плотность – бесконечности. Это начальное состояние называется сингулярностью.

Но по принципу неопределенности В. Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры.

Долгое время ничего нельзя было сказать о причинах Большого взрыва, переходе к расширению Вселенной. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

«Начало» Вселенной. Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии, возникшей из квантового излучения, т.е. из ничего. В вакууме отсутствуют фиксируемые частицы, поля и волны, но пока вакуум находится в равновесном состоянии, в нем существуют виртуальные частицы, которые берут у вакуума энергию на короткий промежуток времени, чтобы родиться, быстро вернуть занятую энергию и исчезнуть. Когда же вакуум по какой-то причине в некоторой исходной точке вышел из состояния равновесия, то виртуальные частицы стали схватывать энергию без отдачи и превращаться в реальные. Поэтому в определенной точке пространства образовалось огромное количество последних. Когда же возбужденный вакуум разрушился, высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Начинается стремительное расширение Вселенной, возникают время и пространство.

Инфляционный период — с после начала расширения Вселенной, за которые ее размеры увеличились в раз.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная стала чрезвычайно «горячей». С этого момента Вселенная развивается стандартно согласно теории «горячего» Большого взрыва.

Ранний этап эволюции Вселенной. Эволюция Вселенной происходило поэтапно, и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением ее структур. Этапы различаются характеристиками взаимодействия элементарных частиц и называются эрами.

Адронная эра продолжалась с. На этом этапе температура понизилась до К, появились все четыре фундаментальных взаимодействия, прекратилось свободное существование кварков.

Лептонная эра, продолжалась 1 с. Температура Вселенной понизилась до К. Главными ее элементами были лептоны. В конце этой эры вещество стало прозрачным для нейтрино.

Эра излучения продолжалась 1 млн лет. За это время температура Вселенной снизилась с 10 млрд К до 3000 К. На протяжении данного этапа происходило соединение протонов и нейтронов. К концу этого этапа Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало реликтовое излучение.

Затем почти 500 тыс. лет не происходило никаких качественных изменений – шло медленное остывание и расширение Вселенной. Когда она остыла до 3000 к, образовалась однородная Вселенная.

После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газовопылевое облако и электромагнитный фон. Спустя 1 млрд лет после образования Вселенной из случайных уплотнений вещества стали появляться галактики и звезды.

Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояние между галактиками в группах и скоплениях в 10-20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн световых лет. Пространство между галактиками заполнено газом, пылью и разного рода излучениями.

Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил.

Рождение звезд в галактике происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Источник собственного свечения звезд – термоядерная реакция, превращающая водород в гелий.

С момента начала этой реакции звезда переходит на главную последовательность, в соответствии с которой будут изменяться с течением времени ее характеристики: светимость, температура, радиус, химический состав и масса.

3. Проблема существования и поиска внеземных цивилизаций

Эволюция Вселенной привела к образованию планет, на некоторых из которых могут появиться жизнь и разум. Для этого нужны разнообразные химические элементы, которые могут объединяться в молекулы и сложность которых может нарастать до очень высоких уровней. В основе этих процессов – химические силы, за которыми скрывается одна из фундаментальных сил природы – электромагнитное взаимодействие. Тема существования жизни на других планетах неоднократно обыгрывалась в научно-фантастических произведениях, но современная наука не позволяет дать ни положительного, ни отрицательного ответа на этот вопрос.

Особенно остро вопрос о поиске внеземных цивилизаций – общества разумных существ, которые могут возникать и существовать вне Земли – встал во второй половине 20 века в связи с выходом человека в космос. Стала ясна потенциальная возможность космических полетов не только внутри Солнечной системы, но и за ее пределы. На этом основании заговорили не только о полетах человека в космос, но и о возможности посещения нашей планеты представителями других цивилизаций.

В 1960-х гг. появились первые международные программы, ставящие своей целью поиск и контакт с внеземными цивилизациями – SETI (поиск внеземных цивилизаций) и CETI (связь с внеземными цивилизациями). А в 1982 г. Международный астрономический союз организовал специальную комиссию по этой проблеме. Основным методом работы этой комиссии и международных программ поиск радиосигналов от других цивилизаций, а также отправка собственных сообщений.

Еще одним направлением работы стал поиск следов астроинженерной деятельности внеземных цивилизаций. Долгое время среди ученых господствовала идея о том, что высокоразвитые цивилизации должны располагать практически неограниченными источниками энергии, распоряжаясь полностью не только энергией своего солнца, но и энергией в масштабах всей своей галактики. Поэтому следы деятельности таких цивилизаций должны быть хорошо заметны. Считалось, что они могут перемещать планеты, звезды, взрывать ненужные звезды и зажигать новые.

Поиск следов пребывания представителей внеземных цивилизаций на Земле – еще одно направление работы. Предполагалось, что в нашей галактике должно быть большое число старых цивилизаций, начавших свое развитие за несколько миллиардов лет до появления жизни на Земле. Поэтому, считалось, что Земля могла неоднократно посещаться представителями этих цивилизаций в прошлом.

И наконец, ученых не оставляла надежда на возможный прилет представителей внеземных цивилизаций в наше время.

С позиции современной науки предположение о возможности существования внеземных цивилизаций имеет под собой определенные основания. Физика и астрономия установили факт тождественности физических законов во всей видимой части Вселенной.

Оптимисты считают, что у 1-2 % звезд в Галактике могут быть планетные системы, на которых появились жизнь, а затем и цивилизация. При самых оптимальных оценках таких звезд не более 1 млрд.

Редкость внеземных цивилизаций может быть одной из причин, почему мы не фиксируем их существование. Другой причиной может быть недостаток наблюдаемых данных. Кроме того, мы можем не осознавать, что получаемые нами сигналы имеют искусственное происхождение. Также существует предположение, что жизнь в космосе не является уникальной, но что она возникла в разных местах Вселенной примерно в одно и то же время, около 4 млрд лет назад. Тогда во Вселенной нет слишком большой разницы в технических уровнях развившихся цивилизаций, и искать следы этих цивилизаций просто бессмысленно, так как их еще нет.

Тем не менее поиск следов внеземных цивилизаций не прекращается. Более того, ученые думают о том, как передать им информацию о существовании земной цивилизации.

Список используемой литературы:

· Горелов А.А. Концепция современного естествознания. – М.: Центр, 1997 г.

· Концепции современного естествознания: учеб. пособие/ А.П. Садохин. – 3-е изд., стер. – М.: Издательство «Омега», 2008 г.

www.ronl.ru

Курсовая работа - Теории возникновения Вселенной

Содержание

1. Основные космологические гипотезы

2. Концепция Большого взрыва

3. Проблема существования и поиска внеземных цивилизаций

Список используемой литературы

1. Основные космологические гипотезы

Результаты познания, получаемые в космологии, оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально.

1. Классическая космологическая модель. Успехи космологии и космогонии 18-19 вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Вселенная в этом представлении о мире считается бесконечной в пространстве и во времени, т.е. вечной. Основной закон, управляющий движением и развитием небесных тел, — закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Количество звезд, звездных систем и планет во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее погасшим, звездам приходят новые, молодые светила. В таком виде классическая космологическая модель Вселенной господствовала в науке вплоть до конца 19 в.

К концу 19 века появились серьезные сомнения в классической модели, которые приняли форму космологических парадоксов — фотометрического, гравитационного и термодинамического.

В 18 веке швейцарский астроном Р. Шезо высказал сомнения по поводу пространственной бесконечности Вселенной. Если предположить, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит, поэтому данное парадоксальное утверждение получило в астрономии название фотометрического парадокса Шезо-Ольберса.

В конце 19в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также вытекающий из представлений о бесконечности Вселенной. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной (результат зависит от способа вычисления). Поскольку этого не происходит, Зеелигер сделал вывод, что кол-во небесных тел во Вселенной ограничено, а значит и сама Вселенная небесконечна. Это утверждение получило названиегравитационного парадокса.

Термодинамический парадокс был сформулирован также в 19в. Он вытекает из второго начала термодинамики- принципа возрастания энтропии. Мир полон энергии, которая подчиняется закону сохранения энергии. Кажется, что из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. Если в природе материя не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя пребывает в постоянном круговорте. Таким образом, погасшие звезды снова превращаются в источник света и тепла.

Поэтому неожиданно прозвучал вывод из второго начала термодинамики, открытого в середине 19в. Кельвином и Р.Ю.Э. Клаузисом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся, наступит «тепловая смерть Вселенной».

Таким образом, три космологических парадокса заставили ученных усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.

4. Релятивистская модель Вселенной. Новая модель Вселенной была создана в 1917 году А. Эйнштейном. Ее основу составила релятивистская теория тяготения. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства; материя распределена в нем равномерно; время бесконечно, а его течение не влияет на свойства Вселенной. На основании своих расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

Объем такой Вселенной может быть выражен, хотя и очень большим, но конечным числом кубометров. Но конечная по объему Вселенная в то же время безгранична, как поверхность любой сферы. Вселенная Эйнштейна содержит ограниченное число звезд и звездных систем, и поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку на статичность мира.

5. Модель расширяющейся Вселенной. В 1922 г., советский геофизик и математик А.А. Фридман на основании строгих расчетов установил, что Вселенная никак не может быть стационарной. Фридман сделал это открытие, опираясь на сформулированный им космологический принцип, строящийся на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной.

Фридман доказал, что уравнения Эйнштейна имеют решения, согласно которым Вселенная может расширяться либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э.П. Хаббл обнаружил эффект «красного смещения» спектральных линий. Это было истолковано как следствие эффекта Доплера – изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. Красное смещение было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием (примерно 55 км/с на каждый миллион парсек).

В результате своих наблюдений Хаббл обосновал представление, согласно которому Вселенная – это множество галактик, разделенных между собой огромными расстояниями.

Фридман предложил три модели Вселенной.

1. Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, образуя сферу.

2. Вселенная расширяется бесконечно, пространство искривлено и бесконечно.

3. пространство плоское и бесконечное.

По какому из этих вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлета вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют «открытой Вселенной».

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности. Такой вариант модели назван осциллирующей, или «закрытой Вселенной».

В случае, когда силы гравитации равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю.

2. Концепция Большого взрыва

Представление о развитии Вселенной привело к постановке вопроса о начале эволюции (рождении) Вселенной и ее конце (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причины и процесс рождения самой Вселенной. Только теория Большого взрыва Г.А. Гамова смогла к настоящему времени объяснить почти все факты, связанные с этой проблемой. Основные черты этой модели сохранились до сих пор, хотя она была позже дополнена теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейнхардтом, и дополненной советским физиком А.Д. Линде.

В 1948 году Гамов выдвинул предположение, что Вселенная образовалась в результате гигантского взрыва, произошедшего примерно 15 млрд лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был равен нулю, а ее плотность – бесконечности. Это начальное состояние называется сингулярностью.

Но по принципу неопределенности В. Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры.

Долгое время ничего нельзя было сказать о причинах Большого взрыва, переходе к расширению Вселенной. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

«Начало» Вселенной. Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии, возникшей из квантового излучения, т.е. из ничего. В вакууме отсутствуют фиксируемые частицы, поля и волны, но пока вакуум находится в равновесном состоянии, в нем существуют виртуальные частицы, которые берут у вакуума энергию на короткий промежуток времени, чтобы родиться, быстро вернуть занятую энергию и исчезнуть. Когда же вакуум по какой-то причине в некоторой исходной точке вышел из состояния равновесия, то виртуальные частицы стали схватывать энергию без отдачи и превращаться в реальные. Поэтому в определенной точке пространства образовалось огромное количество последних. Когда же возбужденный вакуум разрушился, высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Начинается стремительное расширение Вселенной, возникают время и пространство.

Инфляционный период — с после начала расширения Вселенной, за которые ее размеры увеличились в раз.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная стала чрезвычайно «горячей». С этого момента Вселенная развивается стандартно согласно теории «горячего» Большого взрыва.

Ранний этап эволюции Вселенной. Эволюция Вселенной происходило поэтапно, и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением ее структур. Этапы различаются характеристиками взаимодействия элементарных частиц и называются эрами.

Адронная эра продолжалась с. На этом этапе температура понизилась до К, появились все четыре фундаментальных взаимодействия, прекратилось свободное существование кварков.

Лептонная эра, продолжалась 1 с. Температура Вселенной понизилась до К. Главными ее элементами были лептоны. В конце этой эры вещество стало прозрачным для нейтрино.

Эра излучения продолжалась 1 млн лет. За это время температура Вселенной снизилась с 10 млрд К до 3000 К. На протяжении данного этапа происходило соединение протонов и нейтронов. К концу этого этапа Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало реликтовое излучение.

Затем почти 500 тыс. лет не происходило никаких качественных изменений – шло медленное остывание и расширение Вселенной. Когда она остыла до 3000 к, образовалась однородная Вселенная.

После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газовопылевое облако и электромагнитный фон. Спустя 1 млрд лет после образования Вселенной из случайных уплотнений вещества стали появляться галактики и звезды.

Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояние между галактиками в группах и скоплениях в 10-20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн световых лет. Пространство между галактиками заполнено газом, пылью и разного рода излучениями.

Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил.

Рождение звезд в галактике происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Источник собственного свечения звезд – термоядерная реакция, превращающая водород в гелий.

С момента начала этой реакции звезда переходит на главную последовательность, в соответствии с которой будут изменяться с течением времени ее характеристики: светимость, температура, радиус, химический состав и масса.

3. Проблема существования и поиска внеземных цивилизаций

Эволюция Вселенной привела к образованию планет, на некоторых из которых могут появиться жизнь и разум. Для этого нужны разнообразные химические элементы, которые могут объединяться в молекулы и сложность которых может нарастать до очень высоких уровней. В основе этих процессов – химические силы, за которыми скрывается одна из фундаментальных сил природы – электромагнитное взаимодействие. Тема существования жизни на других планетах неоднократно обыгрывалась в научно-фантастических произведениях, но современная наука не позволяет дать ни положительного, ни отрицательного ответа на этот вопрос.

Особенно остро вопрос о поиске внеземных цивилизаций – общества разумных существ, которые могут возникать и существовать вне Земли – встал во второй половине 20 века в связи с выходом человека в космос. Стала ясна потенциальная возможность космических полетов не только внутри Солнечной системы, но и за ее пределы. На этом основании заговорили не только о полетах человека в космос, но и о возможности посещения нашей планеты представителями других цивилизаций.

В 1960-х гг. появились первые международные программы, ставящие своей целью поиск и контакт с внеземными цивилизациями – SETI (поиск внеземных цивилизаций) и CETI (связь с внеземными цивилизациями). А в 1982 г. Международный астрономический союз организовал специальную комиссию по этой проблеме. Основным методом работы этой комиссии и международных программ поиск радиосигналов от других цивилизаций, а также отправка собственных сообщений.

Еще одним направлением работы стал поиск следов астроинженерной деятельности внеземных цивилизаций. Долгое время среди ученых господствовала идея о том, что высокоразвитые цивилизации должны располагать практически неограниченными источниками энергии, распоряжаясь полностью не только энергией своего солнца, но и энергией в масштабах всей своей галактики. Поэтому следы деятельности таких цивилизаций должны быть хорошо заметны. Считалось, что они могут перемещать планеты, звезды, взрывать ненужные звезды и зажигать новые.

Поиск следов пребывания представителей внеземных цивилизаций на Земле – еще одно направление работы. Предполагалось, что в нашей галактике должно быть большое число старых цивилизаций, начавших свое развитие за несколько миллиардов лет до появления жизни на Земле. Поэтому, считалось, что Земля могла неоднократно посещаться представителями этих цивилизаций в прошлом.

И наконец, ученых не оставляла надежда на возможный прилет представителей внеземных цивилизаций в наше время.

С позиции современной науки предположение о возможности существования внеземных цивилизаций имеет под собой определенные основания. Физика и астрономия установили факт тождественности физических законов во всей видимой части Вселенной.

Оптимисты считают, что у 1-2 % звезд в Галактике могут быть планетные системы, на которых появились жизнь, а затем и цивилизация. При самых оптимальных оценках таких звезд не более 1 млрд.

Редкость внеземных цивилизаций может быть одной из причин, почему мы не фиксируем их существование. Другой причиной может быть недостаток наблюдаемых данных. Кроме того, мы можем не осознавать, что получаемые нами сигналы имеют искусственное происхождение. Также существует предположение, что жизнь в космосе не является уникальной, но что она возникла в разных местах Вселенной примерно в одно и то же время, около 4 млрд лет назад. Тогда во Вселенной нет слишком большой разницы в технических уровнях развившихся цивилизаций, и искать следы этих цивилизаций просто бессмысленно, так как их еще нет.

Тем не менее поиск следов внеземных цивилизаций не прекращается. Более того, ученые думают о том, как передать им информацию о существовании земной цивилизации.

Список используемой литературы:

· Горелов А.А. Концепция современного естествознания. – М.: Центр, 1997 г.

· Концепции современного естествознания: учеб. пособие/ А.П. Садохин. – 3-е изд., стер. – М.: Издательство «Омега», 2008 г.

www.ronl.ru

Реферат : Теории возникновения Вселенной

Содержание

  1. Основные космологические гипотезы

  2. Концепция Большого взрыва

  3. Проблема существования и поиска внеземных цивилизаций

Список используемой литературы

    1. Основные космологические гипотезы

Результаты познания, получаемые в космологии, оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально.

1. Классическая космологическая модель. Успехи космологии и космогонии 18-19 вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Вселенная в этом представлении о мире считается бесконечной в пространстве и во времени, т.е. вечной. Основной закон, управляющий движением и развитием небесных тел, - закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Количество звезд, звездных систем и планет во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее погасшим, звездам приходят новые, молодые светила. В таком виде классическая космологическая модель Вселенной господствовала в науке вплоть до конца 19 в.

К концу 19 века появились серьезные сомнения в классической модели, которые приняли форму космологических парадоксов - фотометрического, гравитационного и термодинамического.

В 18 веке швейцарский астроном Р. Шезо высказал сомнения по поводу пространственной бесконечности Вселенной. Если предположить, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит, поэтому данное парадоксальное утверждение получило в астрономии название фотометрического парадокса Шезо-Ольберса.

В конце 19в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также вытекающий из представлений о бесконечности Вселенной. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной (результат зависит от способа вычисления). Поскольку этого не происходит, Зеелигер сделал вывод, что кол-во небесных тел во Вселенной ограничено, а значит и сама Вселенная небесконечна. Это утверждение получило название гравитационного парадокса.

Термодинамический парадокс был сформулирован также в 19в. Он вытекает из второго начала термодинамики- принципа возрастания энтропии. Мир полон энергии, которая подчиняется закону сохранения энергии. Кажется, что из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. Если в природе материя не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя пребывает в постоянном круговорте. Таким образом, погасшие звезды снова превращаются в источник света и тепла.

Поэтому неожиданно прозвучал вывод из второго начала термодинамики, открытого в середине 19в. Кельвином и Р.Ю.Э. Клаузисом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся, наступит «тепловая смерть Вселенной».

Таким образом, три космологических парадокса заставили ученных усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.

  1. Релятивистская модель Вселенной. Новая модель Вселенной была создана в 1917 году А. Эйнштейном. Ее основу составила релятивистская теория тяготения. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства; материя распределена в нем равномерно; время бесконечно, а его течение не влияет на свойства Вселенной. На основании своих расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

Объем такой Вселенной может быть выражен, хотя и очень большим, но конечным числом кубометров. Но конечная по объему Вселенная в то же время безгранична, как поверхность любой сферы. Вселенная Эйнштейна содержит ограниченное число звезд и звездных систем, и поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку на статичность мира.

  1. Модель расширяющейся Вселенной. В 1922 г., советский геофизик и математик А.А. Фридман на основании строгих расчетов установил, что Вселенная никак не может быть стационарной. Фридман сделал это открытие, опираясь на сформулированный им космологический принцип, строящийся на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной.

Фридман доказал, что уравнения Эйнштейна имеют решения, согласно которым Вселенная может расширяться либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э.П. Хаббл обнаружил эффект «красного смещения» спектральных линий. Это было истолковано как следствие эффекта Доплера – изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. Красное смещение было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием (примерно 55 км/с на каждый миллион парсек).

В результате своих наблюдений Хаббл обосновал представление, согласно которому Вселенная – это множество галактик, разделенных между собой огромными расстояниями.

Фридман предложил три модели Вселенной.

  1. Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, образуя сферу.

  2. Вселенная расширяется бесконечно, пространство искривлено и бесконечно.

  3. пространство плоское и бесконечное.

По какому из этих вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлета вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют «открытой Вселенной».

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности. Такой вариант модели назван осциллирующей, или «закрытой Вселенной».

В случае, когда силы гравитации равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю.

2. Концепция Большого взрыва

Представление о развитии Вселенной привело к постановке вопроса о начале эволюции (рождении) Вселенной и ее конце (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причины и процесс рождения самой Вселенной. Только теория Большого взрыва Г.А. Гамова смогла к настоящему времени объяснить почти все факты, связанные с этой проблемой. Основные черты этой модели сохранились до сих пор, хотя она была позже дополнена теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейнхардтом, и дополненной советским физиком А.Д. Линде.

В 1948 году Гамов выдвинул предположение, что Вселенная образовалась в результате гигантского взрыва, произошедшего примерно 15 млрд лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был равен нулю, а ее плотность – бесконечности. Это начальное состояние называется сингулярностью.

Но по принципу неопределенности В. Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры.

Долгое время ничего нельзя было сказать о причинах Большого взрыва, переходе к расширению Вселенной. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

«Начало» Вселенной. Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии, возникшей из квантового излучения, т.е. из ничего. В вакууме отсутствуют фиксируемые частицы, поля и волны, но пока вакуум находится в равновесном состоянии, в нем существуют виртуальные частицы, которые берут у вакуума энергию на короткий промежуток времени, чтобы родиться, быстро вернуть занятую энергию и исчезнуть. Когда же вакуум по какой-то причине в некоторой исходной точке вышел из состояния равновесия, то виртуальные частицы стали схватывать энергию без отдачи и превращаться в реальные. Поэтому в определенной точке пространства образовалось огромное количество последних. Когда же возбужденный вакуум разрушился, высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Начинается стремительное расширение Вселенной, возникают время и пространство.

Инфляционный период - с после начала расширения Вселенной, за которые ее размеры увеличились в раз.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная стала чрезвычайно «горячей». С этого момента Вселенная развивается стандартно согласно теории «горячего» Большого взрыва.

Ранний этап эволюции Вселенной. Эволюция Вселенной происходило поэтапно, и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением ее структур. Этапы различаются характеристиками взаимодействия элементарных частиц и называются эрами.

Адронная эра продолжалась с. На этом этапе температура понизилась до К, появились все четыре фундаментальных взаимодействия, прекратилось свободное существование кварков.

Лептонная эра, продолжалась 1 с. Температура Вселенной понизилась до К. Главными ее элементами были лептоны. В конце этой эры вещество стало прозрачным для нейтрино.

Эра излучения продолжалась 1 млн лет. За это время температура Вселенной снизилась с 10 млрд К до 3000 К. На протяжении данного этапа происходило соединение протонов и нейтронов. К концу этого этапа Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало реликтовое излучение.

Затем почти 500 тыс. лет не происходило никаких качественных изменений – шло медленное остывание и расширение Вселенной. Когда она остыла до 3000 к, образовалась однородная Вселенная.

После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газовопылевое облако и электромагнитный фон. Спустя 1 млрд лет после образования Вселенной из случайных уплотнений вещества стали появляться галактики и звезды.

Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояние между галактиками в группах и скоплениях в 10-20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн световых лет. Пространство между галактиками заполнено газом, пылью и разного рода излучениями.

Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил.

Рождение звезд в галактике происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Источник собственного свечения звезд – термоядерная реакция, превращающая водород в гелий.

С момента начала этой реакции звезда переходит на главную последовательность, в соответствии с которой будут изменяться с течением времени ее характеристики: светимость, температура, радиус, химический состав и масса.

3. Проблема существования и поиска внеземных цивилизаций

Эволюция Вселенной привела к образованию планет, на некоторых из которых могут появиться жизнь и разум. Для этого нужны разнообразные химические элементы, которые могут объединяться в молекулы и сложность которых может нарастать до очень высоких уровней. В основе этих процессов – химические силы, за которыми скрывается одна из фундаментальных сил природы – электромагнитное взаимодействие. Тема существования жизни на других планетах неоднократно обыгрывалась в научно-фантастических произведениях, но современная наука не позволяет дать ни положительного, ни отрицательного ответа на этот вопрос.

Особенно остро вопрос о поиске внеземных цивилизаций – общества разумных существ, которые могут возникать и существовать вне Земли – встал во второй половине 20 века в связи с выходом человека в космос. Стала ясна потенциальная возможность космических полетов не только внутри Солнечной системы, но и за ее пределы. На этом основании заговорили не только о полетах человека в космос, но и о возможности посещения нашей планеты представителями других цивилизаций.

В 1960-х гг. появились первые международные программы, ставящие своей целью поиск и контакт с внеземными цивилизациями – SETI (поиск внеземных цивилизаций) и CETI (связь с внеземными цивилизациями). А в 1982 г. Международный астрономический союз организовал специальную комиссию по этой проблеме. Основным методом работы этой комиссии и международных программ поиск радиосигналов от других цивилизаций, а также отправка собственных сообщений.

Еще одним направлением работы стал поиск следов астроинженерной деятельности внеземных цивилизаций. Долгое время среди ученых господствовала идея о том, что высокоразвитые цивилизации должны располагать практически неограниченными источниками энергии, распоряжаясь полностью не только энергией своего солнца, но и энергией в масштабах всей своей галактики. Поэтому следы деятельности таких цивилизаций должны быть хорошо заметны. Считалось, что они могут перемещать планеты, звезды, взрывать ненужные звезды и зажигать новые.

Поиск следов пребывания представителей внеземных цивилизаций на Земле – еще одно направление работы. Предполагалось, что в нашей галактике должно быть большое число старых цивилизаций, начавших свое развитие за несколько миллиардов лет до появления жизни на Земле. Поэтому, считалось, что Земля могла неоднократно посещаться представителями этих цивилизаций в прошлом.

И наконец, ученых не оставляла надежда на возможный прилет представителей внеземных цивилизаций в наше время.

С позиции современной науки предположение о возможности существования внеземных цивилизаций имеет под собой определенные основания. Физика и астрономия установили факт тождественности физических законов во всей видимой части Вселенной.

Оптимисты считают,что у 1-2 % звезд в Галактике могут быть планетные системы, на которых появились жизнь, а затем и цивилизация. При самых оптимальных оценках таких звезд не более 1 млрд.

Редкость внеземных цивилизаций может быть одной из причин, почему мы не фиксируем их существование. Другой причиной может быть недостаток наблюдаемых данных. Кроме того, мы можем не осознавать, что получаемые нами сигналы имеют искусственное происхождение. Также существует предположение, что жизнь в космосе не является уникальной, но что она возникла в разных местах Вселенной примерно в одно и то же время, около 4 млрд лет назад. Тогда во Вселенной нет слишком большой разницы в технических уровнях развившихся цивилизаций, и искать следы этих цивилизаций просто бессмысленно, так как их еще нет.

Тем не менее поиск следов внеземных цивилизаций не прекращается. Более того, ученые думают о том, как передать им информацию о существовании земной цивилизации.

Список используемой литературы:

topref.ru

Реферат - Теория развития Вселенной

Одним из важнейших революционных сдвигов естествознания XX века является прочно вошедшая в арсенал современного естествознания идея эволюции материи на всех уровнях, идея развития Вселенной как целого. Еще 40-50 лет назад астрофизики изучали типы небесных тел, известные с глубокой древности, - планеты, звезды, рассеянное (диффузное) вещество. Они интересовались в первую очередь равновесными состояниями космических объектов, например звезд. Конечно, и тогда были известны отдельные нестационарные, взрывающиеся объекты, но они рассматривались как нечто аномальное и случайное. Однако прогресс современной астрофизики показал, что одной из наиболее характерных черт охваченной наблюдениями области Вселенной является колоссальное качественное многообразие объектов и типов их изменений. Особенно существенными были открытия объектов, качественно отличных от всех ранее известных, например, ядер галактик - массивных и сверхплотных тел, в которых часто протекают активные нестационарные процессы. Со всей очевидностью выяснилось, что взрывные процессы во Вселенной представляю собой закономерные фазы развития многих типов небесных тел; в одних случаях они связаны с рождением новых небесных объектов, в других - с переходом таких объектов ( например звезд ) в новые физические состояния, сопровождающиеся перестройкой их структуры. Подобное истолкование нестационарных объектов во Вселенной было подсказано диалектической концепцией развития, особенно представлениями о внутренних противоречиях как источнике развития и переходе количественных изменений в качественные. Таким образом, один из наиболее принципиальных результатов современной астрофизики состоит в том, что свойства космических объектов и их внутреннее строение обусловлены развитием этих объектов, т.е. могут быть объяснены лишь с эволюционной точки зрения. А это означает, что принципы единства и развития материи в исследованиях Вселенной выступают как методологические ориентиры, неотделимые друг от друга. Многие черты эволюционных процессов во Вселенной пока еще не прояснилось в достаточной мере. Например, многие астрономы считают, что галактики, звезды, планеты образуются из рассеянного, диффузного вещества, путем его уплотнения, тогда как, по мнению других, эволюционные процессы развертываются в противоположном направлении - от плотного или сверхплотного состояния к менее плотному. Ясно, что вопрос о природе вещества, из которого сформировались наблюдаемые нами космические системы и механизмы этих процессов, является естественнонаучным, астрономическим и астрофизическим вопросом. Он должен решаться и будет решен на основе анализа наблюдательных данных, причем можно надеяться, что это произойдет в не слишком отделанное будущем. Не исключено, что в какое - то время одержит верх одна из конкурирующих в астрономии эволюционных концепций, а возможно в какой-то форме осуществится их синтез. Но обсуждаемая проблема имеет и существенный философский аспект. В самом деле, для материалистической диалектики как теории развития представляет большой интерес вопрос - какова общая направленность процессов космической эволюции : совершается ли она только всегда только в одном каком-то направлении или во всей Вселенной имеет место диалектическое взаимодействие противоположных направлений эволюционного процесса? В свое время Ф.Энгельс нарисовал в “Диалектике природы” грандиозную картину круговорота материи во Вселенной. Это круговорот не означает непрестанного повторения или воспроизведения одного и того же. Напротив, круговорот материи во Вселенной включает бесконечные качественные преобразования состояний и форм движущейся материи. Прогрессивное развитие от некоторого первоначального состояния материи до высшего - мыслящего духа, согласно Энгельсу, пробивало себе дорогу в ходе взаимодействия различных процессов. Дальнейшие исследования показали, что круговорот материи во Вселенной взаимосвязан с необратимостью процессов космической эволюции, выражаемой принципом развития энтропии. Логично предположить, что необратимая эволюция иерархии структурных уровней космических систем, образующих нашу Метагалактику, при одних условиях совершается от более плотных состояний к менее плотным ( одним из примеров такого процесса может служить переход от сверхплотного состояния, в котором находилась Метагалактика в начальной стадии своей эволюции, к ее последующим состояниям), в других - она происходит, вероятно, в направлении уплотнения вещества. Именно исследование диалектики этих противоположно направленных процессов в их взаимосвязи позволит понять, например, как именно возникают плотные и сверхплотные состояния космических объектов, которые как сейчас выясняется, представляют собой одно из чрезвычайно распространенных состояний материи во Вселенной. Разумеется, конкретные детали этих процессов будут установлены, исходя из анализа фактических данных. В этой связи особое место занимает вопрос о философском статусе второго начала термодинамики. Это закон в прошлом неоднократно вызывал философские дискуссии именно с материалистической точки зрения, так как казалось, что он неизбежно приводил к пресловутой тепловой смерти мира. Но релятивистская космология показала, что наша Вселенная, находящаяся в нестационарных внешних условиях, в качестве каковых выступают метрические свойства пространства-времени (т.е. гравитационное поле), несмотря на действие второго начала, не достигает полного равновесия (тепловой смерти) Второе начало термодинамики ( принцип увеличения энтропии) выражает необратимость всех известных реальных процессов, а тем самым необратимые изменения самых общих, известных современной науке форм материи. В такой трактовке принцип увеличения энтропии можно рассматривать как естественнонаучное выражение общефилософского принципа развития. Как закон сохранения и превращения энергии является естественнонаучным выражением общей идеи несотворимости и неуничтожимости материи, так второе начало является одним из естественнонаучных выражений идеи развития. Для современной науки характерно, что чем глубже она проникает в микромир, тем больше возможностей открывается для понимания крупномасштабной структуры Вселенной. Последняя не является вечной и неизменной, а представляет собой результат развития материи, своеобразную реализацию тех потенциальных возможностей, которые были заложены в глубинах микромира. Элементарный уровень организации материи включает наряду с элементарными частицами еще и такой необычный физический объект как вакуум. Физический вакуум - не пустота, а особое состояние материи. В вакуум погружены все частицы и все физические тела. В нем постоянно происходят сложные процессы, связанные с непрерывным появлением и исчезновением так называемых “виртуальных частиц”. Виртуальные частицы - это своеобразные потенции соответствующих типов элементарных частиц, их “вакуумные корни”, частицы, готовые к рождению, но не рождающиеся, возникающие и исчезающие в очень короткие промежутки времени. При определенных условиях они могут вырваться из вакуума, превращаясь в “нормальные” элементарные частицы, которые живут относительно независимо от породившей их среды и могут взаимодействовать с ней. Первые шаги по пути исследования субэлементарного уровня материи привели к принципиально новым идеям о качественном многообразии вакуума. Выяснилось, что физический вакуум способен скачком перестраивать свою структуру. такие переходы из одного состояния к другому, связанные с резким изменением характеристик системы, в физике называют фазовыми (известным их примером служат переходы воды в пар и лед). Физический вакуум тоже оказался способным к фазовым скачкам. Эти новые идеи современной физики микромира послужили опорой необычных представлений о развитии нашей астрономической Вселенной, о ее возникновении путем взрыва, связанного с массовым рождением элементарных частиц в результате одного из фазовых переходов вакуума. Взаимодействие объектов субэлементарного уровня и возникающих на их основе элементарных частиц служит фундаментом для образования более сложных материальных систем. Из элементарных частиц строятся атомы, которые являются качественно специфическим видом материи. Элементарные частицы, ядра атомов, ионы ( атомы, потерявшие часть электронов на электронных оболочках) могут образовать особое состояние материи, подобие газа, которое называется плазмой. Огромные плазменные тела, стянутые электромагнитными гравитационными полями, образуют звезды, представляющие особый уровень организации материи. В их недрах протекают ядерные реакции, в ходе которых одни частицы превращаются в другие, и за счет этого звезды постоянно излучают энергию. Звезды выступают как своеобразная кузница атомов. Благодаря протекающим в них превращениям элементарных частиц образуются ядра атомов, а на периферии и в окрестностях звезд, при понижении температуры, а также в результате выбросов вещества из звезд при их взрывах, возникают атомы. В результате взаимодействия атомов формируется следующий уровень организации материи - молекулы. За молекулами следует уровень макротел (жидких, твердых, газообразных). Особый тип макротел, который можно считать специфическим видом материи, образуют планеты - тела со сложной внутренней структурой, имеющие ядро, литосферу, а в ряде случаев атмосферу и гидросферу. Звезды и планеты составляют планетные системы. Огромные скопления звезд, планетных систем, межзвездной пыли и газа, взаимодействующих между собой, образуют особые объекты, которые называют галактиками . Земля принадлежит к одной из таких галактик, которая представляет собой гигантскую эллипсовидную спиралеобразную систему. Основная масса звезд, относящихся к нашей галактике, сосредоточена в диске размером сто тысяч световых лет по диаметру и толщиной в тысячу пятьсот световых лет . Наше Солнце находится на окраине галактики и вращается вокруг ее ядра, делая полный оборот за 200 млн. лет ( так называемый галактический год). Ядро галактики, состоящее из очень плотного скопления звезд, разогретого межзвездного газа и пыли, а возможно, и включающее гипотетически сверхплотные тела, мы непосредственно наблюдать не можем. Солнце движется в настоящее время в той части галактического пространства, где ядро закрыть от Земли обширной пылевой туманностью. Через несколько млн. лет Земля выйдет из-за этого “экрана” и тогда она будет подвержена излучениям, идущим от ядра. Сейчас ядро нашей галактики спокойное; оно излучает постоянный поток энергии. Но в принципе ядра галактик могут быть и активными, способными к выбросам за короткий промежуток времени ( за несколько месяцев и даже недель) чрезвычайно больших количеств энергии. Не исключено, что ядро нашей галактики через определенные промежутки времени тоже может проявлять взрывную активность. Возможно, что если бы в периоды взрывных процессов Земля не была экранирована пылевыми туманностями, а была открыта, то излучения ядра влияли бы на состояние и развитие жизни на ней. Важно осознавать, что и земная жизнь и человечество как ее часть зависят от организации космоса. Поэтому знание принципов его организации столь необходимо для понимания и происхождения земной жизни, и наших взаимодействий с природой. Галактики разных типов образуют скопления- системы галактик, которые представляют собой особые объекты, обладающие свойствами целостности. Если, несмотря на огромные расстояния между галактиками ( в десятки, сотни млн. и более световых лет), провести аналогию между молекулами макротела и галактиками в скоплениях, то оказывается: такие скопления можно уподобить весьма вязкой среде. Наконец, кроме скопления галактик есть еще более высокий уровень организации материи - Метагалактика представляющая собой систему взаимодействующих скоплений галактик. При этом взаимодействуют они так, что удаляются друг о друга с очень большими скоростями. И чем дальше отстоят они друг от друга, тем больше скорость их взаимного разбегания. Это процесс называется расширением Метагалактики и представляет ее особое системное свойство, определяющее ее бытие. Расширение Метагалактики началось с момента ее возникновения. Согласно представлениям современной космологии, Метагалактика возникла примерно 20 млрд. лет назад в результате Большого Взрыва. Сам этот взрыв наука связывает с перестройками структуры физического вакуума, с его фазовыми переходами от одного состояния к другому, которые сопровождались выделением огромных энергий. Так что рождение нашей Вселенной (Метагалактики) - не акт ее творения из ничего ( как это пытаются трактовать современные теологи), а результат развития качественных преобразований одного состояния материи в другое. Современная наука допускает возможность возникновения и сосуществования множества миров, подобных нашей Метагалактике и называемых Внеметагалакическими объектами. Их сложные взаимоотношения образуют многоярусную Большую Вселенную - материальный мир с его бесконечным разнообразием форм и видов материи. Причем не во всех этих мирах возможно то многообразие видов материи, которое возникает в истории нашей Метагалакики.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ :

1.Введение в философию. Учебник для вузов. В 2 ч. Ч.2/ Фролов И.Т., Араб-Оглы Э.А. и др. - М.:Политиздат, 1989. - 639с. 2.Федосеев П.Н. “Философия и научное познание”.-М., 1983

www.ronl.ru


Смотрите также