Курсовая работа: Элементы математической логики. Реферат элементы математической логики


Курсовая работа - Элементы математической логики

Потопахин Виталий Валерьевич, методист ХКЦТТ

Искусство логического мышления

В процессе всей своей деятельности, человеку приходится разрешать различные проблемы и задачи. Самая суть нашего мыслительного процесса заключается в поиске решений. И конечно хотелось бы находить нужные решения, по возможности быстро. Однако очень часто наши рассуждения идут в неверном направлении, и мы приходим к ошибочному выводу. Приходится возвращаться к тому, с чего начинали и искать решение в другом направлении. Наш ум берясь за задачу видит сразу много путей для рассуждения, из которых большинство ошибочны, но ум об этом не знает и проверяет их все, пока не наткнётся на верный. Конечно, есть люди, обладающие настолько сильной интуицией, что они видят правильное направление рассуждений сразу. Однако интуиция, средство не вполне надёжное. Когда мы принимаем решение интуитивно, всегда остаётся ощущение неуверенности. Поэтому ещё древние мыслители пришли к идее, что неплохо бы правильный ход рассуждений вычислять. Изобрести бы что-то вроде формул, в которых вместо чисел использовались бы рассуждения. Идея очень хорошая, и её пытались реализовать многие философы и математики. В полной мере это на сегодня не удалось. Однако удалось установить, что правильный ход рассуждений подчиняется определённым законам, знание которых помогает значительно сократить путь к истине. Кроме того, существуют методы ведения рассуждений, используя которые мы можем мыслить более эффективно. Постепенно образовалась наука ( называемая логикой ) целью которой было открытие законов правильного мышления и разработка методов мышления.

Любая наука, начинается с точного определения понятий с которыми она имеет дело.

Определим основные понятия и мы:

Посылка — это утверждение, из которого мы исходим в своих рассуждениях.

Следствие — это утверждение являющееся результатом наших рассуждений.

Умозаключение — это мыслительный процесс, в котором из одного или нескольких суждений, делается заключение.

Гипотеза — это утверждение, истинность которого требуется доказать.

Противоречие — это ситуация, когда в процессе наших рассуждений получились два взаимоисключающих утверждения.

Суждение — это единица мышления.

Основные законы:

Закон тождества. Всякий предмет, есть то, что он есть. Что это означает: Если мы, в своих рассуждениях, используем какое — либо понятие, то на любом этапе рассуждений, это понятие должно означать одно и тоже. Иногда за соблюдением закона тождества надо специально следить. Например, при использовании многозначных слов. Нарушение закона может завести в тупик. К примеру, понятием энергии часто обозначаются совершенно разные явления. Например, физическая энергия и психическая энергия. Если мы опустим, тот факт, что это два разных явления, то законы, которым подчиняется физическая энергия, можно будет автоматически переносить на явления связанные с проявлением психической энергии, что и будет ошибкой. Приведём более простой пример: Предположим, вы изучили правила дорожного движения принятые в России. Закон тождества говорит, что правила принятые в России, это совсем не те правила, которые приняты во Франции. Если же вы пренебрежёте законом тождества, то будучи во Франции вы рискуете попасть в аварию.

Закон противоречия. Ход рассуждений не должен быть противоречивым. На этом законе основан метод доказательства утверждений, так называемый метод «От противного». Применение метода рассматривается ниже в задачах о принцессах. Суть его заключается в следующем правиле. В начале рассуждений, мы принимаем некоторое утверждение за истину. Если мы будем рассуждать, не нарушая правила и законы логики, то на любом шаге наших рассуждений должны получаться только истинные утверждения. Если же мы когда либо получим ложное утверждение, то это будет означать, что исходное утверждение не может быть истинным.

Закон исключенного третьего. Если есть два суждения и одно исключает другое, то одно из них истина, а другое ложь. В реальной жизни это не всегда так. Приведём пример: Первое утверждение «Я пользуюсь методами математической логики каждый день моей жизни.», второе утверждение «Я никогда не пользуюсь методами математической логики». Очевидно, что они противоречат друг другу, однако они вполне могут оказаться одновременно ложными. Например, если вы специалист по математической логике, то вы должны часто пользоваться её методами, но вряд ли они нужны вам каждый день вашей жизни. Закон исключенного третьего предназначен для использовании в области точных наук, в которых такие ситуации не встречаются или встречаются достаточно редко.

Закон достаточного основания. Любое утверждение должно быть обосновано. Закон кажется очевидным. Совершенно естественно, что каждое утверждение должно быть или аксиомой или выводится из утверждения, истинность которого не вызывает сомнений. Однако в реальной практике мы часто делам свои заключения из утверждений, чья истинность сомнительна, или пользуемся неправильно составленными умозаключениями.

Методы мышления

Пользуясь законами, можно строить методы правильного мышления. Их существует довольно много, но мы приведём в качестве примера только два из них.

Дедукция: Это метод рассуждений, при котором некоторые истинные утверждения берутся в качестве посылок. Затем с помощью умозаключений из этих посылок получаются выводы, которые в свою очередь становятся посылками для следующих умозаключений. Получается цепочка умозаключений, в начале которой находится некоторое количество очевидных утверждений, а в конце утверждения, истинность которых уже далеко не очевидна, если не знать всей цепочки.

Очень яркий литературный пример использования дедуктивного метода это герой А. Конан-Дойля Шерлок Холмс. Конечно, применение дедукции Холмсом далеко от математической точности и строгой критики рассказы о нём не выдерживают, но суть метода в рассказах Конан-Дойля демонстрируется очень наглядно.

Метод приведения к противоречию: Существо данного метода состоит в построении такой цепочки рассуждений от исходной посылки, чтобы она привела или наоборот не привела к противоречию. Если мы получим противоречие (не нарушая законов логики), то это будет означать ложность исходной посылки. В книге Смаллиана есть масса примеров того, как используя данный метод можно решать задачи. В качестве примера приведём следующую задачу:

К королю некоего малоизвестного королевства, очень часто приезжали различные принцы свататься к принцессам, которых у того короля было довольно много. Каждого из них надо было как то проверять, а так как принцев было много, то король решил поставить процесс на поток. Он подводил принца к дверям в комнаты и предлагал открыть одну из них. Причем в комнатах он помещал тигров и принцесс. Принц должен был угадать в какой комнате принцесса. Что бы это не было простое гадание, ему выдавалась дополнительная информация, анализируя которую он мог точно узнать где принцесса, а где тигр. Приведем одну задачу с решением в качестве примера. В этом испытании на дверях комнат были следующие таблички:

1 Комната 2 Комната
В этой комнате находится принцесса, а в другой комнате сидит тигр. В одной из этих комнат находится принцесса; кроме того, в одной из этих комнат сидит тигр.

Кроме того, принцу было сказано, что на одной табличке написана правда, а на другой нет.

Начнем рассуждения. Для каждой из табличек возможны только два варианта, либо ложь, либо истина. Рассмотрим с этой позиции табличку на первой комнате.

Табличка на первой двери истинна. Тогда табличка на второй двери ложна. А так как табличка на второй двери утверждает, что в одной из комнат находится принцесса, то из её ложности следует, что принцессы там нет, что приходит в противоречие с истинностью первой таблички. Таким образом, мы, предположив, что табличка на первой двери истинна пришли к противоречию.

Табличка на первой двери ложна. Тогда табличка на второй двери истинна. Из ложности первой таблички следует, что принцесса находится в комнате 2, а тигр в комнате 1. Из истинности второй табличке следует, что в одной из комнат есть принцесса и в одной из комнат есть тигр. Эти утверждения не противоречат друг другу, следовательно вторая ситуация непротиворечива и чего в свою очередь следует что принцесса находится во второй комнате.

Задача для самостоятельного решения:

1 Комната 2 Комната
По крайней мере в одной из комнат находится принцесса Принцесса в другой комнате.

Дополнительно было известно следующее: Если в первой комнате находится принцесса, то утверждение на табличке истинно, если же там тигр, то утверждение ложно. Относительно правой комнаты все было наоборот: утверждение на табличке ложно, если в комнате находится принцесса, и истинно, если в комнате сидит тигр.

Математическая логика

Вышеизложенная логика хорошо описывает законы человеческого мышления, но исходной задачи «вычисления истины», она не решает. Она не может решить её в принципе, потому что в ней почти нет математики. А следовательно следующий разумный шаг, это создание теории которая описывала бы процесс мышления с математической точностью.

Как создать такую теорию?

Ответ: точно так же, как и любую другую математическую теорию. Надо предельно точно описать используемые понятия и определить над ними операции. Первым кто проделал такую работу и создал первую математическую логику был Джорж Булль. Эта математика по его имени стала называться булевой алгеброй или логикой высказываний. И сейчас мы ей займемся. Итак.

Понятия: В качестве главного понятия было взято понятие высказывания. Высказывание, это минимальная мысль, утверждение, которое может быть либо истинным, либо ложным.

Последняя договорённость очень важна. Если рассматривать смысл высказываний, то работать с ними будет слишком сложно, так как смысл очень неопределённое понятие. А если мы решим, что важна только истинность высказывания, то проблема значительно упрощается. В этом случае совершенно неважно о чём говорится в высказывании. Отпадает необходимость обозначать высказывание целым предложением, раскрывающим его смысл. Для обозначения вполне достаточно будет одной буквы. Разные высказывания будем обозначать разными буквами. Окончательно объектами нашей математики будут переменные величины обозначаемые буквами или комбинациями букв и имеющие только два значения: Истина и Ложь.

Операции: Операции над высказываниями, это операции над буквенными переменными и могущие принимать в качестве результата только два значения. Далее мы будем называть такие операции логическими.

Итак — логическая операция, это операция которая устанавливает соответствие между одним или несколькими высказываниями ( которые называются аргументами операции ) и высказыванием которое называется значением операции.

Как можно составить логическую операцию? Очень просто. Приведем пример. Пусть дано высказывание А. Оно может быть либо истинно, либо ложно. Определим высказывание В следующим образом: пусть В истинно когда А ложно и ложно когда А истинно. Мы только что установили соответствие между высказыванием А и высказыванием В. Другими словами мы составили логическую операцию, аргументом которой является высказывание А и результатом высказывание В. Операция определённая таким образом называется отрицанием и записывается так — ùА. Еще говорят так — “не А”

Определим еще четыре логические операции:

Коньюкция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В истинны то С также истинно. Если же хотя бы одно из них ложно то С также ложно. Обозначение: АÙВ. Можно сказать так “ А и В “ и еще эту операцию называют логическим умножением.

Дизьюкция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В ложны то С также ложно. Если же хотя бы одно из высказываний А и В истинно то С также истинно. Обозначение: АÚВ. Можно сказать так “ А или В ” и еще эту операцию называют логическим умножением.

Эквиваленция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В одновременно ложны или же истинны то С истинно иначе С ложно. Обозначение: А=В

Импликация. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Пусть А посылка и В следствие, тогда:

если А ложно то С истинно ( то есть из ложного утверждения может следовать все что угодно)

если А истинно и В истинно то С истинно ( из истинного утверждения можно вывести истинное )

если А истинно и В ложно то С ложно ( из истинного утверждения не может следовать ложное )

Обозначение: А®В

Импликация устроена немного сложнее других операций. В импликации существенное значение имеет порядок аргументов. Первый называется посылкой, а второй следствием. Можно сказать, что первое высказывание является как бы причиной второго, а второе как бы вытекает из первого.

Приведенные выше определения можно свести в таблицу, которая называется таблицей истинности.

А В не А А или В А и В А следует В А эквив. В
Истина Истина ложь истина Истина Истина истина
Истина Ложь ложь истина ложь Ложь ложь
Ложь Истина истина истина ложь Истина ложь
Ложь Ложь истина ложь ложь Истина истина

Сложное высказывание

Сложным высказыванием называется высказывание, полученное комбинацией элементарных высказываний, логических функций и скобок. Для сложного высказывания также можно составить таблицу истинности. Приведём пример: Составим таблицу истинности для следующего высказывания: (АÚВ)®А

А В АÚВ (АÚВ)®А
1 1 1 1
1 1 1
1 1
1

Составьте для тренировки таблицы истинности следующих сложных высказываний:

АÚ(АÚùВ) А®(ВÙА)
(ВÚА)®А А®(ВÚВ)
ù(АÚù(В®А)) (ùВÚА)®(ВÚА)
ù(В®А)®(АÙВ) В®(ù(В®А)®(ùА®В))

Схема умозаключения

Обычно, мы принимаемся строить цепочки логических умозаключений, для того чтобы установить истинность или ложность того или иного утверждения. Можно даже сказать, что нас всегда интересует истинность. Если мы же нам требуется установить ложность утверждения, то это то же самое что устанавливать истинность его отрицания. Иначе говоря, наш мыслительный процесс всегда направлен на получение доказательств теорем каждая из которых строится по следующей схеме: Дано некоторое количество истинных посылок и некоторое утверждение являющееся следствием из них. Теорема говорит, что данное утверждение также истинно, на том основании, что оно является следствием из истинных посылок.

Теорема в общем случае это не обязательно теорема математики. По такой схеме строится и наше бытовое мышление. От математики оно отличается только уровнем строгости. Выше мы уже говорили, что цель математической логики заключается в установлении взаимосвязи между посылками и заключением и теперь пора рассмотреть как это делается.

Для начала определим два важных понятия:

Тождественно истинное высказывание. Это высказывание, которое является истинным при любых значениях составляющих его элементарных высказываний.

Схема умозаключения. Схема умозаключения, это способ получения тождественно-истинных высказываний. Схема утверждает что если высказывание А истинно и истинна импликация А®В, то высказывания В также является истинным (это ясно из определения импликации). Таким образом, если мы найдём способ проверить истинность посылки и импликации, истинность следствия получается автоматически.

Тождественно — истинные высказывания получаются следующим образом: Определяется некоторое количество сложных тождественно — истинных высказываний. Такие высказывания в математике называются аксиомами. Затем составляется очевидная схема умозаключения. Затем над правой частью этой схемы производятся тождественные преобразования приводящие к появлению новых высказываний, которые согласно определению схемы умозаключения также являются истинными.

Нетрудно заметить, что схема умозаключения этой строгая форма дедуктивного метода. Поэтому на примере схемы умозаключения, мы можем показать достоинства и слабости математической логики.

Обычный дедуктивный метод мышления, применим в самых разных ситуациях, чего нельзя сказать о схеме умозаключения математической логики. Она применима только тогда, когда объекты мыслительных операций укладываются в определения понятий математической логики.

С другой стороны, те результаты, которые мы получаем, методами математической логики являются абсолютно точными, в то время как обычный дедуктивный метод, например в бытовой ситуации даёт результат, лишь с некоторой долей уверенности.

Заключение

Наше изложение математической логики было очень кратким, но все же достаточным, чтобы думающий читатель усомнился в её способности вычислять истину. И действительно, такая задача ей не решается, по всей видимости эта задаче неразрешима в принципе, потому что зачастую человеку приходится решать задачи и проблемы, в которых понятия расплывчаты и зачастую нет самого понятия правильного решения. Такова например ситуация в искусстве, в философии и т.д. Однако есть области в которых основные понятия можно определить исключительно точно, и вот там математическая логика и находит своё применение.

Еще несколько вопросов для самостоятельной работы.

Приведите пример дедуктивного рассуждения.

Приведите пример проблемы или задачи, которую невозможно разрешить отказавшись от закона исключенного третьего.

Предположим, вам дана некая математическая задача, как бы вы определили, применимы или нет к ней методы математической логики.

Приведите пример класса задач, не решаемых с помощью метода приведения к противоречию.

Можно ли сказать, доказательство теорем методом от противного есть частный случай метода приведения к противоречию. Ответ обязательно обоснуйте.

www.ronl.ru

Доклад - Элементы математической логики

Потопахин Виталий Валерьевич, методист ХКЦТТ

Искусство логического мышления

В процессе всей своей деятельности, человеку приходится разрешать различные проблемы и задачи. Самая суть нашего мыслительного процесса заключается в поиске решений. И конечно хотелось бы находить нужные решения, по возможности быстро. Однако очень часто наши рассуждения идут в неверном направлении, и мы приходим к ошибочному выводу. Приходится возвращаться к тому, с чего начинали и искать решение в другом направлении. Наш ум берясь за задачу видит сразу много путей для рассуждения, из которых большинство ошибочны, но ум об этом не знает и проверяет их все, пока не наткнётся на верный. Конечно, есть люди, обладающие настолько сильной интуицией, что они видят правильное направление рассуждений сразу. Однако интуиция, средство не вполне надёжное. Когда мы принимаем решение интуитивно, всегда остаётся ощущение неуверенности. Поэтому ещё древние мыслители пришли к идее, что неплохо бы правильный ход рассуждений вычислять. Изобрести бы что-то вроде формул, в которых вместо чисел использовались бы рассуждения. Идея очень хорошая, и её пытались реализовать многие философы и математики. В полной мере это на сегодня не удалось. Однако удалось установить, что правильный ход рассуждений подчиняется определённым законам, знание которых помогает значительно сократить путь к истине. Кроме того, существуют методы ведения рассуждений, используя которые мы можем мыслить более эффективно. Постепенно образовалась наука ( называемая логикой ) целью которой было открытие законов правильного мышления и разработка методов мышления.

Любая наука, начинается с точного определения понятий с которыми она имеет дело.

Определим основные понятия и мы:

Посылка — это утверждение, из которого мы исходим в своих рассуждениях.

Следствие — это утверждение являющееся результатом наших рассуждений.

Умозаключение — это мыслительный процесс, в котором из одного или нескольких суждений, делается заключение.

Гипотеза — это утверждение, истинность которого требуется доказать.

Противоречие — это ситуация, когда в процессе наших рассуждений получились два взаимоисключающих утверждения.

Суждение — это единица мышления.

Основные законы:

Закон тождества. Всякий предмет, есть то, что он есть. Что это означает: Если мы, в своих рассуждениях, используем какое — либо понятие, то на любом этапе рассуждений, это понятие должно означать одно и тоже. Иногда за соблюдением закона тождества надо специально следить. Например, при использовании многозначных слов. Нарушение закона может завести в тупик. К примеру, понятием энергии часто обозначаются совершенно разные явления. Например, физическая энергия и психическая энергия. Если мы опустим, тот факт, что это два разных явления, то законы, которым подчиняется физическая энергия, можно будет автоматически переносить на явления связанные с проявлением психической энергии, что и будет ошибкой. Приведём более простой пример: Предположим, вы изучили правила дорожного движения принятые в России. Закон тождества говорит, что правила принятые в России, это совсем не те правила, которые приняты во Франции. Если же вы пренебрежёте законом тождества, то будучи во Франции вы рискуете попасть в аварию.

Закон противоречия. Ход рассуждений не должен быть противоречивым. На этом законе основан метод доказательства утверждений, так называемый метод «От противного». Применение метода рассматривается ниже в задачах о принцессах. Суть его заключается в следующем правиле. В начале рассуждений, мы принимаем некоторое утверждение за истину. Если мы будем рассуждать, не нарушая правила и законы логики, то на любом шаге наших рассуждений должны получаться только истинные утверждения. Если же мы когда либо получим ложное утверждение, то это будет означать, что исходное утверждение не может быть истинным.

Закон исключенного третьего. Если есть два суждения и одно исключает другое, то одно из них истина, а другое ложь. В реальной жизни это не всегда так. Приведём пример: Первое утверждение «Я пользуюсь методами математической логики каждый день моей жизни.», второе утверждение «Я никогда не пользуюсь методами математической логики». Очевидно, что они противоречат друг другу, однако они вполне могут оказаться одновременно ложными. Например, если вы специалист по математической логике, то вы должны часто пользоваться её методами, но вряд ли они нужны вам каждый день вашей жизни. Закон исключенного третьего предназначен для использовании в области точных наук, в которых такие ситуации не встречаются или встречаются достаточно редко.

Закон достаточного основания. Любое утверждение должно быть обосновано. Закон кажется очевидным. Совершенно естественно, что каждое утверждение должно быть или аксиомой или выводится из утверждения, истинность которого не вызывает сомнений. Однако в реальной практике мы часто делам свои заключения из утверждений, чья истинность сомнительна, или пользуемся неправильно составленными умозаключениями.

Методы мышления

Пользуясь законами, можно строить методы правильного мышления. Их существует довольно много, но мы приведём в качестве примера только два из них.

Дедукция: Это метод рассуждений, при котором некоторые истинные утверждения берутся в качестве посылок. Затем с помощью умозаключений из этих посылок получаются выводы, которые в свою очередь становятся посылками для следующих умозаключений. Получается цепочка умозаключений, в начале которой находится некоторое количество очевидных утверждений, а в конце утверждения, истинность которых уже далеко не очевидна, если не знать всей цепочки.

Очень яркий литературный пример использования дедуктивного метода это герой А. Конан-Дойля Шерлок Холмс. Конечно, применение дедукции Холмсом далеко от математической точности и строгой критики рассказы о нём не выдерживают, но суть метода в рассказах Конан-Дойля демонстрируется очень наглядно.

Метод приведения к противоречию: Существо данного метода состоит в построении такой цепочки рассуждений от исходной посылки, чтобы она привела или наоборот не привела к противоречию. Если мы получим противоречие (не нарушая законов логики), то это будет означать ложность исходной посылки. В книге Смаллиана есть масса примеров того, как используя данный метод можно решать задачи. В качестве примера приведём следующую задачу:

К королю некоего малоизвестного королевства, очень часто приезжали различные принцы свататься к принцессам, которых у того короля было довольно много. Каждого из них надо было как то проверять, а так как принцев было много, то король решил поставить процесс на поток. Он подводил принца к дверям в комнаты и предлагал открыть одну из них. Причем в комнатах он помещал тигров и принцесс. Принц должен был угадать в какой комнате принцесса. Что бы это не было простое гадание, ему выдавалась дополнительная информация, анализируя которую он мог точно узнать где принцесса, а где тигр. Приведем одну задачу с решением в качестве примера. В этом испытании на дверях комнат были следующие таблички:

1 Комната 2 Комната
В этой комнате находится принцесса, а в другой комнате сидит тигр. В одной из этих комнат находится принцесса; кроме того, в одной из этих комнат сидит тигр.

Кроме того, принцу было сказано, что на одной табличке написана правда, а на другой нет.

Начнем рассуждения. Для каждой из табличек возможны только два варианта, либо ложь, либо истина. Рассмотрим с этой позиции табличку на первой комнате.

Табличка на первой двери истинна. Тогда табличка на второй двери ложна. А так как табличка на второй двери утверждает, что в одной из комнат находится принцесса, то из её ложности следует, что принцессы там нет, что приходит в противоречие с истинностью первой таблички. Таким образом, мы, предположив, что табличка на первой двери истинна пришли к противоречию.

Табличка на первой двери ложна. Тогда табличка на второй двери истинна. Из ложности первой таблички следует, что принцесса находится в комнате 2, а тигр в комнате 1. Из истинности второй табличке следует, что в одной из комнат есть принцесса и в одной из комнат есть тигр. Эти утверждения не противоречат друг другу, следовательно вторая ситуация непротиворечива и чего в свою очередь следует что принцесса находится во второй комнате.

Задача для самостоятельного решения:

1 Комната 2 Комната
По крайней мере в одной из комнат находится принцесса Принцесса в другой комнате.

Дополнительно было известно следующее: Если в первой комнате находится принцесса, то утверждение на табличке истинно, если же там тигр, то утверждение ложно. Относительно правой комнаты все было наоборот: утверждение на табличке ложно, если в комнате находится принцесса, и истинно, если в комнате сидит тигр.

Математическая логика

Вышеизложенная логика хорошо описывает законы человеческого мышления, но исходной задачи «вычисления истины», она не решает. Она не может решить её в принципе, потому что в ней почти нет математики. А следовательно следующий разумный шаг, это создание теории которая описывала бы процесс мышления с математической точностью.

Как создать такую теорию?

Ответ: точно так же, как и любую другую математическую теорию. Надо предельно точно описать используемые понятия и определить над ними операции. Первым кто проделал такую работу и создал первую математическую логику был Джорж Булль. Эта математика по его имени стала называться булевой алгеброй или логикой высказываний. И сейчас мы ей займемся. Итак.

Понятия: В качестве главного понятия было взято понятие высказывания. Высказывание, это минимальная мысль, утверждение, которое может быть либо истинным, либо ложным.

Последняя договорённость очень важна. Если рассматривать смысл высказываний, то работать с ними будет слишком сложно, так как смысл очень неопределённое понятие. А если мы решим, что важна только истинность высказывания, то проблема значительно упрощается. В этом случае совершенно неважно о чём говорится в высказывании. Отпадает необходимость обозначать высказывание целым предложением, раскрывающим его смысл. Для обозначения вполне достаточно будет одной буквы. Разные высказывания будем обозначать разными буквами. Окончательно объектами нашей математики будут переменные величины обозначаемые буквами или комбинациями букв и имеющие только два значения: Истина и Ложь.

Операции: Операции над высказываниями, это операции над буквенными переменными и могущие принимать в качестве результата только два значения. Далее мы будем называть такие операции логическими.

Итак — логическая операция, это операция которая устанавливает соответствие между одним или несколькими высказываниями ( которые называются аргументами операции ) и высказыванием которое называется значением операции.

Как можно составить логическую операцию? Очень просто. Приведем пример. Пусть дано высказывание А. Оно может быть либо истинно, либо ложно. Определим высказывание В следующим образом: пусть В истинно когда А ложно и ложно когда А истинно. Мы только что установили соответствие между высказыванием А и высказыванием В. Другими словами мы составили логическую операцию, аргументом которой является высказывание А и результатом высказывание В. Операция определённая таким образом называется отрицанием и записывается так — ùА. Еще говорят так — “не А”

Определим еще четыре логические операции:

Коньюкция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В истинны то С также истинно. Если же хотя бы одно из них ложно то С также ложно. Обозначение: АÙВ. Можно сказать так “ А и В “ и еще эту операцию называют логическим умножением.

Дизьюкция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В ложны то С также ложно. Если же хотя бы одно из высказываний А и В истинно то С также истинно. Обозначение: АÚВ. Можно сказать так “ А или В ” и еще эту операцию называют логическим умножением.

Эквиваленция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В одновременно ложны или же истинны то С истинно иначе С ложно. Обозначение: А=В

Импликация. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Пусть А посылка и В следствие, тогда:

если А ложно то С истинно ( то есть из ложного утверждения может следовать все что угодно)

если А истинно и В истинно то С истинно ( из истинного утверждения можно вывести истинное )

если А истинно и В ложно то С ложно ( из истинного утверждения не может следовать ложное )

Обозначение: А®В

Импликация устроена немного сложнее других операций. В импликации существенное значение имеет порядок аргументов. Первый называется посылкой, а второй следствием. Можно сказать, что первое высказывание является как бы причиной второго, а второе как бы вытекает из первого.

Приведенные выше определения можно свести в таблицу, которая называется таблицей истинности.

А В не А А или В А и В А следует В А эквив. В
Истина Истина ложь истина Истина Истина истина
Истина Ложь ложь истина ложь Ложь ложь
Ложь Истина истина истина ложь Истина ложь
Ложь Ложь истина ложь ложь Истина истина

Сложное высказывание

Сложным высказыванием называется высказывание, полученное комбинацией элементарных высказываний, логических функций и скобок. Для сложного высказывания также можно составить таблицу истинности. Приведём пример: Составим таблицу истинности для следующего высказывания: (АÚВ)®А

А В АÚВ (АÚВ)®А
1 1 1 1
1 1 1
1 1
1

Составьте для тренировки таблицы истинности следующих сложных высказываний:

АÚ(АÚùВ) А®(ВÙА)
(ВÚА)®А А®(ВÚВ)
ù(АÚù(В®А)) (ùВÚА)®(ВÚА)
ù(В®А)®(АÙВ) В®(ù(В®А)®(ùА®В))

Схема умозаключения

Обычно, мы принимаемся строить цепочки логических умозаключений, для того чтобы установить истинность или ложность того или иного утверждения. Можно даже сказать, что нас всегда интересует истинность. Если мы же нам требуется установить ложность утверждения, то это то же самое что устанавливать истинность его отрицания. Иначе говоря, наш мыслительный процесс всегда направлен на получение доказательств теорем каждая из которых строится по следующей схеме: Дано некоторое количество истинных посылок и некоторое утверждение являющееся следствием из них. Теорема говорит, что данное утверждение также истинно, на том основании, что оно является следствием из истинных посылок.

Теорема в общем случае это не обязательно теорема математики. По такой схеме строится и наше бытовое мышление. От математики оно отличается только уровнем строгости. Выше мы уже говорили, что цель математической логики заключается в установлении взаимосвязи между посылками и заключением и теперь пора рассмотреть как это делается.

Для начала определим два важных понятия:

Тождественно истинное высказывание. Это высказывание, которое является истинным при любых значениях составляющих его элементарных высказываний.

Схема умозаключения. Схема умозаключения, это способ получения тождественно-истинных высказываний. Схема утверждает что если высказывание А истинно и истинна импликация А®В, то высказывания В также является истинным (это ясно из определения импликации). Таким образом, если мы найдём способ проверить истинность посылки и импликации, истинность следствия получается автоматически.

Тождественно — истинные высказывания получаются следующим образом: Определяется некоторое количество сложных тождественно — истинных высказываний. Такие высказывания в математике называются аксиомами. Затем составляется очевидная схема умозаключения. Затем над правой частью этой схемы производятся тождественные преобразования приводящие к появлению новых высказываний, которые согласно определению схемы умозаключения также являются истинными.

Нетрудно заметить, что схема умозаключения этой строгая форма дедуктивного метода. Поэтому на примере схемы умозаключения, мы можем показать достоинства и слабости математической логики.

Обычный дедуктивный метод мышления, применим в самых разных ситуациях, чего нельзя сказать о схеме умозаключения математической логики. Она применима только тогда, когда объекты мыслительных операций укладываются в определения понятий математической логики.

С другой стороны, те результаты, которые мы получаем, методами математической логики являются абсолютно точными, в то время как обычный дедуктивный метод, например в бытовой ситуации даёт результат, лишь с некоторой долей уверенности.

Заключение

Наше изложение математической логики было очень кратким, но все же достаточным, чтобы думающий читатель усомнился в её способности вычислять истину. И действительно, такая задача ей не решается, по всей видимости эта задаче неразрешима в принципе, потому что зачастую человеку приходится решать задачи и проблемы, в которых понятия расплывчаты и зачастую нет самого понятия правильного решения. Такова например ситуация в искусстве, в философии и т.д. Однако есть области в которых основные понятия можно определить исключительно точно, и вот там математическая логика и находит своё применение.

Еще несколько вопросов для самостоятельной работы.

Приведите пример дедуктивного рассуждения.

Приведите пример проблемы или задачи, которую невозможно разрешить отказавшись от закона исключенного третьего.

Предположим, вам дана некая математическая задача, как бы вы определили, применимы или нет к ней методы математической логики.

Приведите пример класса задач, не решаемых с помощью метода приведения к противоречию.

Можно ли сказать, доказательство теорем методом от противного есть частный случай метода приведения к противоречию. Ответ обязательно обоснуйте.

www.ronl.ru

Дипломная работа - Элементы математической логики

Потопахин Виталий Валерьевич, методист ХКЦТТ

Искусство логического мышления

В процессе всей своей деятельности, человеку приходится разрешать различные проблемы и задачи. Самая суть нашего мыслительного процесса заключается в поиске решений. И конечно хотелось бы находить нужные решения, по возможности быстро. Однако очень часто наши рассуждения идут в неверном направлении, и мы приходим к ошибочному выводу. Приходится возвращаться к тому, с чего начинали и искать решение в другом направлении. Наш ум берясь за задачу видит сразу много путей для рассуждения, из которых большинство ошибочны, но ум об этом не знает и проверяет их все, пока не наткнётся на верный. Конечно, есть люди, обладающие настолько сильной интуицией, что они видят правильное направление рассуждений сразу. Однако интуиция, средство не вполне надёжное. Когда мы принимаем решение интуитивно, всегда остаётся ощущение неуверенности. Поэтому ещё древние мыслители пришли к идее, что неплохо бы правильный ход рассуждений вычислять. Изобрести бы что-то вроде формул, в которых вместо чисел использовались бы рассуждения. Идея очень хорошая, и её пытались реализовать многие философы и математики. В полной мере это на сегодня не удалось. Однако удалось установить, что правильный ход рассуждений подчиняется определённым законам, знание которых помогает значительно сократить путь к истине. Кроме того, существуют методы ведения рассуждений, используя которые мы можем мыслить более эффективно. Постепенно образовалась наука ( называемая логикой ) целью которой было открытие законов правильного мышления и разработка методов мышления.

Любая наука, начинается с точного определения понятий с которыми она имеет дело.

Определим основные понятия и мы:

Посылка — это утверждение, из которого мы исходим в своих рассуждениях.

Следствие — это утверждение являющееся результатом наших рассуждений.

Умозаключение — это мыслительный процесс, в котором из одного или нескольких суждений, делается заключение.

Гипотеза — это утверждение, истинность которого требуется доказать.

Противоречие — это ситуация, когда в процессе наших рассуждений получились два взаимоисключающих утверждения.

Суждение — это единица мышления.

Основные законы:

Закон тождества. Всякий предмет, есть то, что он есть. Что это означает: Если мы, в своих рассуждениях, используем какое — либо понятие, то на любом этапе рассуждений, это понятие должно означать одно и тоже. Иногда за соблюдением закона тождества надо специально следить. Например, при использовании многозначных слов. Нарушение закона может завести в тупик. К примеру, понятием энергии часто обозначаются совершенно разные явления. Например, физическая энергия и психическая энергия. Если мы опустим, тот факт, что это два разных явления, то законы, которым подчиняется физическая энергия, можно будет автоматически переносить на явления связанные с проявлением психической энергии, что и будет ошибкой. Приведём более простой пример: Предположим, вы изучили правила дорожного движения принятые в России. Закон тождества говорит, что правила принятые в России, это совсем не те правила, которые приняты во Франции. Если же вы пренебрежёте законом тождества, то будучи во Франции вы рискуете попасть в аварию.

Закон противоречия. Ход рассуждений не должен быть противоречивым. На этом законе основан метод доказательства утверждений, так называемый метод «От противного». Применение метода рассматривается ниже в задачах о принцессах. Суть его заключается в следующем правиле. В начале рассуждений, мы принимаем некоторое утверждение за истину. Если мы будем рассуждать, не нарушая правила и законы логики, то на любом шаге наших рассуждений должны получаться только истинные утверждения. Если же мы когда либо получим ложное утверждение, то это будет означать, что исходное утверждение не может быть истинным.

Закон исключенного третьего. Если есть два суждения и одно исключает другое, то одно из них истина, а другое ложь. В реальной жизни это не всегда так. Приведём пример: Первое утверждение «Я пользуюсь методами математической логики каждый день моей жизни.», второе утверждение «Я никогда не пользуюсь методами математической логики». Очевидно, что они противоречат друг другу, однако они вполне могут оказаться одновременно ложными. Например, если вы специалист по математической логике, то вы должны часто пользоваться её методами, но вряд ли они нужны вам каждый день вашей жизни. Закон исключенного третьего предназначен для использовании в области точных наук, в которых такие ситуации не встречаются или встречаются достаточно редко.

Закон достаточного основания. Любое утверждение должно быть обосновано. Закон кажется очевидным. Совершенно естественно, что каждое утверждение должно быть или аксиомой или выводится из утверждения, истинность которого не вызывает сомнений. Однако в реальной практике мы часто делам свои заключения из утверждений, чья истинность сомнительна, или пользуемся неправильно составленными умозаключениями.

Методы мышления

Пользуясь законами, можно строить методы правильного мышления. Их существует довольно много, но мы приведём в качестве примера только два из них.

Дедукция: Это метод рассуждений, при котором некоторые истинные утверждения берутся в качестве посылок. Затем с помощью умозаключений из этих посылок получаются выводы, которые в свою очередь становятся посылками для следующих умозаключений. Получается цепочка умозаключений, в начале которой находится некоторое количество очевидных утверждений, а в конце утверждения, истинность которых уже далеко не очевидна, если не знать всей цепочки.

Очень яркий литературный пример использования дедуктивного метода это герой А. Конан-Дойля Шерлок Холмс. Конечно, применение дедукции Холмсом далеко от математической точности и строгой критики рассказы о нём не выдерживают, но суть метода в рассказах Конан-Дойля демонстрируется очень наглядно.

Метод приведения к противоречию: Существо данного метода состоит в построении такой цепочки рассуждений от исходной посылки, чтобы она привела или наоборот не привела к противоречию. Если мы получим противоречие (не нарушая законов логики), то это будет означать ложность исходной посылки. В книге Смаллиана есть масса примеров того, как используя данный метод можно решать задачи. В качестве примера приведём следующую задачу:

К королю некоего малоизвестного королевства, очень часто приезжали различные принцы свататься к принцессам, которых у того короля было довольно много. Каждого из них надо было как то проверять, а так как принцев было много, то король решил поставить процесс на поток. Он подводил принца к дверям в комнаты и предлагал открыть одну из них. Причем в комнатах он помещал тигров и принцесс. Принц должен был угадать в какой комнате принцесса. Что бы это не было простое гадание, ему выдавалась дополнительная информация, анализируя которую он мог точно узнать где принцесса, а где тигр. Приведем одну задачу с решением в качестве примера. В этом испытании на дверях комнат были следующие таблички:

1 Комната 2 Комната
В этой комнате находится принцесса, а в другой комнате сидит тигр. В одной из этих комнат находится принцесса; кроме того, в одной из этих комнат сидит тигр.

Кроме того, принцу было сказано, что на одной табличке написана правда, а на другой нет.

Начнем рассуждения. Для каждой из табличек возможны только два варианта, либо ложь, либо истина. Рассмотрим с этой позиции табличку на первой комнате.

Табличка на первой двери истинна. Тогда табличка на второй двери ложна. А так как табличка на второй двери утверждает, что в одной из комнат находится принцесса, то из её ложности следует, что принцессы там нет, что приходит в противоречие с истинностью первой таблички. Таким образом, мы, предположив, что табличка на первой двери истинна пришли к противоречию.

Табличка на первой двери ложна. Тогда табличка на второй двери истинна. Из ложности первой таблички следует, что принцесса находится в комнате 2, а тигр в комнате 1. Из истинности второй табличке следует, что в одной из комнат есть принцесса и в одной из комнат есть тигр. Эти утверждения не противоречат друг другу, следовательно вторая ситуация непротиворечива и чего в свою очередь следует что принцесса находится во второй комнате.

Задача для самостоятельного решения:

1 Комната 2 Комната
По крайней мере в одной из комнат находится принцесса Принцесса в другой комнате.

Дополнительно было известно следующее: Если в первой комнате находится принцесса, то утверждение на табличке истинно, если же там тигр, то утверждение ложно. Относительно правой комнаты все было наоборот: утверждение на табличке ложно, если в комнате находится принцесса, и истинно, если в комнате сидит тигр.

Математическая логика

Вышеизложенная логика хорошо описывает законы человеческого мышления, но исходной задачи «вычисления истины», она не решает. Она не может решить её в принципе, потому что в ней почти нет математики. А следовательно следующий разумный шаг, это создание теории которая описывала бы процесс мышления с математической точностью.

Как создать такую теорию?

Ответ: точно так же, как и любую другую математическую теорию. Надо предельно точно описать используемые понятия и определить над ними операции. Первым кто проделал такую работу и создал первую математическую логику был Джорж Булль. Эта математика по его имени стала называться булевой алгеброй или логикой высказываний. И сейчас мы ей займемся. Итак.

Понятия: В качестве главного понятия было взято понятие высказывания. Высказывание, это минимальная мысль, утверждение, которое может быть либо истинным, либо ложным.

Последняя договорённость очень важна. Если рассматривать смысл высказываний, то работать с ними будет слишком сложно, так как смысл очень неопределённое понятие. А если мы решим, что важна только истинность высказывания, то проблема значительно упрощается. В этом случае совершенно неважно о чём говорится в высказывании. Отпадает необходимость обозначать высказывание целым предложением, раскрывающим его смысл. Для обозначения вполне достаточно будет одной буквы. Разные высказывания будем обозначать разными буквами. Окончательно объектами нашей математики будут переменные величины обозначаемые буквами или комбинациями букв и имеющие только два значения: Истина и Ложь.

Операции: Операции над высказываниями, это операции над буквенными переменными и могущие принимать в качестве результата только два значения. Далее мы будем называть такие операции логическими.

Итак — логическая операция, это операция которая устанавливает соответствие между одним или несколькими высказываниями ( которые называются аргументами операции ) и высказыванием которое называется значением операции.

Как можно составить логическую операцию? Очень просто. Приведем пример. Пусть дано высказывание А. Оно может быть либо истинно, либо ложно. Определим высказывание В следующим образом: пусть В истинно когда А ложно и ложно когда А истинно. Мы только что установили соответствие между высказыванием А и высказыванием В. Другими словами мы составили логическую операцию, аргументом которой является высказывание А и результатом высказывание В. Операция определённая таким образом называется отрицанием и записывается так — ùА. Еще говорят так — “не А”

Определим еще четыре логические операции:

Коньюкция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В истинны то С также истинно. Если же хотя бы одно из них ложно то С также ложно. Обозначение: АÙВ. Можно сказать так “ А и В “ и еще эту операцию называют логическим умножением.

Дизьюкция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В ложны то С также ложно. Если же хотя бы одно из высказываний А и В истинно то С также истинно. Обозначение: АÚВ. Можно сказать так “ А или В ” и еще эту операцию называют логическим умножением.

Эквиваленция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В одновременно ложны или же истинны то С истинно иначе С ложно. Обозначение: А=В

Импликация. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Пусть А посылка и В следствие, тогда:

если А ложно то С истинно ( то есть из ложного утверждения может следовать все что угодно)

если А истинно и В истинно то С истинно ( из истинного утверждения можно вывести истинное )

если А истинно и В ложно то С ложно ( из истинного утверждения не может следовать ложное )

Обозначение: А®В

Импликация устроена немного сложнее других операций. В импликации существенное значение имеет порядок аргументов. Первый называется посылкой, а второй следствием. Можно сказать, что первое высказывание является как бы причиной второго, а второе как бы вытекает из первого.

Приведенные выше определения можно свести в таблицу, которая называется таблицей истинности.

А В не А А или В А и В А следует В А эквив. В
Истина Истина ложь истина Истина Истина истина
Истина Ложь ложь истина ложь Ложь ложь
Ложь Истина истина истина ложь Истина ложь
Ложь Ложь истина ложь ложь Истина истина

Сложное высказывание

Сложным высказыванием называется высказывание, полученное комбинацией элементарных высказываний, логических функций и скобок. Для сложного высказывания также можно составить таблицу истинности. Приведём пример: Составим таблицу истинности для следующего высказывания: (АÚВ)®А

А В АÚВ (АÚВ)®А
1 1 1 1
1 1 1
1 1
1

Составьте для тренировки таблицы истинности следующих сложных высказываний:

АÚ(АÚùВ) А®(ВÙА)
(ВÚА)®А А®(ВÚВ)
ù(АÚù(В®А)) (ùВÚА)®(ВÚА)
ù(В®А)®(АÙВ) В®(ù(В®А)®(ùА®В))

Схема умозаключения

Обычно, мы принимаемся строить цепочки логических умозаключений, для того чтобы установить истинность или ложность того или иного утверждения. Можно даже сказать, что нас всегда интересует истинность. Если мы же нам требуется установить ложность утверждения, то это то же самое что устанавливать истинность его отрицания. Иначе говоря, наш мыслительный процесс всегда направлен на получение доказательств теорем каждая из которых строится по следующей схеме: Дано некоторое количество истинных посылок и некоторое утверждение являющееся следствием из них. Теорема говорит, что данное утверждение также истинно, на том основании, что оно является следствием из истинных посылок.

Теорема в общем случае это не обязательно теорема математики. По такой схеме строится и наше бытовое мышление. От математики оно отличается только уровнем строгости. Выше мы уже говорили, что цель математической логики заключается в установлении взаимосвязи между посылками и заключением и теперь пора рассмотреть как это делается.

Для начала определим два важных понятия:

Тождественно истинное высказывание. Это высказывание, которое является истинным при любых значениях составляющих его элементарных высказываний.

Схема умозаключения. Схема умозаключения, это способ получения тождественно-истинных высказываний. Схема утверждает что если высказывание А истинно и истинна импликация А®В, то высказывания В также является истинным (это ясно из определения импликации). Таким образом, если мы найдём способ проверить истинность посылки и импликации, истинность следствия получается автоматически.

Тождественно — истинные высказывания получаются следующим образом: Определяется некоторое количество сложных тождественно — истинных высказываний. Такие высказывания в математике называются аксиомами. Затем составляется очевидная схема умозаключения. Затем над правой частью этой схемы производятся тождественные преобразования приводящие к появлению новых высказываний, которые согласно определению схемы умозаключения также являются истинными.

Нетрудно заметить, что схема умозаключения этой строгая форма дедуктивного метода. Поэтому на примере схемы умозаключения, мы можем показать достоинства и слабости математической логики.

Обычный дедуктивный метод мышления, применим в самых разных ситуациях, чего нельзя сказать о схеме умозаключения математической логики. Она применима только тогда, когда объекты мыслительных операций укладываются в определения понятий математической логики.

С другой стороны, те результаты, которые мы получаем, методами математической логики являются абсолютно точными, в то время как обычный дедуктивный метод, например в бытовой ситуации даёт результат, лишь с некоторой долей уверенности.

Заключение

Наше изложение математической логики было очень кратким, но все же достаточным, чтобы думающий читатель усомнился в её способности вычислять истину. И действительно, такая задача ей не решается, по всей видимости эта задаче неразрешима в принципе, потому что зачастую человеку приходится решать задачи и проблемы, в которых понятия расплывчаты и зачастую нет самого понятия правильного решения. Такова например ситуация в искусстве, в философии и т.д. Однако есть области в которых основные понятия можно определить исключительно точно, и вот там математическая логика и находит своё применение.

Еще несколько вопросов для самостоятельной работы.

Приведите пример дедуктивного рассуждения.

Приведите пример проблемы или задачи, которую невозможно разрешить отказавшись от закона исключенного третьего.

Предположим, вам дана некая математическая задача, как бы вы определили, применимы или нет к ней методы математической логики.

Приведите пример класса задач, не решаемых с помощью метода приведения к противоречию.

Можно ли сказать, доказательство теорем методом от противного есть частный случай метода приведения к противоречию. Ответ обязательно обоснуйте.

www.ronl.ru

Реферат: Элементы математической логики

Потопахин Виталий Валерьевич, методист ХКЦТТ

Искусство логического мышления

В процессе всей своей деятельности, человеку приходится разрешать различные проблемы и задачи. Самая суть нашего мыслительного процесса заключается в поиске решений. И конечно хотелось бы находить нужные решения, по возможности быстро. Однако очень часто наши рассуждения идут в неверном направлении, и мы приходим к ошибочному выводу. Приходится возвращаться к тому, с чего начинали и искать решение в другом направлении. Наш ум берясь за задачу видит сразу много путей для рассуждения, из которых большинство ошибочны, но ум об этом не знает и проверяет их все, пока не наткнётся на верный. Конечно, есть люди, обладающие настолько сильной интуицией, что они видят правильное направление рассуждений сразу. Однако интуиция, средство не вполне надёжное. Когда мы принимаем решение интуитивно, всегда остаётся ощущение неуверенности. Поэтому ещё древние мыслители пришли к идее, что неплохо бы правильный ход рассуждений вычислять. Изобрести бы что-то вроде формул, в которых вместо чисел использовались бы рассуждения. Идея очень хорошая, и её пытались реализовать многие философы и математики. В полной мере это на сегодня не удалось. Однако удалось установить, что правильный ход рассуждений подчиняется определённым законам, знание которых помогает значительно сократить путь к истине. Кроме того, существуют методы ведения рассуждений, используя которые мы можем мыслить более эффективно. Постепенно образовалась наука ( называемая логикой ) целью которой было открытие законов правильного мышления и разработка методов мышления.

Любая наука, начинается с точного определения понятий с которыми она имеет дело.

Определим основные понятия и мы:

Посылка - это утверждение, из которого мы исходим в своих рассуждениях.

Следствие - это утверждение являющееся результатом наших рассуждений.

Умозаключение - это мыслительный процесс, в котором из одного или нескольких суждений, делается заключение.

Гипотеза - это утверждение, истинность которого требуется доказать.

Противоречие - это ситуация, когда в процессе наших рассуждений получились два взаимоисключающих утверждения.

Суждение - это единица мышления.

Основные законы:

Закон тождества. Всякий предмет, есть то, что он есть. Что это означает: Если мы, в своих рассуждениях, используем какое - либо понятие, то на любом этапе рассуждений, это понятие должно означать одно и тоже. Иногда за соблюдением закона тождества надо специально следить. Например, при использовании многозначных слов. Нарушение закона может завести в тупик. К примеру, понятием энергии часто обозначаются совершенно разные явления. Например, физическая энергия и психическая энергия. Если мы опустим, тот факт, что это два разных явления, то законы, которым подчиняется физическая энергия, можно будет автоматически переносить на явления связанные с проявлением психической энергии, что и будет ошибкой. Приведём более простой пример: Предположим, вы изучили правила дорожного движения принятые в России. Закон тождества говорит, что правила принятые в России, это совсем не те правила, которые приняты во Франции. Если же вы пренебрежёте законом тождества, то будучи во Франции вы рискуете попасть в аварию.

Закон противоречия. Ход рассуждений не должен быть противоречивым. На этом законе основан метод доказательства утверждений, так называемый метод "От противного". Применение метода рассматривается ниже в задачах о принцессах. Суть его заключается в следующем правиле. В начале рассуждений, мы принимаем некоторое утверждение за истину. Если мы будем рассуждать, не нарушая правила и законы логики, то на любом шаге наших рассуждений должны получаться только истинные утверждения. Если же мы когда либо получим ложное утверждение, то это будет означать, что исходное утверждение не может быть истинным.

Закон исключенного третьего. Если есть два суждения и одно исключает другое, то одно из них истина, а другое ложь. В реальной жизни это не всегда так. Приведём пример: Первое утверждение "Я пользуюсь методами математической логики каждый день моей жизни.", второе утверждение "Я никогда не пользуюсь методами математической логики". Очевидно, что они противоречат друг другу, однако они вполне могут оказаться одновременно ложными. Например, если вы специалист по математической логике, то вы должны часто пользоваться её методами, но вряд ли они нужны вам каждый день вашей жизни. Закон исключенного третьего предназначен для использовании в области точных наук, в которых такие ситуации не встречаются или встречаются достаточно редко.

Закон достаточного основания. Любое утверждение должно быть обосновано. Закон кажется очевидным. Совершенно естественно, что каждое утверждение должно быть или аксиомой или выводится из утверждения, истинность которого не вызывает сомнений. Однако в реальной практике мы часто делам свои заключения из утверждений, чья истинность сомнительна, или пользуемся неправильно составленными умозаключениями.

Методы мышления

Пользуясь законами, можно строить методы правильного мышления. Их существует довольно много, но мы приведём в качестве примера только два из них.

Дедукция: Это метод рассуждений, при котором некоторые истинные утверждения берутся в качестве посылок. Затем с помощью умозаключений из этих посылок получаются выводы, которые в свою очередь становятся посылками для следующих умозаключений. Получается цепочка умозаключений, в начале которой находится некоторое количество очевидных утверждений, а в конце утверждения, истинность которых уже далеко не очевидна, если не знать всей цепочки.

Очень яркий литературный пример использования дедуктивного метода это герой А. Конан-Дойля Шерлок Холмс. Конечно, применение дедукции Холмсом далеко от математической точности и строгой критики рассказы о нём не выдерживают, но суть метода в рассказах Конан-Дойля демонстрируется очень наглядно.

Метод приведения к противоречию: Существо данного метода состоит в построении такой цепочки рассуждений от исходной посылки, чтобы она привела или наоборот не привела к противоречию. Если мы получим противоречие (не нарушая законов логики), то это будет означать ложность исходной посылки. В книге Смаллиана есть масса примеров того, как используя данный метод можно решать задачи. В качестве примера приведём следующую задачу:

К королю некоего малоизвестного королевства, очень  часто   приезжали  различные принцы свататься к принцессам, которых у того короля было довольно много. Каждого из них надо было как то проверять, а так как принцев было много, то король   решил поставить процесс на поток. Он подводил принца к дверям в комнаты и предлагал открыть одну из них. Причем в комнатах он помещал тигров и принцесс. Принц должен был угадать в какой комнате принцесса. Что бы это не было простое гадание, ему выдавалась дополнительная информация, анализируя которую он мог точно узнать где принцесса, а где тигр. Приведем одну задачу с решением в качестве примера. В этом испытании на дверях комнат были следующие таблички:

1 Комната

2 Комната

В этой комнате находится принцесса, а в другой комнате сидит тигр.

В одной из этих комнат находится принцесса; кроме того, в одной из этих комнат сидит тигр.

Кроме того, принцу было сказано, что на одной табличке написана правда, а на другой нет.

Начнем рассуждения. Для каждой из табличек возможны только два варианта, либо ложь, либо истина. Рассмотрим с этой позиции табличку на первой комнате.

Табличка на первой двери истинна. Тогда табличка на второй двери ложна. А так как табличка на второй двери утверждает, что в одной из комнат находится принцесса, то из её ложности следует, что принцессы там нет, что приходит в противоречие с истинностью первой таблички. Таким образом, мы, предположив, что табличка на   первой двери истинна пришли к противоречию.

Табличка на первой двери ложна. Тогда табличка на второй двери истинна. Из ложности первой таблички следует, что принцесса находится в комнате 2, а тигр в комнате 1. Из истинности второй табличке следует, что в одной из комнат есть принцесса и в одной   из комнат есть тигр. Эти утверждения не противоречат друг другу, следовательно вторая ситуация непротиворечива и чего в свою очередь следует что принцесса находится во второй комнате.

Задача для самостоятельного решения:

1 Комната

2 Комната

По крайней мере в одной из комнат находится принцесса

Принцесса в другой комнате.

Дополнительно было известно следующее: Если в первой комнате находится принцесса, то утверждение на табличке истинно, если же там тигр, то утверждение ложно. Относительно правой комнаты все было наоборот: утверждение на табличке ложно, если в комнате находится принцесса, и истинно, если в комнате сидит тигр.

Математическая логика

Вышеизложенная логика хорошо описывает законы человеческого мышления, но исходной задачи "вычисления истины", она не решает. Она не может решить её в принципе, потому что в ней почти нет математики. А следовательно следующий разумный шаг, это создание теории которая описывала бы процесс мышления с математической точностью.

Как создать такую теорию?

Ответ: точно так же, как и любую другую математическую теорию. Надо предельно точно описать используемые понятия и определить над ними операции. Первым кто проделал такую работу и создал первую математическую логику был Джорж Булль. Эта математика по его имени стала называться булевой алгеброй или логикой высказываний. И сейчас мы ей займемся. Итак.

Понятия: В качестве главного понятия было взято понятие высказывания. Высказывание, это минимальная мысль, утверждение, которое может быть либо истинным, либо ложным.

Последняя договорённость очень важна. Если рассматривать смысл высказываний, то работать с ними будет слишком сложно, так как смысл очень неопределённое понятие. А если мы решим, что важна только истинность высказывания, то проблема значительно упрощается. В этом случае совершенно неважно о чём говорится в высказывании. Отпадает необходимость обозначать высказывание целым предложением, раскрывающим его смысл. Для обозначения вполне достаточно будет одной буквы. Разные высказывания будем обозначать разными буквами. Окончательно объектами нашей математики будут переменные величины обозначаемые буквами или комбинациями букв и имеющие только два значения : Истина и Ложь.

Операции :  Операции над высказываниями, это операции над буквенными переменными и могущие принимать в качестве результата только два значения. Далее мы будем называть такие операции логическими.

Итак - логическая операция,  это операция которая  устанавливает соответствие между одним или несколькими высказываниями ( которые называются аргументами операции ) и  высказыванием  которое называется значением операции.

Как можно составить логическую операцию? Очень просто. Приведем пример. Пусть дано высказывание А. Оно может быть либо истинно, либо ложно. Определим высказывание В следующим образом: пусть В истинно когда А ложно и ложно когда А истинно. Мы  только что установили соответствие между высказыванием А и высказыванием В. Другими словами мы составили логическую операцию, аргументом которой является высказывание А и результатом высказывание В. Операция определённая таким образом   называется отрицанием и записывается так - ùА. Еще говорят так - “не А”

Определим еще четыре логические операции:

Коньюкция.  Это  логическая  операция  устанавливающая   соответствие между высказываниями А и В и высказыванием С   следующим образом: Если А и В истинны то С также истинно. Если же   хотя бы одно из них ложно то С также ложно. Обозначение: АÙВ. Можно сказать так “ А и В “ и еще эту операцию называют логическим умножением.

Дизьюкция.  Это  логическая  операция  устанавливающая   соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В ложны то С также ложно. Если же   хотя бы одно из высказываний А и В истинно то С также истинно. Обозначение: АÚВ. Можно сказать так “ А или В ” и еще эту операцию называют логическим умножением.

Эквиваленция. Это  логическая  операция  устанавливающая   соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В одновременно ложны или же истинны то С истинно иначе С ложно. Обозначение: А=В

Импликация. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С   следующим образом: Пусть А посылка и В следствие, тогда:

если А ложно то С истинно   ( то есть из ложного утверждения может следовать все что угодно)

если А истинно и В истинно то С истинно ( из истинного утверждения можно вывести истинное )

если А истинно и В ложно то С ложно ( из истинного утверждения не может следовать ложное )

   Обозначение : А®В

Импликация устроена немного сложнее других операций. В импликации существенное значение имеет порядок аргументов. Первый называется посылкой, а второй следствием. Можно сказать, что первое высказывание является как бы причиной второго, а второе   как бы вытекает из первого.

Приведенные выше определения можно свести в таблицу, которая называется таблицей истинности.

А

В

не А

А или В

А и В

А следует В

А эквив. В

Истина

Истина

ложь

истина

Истина

Истина

истина

Истина

Ложь

ложь

истина

ложь

Ложь

ложь

Ложь

Истина

истина

истина

ложь

Истина

ложь

Ложь

Ложь

истина

ложь

ложь

Истина

истина

Сложное высказывание

Сложным высказыванием называется высказывание, полученное комбинацией элементарных высказываний, логических функций  и скобок. Для сложного высказывания также можно составить таблицу истинности. Приведём  пример: Составим таблицу истинности для следующего высказывания: (АÚВ)®А

А

В

АÚВ

(АÚВ)®А

1

1

1

1

1

0

1

1

0

1

1

0

0

0

0

1

Составьте для тренировки таблицы истинности следующих сложных высказываний:

АÚ(АÚùВ)

А®(ВÙА)

(ВÚА)®А

А®(ВÚВ)

ù(АÚù(В®А))

(ùВÚА)®(ВÚА)

ù(В®А)®(АÙВ)

В®(ù(В®А)®(ùА®В))

Схема умозаключения

Обычно, мы принимаемся строить цепочки логических умозаключений, для того чтобы установить истинность или ложность того или иного утверждения. Можно даже сказать, что нас всегда интересует истинность. Если мы же нам требуется установить ложность утверждения, то это то же самое что устанавливать истинность его отрицания. Иначе говоря, наш мыслительный процесс всегда направлен на получение доказательств теорем каждая из которых строится по следующей схеме: Дано некоторое количество истинных посылок и некоторое утверждение являющееся следствием из них. Теорема говорит, что данное утверждение также истинно, на том основании, что оно является следствием из истинных посылок.

Теорема в общем случае это не обязательно теорема математики. По такой схеме строится и наше бытовое мышление. От математики оно отличается только уровнем строгости. Выше мы уже говорили, что цель математической логики заключается в установлении взаимосвязи между посылками и заключением и теперь пора рассмотреть как это делается.

Для начала определим два важных понятия:

Тождественно истинное высказывание. Это высказывание, которое является истинным при любых значениях составляющих его элементарных высказываний.

Схема умозаключения. Схема умозаключения, это способ получения тождественно-истинных высказываний. Схема утверждает что если высказывание А истинно и истинна импликация А®В, то высказывания В также является истинным (это ясно из определения импликации). Таким образом, если мы найдём способ проверить истинность посылки и импликации, истинность следствия получается автоматически.

Тождественно - истинные высказывания получаются следующим образом: Определяется некоторое количество сложных тождественно - истинных высказываний. Такие высказывания в математике называются аксиомами. Затем составляется очевидная схема умозаключения. Затем над правой частью этой схемы производятся тождественные преобразования приводящие к появлению новых высказываний, которые согласно определению схемы умозаключения также являются истинными.

Нетрудно заметить, что схема умозаключения этой строгая форма дедуктивного метода. Поэтому на примере схемы умозаключения, мы можем показать достоинства и слабости математической логики.

Обычный дедуктивный метод мышления, применим в самых разных ситуациях, чего нельзя сказать о схеме умозаключения математической логики. Она применима только тогда, когда объекты мыслительных операций укладываются в определения понятий математической логики.

С другой стороны, те результаты, которые мы получаем, методами математической логики являются абсолютно точными, в то время как обычный дедуктивный метод, например в бытовой ситуации даёт результат, лишь с некоторой долей уверенности.

Заключение

Наше изложение математической логики было очень кратким, но все же достаточным, чтобы думающий читатель усомнился в её способности вычислять истину. И действительно, такая задача ей не решается, по всей видимости эта задаче неразрешима в принципе, потому что зачастую человеку приходится решать задачи и проблемы, в которых понятия расплывчаты и зачастую нет самого понятия правильного решения. Такова например ситуация в искусстве, в философии и т.д. Однако есть области в которых основные понятия можно определить исключительно точно, и вот там математическая логика и находит своё применение.

Еще несколько вопросов для самостоятельной работы.

Приведите пример дедуктивного рассуждения.

Приведите пример проблемы или задачи, которую невозможно разрешить отказавшись от закона исключенного третьего.

Предположим, вам дана некая математическая задача, как бы вы определили, применимы или нет к ней методы математической логики.

Приведите пример класса задач, не решаемых с помощью метода приведения к противоречию.

Можно ли сказать, доказательство теорем методом от противного есть частный случай метода приведения к противоречию. Ответ обязательно обоснуйте.

Список литературы

www.neuch.ru

Сочинение - Элементы математической логики

Потопахин Виталий Валерьевич, методист ХКЦТТ

Искусство логического мышления

В процессе всей своей деятельности, человеку приходится разрешать различные проблемы и задачи. Самая суть нашего мыслительного процесса заключается в поиске решений. И конечно хотелось бы находить нужные решения, по возможности быстро. Однако очень часто наши рассуждения идут в неверном направлении, и мы приходим к ошибочному выводу. Приходится возвращаться к тому, с чего начинали и искать решение в другом направлении. Наш ум берясь за задачу видит сразу много путей для рассуждения, из которых большинство ошибочны, но ум об этом не знает и проверяет их все, пока не наткнётся на верный. Конечно, есть люди, обладающие настолько сильной интуицией, что они видят правильное направление рассуждений сразу. Однако интуиция, средство не вполне надёжное. Когда мы принимаем решение интуитивно, всегда остаётся ощущение неуверенности. Поэтому ещё древние мыслители пришли к идее, что неплохо бы правильный ход рассуждений вычислять. Изобрести бы что-то вроде формул, в которых вместо чисел использовались бы рассуждения. Идея очень хорошая, и её пытались реализовать многие философы и математики. В полной мере это на сегодня не удалось. Однако удалось установить, что правильный ход рассуждений подчиняется определённым законам, знание которых помогает значительно сократить путь к истине. Кроме того, существуют методы ведения рассуждений, используя которые мы можем мыслить более эффективно. Постепенно образовалась наука ( называемая логикой ) целью которой было открытие законов правильного мышления и разработка методов мышления.

Любая наука, начинается с точного определения понятий с которыми она имеет дело.

Определим основные понятия и мы:

Посылка — это утверждение, из которого мы исходим в своих рассуждениях.

Следствие — это утверждение являющееся результатом наших рассуждений.

Умозаключение — это мыслительный процесс, в котором из одного или нескольких суждений, делается заключение.

Гипотеза — это утверждение, истинность которого требуется доказать.

Противоречие — это ситуация, когда в процессе наших рассуждений получились два взаимоисключающих утверждения.

Суждение — это единица мышления.

Основные законы:

Закон тождества. Всякий предмет, есть то, что он есть. Что это означает: Если мы, в своих рассуждениях, используем какое — либо понятие, то на любом этапе рассуждений, это понятие должно означать одно и тоже. Иногда за соблюдением закона тождества надо специально следить. Например, при использовании многозначных слов. Нарушение закона может завести в тупик. К примеру, понятием энергии часто обозначаются совершенно разные явления. Например, физическая энергия и психическая энергия. Если мы опустим, тот факт, что это два разных явления, то законы, которым подчиняется физическая энергия, можно будет автоматически переносить на явления связанные с проявлением психической энергии, что и будет ошибкой. Приведём более простой пример: Предположим, вы изучили правила дорожного движения принятые в России. Закон тождества говорит, что правила принятые в России, это совсем не те правила, которые приняты во Франции. Если же вы пренебрежёте законом тождества, то будучи во Франции вы рискуете попасть в аварию.

Закон противоречия. Ход рассуждений не должен быть противоречивым. На этом законе основан метод доказательства утверждений, так называемый метод «От противного». Применение метода рассматривается ниже в задачах о принцессах. Суть его заключается в следующем правиле. В начале рассуждений, мы принимаем некоторое утверждение за истину. Если мы будем рассуждать, не нарушая правила и законы логики, то на любом шаге наших рассуждений должны получаться только истинные утверждения. Если же мы когда либо получим ложное утверждение, то это будет означать, что исходное утверждение не может быть истинным.

Закон исключенного третьего. Если есть два суждения и одно исключает другое, то одно из них истина, а другое ложь. В реальной жизни это не всегда так. Приведём пример: Первое утверждение «Я пользуюсь методами математической логики каждый день моей жизни.», второе утверждение «Я никогда не пользуюсь методами математической логики». Очевидно, что они противоречат друг другу, однако они вполне могут оказаться одновременно ложными. Например, если вы специалист по математической логике, то вы должны часто пользоваться её методами, но вряд ли они нужны вам каждый день вашей жизни. Закон исключенного третьего предназначен для использовании в области точных наук, в которых такие ситуации не встречаются или встречаются достаточно редко.

Закон достаточного основания. Любое утверждение должно быть обосновано. Закон кажется очевидным. Совершенно естественно, что каждое утверждение должно быть или аксиомой или выводится из утверждения, истинность которого не вызывает сомнений. Однако в реальной практике мы часто делам свои заключения из утверждений, чья истинность сомнительна, или пользуемся неправильно составленными умозаключениями.

Методы мышления

Пользуясь законами, можно строить методы правильного мышления. Их существует довольно много, но мы приведём в качестве примера только два из них.

Дедукция: Это метод рассуждений, при котором некоторые истинные утверждения берутся в качестве посылок. Затем с помощью умозаключений из этих посылок получаются выводы, которые в свою очередь становятся посылками для следующих умозаключений. Получается цепочка умозаключений, в начале которой находится некоторое количество очевидных утверждений, а в конце утверждения, истинность которых уже далеко не очевидна, если не знать всей цепочки.

Очень яркий литературный пример использования дедуктивного метода это герой А. Конан-Дойля Шерлок Холмс. Конечно, применение дедукции Холмсом далеко от математической точности и строгой критики рассказы о нём не выдерживают, но суть метода в рассказах Конан-Дойля демонстрируется очень наглядно.

Метод приведения к противоречию: Существо данного метода состоит в построении такой цепочки рассуждений от исходной посылки, чтобы она привела или наоборот не привела к противоречию. Если мы получим противоречие (не нарушая законов логики), то это будет означать ложность исходной посылки. В книге Смаллиана есть масса примеров того, как используя данный метод можно решать задачи. В качестве примера приведём следующую задачу:

К королю некоего малоизвестного королевства, очень часто приезжали различные принцы свататься к принцессам, которых у того короля было довольно много. Каждого из них надо было как то проверять, а так как принцев было много, то король решил поставить процесс на поток. Он подводил принца к дверям в комнаты и предлагал открыть одну из них. Причем в комнатах он помещал тигров и принцесс. Принц должен был угадать в какой комнате принцесса. Что бы это не было простое гадание, ему выдавалась дополнительная информация, анализируя которую он мог точно узнать где принцесса, а где тигр. Приведем одну задачу с решением в качестве примера. В этом испытании на дверях комнат были следующие таблички:

1 Комната 2 Комната
В этой комнате находится принцесса, а в другой комнате сидит тигр. В одной из этих комнат находится принцесса; кроме того, в одной из этих комнат сидит тигр.

Кроме того, принцу было сказано, что на одной табличке написана правда, а на другой нет.

Начнем рассуждения. Для каждой из табличек возможны только два варианта, либо ложь, либо истина. Рассмотрим с этой позиции табличку на первой комнате.

Табличка на первой двери истинна. Тогда табличка на второй двери ложна. А так как табличка на второй двери утверждает, что в одной из комнат находится принцесса, то из её ложности следует, что принцессы там нет, что приходит в противоречие с истинностью первой таблички. Таким образом, мы, предположив, что табличка на первой двери истинна пришли к противоречию.

Табличка на первой двери ложна. Тогда табличка на второй двери истинна. Из ложности первой таблички следует, что принцесса находится в комнате 2, а тигр в комнате 1. Из истинности второй табличке следует, что в одной из комнат есть принцесса и в одной из комнат есть тигр. Эти утверждения не противоречат друг другу, следовательно вторая ситуация непротиворечива и чего в свою очередь следует что принцесса находится во второй комнате.

Задача для самостоятельного решения:

1 Комната 2 Комната
По крайней мере в одной из комнат находится принцесса Принцесса в другой комнате.

Дополнительно было известно следующее: Если в первой комнате находится принцесса, то утверждение на табличке истинно, если же там тигр, то утверждение ложно. Относительно правой комнаты все было наоборот: утверждение на табличке ложно, если в комнате находится принцесса, и истинно, если в комнате сидит тигр.

Математическая логика

Вышеизложенная логика хорошо описывает законы человеческого мышления, но исходной задачи «вычисления истины», она не решает. Она не может решить её в принципе, потому что в ней почти нет математики. А следовательно следующий разумный шаг, это создание теории которая описывала бы процесс мышления с математической точностью.

Как создать такую теорию?

Ответ: точно так же, как и любую другую математическую теорию. Надо предельно точно описать используемые понятия и определить над ними операции. Первым кто проделал такую работу и создал первую математическую логику был Джорж Булль. Эта математика по его имени стала называться булевой алгеброй или логикой высказываний. И сейчас мы ей займемся. Итак.

Понятия: В качестве главного понятия было взято понятие высказывания. Высказывание, это минимальная мысль, утверждение, которое может быть либо истинным, либо ложным.

Последняя договорённость очень важна. Если рассматривать смысл высказываний, то работать с ними будет слишком сложно, так как смысл очень неопределённое понятие. А если мы решим, что важна только истинность высказывания, то проблема значительно упрощается. В этом случае совершенно неважно о чём говорится в высказывании. Отпадает необходимость обозначать высказывание целым предложением, раскрывающим его смысл. Для обозначения вполне достаточно будет одной буквы. Разные высказывания будем обозначать разными буквами. Окончательно объектами нашей математики будут переменные величины обозначаемые буквами или комбинациями букв и имеющие только два значения: Истина и Ложь.

Операции: Операции над высказываниями, это операции над буквенными переменными и могущие принимать в качестве результата только два значения. Далее мы будем называть такие операции логическими.

Итак — логическая операция, это операция которая устанавливает соответствие между одним или несколькими высказываниями ( которые называются аргументами операции ) и высказыванием которое называется значением операции.

Как можно составить логическую операцию? Очень просто. Приведем пример. Пусть дано высказывание А. Оно может быть либо истинно, либо ложно. Определим высказывание В следующим образом: пусть В истинно когда А ложно и ложно когда А истинно. Мы только что установили соответствие между высказыванием А и высказыванием В. Другими словами мы составили логическую операцию, аргументом которой является высказывание А и результатом высказывание В. Операция определённая таким образом называется отрицанием и записывается так — ùА. Еще говорят так — “не А”

Определим еще четыре логические операции:

Коньюкция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В истинны то С также истинно. Если же хотя бы одно из них ложно то С также ложно. Обозначение: АÙВ. Можно сказать так “ А и В “ и еще эту операцию называют логическим умножением.

Дизьюкция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В ложны то С также ложно. Если же хотя бы одно из высказываний А и В истинно то С также истинно. Обозначение: АÚВ. Можно сказать так “ А или В ” и еще эту операцию называют логическим умножением.

Эквиваленция. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Если А и В одновременно ложны или же истинны то С истинно иначе С ложно. Обозначение: А=В

Импликация. Это логическая операция устанавливающая соответствие между высказываниями А и В и высказыванием С следующим образом: Пусть А посылка и В следствие, тогда:

если А ложно то С истинно ( то есть из ложного утверждения может следовать все что угодно)

если А истинно и В истинно то С истинно ( из истинного утверждения можно вывести истинное )

если А истинно и В ложно то С ложно ( из истинного утверждения не может следовать ложное )

Обозначение: А®В

Импликация устроена немного сложнее других операций. В импликации существенное значение имеет порядок аргументов. Первый называется посылкой, а второй следствием. Можно сказать, что первое высказывание является как бы причиной второго, а второе как бы вытекает из первого.

Приведенные выше определения можно свести в таблицу, которая называется таблицей истинности.

А В не А А или В А и В А следует В А эквив. В
Истина Истина ложь истина Истина Истина истина
Истина Ложь ложь истина ложь Ложь ложь
Ложь Истина истина истина ложь Истина ложь
Ложь Ложь истина ложь ложь Истина истина

Сложное высказывание

Сложным высказыванием называется высказывание, полученное комбинацией элементарных высказываний, логических функций и скобок. Для сложного высказывания также можно составить таблицу истинности. Приведём пример: Составим таблицу истинности для следующего высказывания: (АÚВ)®А

А В АÚВ (АÚВ)®А
1 1 1 1
1 1 1
1 1
1

Составьте для тренировки таблицы истинности следующих сложных высказываний:

АÚ(АÚùВ) А®(ВÙА)
(ВÚА)®А А®(ВÚВ)
ù(АÚù(В®А)) (ùВÚА)®(ВÚА)
ù(В®А)®(АÙВ) В®(ù(В®А)®(ùА®В))

Схема умозаключения

Обычно, мы принимаемся строить цепочки логических умозаключений, для того чтобы установить истинность или ложность того или иного утверждения. Можно даже сказать, что нас всегда интересует истинность. Если мы же нам требуется установить ложность утверждения, то это то же самое что устанавливать истинность его отрицания. Иначе говоря, наш мыслительный процесс всегда направлен на получение доказательств теорем каждая из которых строится по следующей схеме: Дано некоторое количество истинных посылок и некоторое утверждение являющееся следствием из них. Теорема говорит, что данное утверждение также истинно, на том основании, что оно является следствием из истинных посылок.

Теорема в общем случае это не обязательно теорема математики. По такой схеме строится и наше бытовое мышление. От математики оно отличается только уровнем строгости. Выше мы уже говорили, что цель математической логики заключается в установлении взаимосвязи между посылками и заключением и теперь пора рассмотреть как это делается.

Для начала определим два важных понятия:

Тождественно истинное высказывание. Это высказывание, которое является истинным при любых значениях составляющих его элементарных высказываний.

Схема умозаключения. Схема умозаключения, это способ получения тождественно-истинных высказываний. Схема утверждает что если высказывание А истинно и истинна импликация А®В, то высказывания В также является истинным (это ясно из определения импликации). Таким образом, если мы найдём способ проверить истинность посылки и импликации, истинность следствия получается автоматически.

Тождественно — истинные высказывания получаются следующим образом: Определяется некоторое количество сложных тождественно — истинных высказываний. Такие высказывания в математике называются аксиомами. Затем составляется очевидная схема умозаключения. Затем над правой частью этой схемы производятся тождественные преобразования приводящие к появлению новых высказываний, которые согласно определению схемы умозаключения также являются истинными.

Нетрудно заметить, что схема умозаключения этой строгая форма дедуктивного метода. Поэтому на примере схемы умозаключения, мы можем показать достоинства и слабости математической логики.

Обычный дедуктивный метод мышления, применим в самых разных ситуациях, чего нельзя сказать о схеме умозаключения математической логики. Она применима только тогда, когда объекты мыслительных операций укладываются в определения понятий математической логики.

С другой стороны, те результаты, которые мы получаем, методами математической логики являются абсолютно точными, в то время как обычный дедуктивный метод, например в бытовой ситуации даёт результат, лишь с некоторой долей уверенности.

Заключение

Наше изложение математической логики было очень кратким, но все же достаточным, чтобы думающий читатель усомнился в её способности вычислять истину. И действительно, такая задача ей не решается, по всей видимости эта задаче неразрешима в принципе, потому что зачастую человеку приходится решать задачи и проблемы, в которых понятия расплывчаты и зачастую нет самого понятия правильного решения. Такова например ситуация в искусстве, в философии и т.д. Однако есть области в которых основные понятия можно определить исключительно точно, и вот там математическая логика и находит своё применение.

Еще несколько вопросов для самостоятельной работы.

Приведите пример дедуктивного рассуждения.

Приведите пример проблемы или задачи, которую невозможно разрешить отказавшись от закона исключенного третьего.

Предположим, вам дана некая математическая задача, как бы вы определили, применимы или нет к ней методы математической логики.

Приведите пример класса задач, не решаемых с помощью метода приведения к противоречию.

Можно ли сказать, доказательство теорем методом от противного есть частный случай метода приведения к противоречию. Ответ обязательно обоснуйте.

www.ronl.ru

Элементы математической логики, ее символы — реферат

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КУРГАНСКИЙ  ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра …       

Реферат на тему: Элементы математической логики, ее символы.    

Исполнитель: Бабин А.А.       

Тюмень 

2009 Содержание

    Стр.
1. История возникновения  математической логики 3
2. Основное содержание, формулы, элементы, символы 5
3. Примеры задач 16
4. Применение  математической логики 19
5. Список литературы 26

 

  1. История возникновения математической логики

       Математическая  логика тесно связана с логикой  и обязана ей своим возникновением. Основы логики, науки о законах и формах человеческого мышления (отсюда одно из ее названий - формальная логика), были заложены величайшим древнегреческим философом Аристотелем (384—322 гг. до н. э.), который в своих трактатах обстоятельно исследовал терминологию логики, подробно разобрал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления, в том числе законы противоречия и исключения третьего. Вклад Аристотеля в логику весьма велик, недаром другое ее название - аристотелева логика. Еще сам Аристотель заметил, что между созданной им наукой и математикой (тогда она именовалась арифметикой) много общего. Он пытался соединить две эти науки, а именно свести размышление, или, вернее, умозаключение, к вычислению на основании исходных положений. В одном из своих трактатов Аристотель вплотную приблизился к одному из разделов математической логики - теории доказательств.

       В дальнейшем многие философы и математики развивали отдельные положения логики и иногда даже намечали контуры современного исчисления высказываний, но ближе всех к созданию математической логики подошел уже во второй половине XVII века выдающийся немецкий ученый Готфрид Вильгельм Лейбниц (1646 - 1716), указавший пути для перевода логики «из словесного царства, полного неопределенностей, в царство математики, где отношения между объектами или высказываниями определяются совершенно точно» . Лейбниц надеялся даже, что в будущем философы, вместо того чтобы бесплодно спорить, станут брать бумагу и вычислять, кто из них прав . При этом в своих работах Лейбниц затрагивал и двоичную систему счисления.

       Следует отметить, что идея использования  двух символов для кодирования информации очень стара. Австралийские аборигены  считали двойками, некоторые племена охотников-сборщиков Новой Гвинеи и Южной Америки тоже пользовались двоичной системой счета. В некоторых африканских племенах передают сообщения с помощью барабанов в виде комбинаций звонких и глухих ударов. Знакомый всем пример двухсимвольного кодирования - азбука Морзе, где буквы алфавита представлены определенными сочетаниями точек и тире.

       После Лейбница исследования в этой области  вели многие выдающиеся ученые, однако настоящий успех пришел здесь  к английскому математику-самоучке Джорджу Булю (1815—1864), целеустремленность которого не знала границ. Материальное положение родителей Джорджа (отец которого был сапожным мастером) позволило ему окончить лишь начальную школу для бедняков. Спустя какое-то время Буль, сменив несколько профессий, открыл маленькую школу, где сам преподавал. Он много времени уделял самообразованию и вскоре увлекся идеями символической логики. В 1847 году Буль опубликовал статью «Математический анализ логики, или Опыт исчисления дедуктивных умозаключений», а в 1854 году появился главный его труд «Исследование законов мышления, на которых основаны математические теории логики и вероятностей».

         Буль изобрел своеобразную алгебру  - систему обозначений и правил, применимую ко всевозможным объектам, от чисел и букв до предложений. Пользуясь этой системой, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому, как в математике манипулируют числами. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ).

       Через некоторое время стало понятно, что система Буля хорошо подходит для описания электрических переключательных схем. Ток в цепи может либо протекать, либо отсутствовать, подобно тому, как утверждение может быть либо истинным, либо ложным. А еще несколько десятилетий спустя, уже в XX столетии, ученые объединили созданный Джорджем Булем математический аппарат с двоичной системой счисления, заложив тем самым основы для разработки цифрового электронного компьютера.

   Отдельные положения работ Буля в той  или иной мере затрагивались и  до, и после него другими математиками и логиками. Однако сегодня в данной области именно труды Джорджа Буля причисляются к математической классике, а сам он по праву считается основателем математической логики и тем более важнейших ее разделов - алгебры логики (булевой алгебры) и алгебры высказываний.

       Большой вклад в развитие логики внесли и  русские ученые П.С. Порецкий (1846-1907), И.И. Жегалкин (1869-1947).

       В XX веке огромную роль в развитии математической логики сыграл Д. Гильберт (1862-1943), предложивший программу формализации математики, связанную с разработкой оснований  самой математики. Наконец, в последние  десятилетия XX века бурное развитие математической логики было обусловлено развитием теории алгоритмов и алгоритмических языков, теории автоматов, теории графов (С.К. Клини, А. Черч, А.А Марков, П.С. Новиков и многие другие).  

       2. Основное содержание, формулы, элементы, символы

     Алгебра логики (логика высказываний) - один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях высказываний.

     Высказывание - это термин математической логики, которым обозначается предложение какого-либо языка (естественного или искусственного), рассматриваемого лишь в связи с его истинностью. Например:

«Земля  — планета солнечной системы.»  Истина 
«2+8<5»  Ложь 
«Всякий квадрат есть параллелограмм.»  Истина 
«Каждый параллелограмм есть квадрат.» Ложь 

     Приведем  примеры, предложений не являющихся высказываниями:

«Посмотрите в окно.» 

«Который  час?» 

«2x+7>12»

     Отличительным признаком любого высказывания является его свойство быть истинным или ложным, а этим свойством три вышеприведенных предложения не обладают.

     Используя простые высказывания, можно образовывать сложные, или составные, высказывания, в которые простые входят в качестве элементарных составляющих. В образовании сложных высказываний используются слова: и, или, тогда и только тогда, когда (в том и только в том случае), если …, то …, нет.

     Рассмотрим  несколько примеров сложных высказываний:

«Если идет дождь, то солнце не светит.» 

« Если ветер дует, то нет дождя.» 

     Основная  задача логики высказываний заключается  в том, чтобы на основании истинности или ложности простых высказываний определить истинность или ложность сложных высказываний.

2.1. Таблицы истинности. Логические функции. Основные логические операции

     Условимся, простые высказывания называть логическими переменными и обозначать большими буквами и, если высказывание истинно, будем писать A=1, а если ложно, то A=0.

     Использование 0 и 1 подчеркивает некоторое соответствие между значениями логических переменных и функций в алгебре логики и цифрами в двоичной системе  счисления. Это позволяет описывать работу логических схем ЭВМ и проводить их анализ и синтез с помощью математического аппарата алгебры логики.

     Любое устройство ЭВМ, выполняющее действия над двоичными числами, можно  рассмотреть как некоторый функциональный преобразователь. Причем числа на входе - значения входных логических переменных, а число на выходе - значение логической функции, которое получено в результате выполнения определенных операций. Таким образом, этот преобразователь реализует некоторую логическую функцию.

     Значения  логической функции для разных сочетаний  значений входных переменных - или, как это иначе называют, наборов входных переменных - обычно задаются специальной таблицей. Такая таблица называется таблицей истинности. Количество наборов входных переменных (Q) можно определить по формуле:

Q=2n, где n — количество входных переменных.

Простейшим  примером логической функции является функция одной переменной .

      

     Интересной  является только функция F2(X). О ней мы говорим чуть позже.

Функции двух аргументов. Их может быть 16.

     Если  у функции 3 аргумента, то число возможных  функций возрастает до 256, поэтому  более сложные логические функции  задаются с помощью простых функций  одного или двух аргументов. Для  выражения сложных логических функций используют более простые, и оказывается, что можно использовать не все элементарные функции, а только часть.

     Рассмотрим  подробнее наиболее интересные логические функции одной и двух переменных.

     Логическое  умножение. (conjunctio - лат. связываю) Соединение двух простых высказываний A и B в одно составное с помощью союза «и» называют логическим умножением или конъюнкцией, а результат операции — логическим произведением.

Указание  о логическом перемножении простых  высказываний A и B обозначается так:

     Например:

     В русском языке в качестве операции «логическое умножение» помимо союза  «и» используются союзы «но» и  «а».

     Конъюнкция  двух логических переменных истинна тогда  и только тогда, когда  оба высказывания истинны.

     Это определение можно обобщить для  любого количества логических переменных, объединенных конъюнкцией. только если

     Таблица истинности конъюнкции имеет следующий  вид:

      

Следующие логические законы можно назвать  свойствами конъюнкции.

Закон противоречия.

Закон равносильности (идемпотентности, idem – лат. тот же самый; potens – лат. сильный)

Закон исключения констант

     Логическое  сложение. (disjunctio – лат. различаю) Перед тем как привести определение этой операции, дадим некоторые разъяснения. Союз «или» в обиходе мы применяем в двух значениях: исключающем и неисключающем. Разъясним это примерами.

1. Рассмотрим  повествовательное предложение:  «Володя вчера в шесть часов  вечера читал книгу или ехал  в автобусе на стадион.» Союз  «или» использован в этом предложении  в неисключающем смысле — Володя мог читать и одновременное ехать в автобусе. Одно не исключает другого.

2. Рассмотрим  еще одно повествовательное предложение.  «Володя вчера наблюдал за  ходом матча с западной или  восточной трибуны.» Здесь союз  «или» имеет исключающий характер  — две описываемые ситуации исключают друг друга: нельзя наблюдать один и тот же матч одновременно с двух противоположных трибун.

     Соединение  двух простых высказываний A и B в одно составное с помощью союза «или», употребляемого в неисключающем смысле, называется логическим сложением или дизъюнкцией, а полученное составное высказывание — логической суммой.

turboreferat.ru

Элементы математической логики, Высшая математика

Реферат по предмету: Высшая математика (Пример)

Содержание

Введение 3

Основные понятия алгебры высказываний. Логические высказывания, логические операции над высказываниями 4

Строение теорем. Необходимое и достаточное условия 8

Булева алгебра 10

Предикаты. Кванторы всеобщности и существования 12

Применение математической логики в алгоритмизации, теории автоматов, языках и грамматике 15

Литература 17

Содержание

Выдержка из текста

Квантор сочетается с логической связкой [2].

Квантор существованияПусть - предикат, определенный на множестве М. Под выражением понимают высказывание, истинное, если найдется хотя бы одно х, при котором - истина, и ложно, если при любом х, — ложно. Это высказывание уже не зависит от х. Соответствующие ему словесные выражения звучат так: существует х, при котором истинно; существует такое х, что; иногда верно; можно найти такое х, что; Р верно при некоторых х. Символ называют квантором существования. В высказывании переменная x связана этим квантором. Квантор сочетается со связкой & [2].

Кванторные операции применяются и к многоместным предикатам. Пусть, например, на множестве М задан двухместный предикат. Применение кванторной операции к предикату по переменной x ставит в соответствие двухместному предикату одноместный предикат (или одноместный предикат), зависящий от переменной y и не зависящий от переменной x.

К ним можно применить кванторные операции по переменной y, которые приведут уже к высказываниям следующих видов:;; ;. Приведем примеры: пусть на множестве Nнатуральных чисел задан предикат: «Число х кратно 5». Используя кванторы можно получить: - «Все натуральные числа кратны 5» или - «Существует натуральное число, кратное 5» [2].

Применение математической логики в алгоритмизации, теории автоматов, языках и грамматикеВ конце XIX века теоретико-множественный подход позволил возвести математику на прочном, и, казалось, надежном фундаменте — канторовой теории множеств. Но на рубеже XIX и XX веков обнаружилась противоречивость данного подхода — были открыты так называемые парадоксы теории множеств [4].

Многими математиками это было воспринято как кризис, который ставил под сомнение надежность методов математики, всегда считавшейся достовернейшей из наук [7].

Вскоре возникла новая область научных исследований «на стыке» математики и философии — основания математики. Главным инструментом новой научной области стала математическая логика, развитие которой стало актуальной задачей. Вычисления и всевозможные формальные выкладки также были подвергнуты анализу. В результате этого анализа возникла теория алгоритмов, котораястала составной частью математической логики. Начиная с конца 1930-х годов, идеи и методы математической логики начали активноиспользоватьсядругими науками [7].

Технический аппарат математической логики получил свое распространение в конструировании и эксплуатации различных автоматических устройств, и в вычислительных машинах. Идеи и методы теории алгоритмов применяются там где, необходима автоматическая переработка информации (информатика, программирование), а также автоматизация процессов управления (кибернетика) [7].

Стоит отметить, чтотеория алгоритмовтесно связана с теорией автоматов. Это объясняется тем, что автомат преобразует дискретную информацию по шагам в дискретные моменты времени, и формирует результирующую информацию по шагам заданного алгоритма. Эти преобразования возможны с помощью технических и/или программных средств. Автомат можно представить как некоторое устройство (чёрный ящик), на которое подаются входные сигналы и снимаются выходные и которое может иметь некоторые внутренние состояния. При анализе автоматов изучают их поведение при различных возмущающих воздействиях и минимизируют число состояний автомата для работы по заданному алгоритму. Такой автомат называют абстрактным, т.к. абстрагируются от реальных физических входных и выходных сигналов, рассматривая их просто как буквы некоторого алфавита и в связи с идеализированным дискретным временем (здесь явно прослеживаются такие математические конструкции теории алгоритмов, как машина Тюринга и Поста) [6].

В лингвистике (языковедении)в первой половине XX века произошли революционные изменения. Возникла необходимость вразработке математических методов исследования строения языка. Математический аппарат для лингвистики предстояло создать заново, так как своеобразие языковых явлений делало невозможнымиспользование готового математического аппарата, предназначенного для других целей. Это было сделано в 50- 60-е годы, когда появилась новая математическая дисциплина — математическая лингвистика, занимающаяся разработкой и изучением математического аппарата для описания естественного языка. Главными источниками идей и методов этой новой науки были математическая логика и абстрактная алгебра. Центральное место в математической лингвистике занимает теория формальных грамматик, родственная теории алгоритмов и имеющая с ней много точек соприкосновения. Математическая логика влияет на современнее языковедение не только через математическую лингвистику, но и через основные понятия математической логики — предикаты, кванторы, пропозициональные связки."Математико-логический дух" все больше проникает в лингвистические теории и исследования. Значение математической логики важно для лингвистики тем, что язык математики представляет собой фрагмент естественного языка, обработанный и развитый специальным образом с целью обеспечить максимальную точность. Поэтому, когда лингвистике потребовались точные методы, аппарат математической логики мог служить образцом для их создания [7].

ЛитератураНепейвода Н.Н. Прикладная логика/ Н.Н. Непейвода. — Изд. НГУ, 2000. — 494 с. Шатурная О.С. Математическая логика и теория алгоритмов. Конспект лекций/ О.С. Шатурная — Саратов.: СГТУ, 2003. — 26 с. Шевелёв Ю. П. Дискретная математика/ Ю. П.Шевелёв. — Томск, 2003. — 119с.Википедия. Интернет [электронный ресурс]

— Режим доступа. — URL: ru.wikipedia.org/wikiМатематический форум Math Help Planet. Приложение алгебры высказываний к доказательству теорем. Интернет [электронный ресурс]

— Режим доступа. — URL: mathhelpplanet.comКаширин И. Теория автоматов. Интернет [электронный ресурс]

— Режим доступа. — URL: teorya.hut.ru/page 2. htmОбласти применения математической логики. Интернет [электронный ресурс]

— Режим доступа. — URL: ulfek.ru/

Литература

1. Непейвода Н.Н. Прикладная логика/ Н.Н. Непейвода. — Изд. НГУ, 2000. — 494 с.

2. Шатурная О.С. Математическая логика и теория алгоритмов. Конспект лекций/ О.С. Шатурная — Саратов.: СГТУ, 2003. — 26 с.

3. Шевелёв Ю. П. Дискретная математика/ Ю. П. Шевелёв. — Томск, 2003. — 119 с.

4. Википедия. Интернет [электронный ресурс]

— Режим доступа. — URL: ru.wikipedia.org/wiki

5. Математический форум Math Help Planet. Приложение алгебры высказываний к доказательству теорем. Интернет [электронный ресурс]

— Режим доступа. — URL: mathhelpplanet.com

6. Каширин И. Теория автоматов. Интернет [электронный ресурс]

— Режим доступа. — URL: teorya.hut.ru/page 2. htm

7. Области применения математической логики. Интернет [электронный ресурс]

— Режим доступа. — URL: ulfek.ru/

список литературы

referatbooks.ru


Смотрите также