Реферат: Развитие представлений о пространстве и времени. Развитие представлений о пространстве и времени реферат


Доклад - Развитие представлений о пространстве и времени

РЕФЕРАТ

по дисциплине «Естествознание»

по теме: «Развитие представлений о пространстве и времени»

СОДЕРЖАНИЕ

Введение 3

1. Пространство-время до Эйнштейна 4

1.1 Доньютоновский период 4

1.2 Постньютоновский период 6

2. Постулаты Эйнштейна 9

3. Ультрасовременные взгляды на пространство-время 13

Заключение 18

Список литературы 20

ВВЕДЕНИЕ

Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Большинство физических понятий вводятся посредством операциональных правил, в которых используются расстояния в пространстве и время. В тоже время пространство и время относятся к фундаментальным понятиям культуры.

Физические, химические и другие величины, непосредственно и опосредовано, связаны с измерением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому расширение и углубления знаний о мире связано с соответствующими учениями о пространстве и времени.

Актуальность работы объясняется новыми веяниями в науке, новыми гипотезами и теориями о структуре пространства-времени.

Мы все привыкли к тому, что прошлого не вернуть, хотя порой очень хочется. Писатели-фантасты уже более века живописуют разного рода казусы, возникающие благодаря возможности путешествовать во времени и влиять на ход истории. Эта тема оказалась настолько животрепещущей, что в конце прошлого века даже далекие от сказок физики всерьез занялись поисками таких решений уравнений, описывающих наш мир, которые позволяли бы создавать машины времени и в мгновение ока преодолевать любые пространства и времена. Тоннели в пространстве, вполне серьезно, как гипотетически возможные, активно обсуждаются в статьях по теоретической физике, на страницах самых солидных научных изданий. Все эти гипотезы имеют вполне реальное научное обоснование.

Прежде, чем рассмотреть новейшие взгляды на пространство-время в работе, мы изучим эволюцию представлений о пространстве и времени.

1. ПРОСТРАНСТВО — ВРЕМЯ ДО ЭЙНШТЕЙНА

1.1 Доньютоновский период

Естественнонаучные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе и в первую очередь в макромире твердых физических тел, занимающих определенный объем. Основными были обыденные представления о пространстве и времени как о каких-то внешних условиях бытия, в которые помещена материя и которые сохранились бы, если бы даже материя исчезла. В материалистической картине мира понятие пространства возникло на основе наблюдения и практического использования объектов, их объема и протяженности.

Понятие времени возникло на основе восприятия человеком смены событий, последовательной смены состояний предметов и круговорота различных процессов.

Большое влияние на формирование понятий пространства и времени как научных категорий сыграла пифагорейская школа. Пифагорейцы первыми осознали трехмерность пространства, в котором мы живём.

Платон, развивая учение пифагорейцев о математическом начале мира, впервые в античной науке вводит понятие геометрического пространства. До Платона в античной науке пространство не рассматривалось как самостоятельная категория, отдельно от его наполнения. Платон же помещает между идеями и чувственным миром геометрическое пространство, рассматривая его как нечто среднее, «промежуточное» между ними. Философия Платона так же использует представления о трехмерности пространства.

Платоново-пифагорейская научно-исследовательская программа была развита в эллинистический период в работах Клавдия Птолемея, Аполлония, Архимеда и Евклида. Наряду с понятием пространства в Древней Греции были выработаны такие понятия как пустота и эфир. В главном труде Евклида — «Началах» излагаются основные свойства пространства и пространственных фигур. В современной науке широко используется понятие евклидового пространства как плоского пространства трех измерений. Понятию времени в рассматриваемых школах приписывалось равномерность и неизменность течения.

В целом же в доньютоновский период развитие представлений о пространстве и времени носило преимущественно стихийный и противоречивый характер.

Коренное изменение пространственной и всей физической картины мира произошло с появлением гелиоцентрической системы, развитой Коперником в работе «Об обращениях небесных сфер». Принципиальное отличие этой системы мира от прежних теорий состояло в том, что в ней концепция единого однородного пространства и равномерности течения времени обрела реальный эмпирический базис.

Огромное влияние на развитие представлений о пространстве и времени сыграла революция в механике, связанная с именем Галилея. Он ввел в механику точный количественный эксперимент и математическое описание явлений. Первостепенную роль в дальнейшем прогрессивном развитии представлений о пространстве сыграл открытый им общий принцип классической механики — принцип относительности Галилея. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, покоящихся или движущихся равномерно и прямолинейно с постоянной по величине и направлению скоростью.

Развитие представлений о пространстве и времени в доньютоновский период способствовало созданию концептуальной основы изучения физического пространства и времени. Эти представления подготовили математическое экспериментальное обоснование свойств пространства и времени в рамках классической механики.

1.2 Постньютоновский период

Представления о пространстве и времени как о внешних условиях бытия, в которые помещена материя, позволили сформулировать концепцию абсолютного пространства и времени, получившую свою наиболее отчетливую формулировку в работе И. Ньютона «Математические начала натуральной философии» Этот труд, более чем на два столетия определил развитие всей естественнонаучной картины мира. В нем были сформулированы основные законы движения и дано определение пространства, времени, места и движения. Раскрывая сущность пространства и времени, Ньютон предлагает различать два типа этих понятий абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику.

· абсолютное, истинное, математическое время само по себе и своей сущности без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью;

· относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами внешняя мера, употребляемая в обыденной жизни вместо истинного математического времени, как то час, день, месяц, год;

· абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным;

· относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное. Время и пространство составляют как бы вместилища самих себя и всего существующего.

При таком понимании, абсолютное пространство и время представлялись некоторыми самодовлеющими элементами бытия, существующими вне и независимо от каких-либо материальных процессов, как универсальные условия, в которые помещена материя. Эта т.н. концепция «черного ящика».

Этот взгляд близок к субстанциональному пониманию пространства и времени, хотя у Ньютона они и не являются настоящими субстанциями, как материя они обладают лишь одним признаком субстанции абсолютной самостоятельностью существования и независимостью от любых конкретных процессов, но они не обладают другим важнейшим качеством субстанции — способностью порождать различные тела, сохраняться в их основе при всех изменениях тел. Такую способность, Ньютон признавал лишь за материей, которая рассматривалась как совокупность атомов.

Материя — тоже вторичная субстанция после Бога, который сотворил мир, пространство и время, и привел их в движение. Бог, являясь существом внепространственным и вневременным, неподвластен времени, в котором все изменчиво и преходяще. Он вечен в своем бесконечном совершенстве и всемогуществе и является подлинной сущностью всякого бытия. К нему не применима категория времени. Бог существует в вечности, которая является атрибутом Бога. Чтобы полнее реализовать свою бесконечную мудрость и могущество, он создает мир из ничего, творит материю, а вместе с ней пространство и время как условия бытия материи. Но когда-нибудь мир полностью осуществит заложенный в нем при творении божественный план развития и его существование прекратится, а вместе с миром исчезнут пространство и время. И снова будет только вечность как атрибут Бога и его бесконечная вездесущность. Подобные взгляды выражались в общем виде еще Платоном, Аврелием Августином, Фомой Аквинским и их последователями, Ньютон также разделял эти взгляды.

Лейбниц рассматривал пространство как порядок сосуществования тел, а время — как порядок отношения и последовательность событий. Это понимание составило сущность реляционной концепции пространства и времени, которая противостояла их пониманию как абсолютных и не зависящих ни от чего реальностей, подвластных только Богу.

Есть концепции (Беркли, Авенариус и др.), которые ставят пространство и время в зависимость от человеческого сознания, выводя их из способности человека переживать и упорядочивать события, располагать их одно подле другого. Так, Кант рассматривал пространство и время как априорные (доопытные) формы чувственного созерцания, вечные категории сознания, аргументируя это ссылкой на стабильность геометрии Евклида в течение двух тысячелетий.

Проблема пространства и времени была тесно связана с концепциями близкодействия и дальнодействия. Дальнодействие мыслилось как мгновенное распространение гравитационных и электрических сил через пустое абсолютное пространство, в котором силы находят свою конечную цель, благодаря божественному провидению. Концепция же близкодействия (Декарт, Гюйгенс, Френель, Фарадей) была связана с пониманием пространства как протяженности вещества и эфира, в котором свет распространялся с конечной скоростью в виде волн. Это привело в дальнейшем к понятию поля, от точки к точке которого и передавалось взаимодействие. Именно это понимание взаимодействия и пространства, развивавшееся в рамках классической физики, было унаследовано и развито далее в XX в., после крушения гипотезы эфира, в рамках теории относительности и квантовой механики. Пространство и время вновь стали пониматься как атрибуты материи, определяющиеся ее связями и взаимодействиями.

Современное понимание пространства и времени было сформулировано в теории относительности А.Эйнштейна, по-новому интерпретировавшей реляционную концепцию пространства и времени и давшей ей естественнонаучное обоснование.

2. ПОСТУЛАТЫ ЭЙНШТЕЙНА

Исходным пунктом этой теории, стал принцип относительности. Классический принцип относительности был сформулирован еще Галилеем: во всех инерциальных системах отсчета движение тел происходит по одинаковым законам. Инерциальными называются системы отсчета, движущиеся друг относительно друга равномерно и прямолинейно.

Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна.

Первый, является естественным обобщением принципа относительности Галилея с механических на все без исключения явления природы, и может быть сформулирован как утверждение о невозможности наблюдателю, находящемуся в замкнутой системе отсчета, при помощи какого-либо физического (а значит и любого другого) опыта установить, покоится ли его система отсчета или находится в состоянии равномерного прямолинейного движения.

Вторым постулатом Эйнштейна является утверждение о постоянстве скорости света, неоднократно проверявшееся Майкельсоном, и впоследствии в более точных экспериментах.

На основе сформулированных постулатов Эйнштейна пересматриваются все основные положения классической кинематики и делаются основные выводы релятивистской кинематики. Делается вывод о том, что понятия одновременности событий, длительности временного промежутка и длины отрезка перестают носить абсолютный характер, становясь зависимыми от выбора системы отсчета, из которой ведется наблюдение.

Предсказываемый релятивистской теорией эффект замедления времени состоит в том, что с точки зрения движущегося относительно рассматриваемой системы наблюдателя все интервалы времени, характеризующие процессы в этой системе (колебания маятников часов, распад нестабильных частиц, старение биологических организмов и т.д.) увеличиваются по сравнению с интервалами, наблюдаемыми в самой этой системе. Для находящихся же в самой рассматриваемой системе наблюдателей происходящие в ней процессы протекают совершенно нормально, а время у движущегося наблюдателя «течет замедленно».

Эффект сокращения расстояний состоит в уменьшении длин отрезков с точки зрения наблюдателей, перемещающихся вдоль этих отрезков (отрезки, ориентированные перпендикулярно скорости относительного движения сохраняют свою длину неизменной).

Описанные эффекты проявляются лишь при скоростях, сравнимых со скоростью света и в настоящее время экспериментально зарегистрированы в пучках ультарелятивискских частиц, создаваемых на современных ускорителях. Например, короткоживущие частицы (время жизни 0), двигаясь с околосветовыми скоростями, вопреки классическим представлениям достигают приемника, удаленного на расстояние, значительно превышающее l = c(0). С точки зрения неподвижного наблюдателя это явление можно объяснить эффектом замедления времени, «удлиняющим» жизнь частицы, с точки зрения наблюдателя, движущегося вместе с частицей — эффектом сокращения расстояния до мишени, «летящей ему навстречу». Подобные процессы замедления хода времени в зависимости от скорости движения реально регистрируются сейчас в измерениях длины пробега мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. Указанные явления есть важнейшая экспериментальная база.

В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно-временной континуум, пространственно-временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тела к скорости света а вакууме (300000 км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

Находясь в сопутствующей системе отсчета, то есть двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и часы будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и измерить.

Эксперимент, лежащий в основе специальной теории относительности: со спутника испускается луч света по направлению его движения. Относительно спутника, откуда он испущен, свет распространяется со, скоростью света. Какова скорость распространения света относительно Земли? Она остаётся такой же. Даже если свет будет испускаться не по движению спутника, а в прямо противоположном направлении, то и тогда относительно Земли скорость света не изменится. Это — иллюстрация того важнейшего утверждения, которое положено в основу специальной теории относительности. Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорости этих тел всегда складываются с другими скоростями. В этом смысле скорости относительны: их величина зависит от точки зрения. А скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, не нужно указывать систему отсчета. Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца — достаточно небольшой звезды по космическим меркам — влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала при таком же расстоянии не будет Солнца. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с.

3. УЛЬТРАСОВРЕМЕННЫЕ ВЗГЛЯДЫ НА ПРОСТРАНСТВО-ВРЕМЯ

В настоящее время в научном мире общепринята теория самоорганизации пространства-времени, т.н. теория «суперструн». Рассмотрим вкратце процесс самоорганизации пространства-времени в связи с самоорганизацией Вселенной, ведущей к эволюции физических объектов. Изначально существовал неметрический вакуум. Большой взрыв привел к эволюции вакуума, достигшего, в конце концов, метрической определенности, характеризующейся суперструнным вакуумным пространством-временем, затем возникло 10-мерное квантованное суперструнное поле и соответствующее ему суперструнное пространство-время. С акта самоорганизации суперструнного поля до развертывания его четырех измерений имело место суперструнное пространство-время. При последующем расширении Вселенной 4 измерения увеличились, 6 измерений пространства остались компактифицированными. С возникновением частиц и образованием гравитационного поля процесс самоорганизации привел к классическому гравитационному пространству-времени. Последнее приобрело фундаментальное значение, ибо все эволюционирующие процессы внутри Вселенной можно рассматривать как происходящие на его фоне. Кривизна гравитационного пространства-времени уменьшалась с увеличением радиуса Вселенной, при некотором радиусе (в малых областях) пространство-время можно считать плоским.

Однако, согласно эйнштейновской теории тяготения — общей теории относительности (ОТО), четырехмерное пространство-время, в котором мы живем всё-таки искривлено, а знакомая всем гравитация и есть проявление такого искривления. Материя «прогибает», искривляет пространство вокруг себя, и — чем она плотнее, тем сильнее искривление. Многочисленные альтернативные теории тяготения, счет которым идет на сотни, отличаясь от ОТО в деталях, сохраняют главное — идею кривизны пространства-времени.

Мысли о столь сильном искривлении нашего пространства-времени возникли сразу после появления ОТО — уже в 1916 г., австрийский физик Л. Фламм обсуждал возможность существования пространственной геометрии в виде некой норы, соединяющей два мира.

В 1935 г. А. Эйнштейн и математик Н. Розен обратили внимание на то, что простейшие решения уравнений ОТО, описывающие изолированные, нейтральные или электрически заряженные источники гравитационного поля, имеют пространственную структуру «моста», почти гладким образом соединяющего две вселенные — два одинаковых, почти плоских, пространства-времени.

Такого рода пространственные структуры позднее получили название «кротовые норы». Черные дыры и кротовые норы, весьма интересные микрообъекты, возникающие сами собой, как квантовые флуктуации гравитационного поля (на длинах порядка 10-33 см), где, по существующим оценкам, понятие классического, гладкого пространства-времени уже неприменимо. На таких масштабах должно существовать что-то похожее на водяную или мыльную пену в бурном потоке, постоянно «дышащую» за счет образования и схлопывания мелких пузырьков. Вместо спокойного пустого пространства мы имеем возникающие и исчезающие в бешеном темпе мини-черные дыры и кротовые норы самых причудливых и переплетающихся конфигураций. Их размеры невообразимо малы — они во столько же раз меньше атомного ядра, во сколько это ядро меньше планеты Земля. Строгого описания пространственно-временной пены пока нет, так как еще не создана последовательная квантовая теория гравитации, но в общих чертах описанная картина следует из основных принципов физической теории и вряд ли изменится.

Эйнштейн и Розен рассматривали возможность применения таких «мостов» для описания элементарных частиц. Приводилось следующее доказательство: частица — чисто пространственное образование, поэтому нет необходимости специально моделировать источник массы или заряда, а при микроскопических размерах кротовой норы внешний, удаленный наблюдатель, находящийся в одном из пространств, видит лишь точечный источник с определенными массой и зарядом. Электрические силовые линии входят в нору с одной стороны и выходят с другой, нигде не начинаясь и не заканчиваясь. По выражению американского физика Дж. Уилера, получается «масса без массы, заряд без заряда». В этом случае вовсе не обязательно полагать, что мост соединяет две разные вселенные — ничуть не хуже предположение, что оба «устья» кротовой норы выходят в одну и ту же вселенную, но в разных ее точках и в разные времена.

При всей привлекательности такой картины она (по многим причинам) не прижилась в физике элементарных частиц. «Мостам» Эйнштейна-Розена трудно приписать квантовые свойства, а без них в микромире трудно вести рассчёты. При известных значениях масс и зарядов частиц (электронов или протонов) мост Эйнштейна-Розена вообще не образуется, вместо этого «электрическое» решение предсказывает так называемую «голую» сингулярность — точку, в которой кривизна пространства и электрическое поле становятся бесконечными. Понятие пространства-времени, пусть даже искривленного, в таких точках теряет смысл, поскольку решать уравнения с бесконечными слагаемыми невозможно. По современным понятиям, то, что Эйнштейн и Розен рассматривали как горловину кротовой норы (то есть самое узкое место «моста»), на самом деле есть не что иное, как горизонт событий черной дыры (нейтральной или заряженной). Более того, с разных сторон «моста» частицы или лучи попадают на разные «участки» горизонта, а между, условно говоря, правой и левой частями горизонта находится особая нестатическая область, не преодолев которую нельзя пройти нору.

Для удаленного наблюдателя космический корабль, приближающийся к горизонту достаточно крупной (по сравнению с кораблем) черной дыры, как бы навеки застывает, а сигналы от него доходят все реже и реже. Напротив, по корабельным часам горизонт достигается за конечное время. Миновав горизонт, корабль (частица или луч света) вскоре неотвратимо упирается в сингyлярность — туда, где кривизна становится бесконечной и где (еще на подходе) любое протяженное тело будет неизбежно раздавлено и разорвано. Такова суровая реальность внутреннего устройства черной дыры. Решения Шварцшильда и Райснера-Нордстрема, описывающие сферически-симметричные нейтральные и электрически заряженные черные дыры, были получены в 1916-1917 г., однако в непростой геометрии этих пространств физики полностью разобрались лишь на рубеже 1950-1960-х гг.

Джон Арчибальд Уилер, известный своими работами в ядерной физике и теории гравитации, предложил термины «черная дыра» и «кротовая нора». Как оказалось, в пространствах Шварцшильда и Райснера-Нордстрема кротовые норы действительно есть. С точки зрения удаленного наблюдателя, они не видны полностью, как и сами черные дыры, и — так же вечны. А вот для путешественника, отважившегося проникнуть за горизонт, нора настолько быстро схлопывается, что сквозь нее не пролетит ни корабль, ни массивная частица, ни даже луч света. Чтобы, минуя сингулярность, прорваться к другому устью норы, необходимо двигаться быстрее света. А физики сегодня полагают, что сверхсветовые скорости перемещения материи и энергии невозможны в принципе.

Вопросы устойчивости кротовых нор и управления их конфигурацией пока не совсем ясны, поэтому вполне возможно, что для поддержания нормального функционирования пространственно-временных тоннелей понадобится специальное оборудование и немалое количество энергии. Всё же сегодня, несмотря на кажущуюся фантастичность идеи о «машине времени» многие учёные всерьёз разрабатывают эту проблему. По мнению учёных разрабатывающих теории кротовых нор, ныряя в кротовую нору, можно не только попасть в другую вселенную, но и вернуться во времени назад.

Если кротовые норы все-таки обнаружат (или построят), перед той областью философии, что занимается интерпретацией науки, встанут новые и, надо сказать, очень непростые задачи. И при всей кажущейся абсурдности временных петель и сложности проблем, связанных с причинностью, эта область науки, по всей вероятности, рано или поздно со всем этим как-нибудь разберется. Так же, как в свое время «справилась» с концептуальными проблемами квантовой механики и теории относительности Эйнштейна.

Реальные астрономические наблюдения последних лет, похоже, сильно подрывают позиции противников возможности самого существования кротовых нор. Астрофизики, изучая статистику взрывов сверхновых в галактиках, удаленных от нас на миллиарды световых лет, сделали вывод, что наша Вселенная не просто расширяется, а разлетается со все большей скоростью, то есть с ускорением. Более того, со временем это ускорение даже нарастает. О6 этом достаточно уверенно говорят самые последние наблюдения, проведенные на новейших космических телескопах.

Другой вид кротовых нор — тонкие сингyлярные кольца напоминают другие необычные объекты, предсказываемые современной физикой — космические струны, образовывавшиеся (согласно некоторым теориям) в ранней Вселенной при остывании сверхплотного вещества и смене его состояний. Они действительно напоминают струны, только необычайно тяжелые — многие миллиарды тонн на сантиметр длины при толщине в доли микрона. И, как было показано американцем Ричардом Готтом и французом Жераром Клеманом, из нескольких струн, движущихся друг относительно друга с большими скоростями, можно составить конструкции, содержащие временные петли. То есть, двигаясь определенным образом в гравитационном поле этих струн, можно вернуться в исходную точку раньше, чем из нее вылетел.

Астрономы давно ищут такого рода космические объекты, и на сегодня один «хороший» кандидат уже имеется — объект CSL-1. Это две удивительно похожие галактики, которые в реальности наверняка являются одной, только раздвоившейся из-за эффекта гравитационного линзирования. Причем в данном случае гравитационная линза — не сферическая, а цилиндрическая, напоминающая длинную тонкую тяжелую нить.

ЗАКЛЮЧЕНИЕ

Изначально в доньютоновский период пространство считалось бесконечным, плоским, «прямолинейным», евклидовым. Его метрические свойства описывались геометрией Евклида. Оно рассматривалось как абсолютное, пустое, однородное и изотропное (т.е. не имело выделенных точек и направлений) и выступало в качестве «вместилища» материальных тел, как независимая от них интегральная система.

Время понималось абсолютным, однородным, равномерно текущим. Оно идет сразу и везде во всей Вселенной «единообразно синхронно» и выступает как независимый от материалистических объектов процесс длительности.

Ньютон в своих трудах окончательно оформил и сформулировал концепцию о внешних условиях бытия, в которые помещена материя, концепцию абсолютного пространства и времени, в которой время и пространство уже было абсолютным и относительным, однако по-прежнему, пространство и время представлялись самодовлеющими элементами бытия, существующими вне и независимо от материальных процессов.

Также параллельно развивались представления о пространстве и времени в зависимость от сознания человека.

По Эйнштейну, учение которого исходило из основ, заложенных Галилеем, пространство и время не просто сосуществуют, но и теснейшим образом взаимодействуют друг с другом. Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Долгое время они являлись макроскопическими, так как опирались на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени.

Однако в последнее время появились практические примеры доказательства в виде мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. При построении теорий, описывающих явления микромира, классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет, что доказывается опытами с ультрарелятивистскими частицами на современных ускорителях. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

Современные представления об эволюции пространства-времени основываются на стандартной космологической модели Большого взрыва, которая подтверждается наблюдаемым в настоящую эпоху расширением нашей Вселенной.

Согласно Эйнштейну пространство и время могут причудливо искривляться, образуя много путей, соединяющих разнесенные в пространстве и времени точки-события. В этом случае оперируют понятиями, характерными для т.н. пространственно-временной пены — это чёрные дыры и кротовые норы. Последние исследования в этой области открывают необозримые возможности для исследователей.

СПИСОК ЛИТЕРАТУРЫ

1. Бохинцев Д.И. Пространство и время в микромире — М.: Наука, 1982.

2. Дубровский В.Н., Молчанов Ю.Б. Эволюционирует ли время, пространство и причинность? // Вопросы философии, 1996, №6.

3. Дубровский В.Н., Молчанов Ю.Б. Самоорганизация пространства-времени в процессе эволюции Вселенной // Вопросы философии. 2006., №3.

4. Жигалов Ю.И. Концепции современного естествознания. — М.: «Гелиос АРВ», 2002.

5. Красников С.А. Космический плацдарм. Постулаты относительности мира. Кротовые норы или черные дыры. // Наука и жизнь. 2006, №1.

6. Левин А. Эта странная мультивселенная. // В мире науки. 1996, №11.

7. Лось В.А. Основы современного естествознания. — М.: «ИНФРА-М», 2000.

8. Реймерс Н.Ф. Популярный биологический словарь. — М.: Наука, 1991.

9. Рузавин Г.И. Концепции современного естествознания. — М.: «Культура и спорт», 1997.

10. Хорошавина С.Г. Концепции современного естествознания. — Ростов-на-Дону: Феникс, 2002.

www.ronl.ru

Реферат - Современное представление о пространстве и времени

Министерство образования и науки РФ

Федеральное агентство по образованию

Казанский государственный технический университет имени А.Н.Туполева

Лениногорский филиал

Кафедра Естественно-научных гуманитарных дисциплин

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: « Естествознание »

Тема: « Современное представление

о пространстве и времени»

Исполнитель: Г.А.Гайнутдинова

студент группы 28176

специальность 080507

Проверил: ассистент кафедры ЕНГД

Х.Х.Галямутдинов

Лениногорск — 2009

Содержание

Введение. 3

1.Развитие представлений о пространстве и времени.5

2.Концепции пространства и времени в современном естествознании.10

2.1.Пространство и время в свете теории Альберта Эйнштейна.10

2.2.Пространство и время на уровне микромира.14

3.Свойства пространства-времени.18

Заключение. 21

Список использованной литературы.22

В процессе создания естественно-научной картины мира возникает вопрос о происхождении и изменении различных материальных предметов и явлений, об их количественных и качественных характеристиках. Физические, химические и другие величины непосредственно или опосредованно связаны с изменением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому для их описания в естествознании сформировались понятия пространства и времени.

Для обыденно-житейских представлений пространство и время — нечто привычное, известное и даже в какой-то мере очевидное. Но если задуматься над тем, что, же все-таки такое пространство и время, то возникают сложные вопросы, напряженно обсуждавшиеся в истории философии и естествознания. В настоящее время нельзя решать их без опоры на достижения современной науки, причем не только достижения естествознания, но и тех данных социальных, гуманитарных дисциплин, которые раскрывают различные аспекты пространственно-временных представлений, их роли, места в человеческой жизни и деятельности.

Зададимся вопросом, каков смысл категорий «пространство» и «время». В своей деятельности мы обнаруживаем такие особенности структурной организации мира, что части и элементы, из которых построены материальные объекты, определенным образом расположены друг относительно друга, образуют некоторые устойчивые конфигурации, что задает границы объекта по отношению к окружающей среде. Можно сказать, что каждый объект характеризуется своеобразной «упаковкой» входящих в него элементов, их расположенностью относительно друг друга, и это делает любые объекты протяженными. Кроме того, каждый объект занимает какое-то место среди других объектов, граничит с ними.

Все эти предельно общие свойства, выражающие структурную организацию материального мира,— свойства объектов быть протяженными, занимать место среди других, граничить с другими объектами — выступают как первые, наиболее общие характеристики пространства. Если их абстрагировать из действительности, отделить от самих материальных объектов, то мы получим представление о пространстве как таковом. Именно так и складываются представления о пространстве и понятие пространства, возникающие как результат активного взаимодействия человека с внешним миром, в ходе которого выявляются перечисленные выше предельно общие особенности его структурной организации.

Понятие пространства имеет смысл лишь постольку, поскольку сама материя дифференцирована, структурирована. Если бы мир не имел сложной структуры, если бы он не расчленялся на предметы, а эти предметы в свою очередь не членились на элементы, связанные между собой, то понятие пространства не имело бы смысла.

Естественно-научные представления о пространстве и времени прошли длинный путь становления и развития. Уже в античности мыслители задумывались над природой и сущностью пространства и времени, однако их рассуждения носили стихийный и нередко противоречивый характер. Реальный эмпирический базис и строгое теоретическое описание представления о пространстве и времени обрели в ходе первой глобальной научной революции и классической науке Нового времени. Это было связано с развитием механики, которая описывала движение материальных тел, происходящее одновременно в пространстве и времени.

Пространство и время, как определяют их философы, — всеобщие формы существования материи, не существующие вне материи и независимо от нее. Пространство — математическая, физическая и философская категория. Время — физическая (но сейчас даже общее — естественнонаучная, так как и геологи, и биологи, и представители других естественных наук обосновывают необходимость использования понятия времени в своих исследованиях) и философская категория, как форма существования материи, заключающаяся в закономерной координации сменяющих друг друга явлений.

Исторически первым из математических пространств и наиболее известным издавна и в настоящее время является евклидово пространство, представляющее приближенный абстрактный образ реального физического пространства. Менее известны пространства Лобачевского, Римана, Гильберта, Жюлиа, Хаусдорфа, Мандельброта и другие. Вопрос о том, какое математическое пространство отражает общие свойства реального физического пространства, решается опытом (но так и не решено до сих пор — какое именно?).

Пространственно-временные отношения и закономерности — это очередной этап сложности реально (действительно) существующего мира, отношения, понимаемые первоначально на обыденном (созерцательном) уровне сознания, а в современную эпоху постигаемые на уровне научного сознания.

С античных времен наиболее известными были две концепции совместного рассмотрения пространства и времени. Одна из них идет от древних атомистов — Демокрита, Эпикура и Лукреция, позднее тщательно разработана Ньютоном, которые ввели понятие пустого однородного и бесконечного пространства, а время рассматривали как субъективное ощущение действительности. Другая концепция восходит еще к Аристотелю, разработана в Новое время Лейбницем, опиравшимся также на некоторые идеи Декарта. Все они фактически придерживались идеи о заполненном мировом пространстве (без пустоты), то есть идеи о тождестве протяженной материи и пространства.

Вершиной классического естествознания стало творчество И. Ньютона. Именно Ньютон в своей знаменитой книге «Математические начала натуральной философии» ввел господствовавшие в науке до начала XX в. понятия пространства и времени, известные как абсолютное пространство и абсолютное время. Раскрывая сущность пространства и времени, Ньютон предложил различать два типа этих понятий: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) пространство и время.

Абсолютное пространство предстает как универсальное вместилище себя и всего существующего в мире. Оно безотносительно к чему бы то ни было внешнему, всегда остается одинаковым и неподвижным. Его можно попытаться представить в виде гигантского «черного ящика», в который можно поместить или убрать из него любые материальные тела.

Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению ее относительно некоторых тел и в обыденной жизни принимается за пространство неподвижное.

Абсолютное время предстает как универсальная длительность любых процессов во Вселенной. Оно само по себе, без всякого отношения к чему-либо внешнему протекает равномерно. Абсолютное время можно представить в образе гигантской реки, которая будет течь, даже если не будет никаких материальных тел.

Относительное время есть или точная, или изменчивая, постигаемая чувствами внешняя мера продолжительности. Она употребляется в обыденной жизни вместо истинного математического времени. Это — минута, час, день, месяц, год.

Время универсально, непрерывно, бесконечно, одномерно. От абсолютного времени, также неизмеримого, Ньютон отличал относительное или обыденное время. Парадокс ньютонова пространства и времени состоит в том, что не существует опытов, которые позволили бы измерять положение тела в пространстве или момент времени события — экспериментально можно измерять только расстояния между телами или промежутки времени между событиями. Таким образом, чтобы сопоставлять пространству и времени какие-либо физические величины, мы должны выбрать некоторое тело, в качестве начала отсчета расстояний, и некоторый момент времени, в качестве начала отсчета его промежутков, что в конечном итоге ведет к необходимости введения некоторой системы отсчета. Вот с этого выбора и начинается ньютонова наука о движении — механика.

Некоторые философы и ученые, не соглашаясь с Ньютоном, выступили с критикой его взглядов. Среди них был давний научный соперник Ньютона Г. Лейбниц. Он предложил реляционную концепцию пространства и времени, отказывающую им в самостоятельном, независимом от материи существовании. Лейбниц рассматривал пространство как порядок сосуществования тел, а время — как порядок отношения и последовательность событий. Иными словами, он говорил о неразрывной связи материи с пространством и временем.

Согласно концепции Лейбница, пространство и время не есть самостоятельные начала бытия. Пространство — это порядок взаимного расположения множества тел, сосуществующих вне друг друга, время — порядок сменяющих друг друга явлений или состояний тел. Протяженность любого объекта не есть первичное свойство, а обусловлено силами, действующими внутри объекта; внутренние и внешние взаимодействия определяют и длительность состояния. Что же касается самой природы времени как порядка сменяющих друг друга явлений, то оно отражает их причинно-следственную связь.

В истории естественнонаучных представлений о времени, как отдельном феномене, можно выделить четыре его концепции, группируемых обычно попарно. Первая пара концепций времени расходится по вопросу о природе времени: 1) субстанциальная концепция рассматривает время как особую субстанцию, субстрат, наряду с пространством, веществом и другими физическими характеристиками; 2) реляционная концепция считает время отношением (или системой отношений) между физическими событиями. Вторая пара концепций времени выражает разные точки зрения на процесс становления времени: 1) статическая концепция считает события прошлого, настоящего и будущего существующими реально и в известном смысле одновременно, а становление и исчезновение материальных, физических объектов — это иллюзия, возникающая в момент осознания того или иного изменения; 2) динамическая концепция, напротив, считает, что реально существуют только события настоящего времени, события прошлого уже реально не существуют, а события будущего еще реально не существуют. Видно, что в этих концепциях смешиваются физика и философия и как трудна и неоднозначна проблема времени.

Укоренившиеся в науке ньютоновские представления о пространстве и времени изменились, когда в физическую картину мира вошла в конце XIX века концепция поля, как формы материальной связи между объектами вещества, поля, как особой и самостоятельной формы материи. Казалось, что для рассмотрения поля, тогда только электромагнитного, нужна особая среда — эфир, заполняющий мировое абсолютное пространство, но это не нашло ни тогда, ни сейчас достоверного опытного подтверждения.

Представления о новых свойствах пространства и времени получили новое развитие в научной дисциплине, получившей название специальная теория относительности, или релятивистская механика. Герман Минковский, развивая представления Лоренца, Пуанкаре и Эйнштейна о свойствах пространства и времени, заявил с трибуны съезда естествоиспытателей в 1908 году: «Воззрения на пространство и время… возникли на экспериментально-физической основе. В этом их сила. Их тенденция радикальна. Отныне пространство само по себе и время само по себе должно обратиться в фикцию, и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность». Так им было установлено единство пространства и времени, их объединение в пространство-время с четырьмя (три пространственных и одна временная) измерениями или координатами. Академик Анатолий Логунов так определил сущность теории относительности, называя это утверждение постулатом: «Физические процессы протекают в четырехмерном пространстве, геометрия которого псевдоэвклидова» (иногда псевдоэвклидово пространство называют миром или пространством Минковского).

Теория относительности исключает представления о пустых (свободных) пространстве и времени, имеющих какие-то собственные измерения. Дальнейшее развитие теории относительности в виде теории тяготения или общей теории относительности, осуществленное Эйнштейном, показало, что пространственно-временные отношения зависят также от концентрации масс, от распределения материи. Таким образом, была доказана несостоятельность как воззрений Канта, определившего пространство и время как априорные формы человеческого восприятия, природа которых неизменна и независима от материи, так и несостоятельность догматических воззрений Ньютона на абсолютное пространство и время.

Около десяти лет размышлял Эйнштейн над проблемой влияния скорости движения тел на электромагнитные явления. В результате он пришел к выводу о невозможности существования ньютоновского абсолютного пространства и времени, так как это противоречит принципу относительности Галилея. Таким образом, Эйнштейн смог увидеть, что за рассуждениями Галилея скрывается принципиально иное представление о пространстве и времени. Сам Эйнштейн считал, что принцип относительности является квинтэссенцией классической механики, и поэтому должен быть сохранен. От концепции абсолютного пространства и времени, как не имеющих реального физического содержания, следовало отказаться.

Специальная теория относительности, созданная в 1905 г. А. Эйнштейном, стала результатом обобщения и синтезом классической механики Галилея – Ньютона, и электродинамики Максвелла — Лоренса. “Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая, таким образом, оказывается ее частным случаем”.

Специальная теория относительности (СТО) базируется на двух постулатах. Первый постулат СТО — расширенный принцип относи тельности. Он уравнивал между собой не только инерциальные системы, движущиеся равномерно и прямолинейно друг относительно друга, но и распространил действие принципа на законы электродинамики.

Классический принцип относительности Галилея очень прост. Он всего лишь заявляет, что между покоем и движением, если оно прямолинейно и равномерно, нет никакой принципиальной разницы. Разница лишь в точке зрения. Для путешественника, плывущего на корабле, книга, лежащая у него в каюте на столе, покоится, но для человека на берегу эта книга плывет вместе с кораблем. В данном примере бессмысленно спрашивать, движется или покоится книга. Такой спор был бы пустой тратой времени. Наблюдателям нужно лишь согласовать свои позиции и признать, что книга покоится относительно корабля и движется относительно берега вместе с кораблем.

Таким образом, слово «относительность» в названии принципа Галилея не скрывает в себе ничего особенного. Оно не имеет никакого иного смысла, кроме того, который мы вкладываем в утверждение о том, что движение или покой — всегда движение или покой относительно чего-то, что служит нам системой отсчета. Это, конечно, не означает, что между покоем и равномерным движением нет никакой разницы. Но понятия покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета.

Эйнштейн развил классический принцип относительности и пришел к выводу, что этот принцип является всеобщим и действует не только в механике, но и в электродинамике.

Второй постулат СТО Эйнштейн позаимствовал из электродинамики — это принцип постоянства скорости света, которая в вакууме примерно равна 300 000 км/с. Второй постулат говорит о постоянстве скорости света во всех инерциальных системах отсчета. Он связан с принципом относительности, в соответствии с которым если и существует максимальная скорость, то она должна быть одинаковой во всех инерциальных системах отсчета.

Но почему так важна эта скорость, что суждение о ней приравнивается к принципу относительности? Дело в том, что скорость света — самая большая из всех скоростей в природе, предельная скорость физических взаимодействий, одна из немногих фундаментальных физических констант нашего мира.

Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорости этих тел всегда складываются с другими скоростями. В этом смысле скорости относительны, их величина зависит от точки зрения (как в приведенном выше примере). Скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, нам не нужно указывать систему отсчета.

Скорость света — это верхний предел для скорости перемещения любых тел в природе, для скорости распространения любых волн и сигналов. Она максимальна — это абсолютный рекорд скорости. Она является предельной скоростью любых физических взаимодействий, да и вообще всех мыслимых взаимодействий в мире. Если бы это было не так, нарушился бы фундаментальный закон причинности, утверждающий, что причина всегда предшествует следствию. Тогда разрушилась бы логическая связь событий во Вселенной, в мире воцарился абсолютный хаос и случайность.

Разумеется, все сказанное нами о скорости света, противоречит тому, что мы видим в окружающем нас мире. Более того, одновременное действие этих двух постулатов кажется невозможным. Чтобы решить данный парадокс, Эйнштейн обращается к анализу проблемы одновременности, которая и составляет суть теории относительности.

Чтобы доказать существование одновременности, нужно иметь в двух точках пространства, в которых находятся интересующие нас объекты, одинаково устроенные, синхронно идущие часы. Синхронизировать эти часы можно, воспользовавшись световыми сигналами, которые будут направляться из одной точки в другую, а потом возвращаться обратно. Если часы при этом будут показывать одинаковое время, значит, события в данных точках протекают одновременно. Если бы свет распространялся мгновенно, проблемы бы не существовало. Но так как свет обладает конечной скоростью, то наши сигналы в разных точках покажут разные результаты. Таким образом, события, одновременные для одного наблюдателя, окажутся неодновременными для другого. Следовательно, понятие одновременности всегда относительно.

Таким образом, специальная теория относительности утверждает, что пространство и время нельзя рассматривать изолированно друг от друга. На основании этих выводов в 1907 г. немецкий математик Г. Минковский высказал предположение, что три пространственных и одна временная размерность любых материальных тел тесно связаны между собой. Все события во Вселенной происходят в едином четырехмерном пространстве-времени.

Общая теория относительности. В рамках общей теории относительности, которая создавалась в течение десяти лет, с 1906 по 1916 г., А. Эйнштейн обратился к проблеме тяготения, давно привлекавшей к себе внимание ученых. Поэтому общую теорию относительности часто называют теорией тяготения. В ней были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Общая теория относительности основывается уже не на двух, а на трех постулатах.

Первый постулат общей теории относительности — расширенный принцип относительности, который утверждает инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных, движущихся с ускорением или замедлением. Он говорит о том, что нельзя приписывать абсолютный характер не только скорости, но и ускорению, которое имеет конкретный смысл только по отношению к фактору, его определяющему.

Второй постулат — принцип постоянства скорости света — остается неизменным.

Третий постулат — принцип эквивалентности инертной и гравита ционной масс. Этот факт был известен еще в классической механике. Теоретический анализ, который был сделан ученым, позволил сделать вывод, что физика не знает способа отличить эффект гравитации от эффекта ускорения. Иначе говоря, кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g, то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли.

Важнейшим выводом общей теории относительности стала идея, что изменение геометрических (пространственных) и временных характеристик тел происходит не только при движении с большими скоростями, как это было доказано специальной теорией относительности, но и в гравитационных полях.

Сделанный вывод неразрывно связывал общую теорию относительности с геометрией, но общепризнанная геометрия Евклида для этого не годилась. Эйнштейн использовал геометрию Б. Римана, которая верна для поверхности сферы, и сделал вывод о кривизне пространства-времени.

Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца, достаточно небольшой по космическим меркам звезды, влияет на темп протекания времени, замедляя его вблизи себя. Поэтому, если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала, отправленного на такое же расстояние, Солнца не будет. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с. Такие эксперименты проводились, начиная с 1966 г., в качестве отражателя использовались как поверхности планет (Меркурия, Венеры), так и оборудование межпланетных станций.

Одно из самых фантастических предсказаний общей теории относительности — полная остановка времени в очень сильном поле тяготения. Замедление времени тем больше, чем сильнее тяготение. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронных звезд, а у гравитационного радиуса черной дыры оно столь велико, что время там, с точки зрения внешнего наблюдателя, просто замирает.

Существование черных дыр было предсказано общей теорией относительности. Если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца равен 700 000 км), оно превратилось бы в черную дыру. Из-за такого сжатия сила тяготения на поверхности, откуда исходит свет, возрастет настолько, что гравитационное красное смещение окажется действительно бесконечным. Солнце просто станет невидимым, ни один фотон не вылетит за его пределы. С нашим Солнцем такого не случится, а вот звезды, превосходящие Солнце по массе в 3 раза, в конце своей эволюции превращаются в такие объекты.

В квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственно – временных представлений классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно — временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня:

· уровень молекулярно — атомных явлений,

· уровень релятивистских квантовоэлектродинамических процессов,

· уровень элементарных частиц,

· уровень ультрамалых масштабов, где пространственно — временные отношения оказываются несколько иными, чем в физике макромира.

В этой области по-иному следует понимать природу пустоты — вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают как особый вид материи — как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая «пустота» — это одно из состояний материи.

На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь иные пространственно — временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого. Ещё более радикальных изменений пространственно — временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. Поэтому на повестку дня встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе — с гипотезой о возможной макроскопической природе пространства и времени.

Рассмотрим более подробно эти направления.

Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона — частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д. ).

Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно — временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д. ). Эти трудности учёные пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает выход из неопределённости бесконечности, так как содержит фундаментальную длину — основу атомистического пространства.

В физике микромира широкое развитие получило также направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения, что понятие локального взаимодействия лишено смысла. Второй основан на отрицании понятия точечной координаты пространства — времени, что приводит к теории квантового пространства — времени. Протяжённая элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного.

Отказ от представлений о точечности взаимодействия влечёт за собой изменение наших представлений о структуре пространства — времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения «раньше» и «позже». В области нелокального взаимодействия события связаны в некий «комок», в котором они взаимно обуславливают друг друга, но не следуют одно за другим.

Таково принципиальное положение дел, сложившееся в представление о пространстве – времени на микроуровне, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства — времени на области «малые», где причинность нарушена, и большие, где она выполнена, невозможно без появления в теории новой константы размерности длины — элементарной длины. С этим «атомом» пространства связан и элементарный момент времени (хронон), и именно в соответствующей им пространственно — временной области протекает сам процесс взаимодействия частиц. Теория дискретного пространства — времени продолжает развиваться. Открытым остаётся вопрос о внутренней структуре «атомов» пространства и роли (наличии) времени и пространства в них.

Поскольку пространство и время неотделимы от материи, правильнее было бы говорить о пространственно-временных свойствах и отношениях материальных систем. Однако при познании пространства и времени ученые часто абстрагируются от их материального содержания, рассматривая их как самостоятельные формы бытия. В учебных целях свойства пространства и времени также рассматриваются отдельно.

Общие свойства пространства. Общими свойствами пространства являются:

1) протяженность, понимая как рядоположенность, существование и связь различных элементов (точек, отрезков, объемов и др.), возможность прибавления к каждому данному элементу некоторого следующего элемента либо возможность уменьшения числа элементов. Протяженность пространства проявляется как единство прерывности и непрерывности в его структуре. Для пространства в целом характерно отсутствие каких-либо «разрывов» и нарушений в распространении взаимодействий в природе. Но для отдельных материальных тел свойственна относительная прерывность, которая проявляется в раздельном существовании материальных объектов и систем, имеющих определенные размеры и границы;

2) трехмерность, в соответствии с которой все материальные процессы и явления, известные нам, реализуются в пространстве трех измерений, т.е. обладают длиной, шириной и высотой. Это общее свойство, которое обнаруживается на всех известных структурных уровнях организации материи и органически связано со структурностью систем и их движением.

Общие свойства времени. Общими свойствами времени являются:

1)длительность, которая выступает как последовательность сменяющих друг друга моментов или состояний, возникновение за каждым данным интервалом времени последующего. Длительность предполагает возможность прибавления к каждому данному моменту времени другого, а также возможность деления любого отрезка времени на меньшие интервалы.

Длительность бытия объектов во времени выступает как единство прерывного и непрерывного. Общая непрерывность времени проявляется в постоянном переходе предшествующих состояний в последующие. Прежде чем произойдет какое-либо явление в будущем, должны осуществиться все предшествующие ему изменения в прошлом. Но конкретные объекты материального мира имеют начало и конец, определенную длительность, т.е. существуют конечный период. Поэтому можно говорить о прерывности бытия конечных материальных объектов, хотя она и относительна, так как между всеми сменяющими друг друга качествами имеется внутренняя связь и непрерывный переход;

2)необратимость времени — общее свойство времени, означающее однонаправленное изменение от прошлого к будущему. Прошлое порождает настоящее и будущее, переходит в них. К прошлому относятся все те события, которые уже осуществились и превратились в последующие. Будущие события — это те, которые возникнут из настоящих и непосредственно предшествующих им событий. Настоящее охватывает все те объекты, системы и процессы, которые реально существуют и способны к взаимодействию между собой.

Понятие настоящего, так же как и понятие современности, многозначно, так как охватывает различные временные интервалы. Так, для человека предельно суженное настоящее — это сиюсекундное переживание, фиксируемое с большим трудом; для элементарных частиц — очень малые отрезки, которые для Галактики возрастают до сотни тысяч лет, а в больших системах будут еще более значительными;

3) одномерность времени, проявляющаяся в линейной последовательности событий, генетически связанных между собой. Если для определения положения тела в пространстве необходимо задать три координаты, то для определения времени достаточно одной.

Общие свойства пространства и времени проявляются на всех структурных уровнях организации материи. У некоторых классов материальных объектов проявляются дополнительные, локальные свойства пространства и времени.

Так, в макромире все материальные тела имеют конкретные пространственные формы, размеры, скорости перемещения и т.д. Все материальные тела и процессы имеют конкретную длительность своего существования.

Также у материальных тел проявляются разные виды симметрии или асимметрии. В целом пространству присущи свойства изотропности и однородности. Изотропность — это отсутствие вьщеленных направлений (верх, низ и т.д.), независимость свойств тел, движущихся по инерции, от направления их движения. Однородность — это одинаковость свойств пространства по всем направлениям. Но в структуре отдельных тел можно отметить анизотропию (тела расщепляются в одних направлениях лучше, чем в других) и неоднород ность.

Изучение пространства и времени продолжается и сегодня. Есть интересные исследования о социальном и биологическом пространстве и времени, гипотезы о природе времени.

Проблема времени и пространства всегда интересовала человека не только в рациональном, но и на эмоциональном уровне. Люди не только сожалеют о прошлом, но и боятся будущего, не в последнюю очередь потому, что неотвратимый поток времени влечет к их смерти. Человечество в лице своих выдающихся деятелей на протяжении всей своей сознательной истории задумалось над проблемами пространства и времени, немногим из них удалось создать свои теории, описывающие данные фундаментальные атрибуты бытия. Пространство и время лежат в основе нашей картины мира.

Прошлый век — век бурного развития науки был наиболее плодотворным в плане познания времени и пространства. Появление в начале века сначала специальной, а потом и общей теории относительности заложило основу современного научного представления о мире, многие положения теории были подтверждены опытными данными. Тем не менее, как показывает, в том числе и эта работа, вопрос познания пространства и времени, их природы, взаимосвязи и даже наличия во многом остается открытым. Представляется уместным привести высказывание основоположника современного представления о пространстве и времени А. Эйнштейна, – «пространство и время являются способом, которым мы мыслим, а не условиями, в которых мы живем», в котором во многом отразилась противоречивость и нерешенность проблемы.

1. Горбачев В. В. Концепции современного естествознания:—М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. — 592 с.

2. Горелов А. А. Концепции современного естествознания. — М., 2005. — 336 с.

3. Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. — 2-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006. — 447 с.

4. Концепции современного естествознания: Учебник. — Изд. 2-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2004. — 622 с.

5. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. — 6-е изд., испр. и доп. — М.: Издательский центр «Академия», 2006. — 608 с.

6. Концепции современного естествознания: курс лекций / Изд. 4-е. — Ростов н/Д: Феникс, 2005. — 480 с.

www.ronl.ru

Реферат - Развитие представлений о пространстве и времени

РЕФЕРАТ

по дисциплине «Естествознание»

по теме: «Развитие представлений о пространстве и времени»

СОДЕРЖАНИЕ

Введение 3

1. Пространство-время до Эйнштейна 4

1.1 Доньютоновский период 4

1.2 Постньютоновский период 6

2. Постулаты Эйнштейна 9

3. Ультрасовременные взгляды на пространство-время 13

Заключение 18

Список литературы 20

ВВЕДЕНИЕ

Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Большинство физических понятий вводятся посредством операциональных правил, в которых используются расстояния в пространстве и время. В тоже время пространство и время относятся к фундаментальным понятиям культуры.

Физические, химические и другие величины, непосредственно и опосредовано, связаны с измерением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому расширение и углубления знаний о мире связано с соответствующими учениями о пространстве и времени.

Актуальность работы объясняется новыми веяниями в науке, новыми гипотезами и теориями о структуре пространства-времени.

Мы все привыкли к тому, что прошлого не вернуть, хотя порой очень хочется. Писатели-фантасты уже более века живописуют разного рода казусы, возникающие благодаря возможности путешествовать во времени и влиять на ход истории. Эта тема оказалась настолько животрепещущей, что в конце прошлого века даже далекие от сказок физики всерьез занялись поисками таких решений уравнений, описывающих наш мир, которые позволяли бы создавать машины времени и в мгновение ока преодолевать любые пространства и времена. Тоннели в пространстве, вполне серьезно, как гипотетически возможные, активно обсуждаются в статьях по теоретической физике, на страницах самых солидных научных изданий. Все эти гипотезы имеют вполне реальное научное обоснование.

Прежде, чем рассмотреть новейшие взгляды на пространство-время в работе, мы изучим эволюцию представлений о пространстве и времени.

1. ПРОСТРАНСТВО — ВРЕМЯ ДО ЭЙНШТЕЙНА

1.1 Доньютоновский период

Естественнонаучные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе и в первую очередь в макромире твердых физических тел, занимающих определенный объем. Основными были обыденные представления о пространстве и времени как о каких-то внешних условиях бытия, в которые помещена материя и которые сохранились бы, если бы даже материя исчезла. В материалистической картине мира понятие пространства возникло на основе наблюдения и практического использования объектов, их объема и протяженности.

Понятие времени возникло на основе восприятия человеком смены событий, последовательной смены состояний предметов и круговорота различных процессов.

Большое влияние на формирование понятий пространства и времени как научных категорий сыграла пифагорейская школа. Пифагорейцы первыми осознали трехмерность пространства, в котором мы живём.

Платон, развивая учение пифагорейцев о математическом начале мира, впервые в античной науке вводит понятие геометрического пространства. До Платона в античной науке пространство не рассматривалось как самостоятельная категория, отдельно от его наполнения. Платон же помещает между идеями и чувственным миром геометрическое пространство, рассматривая его как нечто среднее, «промежуточное» между ними. Философия Платона так же использует представления о трехмерности пространства.

Платоново-пифагорейская научно-исследовательская программа была развита в эллинистический период в работах Клавдия Птолемея, Аполлония, Архимеда и Евклида. Наряду с понятием пространства в Древней Греции были выработаны такие понятия как пустота и эфир. В главном труде Евклида — «Началах» излагаются основные свойства пространства и пространственных фигур. В современной науке широко используется понятие евклидового пространства как плоского пространства трех измерений. Понятию времени в рассматриваемых школах приписывалось равномерность и неизменность течения.

В целом же в доньютоновский период развитие представлений о пространстве и времени носило преимущественно стихийный и противоречивый характер.

Коренное изменение пространственной и всей физической картины мира произошло с появлением гелиоцентрической системы, развитой Коперником в работе «Об обращениях небесных сфер». Принципиальное отличие этой системы мира от прежних теорий состояло в том, что в ней концепция единого однородного пространства и равномерности течения времени обрела реальный эмпирический базис.

Огромное влияние на развитие представлений о пространстве и времени сыграла революция в механике, связанная с именем Галилея. Он ввел в механику точный количественный эксперимент и математическое описание явлений. Первостепенную роль в дальнейшем прогрессивном развитии представлений о пространстве сыграл открытый им общий принцип классической механики — принцип относительности Галилея. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, покоящихся или движущихся равномерно и прямолинейно с постоянной по величине и направлению скоростью.

Развитие представлений о пространстве и времени в доньютоновский период способствовало созданию концептуальной основы изучения физического пространства и времени. Эти представления подготовили математическое экспериментальное обоснование свойств пространства и времени в рамках классической механики.

1.2 Постньютоновский период

Представления о пространстве и времени как о внешних условиях бытия, в которые помещена материя, позволили сформулировать концепцию абсолютного пространства и времени, получившую свою наиболее отчетливую формулировку в работе И. Ньютона «Математические начала натуральной философии» Этот труд, более чем на два столетия определил развитие всей естественнонаучной картины мира. В нем были сформулированы основные законы движения и дано определение пространства, времени, места и движения. Раскрывая сущность пространства и времени, Ньютон предлагает различать два типа этих понятий абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику.

· абсолютное, истинное, математическое время само по себе и своей сущности без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью;

· относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами внешняя мера, употребляемая в обыденной жизни вместо истинного математического времени, как то час, день, месяц, год;

· абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным;

· относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное. Время и пространство составляют как бы вместилища самих себя и всего существующего.

При таком понимании, абсолютное пространство и время представлялись некоторыми самодовлеющими элементами бытия, существующими вне и независимо от каких-либо материальных процессов, как универсальные условия, в которые помещена материя. Эта т.н. концепция «черного ящика».

Этот взгляд близок к субстанциональному пониманию пространства и времени, хотя у Ньютона они и не являются настоящими субстанциями, как материя они обладают лишь одним признаком субстанции абсолютной самостоятельностью существования и независимостью от любых конкретных процессов, но они не обладают другим важнейшим качеством субстанции — способностью порождать различные тела, сохраняться в их основе при всех изменениях тел. Такую способность, Ньютон признавал лишь за материей, которая рассматривалась как совокупность атомов.

Материя — тоже вторичная субстанция после Бога, который сотворил мир, пространство и время, и привел их в движение. Бог, являясь существом внепространственным и вневременным, неподвластен времени, в котором все изменчиво и преходяще. Он вечен в своем бесконечном совершенстве и всемогуществе и является подлинной сущностью всякого бытия. К нему не применима категория времени. Бог существует в вечности, которая является атрибутом Бога. Чтобы полнее реализовать свою бесконечную мудрость и могущество, он создает мир из ничего, творит материю, а вместе с ней пространство и время как условия бытия материи. Но когда-нибудь мир полностью осуществит заложенный в нем при творении божественный план развития и его существование прекратится, а вместе с миром исчезнут пространство и время. И снова будет только вечность как атрибут Бога и его бесконечная вездесущность. Подобные взгляды выражались в общем виде еще Платоном, Аврелием Августином, Фомой Аквинским и их последователями, Ньютон также разделял эти взгляды.

Лейбниц рассматривал пространство как порядок сосуществования тел, а время — как порядок отношения и последовательность событий. Это понимание составило сущность реляционной концепции пространства и времени, которая противостояла их пониманию как абсолютных и не зависящих ни от чего реальностей, подвластных только Богу.

Есть концепции (Беркли, Авенариус и др.), которые ставят пространство и время в зависимость от человеческого сознания, выводя их из способности человека переживать и упорядочивать события, располагать их одно подле другого. Так, Кант рассматривал пространство и время как априорные (доопытные) формы чувственного созерцания, вечные категории сознания, аргументируя это ссылкой на стабильность геометрии Евклида в течение двух тысячелетий.

Проблема пространства и времени была тесно связана с концепциями близкодействия и дальнодействия. Дальнодействие мыслилось как мгновенное распространение гравитационных и электрических сил через пустое абсолютное пространство, в котором силы находят свою конечную цель, благодаря божественному провидению. Концепция же близкодействия (Декарт, Гюйгенс, Френель, Фарадей) была связана с пониманием пространства как протяженности вещества и эфира, в котором свет распространялся с конечной скоростью в виде волн. Это привело в дальнейшем к понятию поля, от точки к точке которого и передавалось взаимодействие. Именно это понимание взаимодействия и пространства, развивавшееся в рамках классической физики, было унаследовано и развито далее в XX в., после крушения гипотезы эфира, в рамках теории относительности и квантовой механики. Пространство и время вновь стали пониматься как атрибуты материи, определяющиеся ее связями и взаимодействиями.

Современное понимание пространства и времени было сформулировано в теории относительности А.Эйнштейна, по-новому интерпретировавшей реляционную концепцию пространства и времени и давшей ей естественнонаучное обоснование.

2. ПОСТУЛАТЫ ЭЙНШТЕЙНА

Исходным пунктом этой теории, стал принцип относительности. Классический принцип относительности был сформулирован еще Галилеем: во всех инерциальных системах отсчета движение тел происходит по одинаковым законам. Инерциальными называются системы отсчета, движущиеся друг относительно друга равномерно и прямолинейно.

Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна.

Первый, является естественным обобщением принципа относительности Галилея с механических на все без исключения явления природы, и может быть сформулирован как утверждение о невозможности наблюдателю, находящемуся в замкнутой системе отсчета, при помощи какого-либо физического (а значит и любого другого) опыта установить, покоится ли его система отсчета или находится в состоянии равномерного прямолинейного движения.

Вторым постулатом Эйнштейна является утверждение о постоянстве скорости света, неоднократно проверявшееся Майкельсоном, и впоследствии в более точных экспериментах.

На основе сформулированных постулатов Эйнштейна пересматриваются все основные положения классической кинематики и делаются основные выводы релятивистской кинематики. Делается вывод о том, что понятия одновременности событий, длительности временного промежутка и длины отрезка перестают носить абсолютный характер, становясь зависимыми от выбора системы отсчета, из которой ведется наблюдение.

Предсказываемый релятивистской теорией эффект замедления времени состоит в том, что с точки зрения движущегося относительно рассматриваемой системы наблюдателя все интервалы времени, характеризующие процессы в этой системе (колебания маятников часов, распад нестабильных частиц, старение биологических организмов и т.д.) увеличиваются по сравнению с интервалами, наблюдаемыми в самой этой системе. Для находящихся же в самой рассматриваемой системе наблюдателей происходящие в ней процессы протекают совершенно нормально, а время у движущегося наблюдателя «течет замедленно».

Эффект сокращения расстояний состоит в уменьшении длин отрезков с точки зрения наблюдателей, перемещающихся вдоль этих отрезков (отрезки, ориентированные перпендикулярно скорости относительного движения сохраняют свою длину неизменной).

Описанные эффекты проявляются лишь при скоростях, сравнимых со скоростью света и в настоящее время экспериментально зарегистрированы в пучках ультарелятивискских частиц, создаваемых на современных ускорителях. Например, короткоживущие частицы (время жизни 0), двигаясь с околосветовыми скоростями, вопреки классическим представлениям достигают приемника, удаленного на расстояние, значительно превышающее l = c(0). С точки зрения неподвижного наблюдателя это явление можно объяснить эффектом замедления времени, «удлиняющим» жизнь частицы, с точки зрения наблюдателя, движущегося вместе с частицей — эффектом сокращения расстояния до мишени, «летящей ему навстречу». Подобные процессы замедления хода времени в зависимости от скорости движения реально регистрируются сейчас в измерениях длины пробега мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. Указанные явления есть важнейшая экспериментальная база.

В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно-временной континуум, пространственно-временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тела к скорости света а вакууме (300000 км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

Находясь в сопутствующей системе отсчета, то есть двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и часы будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и измерить.

Эксперимент, лежащий в основе специальной теории относительности: со спутника испускается луч света по направлению его движения. Относительно спутника, откуда он испущен, свет распространяется со, скоростью света. Какова скорость распространения света относительно Земли? Она остаётся такой же. Даже если свет будет испускаться не по движению спутника, а в прямо противоположном направлении, то и тогда относительно Земли скорость света не изменится. Это — иллюстрация того важнейшего утверждения, которое положено в основу специальной теории относительности. Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорости этих тел всегда складываются с другими скоростями. В этом смысле скорости относительны: их величина зависит от точки зрения. А скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, не нужно указывать систему отсчета. Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца — достаточно небольшой звезды по космическим меркам — влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала при таком же расстоянии не будет Солнца. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с.

3. УЛЬТРАСОВРЕМЕННЫЕ ВЗГЛЯДЫ НА ПРОСТРАНСТВО-ВРЕМЯ

В настоящее время в научном мире общепринята теория самоорганизации пространства-времени, т.н. теория «суперструн». Рассмотрим вкратце процесс самоорганизации пространства-времени в связи с самоорганизацией Вселенной, ведущей к эволюции физических объектов. Изначально существовал неметрический вакуум. Большой взрыв привел к эволюции вакуума, достигшего, в конце концов, метрической определенности, характеризующейся суперструнным вакуумным пространством-временем, затем возникло 10-мерное квантованное суперструнное поле и соответствующее ему суперструнное пространство-время. С акта самоорганизации суперструнного поля до развертывания его четырех измерений имело место суперструнное пространство-время. При последующем расширении Вселенной 4 измерения увеличились, 6 измерений пространства остались компактифицированными. С возникновением частиц и образованием гравитационного поля процесс самоорганизации привел к классическому гравитационному пространству-времени. Последнее приобрело фундаментальное значение, ибо все эволюционирующие процессы внутри Вселенной можно рассматривать как происходящие на его фоне. Кривизна гравитационного пространства-времени уменьшалась с увеличением радиуса Вселенной, при некотором радиусе (в малых областях) пространство-время можно считать плоским.

Однако, согласно эйнштейновской теории тяготения — общей теории относительности (ОТО), четырехмерное пространство-время, в котором мы живем всё-таки искривлено, а знакомая всем гравитация и есть проявление такого искривления. Материя «прогибает», искривляет пространство вокруг себя, и — чем она плотнее, тем сильнее искривление. Многочисленные альтернативные теории тяготения, счет которым идет на сотни, отличаясь от ОТО в деталях, сохраняют главное — идею кривизны пространства-времени.

Мысли о столь сильном искривлении нашего пространства-времени возникли сразу после появления ОТО — уже в 1916 г., австрийский физик Л. Фламм обсуждал возможность существования пространственной геометрии в виде некой норы, соединяющей два мира.

В 1935 г. А. Эйнштейн и математик Н. Розен обратили внимание на то, что простейшие решения уравнений ОТО, описывающие изолированные, нейтральные или электрически заряженные источники гравитационного поля, имеют пространственную структуру «моста», почти гладким образом соединяющего две вселенные — два одинаковых, почти плоских, пространства-времени.

Такого рода пространственные структуры позднее получили название «кротовые норы». Черные дыры и кротовые норы, весьма интересные микрообъекты, возникающие сами собой, как квантовые флуктуации гравитационного поля (на длинах порядка 10-33 см), где, по существующим оценкам, понятие классического, гладкого пространства-времени уже неприменимо. На таких масштабах должно существовать что-то похожее на водяную или мыльную пену в бурном потоке, постоянно «дышащую» за счет образования и схлопывания мелких пузырьков. Вместо спокойного пустого пространства мы имеем возникающие и исчезающие в бешеном темпе мини-черные дыры и кротовые норы самых причудливых и переплетающихся конфигураций. Их размеры невообразимо малы — они во столько же раз меньше атомного ядра, во сколько это ядро меньше планеты Земля. Строгого описания пространственно-временной пены пока нет, так как еще не создана последовательная квантовая теория гравитации, но в общих чертах описанная картина следует из основных принципов физической теории и вряд ли изменится.

Эйнштейн и Розен рассматривали возможность применения таких «мостов» для описания элементарных частиц. Приводилось следующее доказательство: частица — чисто пространственное образование, поэтому нет необходимости специально моделировать источник массы или заряда, а при микроскопических размерах кротовой норы внешний, удаленный наблюдатель, находящийся в одном из пространств, видит лишь точечный источник с определенными массой и зарядом. Электрические силовые линии входят в нору с одной стороны и выходят с другой, нигде не начинаясь и не заканчиваясь. По выражению американского физика Дж. Уилера, получается «масса без массы, заряд без заряда». В этом случае вовсе не обязательно полагать, что мост соединяет две разные вселенные — ничуть не хуже предположение, что оба «устья» кротовой норы выходят в одну и ту же вселенную, но в разных ее точках и в разные времена.

При всей привлекательности такой картины она (по многим причинам) не прижилась в физике элементарных частиц. «Мостам» Эйнштейна-Розена трудно приписать квантовые свойства, а без них в микромире трудно вести рассчёты. При известных значениях масс и зарядов частиц (электронов или протонов) мост Эйнштейна-Розена вообще не образуется, вместо этого «электрическое» решение предсказывает так называемую «голую» сингулярность — точку, в которой кривизна пространства и электрическое поле становятся бесконечными. Понятие пространства-времени, пусть даже искривленного, в таких точках теряет смысл, поскольку решать уравнения с бесконечными слагаемыми невозможно. По современным понятиям, то, что Эйнштейн и Розен рассматривали как горловину кротовой норы (то есть самое узкое место «моста»), на самом деле есть не что иное, как горизонт событий черной дыры (нейтральной или заряженной). Более того, с разных сторон «моста» частицы или лучи попадают на разные «участки» горизонта, а между, условно говоря, правой и левой частями горизонта находится особая нестатическая область, не преодолев которую нельзя пройти нору.

Для удаленного наблюдателя космический корабль, приближающийся к горизонту достаточно крупной (по сравнению с кораблем) черной дыры, как бы навеки застывает, а сигналы от него доходят все реже и реже. Напротив, по корабельным часам горизонт достигается за конечное время. Миновав горизонт, корабль (частица или луч света) вскоре неотвратимо упирается в сингyлярность — туда, где кривизна становится бесконечной и где (еще на подходе) любое протяженное тело будет неизбежно раздавлено и разорвано. Такова суровая реальность внутреннего устройства черной дыры. Решения Шварцшильда и Райснера-Нордстрема, описывающие сферически-симметричные нейтральные и электрически заряженные черные дыры, были получены в 1916-1917 г., однако в непростой геометрии этих пространств физики полностью разобрались лишь на рубеже 1950-1960-х гг.

Джон Арчибальд Уилер, известный своими работами в ядерной физике и теории гравитации, предложил термины «черная дыра» и «кротовая нора». Как оказалось, в пространствах Шварцшильда и Райснера-Нордстрема кротовые норы действительно есть. С точки зрения удаленного наблюдателя, они не видны полностью, как и сами черные дыры, и — так же вечны. А вот для путешественника, отважившегося проникнуть за горизонт, нора настолько быстро схлопывается, что сквозь нее не пролетит ни корабль, ни массивная частица, ни даже луч света. Чтобы, минуя сингулярность, прорваться к другому устью норы, необходимо двигаться быстрее света. А физики сегодня полагают, что сверхсветовые скорости перемещения материи и энергии невозможны в принципе.

Вопросы устойчивости кротовых нор и управления их конфигурацией пока не совсем ясны, поэтому вполне возможно, что для поддержания нормального функционирования пространственно-временных тоннелей понадобится специальное оборудование и немалое количество энергии. Всё же сегодня, несмотря на кажущуюся фантастичность идеи о «машине времени» многие учёные всерьёз разрабатывают эту проблему. По мнению учёных разрабатывающих теории кротовых нор, ныряя в кротовую нору, можно не только попасть в другую вселенную, но и вернуться во времени назад.

Если кротовые норы все-таки обнаружат (или построят), перед той областью философии, что занимается интерпретацией науки, встанут новые и, надо сказать, очень непростые задачи. И при всей кажущейся абсурдности временных петель и сложности проблем, связанных с причинностью, эта область науки, по всей вероятности, рано или поздно со всем этим как-нибудь разберется. Так же, как в свое время «справилась» с концептуальными проблемами квантовой механики и теории относительности Эйнштейна.

Реальные астрономические наблюдения последних лет, похоже, сильно подрывают позиции противников возможности самого существования кротовых нор. Астрофизики, изучая статистику взрывов сверхновых в галактиках, удаленных от нас на миллиарды световых лет, сделали вывод, что наша Вселенная не просто расширяется, а разлетается со все большей скоростью, то есть с ускорением. Более того, со временем это ускорение даже нарастает. О6 этом достаточно уверенно говорят самые последние наблюдения, проведенные на новейших космических телескопах.

Другой вид кротовых нор — тонкие сингyлярные кольца напоминают другие необычные объекты, предсказываемые современной физикой — космические струны, образовывавшиеся (согласно некоторым теориям) в ранней Вселенной при остывании сверхплотного вещества и смене его состояний. Они действительно напоминают струны, только необычайно тяжелые — многие миллиарды тонн на сантиметр длины при толщине в доли микрона. И, как было показано американцем Ричардом Готтом и французом Жераром Клеманом, из нескольких струн, движущихся друг относительно друга с большими скоростями, можно составить конструкции, содержащие временные петли. То есть, двигаясь определенным образом в гравитационном поле этих струн, можно вернуться в исходную точку раньше, чем из нее вылетел.

Астрономы давно ищут такого рода космические объекты, и на сегодня один «хороший» кандидат уже имеется — объект CSL-1. Это две удивительно похожие галактики, которые в реальности наверняка являются одной, только раздвоившейся из-за эффекта гравитационного линзирования. Причем в данном случае гравитационная линза — не сферическая, а цилиндрическая, напоминающая длинную тонкую тяжелую нить.

ЗАКЛЮЧЕНИЕ

Изначально в доньютоновский период пространство считалось бесконечным, плоским, «прямолинейным», евклидовым. Его метрические свойства описывались геометрией Евклида. Оно рассматривалось как абсолютное, пустое, однородное и изотропное (т.е. не имело выделенных точек и направлений) и выступало в качестве «вместилища» материальных тел, как независимая от них интегральная система.

Время понималось абсолютным, однородным, равномерно текущим. Оно идет сразу и везде во всей Вселенной «единообразно синхронно» и выступает как независимый от материалистических объектов процесс длительности.

Ньютон в своих трудах окончательно оформил и сформулировал концепцию о внешних условиях бытия, в которые помещена материя, концепцию абсолютного пространства и времени, в которой время и пространство уже было абсолютным и относительным, однако по-прежнему, пространство и время представлялись самодовлеющими элементами бытия, существующими вне и независимо от материальных процессов.

Также параллельно развивались представления о пространстве и времени в зависимость от сознания человека.

По Эйнштейну, учение которого исходило из основ, заложенных Галилеем, пространство и время не просто сосуществуют, но и теснейшим образом взаимодействуют друг с другом. Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Долгое время они являлись макроскопическими, так как опирались на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени.

Однако в последнее время появились практические примеры доказательства в виде мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. При построении теорий, описывающих явления микромира, классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет, что доказывается опытами с ультрарелятивистскими частицами на современных ускорителях. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

Современные представления об эволюции пространства-времени основываются на стандартной космологической модели Большого взрыва, которая подтверждается наблюдаемым в настоящую эпоху расширением нашей Вселенной.

Согласно Эйнштейну пространство и время могут причудливо искривляться, образуя много путей, соединяющих разнесенные в пространстве и времени точки-события. В этом случае оперируют понятиями, характерными для т.н. пространственно-временной пены — это чёрные дыры и кротовые норы. Последние исследования в этой области открывают необозримые возможности для исследователей.

СПИСОК ЛИТЕРАТУРЫ

1. Бохинцев Д.И. Пространство и время в микромире — М.: Наука, 1982.

2. Дубровский В.Н., Молчанов Ю.Б. Эволюционирует ли время, пространство и причинность? // Вопросы философии, 1996, №6.

3. Дубровский В.Н., Молчанов Ю.Б. Самоорганизация пространства-времени в процессе эволюции Вселенной // Вопросы философии. 2006., №3.

4. Жигалов Ю.И. Концепции современного естествознания. — М.: «Гелиос АРВ», 2002.

5. Красников С.А. Космический плацдарм. Постулаты относительности мира. Кротовые норы или черные дыры. // Наука и жизнь. 2006, №1.

6. Левин А. Эта странная мультивселенная. // В мире науки. 1996, №11.

7. Лось В.А. Основы современного естествознания. — М.: «ИНФРА-М», 2000.

8. Реймерс Н.Ф. Популярный биологический словарь. — М.: Наука, 1991.

9. Рузавин Г.И. Концепции современного естествознания. — М.: «Культура и спорт», 1997.

10. Хорошавина С.Г. Концепции современного естествознания. — Ростов-на-Дону: Феникс, 2002.

www.ronl.ru

Развитие представлений о пространстве и времени

 

РЕФЕРАТ

 

по дисциплине «Естествознание»

 

по теме: «Развитие представлений о пространстве и времени»

 

 

СОДЕРЖАНИЕ

 

Введение 3

1. Пространство-время до Эйнштейна 4

1.1 Доньютоновский период 4

1.2 Постньютоновский период 6

2. Постулаты Эйнштейна 9

3. Ультрасовременные взгляды на пространство-время 13

Заключение 18

Список литературы 20

 

ВВЕДЕНИЕ

 

 

Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Большинство физических понятий вводятся посредством операциональных правил, в которых используются расстояния в пространстве и время. В тоже время пространство и время относятся к фундаментальным понятиям культуры.

 

Физические, химические и другие величины, непосредственно и опосредовано, связаны с измерением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому расширение и углубления знаний о мире связано с соответствующими учениями о пространстве и времени.

 

Актуальность работы объясняется новыми веяниями в науке, новыми гипотезами и теориями о структуре пространства-времени.

 

Мы все привыкли к тому, что прошлого не вернуть, хотя порой очень хочется. Писатели-фантасты уже более века живописуют разного рода казусы, возникающие благодаря возможности путешествовать во времени и влиять на ход истории. Эта тема оказалась настолько животрепещущей, что в конце прошлого века даже далекие от сказок физики всерьез занялись поисками таких решений уравнений, описывающих наш мир, которые позволяли бы создавать машины времени и в мгновение ока преодолевать любые пространства и времена. Тоннели в пространстве, вполне серьезно, как гипотетически возможные, активно обсуждаются в статьях по теоретической физике, на страницах самых солидных научных изданий. Все эти гипотезы имеют вполне реальное научное обоснование.

 

Прежде, чем рассмотреть новейшие взгляды на пространство-время в работе, мы изучим эволюцию представлений о пространстве и времени.

 

1. ПРОСТРАНСТВО - ВРЕМЯ ДО ЭЙНШТЕЙНА

 

 

1.1 Доньютоновский период

 

 

Естественнонаучные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе и в первую очередь в макромире твердых физических тел, занимающих определенный объем. Основными были обыденные представления о пространстве и времени как о каких-то внешних условиях бытия, в которые помещена материя и которые сохранились бы, если бы даже материя исчезла. В материалистической картине мира понятие пространства возникло на основе наблюдения и практического использования объектов, их объема и протяженности.

 

Понятие времени возникло на основе восприятия человеком смены событий, последовательной смены состояний предметов и круговорота различных процессов.

 

Большое влияние на формирование понятий пространства и времени как научных категорий сыграла пифагорейская школа. Пифагорейцы первыми осознали трехмерность пространства, в котором мы живём.

 

Платон, развивая учение пифагорейцев о математическом начале мира, впервые в античной науке вводит понятие геометрического пространства. До Платона в античной науке пространство не рассматривалось как самостоятельная категория, отдельно от его наполнения. Платон же помещает между идеями и чувственным миром геометрическое пространство, рассматривая его как нечто среднее, «промежуточное» между ними. Философия Платона так же использует представления о трехмерности пространства.

 

Платоново-пифагорейская научно-исследовательская программа была развита в эллинистический период в работах Клавдия Птолемея, Аполлония, Архимеда и Евклида. Наряду с понятием пространства в Древней Греции были выработаны такие понятия как пустота и эфир. В главном труде Евклида - «Началах» излагаются основные свойства пространства и пространственных фигур. В современной науке широко используется понятие евклидового пространства как плоского пространства трех измерений. Понятию времени в рассматриваемых школах приписывалось равномерность и неизменность течения.

 

В целом же в доньютоновский период развитие представлений о пространстве и времени носило преимущественно стихийный и противоречивый характер.

 

Коренное изменение пространственной и всей физической картины мира произошло с появлением гелиоцентрической системы, развитой Коперником в работе «Об обращениях небесных сфер». Принципиальное отличие этой системы мира от прежних теорий состояло в том, что в ней концепция единого однородного пространства и равномерности течения времени обрела реальный эмпирический базис.

 

Огромное влияние на развитие представлений о пространстве и времени сыграла революция в механике, связанная с именем Галилея. Он ввел в механику точный количественный эксперимент и математическое описание явлений. Первостепенную роль в дальнейшем прогрессивном развитии представлений о пространстве сыграл открытый им общий принцип классической механики - принцип относительности Галилея. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, покоящихся или движущихся равномерно и прямолинейно с постоянной по величине и направлению скоростью.

 

Развитие представлений о пространстве и времени в доньютоновский период способствовало созданию концептуальной основы изучения физического пространства и времени. Эти представления подготовили математическое экспериментальное обоснование свойств пространства и времени в рамках классической механики.

 

1.2 Постньютоновский период

 

 

Представления о пространстве и времени как о внешних условиях бытия, в которые помещена материя, позволили сформулировать концепцию абсолютного пространства и времени, получившую свою наиболее отчетливую формулировку в работе И. Ньютона «Математические начала натуральной философии» Этот труд, более чем на два столетия определил развитие всей естественнонаучной картины мира. В нем были сформулированы основные законы движения и дано определение пространства, времени, места и движения. Раскрывая сущность пространства и времени, Ньютон предлагает различать два типа этих понятий абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику.

 

· абсолютное, истинное, математическое время само по себе и своей сущности без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью;

 

· относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами внешняя мера, употребляемая в обыденной жизни вместо истинного математического времени, как то час, день, месяц, год;

 

· абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным;

 

· относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное. Время и пространство составляют как бы вместилища самих себя и всего существующего.

 

При таком понимании, абсолютное пространство и время представлялись некоторыми самодовлеющими элементами бытия, существующими вне и независимо от каких-либо материальных процессов, как универсальные условия, в которые помещена материя. Эта т.н. концепция «черного ящика».

 

Этот взгляд близок к субстанциональному пониманию пространства и времени, хотя у Ньютона они и не являются настоящими субстанциями, как материя они обладают лишь одним признаком субстанции абсолютной самостоятельностью существования и независимостью от любых конкретных процессов, но они не обладают другим важнейшим качеством субстанции - способностью порождать различные тела, сохраняться в их основе при всех изменениях тел. Такую способность, Ньютон признавал лишь за материей, которая рассматривалась как совокупность атомов.

 

Материя - тоже вторичная субстанция после Бога, который сотворил мир, пространство и время, и привел их в движение. Бог, являясь существом внепространственным и вневременным, неподвластен времени, в котором все изменчиво и преходяще. Он вечен в своем бесконечном совершенстве и всемогуществе и является подлинной сущностью всякого бытия. К нему не применима категория времени. Бог существует в вечности, которая является атрибутом Бога. Чтобы полнее реализовать свою бесконечную мудрость и могущество, он создает мир из ничего, творит материю, а вместе с ней пространство и время как условия бытия материи. Но когда-нибудь мир полностью осуществит заложенный в нем при творении божественный план развития и его существование прекратится, а вместе с миром исчезнут пространство и время. И снова будет только вечность как атрибут Бога и его бесконечная вездесущность. Подобные взгляды выражались в общем виде еще Платоном, Аврелием Августином, Фомой Аквинским и их последователями, Ньютон также разделял эти взгляды.

 

Лейбниц рассматривал пространство как порядок сосуществования тел, а время - как порядок отношения и последовательность событий. Это понимание составило сущность реляционной концепции пространства и времени, которая противостояла их пониманию как абсолютных и не зависящих ни от чего реальностей, подвластных только Богу.

 

Есть концепции (Беркли, Авенариус и др.), которые ставят пространство и время в зависимость от человеческого сознания, выводя их из способности человека переживать и упорядочивать события, располагать их одно подле другого. Так, Кант рассматривал пространство и время как априорные (доопытные) формы чувственного созерцания, вечные категории сознания, аргументируя это ссылкой на стабильность геометрии Евклида в течение двух тысячелетий.

 

Проблема пространства и времени была тесно связана с концепциями близкодействия и дальнодействия. Дальнодействие мыслилось как мгновенное распространение гравитационных и электрических сил через пустое абсолютное пространство, в котором силы находят свою конечную цель, благодаря божественному провидению. Концепция же близкодействия (Декарт, Гюйгенс, Френель, Фарадей) была связана с пониманием пространства как протяженности вещества и эфира, в котором свет распространялся с конечной скоростью в виде волн. Это привело в дальнейшем к понятию поля, от точки к точке которого и передавалось взаимодействие. Именно это понимание взаимодействия и пространства, развивавшееся в рамках классической физики, было унаследовано и развито далее в XX в., после крушения гипотезы эфира, в рамках теории относительности и квантовой механики. Пространство и время вновь стали пониматься как атрибуты материи, определяющиеся ее связями и взаимодействиями.

 

Современное понимание пространства и времени было сформулировано в теории относительности А.Эйнштейна, по-новому интерпретировавшей реляционную концепцию пространства и времени и давшей ей естественнонаучное обоснование.

 

2. ПОСТУЛАТЫ ЭЙНШТЕЙНА

 

 

Исходным пунктом этой теории, стал принцип относительности. Классический принцип относительности был сформулирован еще Галилеем: во всех инерциальных системах отсчета движение тел происходит по одинаковым законам. Инерциальными называются системы отсчета, движущиеся друг относительно друга равномерно и прямолинейно.

 

Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна.

 

Первый, является естественным обобщением принципа относительности Галилея с механических на все без исключения явления природы, и может быть сформулирован как утверждение о невозможности наблюдателю, находящемуся в замкнутой системе отсчета, при помощи какого-либо физического (а значит и любого другого) опыта установить, покоится ли его система отсчета или находится в состоянии равномерного прямолинейного движения.

 

Вторым постулатом Эйнштейна является утверждение о постоянстве скорости света, неоднократно проверявшееся Майкельсоном, и впоследствии в более точных экспериментах.

 

На основе сформулированных постулатов Эйнштейна пересматриваются все основные положения классической кинематики и делаются основные выводы релятивистской кинематики. Делается вывод о том, что понятия одновременности событий, длительности временного промежутка и длины отрезка перестают носить абсолютный характер, становясь зависимыми от выбора системы отсчета, из которой ведется наблюдение.

 

Предсказываемый релятивистской теорией эффект замедления времени состоит в том, что с точки зрения движущегося относительно рассматриваемой системы наблюдателя все интервалы времени, характеризующие процессы в этой системе (колебания маятников часов, распад нестабильных частиц, старение биологических организмов и т.д.) увеличиваются по сравнению с интервалами, наблюдаемыми в самой этой системе. Для находящихся же в самой рассматриваемой системе наблюдателей происходящие в ней процессы протекают совершенно нормально, а время у движущегося наблюдателя «течет замедленно».

 

Эффект сокращения расстояний состоит в уменьшении длин отрезков с точки зрения наблюдателей, перемещающихся вдоль этих отрезков (отрезки, ориентированные перпендикулярно скорости относительного движения сохраняют свою длину неизменной).

 

Описанные эффекты проявляются лишь при скоростях, сравнимых со скоростью света и в настоящее время экспериментально зарегистрированы в пучках ультарелятивискских частиц, создаваемых на современных ускорителях. Например, короткоживущие частицы (время жизни 0), двигаясь с околосветовыми скоростями, вопреки классическим представлениям достигают приемника, удаленного на расстояние, значительно превышающее l = c(0). С точки зрения неподвижного наблюдателя это явление можно объяснить эффектом замедления времени, «удлиняющим» жизнь частицы, с точки зрения наблюдателя, движущегося вместе с частицей - эффектом сокращения расстояния до мишени, «летящей ему навстречу». Подобные процессы замедления хода времени в зависимости от скорости движения реально регистрируются сейчас в измерениях длины пробега мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. Указанные явления есть важнейшая экспериментальная база.

 

В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно-временной континуум, пространственно-временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тела к скорости света а вакууме (300000 км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

 

Находясь в сопутствующей системе отсчета, то есть двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и часы будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и измерить.

 

Эксперимент, лежащий в основе специальной теории относительности: со спутника испускается луч света по направлению его движения. Относительно спутника, откуда он испущен, свет распространяется со, скоростью света. Какова скорость распространения света относительно Земли? Она остаётся такой же. Даже если свет будет испускаться не по движению спутника, а в прямо противоположном направлении, то и тогда относительно Земли скорость света не изменится. Это - иллюстрация того важнейшего утверждения, которое положено в основу специальной теории относительности. Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорости этих тел всегда складываются с другими скоростями. В этом смысле скорости относительны: их величина зависит от точки зрения. А скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, не нужно указывать систему отсчета. Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца - достаточно небольшой звезды по космическим меркам - влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала при таком же расстоянии не будет Солнца. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с.

 

 

3. УЛЬТРАСОВРЕМЕННЫЕ ВЗГЛЯДЫ НА ПРОСТРАНСТВО-ВРЕМЯ

 

 

В настоящее время в научном мире общепринята теория самоорганизации пространства-времени, т.н. теория «суперструн». Рассмотрим вкратце процесс самоорганизации пространства-времени в связи с самоорганизацией Вселенной, ведущей к эволюции физических объектов. Изначально существовал неметрический вакуум. Большой взрыв привел к эволюции вакуума, достигшего, в конце концов, метрической определенности, характеризующейся суперструнным вакуумным пространством-временем, затем возникло 10-мерное квантованное суперструнное поле и соответствующее ему суперструнное пространство-время. С акта самоорганизации суперструнного поля до развертывания его четырех измерений имело место суперструнное пространство-время. При последующем расширении Вселенной 4 измерения увеличились, 6 измерений пространства остались компактифицированными. С возникновением частиц и образованием гравитационного поля процесс самоорганизации привел к классическому гравитационному пространству-времени. Последнее приобрело фундаментальное значение, ибо все эволюционирующие процессы внутри Вселенной можно рассматривать как происходящие на его фоне. Кривизна гравитационного пространства-времени уменьшалась с увеличением радиуса Вселенной, при некотором радиусе (в малых областях) пространство-время можно считать плоским.

 

Однако, согласно эйнштейновской теории тяготения - общей теории относительности (ОТО), четырехмерное пространство-время, в котором мы живем всё-таки искривлено, а знакомая всем гравитация и есть проявление такого искривления. Материя «прогибает», искривляет пространство вокруг себя, и - чем она плотнее, тем сильнее искривление. Многочисленные альтернативные теории тяготения, счет которым идет на сотни, отличаясь от ОТО в деталях, сохраняют главное - идею кривизны пространства-времени.

 

Мысли о столь сильном искривлении нашего пространства-времени возникли сразу после появления ОТО - уже в 1916 г., австрийский физик Л. Фламм обсуждал возможность существования пространственной геометрии в виде некой норы, соединяющей два мира.

 

В 1935 г. А. Эйнштейн и математик Н. Розен обратили внимание на то, что простейшие решения уравнений ОТО, описывающие изолированные, нейтральные или электрически заряженные источники гравитационного поля, имеют пространственную структуру «моста», почти гладким образом соединяющего две вселенные - два одинаковых, почти плоских, пространства-времени.

 

Такого рода пространственные структуры позднее получили название «кротовые норы». Черные дыры и кротовые норы, весьма интересные микрообъекты, возникающие сами собой, как квантовые флуктуации гравитационного поля (на длинах порядка 10-33 см), где, по существующим оценкам, понятие классического, гладкого пространства-времени уже неприменимо. На таких масштабах должно существовать что-то похожее на водяную или мыльную пену в бурном потоке, постоянно «дышащую» за счет образования и схлопывания мелких пузырьков. Вместо спокойного пустого пространства мы имеем возникающие и исчезающие в бешеном темпе мини-черные дыры и кротовые норы самых причудливых и переплетающихся конфигураций. Их размеры невообразимо малы - они во столько же раз меньше атомного ядра, во сколько это ядро меньше планеты Земля. Строгого описания пространственно-временной пены пока нет, так как еще не создана последовательная квантовая теория гравитации, но в общих чертах описанная картина следует из основных принципов физической теории и вряд ли изменится.

 

Эйнштейн и Розен рассматривали возможность применения таких «мостов» для описания элементарных частиц. Приводилось следующее доказательство: частица - чисто пространственное образование, поэтому нет необходимости специально моделировать источник массы или заряда, а при микроскопических размерах кротовой норы внешний, удаленный наблюдатель, находящийся в одном из пространств, видит лишь точечный источник с определенными массой и зарядом. Электрические силовые линии входят в нору с одной стороны и выходят с другой, нигде не начинаясь и не заканчиваясь. По выражению американского физика Дж. Уилера, получается «масса без массы, заряд без заряда». В этом случае вовсе не обязательно полагать, что мост соединяет две разные вселенные - ничуть не хуже предположение, что оба «устья» кротовой норы выходят в одну и ту же вселенную, но в разных ее точках и в разные времена.

 

При всей привлекательности такой картины она (по многим причинам) не прижилась в физике элементарных частиц. «Мостам» Эйнштейна-Розена трудно приписать квантовые свойства, а без них в микромире трудно вести рассчёты. При известных значениях масс и зарядов частиц (электронов или протонов) мост Эйнштейна-Розена вообще не образуется, вместо этого «электрическое» решение предсказывает так называемую «голую» сингулярность - точку, в которой кривизна пространства и электрическое поле становятся бесконечными. Понятие пространства-времени, пусть даже искривленного, в таких точках теряет смысл, поскольку решать уравнения с бесконечными слагаемыми невозможно. По современным понятиям, то, что Эйнштейн и Розен рассматривали как горловину кротовой норы (то есть самое узкое место «моста»), на самом деле есть не что иное, как горизонт событий черной дыры (нейтральной или заряженной). Более того, с разных сторон «моста» частицы или лучи попадают на разные «участки» горизонта, а между, условно говоря, правой и левой частями горизонта находится особая нестатическая область, не преодолев которую нельзя пройти нору.

 

Для удаленного наблюдателя космический корабль, приближающийся к горизонту достаточно крупной (по сравнению с кораблем) черной дыры, как бы навеки застывает, а сигналы от него доходят все реже и реже. Напротив, по корабельным часам горизонт достигается за конечное время. Миновав горизонт, корабль (частица или луч света) вскоре неотвратимо упирается в сингyлярность - туда, где кривизна становится бесконечной и где (еще на подходе) любое протяженное тело будет неизбежно раздавлено и разорвано. Такова суровая реальность внутреннего устройства черной дыры. Решения Шварцшильда и Райснера-Нордстрема, описывающие сферически-симметричные нейтральные и электрически заряженные черные дыры, были получены в 1916-1917 г., однако в непростой геометрии этих пространств физики полностью разобрались лишь на рубеже 1950-1960-х гг.

 

Джон Арчибальд Уилер, известный своими работами в ядерной физике и теории гравитации, предложил термины «черная дыра» и «кротовая нора». Как оказалось, в пространствах Шварцшильда и Райснера-Нордстрема кротовые норы действительно есть. С точки зрения удаленного наблюдателя, они не видны полностью, как и сами черные дыры, и - так же вечны. А вот для путешественника, отважившегося проникнуть за горизонт, нора настолько быстро схлопывается, что сквозь нее не пролетит ни корабль, ни массивная частица, ни даже луч света. Чтобы, минуя сингулярность, прорваться к другому устью норы, необходимо двигаться быстрее света. А физики сегодня полагают, что сверхсветовые скорости перемещения материи и энергии невозможны в принципе.

 

Вопросы устойчивости кротовых нор и управления их конфигурацией пока не совсем ясны, поэтому вполне возможно, что для поддержания нормального функционирования пространственно-временных тоннелей понадобится специальное оборудование и немалое количество энергии. Всё же сегодня, несмотря на кажущуюся фантастичность идеи о «машине времени» многие учёные всерьёз разрабатывают эту проблему. По мнению учёных разрабатывающих теории кротовых нор, ныряя в кротовую нору, можно не только попасть в другую вселенную, но и вернуться во времени назад.

 

Если кротовые норы все-таки обнаружат (или построят), перед той областью философии, что занимается интерпретацией науки, встанут новые и, надо сказать, очень непростые задачи. И при всей кажущейся абсурдности временных петель и сложности проблем, связанных с причинностью, эта область науки, по всей вероятности, рано или поздно со всем этим как-нибудь разберется. Так же, как в свое время «справилась» с концептуальными проблемами квантовой механики и теории относительности Эйнштейна.

 

Реальные астрономические наблюдения последних лет, похоже, сильно подрывают позиции противников возможности самого существования кротовых нор. Астрофизики, изучая статистику взрывов сверхновых в галактиках, удаленных от нас на миллиарды световых лет, сделали вывод, что наша Вселенная не просто расширяется, а разлетается со все большей скоростью, то есть с ускорением. Более того, со временем это ускорение даже нарастает. О6 этом достаточно уверенно говорят самые последние наблюдения, проведенные на новейших космических телескопах.

 

Другой вид кротовых нор - тонкие сингyлярные кольца напоминают другие необычные объекты, предсказываемые современной физикой - космические струны, образовывавшиеся (согласно некоторым теориям) в ранней Вселенной при остывании сверхплотного вещества и смене его состояний. Они действительно напоминают струны, только необычайно тяжелые - многие миллиарды тонн на сантиметр длины при толщине в доли микрона. И, как было показано американцем Ричардом Готтом и французом Жераром Клеманом, из нескольких струн, движущихся друг относительно друга с большими скоростями, можно составить конструкции, содержащие временные петли. То есть, двигаясь определенным образом в гравитационном поле этих струн, можно вернуться в исходную точку раньше, чем из нее вылетел.

 

Астрономы давно ищут такого рода космические объекты, и на сегодня один «хороший» кандидат уже имеется - объект CSL-1. Это две удивительно похожие галактики, которые в реальности наверняка являются одной, только раздвоившейся из-за эффекта гравитационного линзирования. Причем в данном случае гравитационная линза - не сферическая, а цилиндрическая, напоминающая длинную тонкую тяжелую нить.

 

ЗАКЛЮЧЕНИЕ

 

 

Изначально в доньютоновский период пространство считалось бесконечным, плоским, «прямолинейным», евклидовым. Его метрические свойства описывались геометрией Евклида. Оно рассматривалось как абсолютное, пустое, однородное и изотропное (т.е. не имело выделенных точек и направлений) и выступало в качестве «вместилища» материальных тел, как независимая от них интегральная система.

 

Время понималось абсолютным, однородным, равномерно текущим. Оно идет сразу и везде во всей Вселенной «единообразно синхронно» и выступает как независимый от материалистических объектов процесс длительности.

 

Ньютон в своих трудах окончательно оформил и сформулировал концепцию о внешних условиях бытия, в которые помещена материя, концепцию абсолютного пространства и времени, в которой время и пространство уже было абсолютным и относительным, однако по-прежнему, пространство и время представлялись самодовлеющими элементами бытия, существующими вне и независимо от материальных процессов.

 

Также параллельно развивались представления о пространстве и времени в зависимость от сознания человека.

 

По Эйнштейну, учение которого исходило из основ, заложенных Галилеем, пространство и время не просто сосуществуют, но и теснейшим образом взаимодействуют друг с другом. Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Долгое время они являлись макроскопическими, так как опирались на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени.

 

Однако в последнее время появились практические примеры доказательства в виде мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. При построении теорий, описывающих явления микромира, классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет, что доказывается опытами с ультрарелятивистскими частицами на современных ускорителях. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

 

Современные представления об эволюции пространства-времени основываются на стандартной космологической модели Большого взрыва, которая подтверждается наблюдаемым в настоящую эпоху расширением нашей Вселенной.

 

Согласно Эйнштейну пространство и время могут причудливо искривляться, образуя много путей, соединяющих разнесенные в пространстве и времени точки-события. В этом случае оперируют понятиями, характерными для т.н. пространственно-временной пены - это чёрные дыры и кротовые норы. Последние исследования в этой области открывают необозримые возможности для исследователей.

 

СПИСОК ЛИТЕРАТУРЫ

 

 

1. Бохинцев Д.И. Пространство и время в микромире - М.: Наука, 1982.

 

2. Дубровский В.Н., Молчанов Ю.Б. Эволюционирует ли время, пространство и причинность? // Вопросы философии, 1996, №6.

 

3. Дубровский В.Н., Молчанов Ю.Б. Самоорганизация пространства-времени в процессе эволюции Вселенной // Вопросы философии. 2006., №3.

 

4. Жигалов Ю.И. Концепции современного естествознания. - М.: «Гелиос АРВ», 2002.

 

5. Красников С.А. Космический плацдарм. Постулаты относительности мира. Кротовые норы или черные дыры. // Наука и жизнь. 2006, №1.

 

6. Левин А. Эта странная мультивселенная. // В мире науки. 1996, №11.

 

7. Лось В.А. Основы современного естествознания. - М.: «ИНФРА-М», 2000.

 

8. Реймерс Н.Ф. Популярный биологический словарь. - М.: Наука, 1991.

 

9. Рузавин Г.И. Концепции современного естествознания. - М.: «Культура и спорт», 1997.

 

10. Хорошавина С.Г. Концепции современного естествознания. - Ростов-на-Дону: Феникс, 2002.

www.referatmix.ru

Реферат Развитие представлений о пространстве и времени

РЕФЕРАТпо дисциплине «Естествознание»по теме: «Развитие представлений о пространстве и времени»СОДЕРЖАНИЕВведение 3

1. Пространство-время до Эйнштейна 4

1.1 Доньютоновский период 4

1.2 Постньютоновский период 6

2. Постулаты Эйнштейна 9

3. Ультрасовременные взгляды на пространство-время 13

Заключение 18

Список литературы 20ВВЕДЕНИЕПространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Большинство физических понятий вводятся посредством операциональных правил, в которых используются расстояния в пространстве и время. В тоже время пространство и время относятся к фундаментальным понятиям культуры. Физические, химические и другие величины, непосредственно и опосредовано, связаны с измерением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому расширение и углубления знаний о мире связано с соответствующими учениями о пространстве и времени.Актуальность работы объясняется новыми веяниями в науке, новыми гипотезами и теориями о структуре пространства-времени.Мы все привыкли к тому, что прошлого не вернуть, хотя порой очень хочется. Писатели-фантасты уже более века живописуют разного рода казусы, возникающие благодаря возможности путешествовать во времени и влиять на ход истории. Эта тема оказалась настолько животрепещущей, что в конце прошлого века даже далекие от сказок физики всерьез занялись поисками таких решений уравнений, описывающих наш мир, которые позволяли бы создавать машины времени и в мгновение ока преодолевать любые пространства и времена. Тоннели в пространстве, вполне серьезно, как гипотетически возможные, активно обсуждаются в статьях по теоретической физике, на страницах самых солидных научных изданий. Все эти гипотезы имеют вполне реальное научное обоснование.Прежде, чем рассмотреть новейшие взгляды на пространство-время в работе, мы изучим эволюцию представлений о пространстве и времени.1. ПРОСТРАНСТВО - ВРЕМЯ ДО ЭЙНШТЕЙНА1.1 Доньютоновский периодЕстественнонаучные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе и в первую очередь в макромире твердых физических тел, занимающих определенный объем. Основными были обыденные представления о пространстве и времени как о каких-то внешних условиях бытия, в которые помещена материя и которые сохранились бы, если бы даже материя исчезла. В материалистической картине мира понятие пространства возникло на основе наблюдения и практического использования объектов, их объема и протяженности.Понятие времени возникло на основе восприятия человеком смены событий, последовательной смены состояний предметов и круговорота различных процессов.Большое влияние на формирование понятий пространства и времени как научных категорий сыграла пифагорейская школа. Пифагорейцы первыми осознали трехмерность пространства, в котором мы живём.Платон, развивая учение пифагорейцев о математическом начале мира, впервые в античной науке вводит понятие геометрического пространства. До Платона в античной науке пространство не рассматривалось как самостоятельная категория, отдельно от его наполнения. Платон же помещает между идеями и чувственным миром геометрическое пространство, рассматривая его как нечто среднее, «промежуточное» между ними. Философия Платона так же использует представления о трехмерности пространства.Платоново-пифагорейская научно-исследовательская программа была развита в эллинистический период в работах Клавдия Птолемея, Аполлония, Архимеда и Евклида. Наряду с понятием пространства в Древней Греции были выработаны такие понятия как пустота и эфир. В главном труде Евклида - «Началах» излагаются основные свойства пространства и пространственных фигур. В современной науке широко используется понятие евклидового пространства как плоского пространства трех измерений. Понятию времени в рассматриваемых школах приписывалось равномерность и неизменность течения.В целом же в доньютоновский период развитие представлений о пространстве и времени носило преимущественно стихийный и противоречивый характер.Коренное изменение пространственной и всей физической картины мира произошло с появлением гелиоцентрической системы, развитой Коперником в работе «Об обращениях небесных сфер». Принципиальное отличие этой системы мира от прежних теорий состояло в том, что в ней концепция единого однородного пространства и равномерности течения времени обрела реальный эмпирический базис.Огромное влияние на развитие представлений о пространстве и времени сыграла революция в механике, связанная с именем Галилея. Он ввел в механику точный количественный эксперимент и математическое описание явлений. Первостепенную роль в дальнейшем прогрессивном развитии представлений о пространстве сыграл открытый им общий принцип классической механики - принцип относительности Галилея. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, покоящихся или движущихся равномерно и прямолинейно с постоянной по величине и направлению скоростью.Развитие представлений о пространстве и времени в доньютоновский период способствовало созданию концептуальной основы изучения физического пространства и времени. Эти представления подготовили математическое экспериментальное обоснование свойств пространства и времени в рамках классической механики.1.2 Постньютоновский периодПредставления о пространстве и времени как о внешних условиях бытия, в которые помещена материя, позволили сформулировать концепцию абсолютного пространства и времени, получившую свою наиболее отчетливую формулировку в работе И. Ньютона «Математические начала натуральной философии» Этот труд, более чем на два столетия определил развитие всей естественнонаучной картины мира. В нем были сформулированы основные законы движения и дано определение пространства, времени, места и движения. Раскрывая сущность пространства и времени, Ньютон предлагает различать два типа этих понятий абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику.· абсолютное, истинное, математическое время само по себе и своей сущности без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью;· относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами внешняя мера, употребляемая в обыденной жизни вместо истинного математического времени, как то час, день, месяц, год;· абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным;· относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное. Время и пространство составляют как бы вместилища самих себя и всего существующего.При таком понимании, абсолютное пространство и время представлялись некоторыми самодовлеющими элементами бытия, существующими вне и независимо от каких-либо материальных процессов, как универсальные условия, в которые помещена материя. Эта т.н. концепция «черного ящика».Этот взгляд близок к субстанциональному пониманию пространства и времени, хотя у Ньютона они и не являются настоящими субстанциями, как материя они обладают лишь одним признаком субстанции абсолютной самостоятельностью существования и независимостью от любых конкретных процессов, но они не обладают другим важнейшим качеством субстанции - способностью порождать различные тела, сохраняться в их основе при всех изменениях тел. Такую способность, Ньютон признавал лишь за материей, которая рассматривалась как совокупность атомов.Материя - тоже вторичная субстанция после Бога, который сотворил мир, пространство и время, и привел их в движение. Бог, являясь существом внепространственным и вневременным, неподвластен времени, в котором все изменчиво и преходяще. Он вечен в своем бесконечном совершенстве и всемогуществе и является подлинной сущностью всякого бытия. К нему не применима категория времени. Бог существует в вечности, которая является атрибутом Бога. Чтобы полнее реализовать свою бесконечную мудрость и могущество, он создает мир из ничего, творит материю, а вместе с ней пространство и время как условия бытия материи. Но когда-нибудь мир полностью осуществит заложенный в нем при творении божественный план развития и его существование прекратится, а вместе с миром исчезнут пространство и время. И снова будет только вечность как атрибут Бога и его бесконечная вездесущность. Подобные взгляды выражались в общем виде еще Платоном, Аврелием Августином, Фомой Аквинским и их последователями, Ньютон также разделял эти взгляды.Лейбниц рассматривал пространство как порядок сосуществования тел, а время - как порядок отношения и последовательность событий. Это понимание составило сущность реляционной концепции пространства и времени, которая противостояла их пониманию как абсолютных и не зависящих ни от чего реальностей, подвластных только Богу.Есть концепции (Беркли, Авенариус и др.), которые ставят пространство и время в зависимость от человеческого сознания, выводя их из способности человека переживать и упорядочивать события, располагать их одно подле другого. Так, Кант рассматривал пространство и время как априорные (доопытные) формы чувственного созерцания, вечные категории сознания, аргументируя это ссылкой на стабильность геометрии Евклида в течение двух тысячелетий.Проблема пространства и времени была тесно связана с концепциями близкодействия и дальнодействия. Дальнодействие мыслилось как мгновенное распространение гравитационных и электрических сил через пустое абсолютное пространство, в котором силы находят свою конечную цель, благодаря божественному провидению. Концепция же близкодействия (Декарт, Гюйгенс, Френель, Фарадей) была связана с пониманием пространства как протяженности вещества и эфира, в котором свет распространялся с конечной скоростью в виде волн. Это привело в дальнейшем к понятию поля, от точки к точке которого и передавалось взаимодействие. Именно это понимание взаимодействия и пространства, развивавшееся в рамках классической физики, было унаследовано и развито далее в XX в., после крушения гипотезы эфира, в рамках теории относительности и квантовой механики. Пространство и время вновь стали пониматься как атрибуты материи, определяющиеся ее связями и взаимодействиями.Современное понимание пространства и времени было сформулировано в теории относительности А.Эйнштейна, по-новому интерпретировавшей реляционную концепцию пространства и времени и давшей ей естественнонаучное обоснование.2. ПОСТУЛАТЫ ЭЙНШТЕЙНАИсходным пунктом этой теории, стал принцип относительности. Классический принцип относительности был сформулирован еще Галилеем: во всех инерциальных системах отсчета движение тел происходит по одинаковым законам. Инерциальными называются системы отсчета, движущиеся друг относительно друга равномерно и прямолинейно.Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна.Первый, является естественным обобщением принципа относительности Галилея с механических на все без исключения явления природы, и может быть сформулирован как утверждение о невозможности наблюдателю, находящемуся в замкнутой системе отсчета, при помощи какого-либо физического (а значит и любого другого) опыта установить, покоится ли его система отсчета или находится в состоянии равномерного прямолинейного движения.Вторым постулатом Эйнштейна является утверждение о постоянстве скорости света, неоднократно проверявшееся Майкельсоном, и впоследствии в более точных экспериментах.На основе сформулированных постулатов Эйнштейна пересматриваются все основные положения классической кинематики и делаются основные выводы релятивистской кинематики. Делается вывод о том, что понятия одновременности событий, длительности временного промежутка и длины отрезка перестают носить абсолютный характер, становясь зависимыми от выбора системы отсчета, из которой ведется наблюдение.Предсказываемый релятивистской теорией эффект замедления времени состоит в том, что с точки зрения движущегося относительно рассматриваемой системы наблюдателя все интервалы времени, характеризующие процессы в этой системе (колебания маятников часов, распад нестабильных частиц, старение биологических организмов и т.д.) увеличиваются по сравнению с интервалами, наблюдаемыми в самой этой системе. Для находящихся же в самой рассматриваемой системе наблюдателей происходящие в ней процессы протекают совершенно нормально, а время у движущегося наблюдателя «течет замедленно».Эффект сокращения расстояний состоит в уменьшении длин отрезков с точки зрения наблюдателей, перемещающихся вдоль этих отрезков (отрезки, ориентированные перпендикулярно скорости относительного движения сохраняют свою длину неизменной).Описанные эффекты проявляются лишь при скоростях, сравнимых со скоростью света и в настоящее время экспериментально зарегистрированы в пучках ультарелятивискских частиц, создаваемых на современных ускорителях. Например, короткоживущие частицы (время жизни 0), двигаясь с околосветовыми скоростями, вопреки классическим представлениям достигают приемника, удаленного на расстояние, значительно превышающее l = c(0). С точки зрения неподвижного наблюдателя это явление можно объяснить эффектом замедления времени, «удлиняющим» жизнь частицы, с точки зрения наблюдателя, движущегося вместе с частицей - эффектом сокращения расстояния до мишени, «летящей ему навстречу». Подобные процессы замедления хода времени в зависимости от скорости движения реально регистрируются сейчас в измерениях длины пробега мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. Указанные явления есть важнейшая экспериментальная база.В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно-временной континуум, пространственно-временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тела к скорости света а вакууме (300000 км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.Находясь в сопутствующей системе отсчета, то есть двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и часы будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и измерить.Эксперимент, лежащий в основе специальной теории относительности: со спутника испускается луч света по направлению его движения. Относительно спутника, откуда он испущен, свет распространяется со, скоростью света. Какова скорость распространения света относительно Земли? Она остаётся такой же. Даже если свет будет испускаться не по движению спутника, а в прямо противоположном направлении, то и тогда относительно Земли скорость света не изменится. Это - иллюстрация того важнейшего утверждения, которое положено в основу специальной теории относительности. Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорости этих тел всегда складываются с другими скоростями. В этом смысле скорости относительны: их величина зависит от точки зрения. А скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, не нужно указывать систему отсчета. Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца - достаточно небольшой звезды по космическим меркам - влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала при таком же расстоянии не будет Солнца. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с.3. УЛЬТРАСОВРЕМЕННЫЕ ВЗГЛЯДЫ НА ПРОСТРАНСТВО-ВРЕМЯВ настоящее время в научном мире общепринята теория самоорганизации пространства-времени, т.н. теория «суперструн». Рассмотрим вкратце процесс самоорганизации пространства-времени в связи с самоорганизацией Вселенной, ведущей к эволюции физических объектов. Изначально существовал неметрический вакуум. Большой взрыв привел к эволюции вакуума, достигшего, в конце концов, метрической определенности, характеризующейся суперструнным вакуумным пространством-временем, затем возникло 10-мерное квантованное суперструнное поле и соответствующее ему суперструнное пространство-время. С акта самоорганизации суперструнного поля до развертывания его четырех измерений имело место суперструнное пространство-время. При последующем расширении Вселенной 4 измерения увеличились, 6 измерений пространства остались компактифицированными. С возникновением частиц и образованием гравитационного поля процесс самоорганизации привел к классическому гравитационному пространству-времени. Последнее приобрело фундаментальное значение, ибо все эволюционирующие процессы внутри Вселенной можно рассматривать как происходящие на его фоне. Кривизна гравитационного пространства-времени уменьшалась с увеличением радиуса Вселенной, при некотором радиусе (в малых областях) пространство-время можно считать плоским.Однако, согласно эйнштейновской теории тяготения - общей теории относительности (ОТО), четырехмерное пространство-время, в котором мы живем всё-таки искривлено, а знакомая всем гравитация и есть проявление такого искривления. Материя «прогибает», искривляет пространство вокруг себя, и - чем она плотнее, тем сильнее искривление. Многочисленные альтернативные теории тяготения, счет которым идет на сотни, отличаясь от ОТО в деталях, сохраняют главное - идею кривизны пространства-времени.Мысли о столь сильном искривлении нашего пространства-времени возникли сразу после появления ОТО - уже в 1916 г., австрийский физик Л. Фламм обсуждал возможность существования пространственной геометрии в виде некой норы, соединяющей два мира.В 1935 г. А. Эйнштейн и математик Н. Розен обратили внимание на то, что простейшие решения уравнений ОТО, описывающие изолированные, нейтральные или электрически заряженные источники гравитационного поля, имеют пространственную структуру «моста», почти гладким образом соединяющего две вселенные - два одинаковых, почти плоских, пространства-времени.Такого рода пространственные структуры позднее получили название «кротовые норы». Черные дыры и кротовые норы, весьма интересные микрообъекты, возникающие сами собой, как квантовые флуктуации гравитационного поля (на длинах порядка 10-33 см), где, по существующим оценкам, понятие классического, гладкого пространства-времени уже неприменимо. На таких масштабах должно существовать что-то похожее на водяную или мыльную пену в бурном потоке, постоянно «дышащую» за счет образования и схлопывания мелких пузырьков. Вместо спокойного пустого пространства мы имеем возникающие и исчезающие в бешеном темпе мини-черные дыры и кротовые норы самых причудливых и переплетающихся конфигураций. Их размеры невообразимо малы - они во столько же раз меньше атомного ядра, во сколько это ядро меньше планеты Земля. Строгого описания пространственно-временной пены пока нет, так как еще не создана последовательная квантовая теория гравитации, но в общих чертах описанная картина следует из основных принципов физической теории и вряд ли изменится.Эйнштейн и Розен рассматривали возможность применения таких «мостов» для описания элементарных частиц. Приводилось следующее доказательство: частица - чисто пространственное образование, поэтому нет необходимости специально моделировать источник массы или заряда, а при микроскопических размерах кротовой норы внешний, удаленный наблюдатель, находящийся в одном из пространств, видит лишь точечный источник с определенными массой и зарядом. Электрические силовые линии входят в нору с одной стороны и выходят с другой, нигде не начинаясь и не заканчиваясь. По выражению американского физика Дж. Уилера, получается «масса без массы, заряд без заряда». В этом случае вовсе не обязательно полагать, что мост соединяет две разные вселенные - ничуть не хуже предположение, что оба «устья» кротовой норы выходят в одну и ту же вселенную, но в разных ее точках и в разные времена.При всей привлекательности такой картины она (по многим причинам) не прижилась в физике элементарных частиц. «Мостам» Эйнштейна-Розена трудно приписать квантовые свойства, а без них в микромире трудно вести рассчёты. При известных значениях масс и зарядов частиц (электронов или протонов) мост Эйнштейна-Розена вообще не образуется, вместо этого «электрическое» решение предсказывает так называемую «голую» сингулярность - точку, в которой кривизна пространства и электрическое поле становятся бесконечными. Понятие пространства-времени, пусть даже искривленного, в таких точках теряет смысл, поскольку решать уравнения с бесконечными слагаемыми невозможно. По современным понятиям, то, что Эйнштейн и Розен рассматривали как горловину кротовой норы (то есть самое узкое место «моста»), на самом деле есть не что иное, как горизонт событий черной дыры (нейтральной или заряженной). Более того, с разных сторон «моста» частицы или лучи попадают на разные «участки» горизонта, а между, условно говоря, правой и левой частями горизонта находится особая нестатическая область, не преодолев которую нельзя пройти нору.Для удаленного наблюдателя космический корабль, приближающийся к горизонту достаточно крупной (по сравнению с кораблем) черной дыры, как бы навеки застывает, а сигналы от него доходят все реже и реже. Напротив, по корабельным часам горизонт достигается за конечное время. Миновав горизонт, корабль (частица или луч света) вскоре неотвратимо упирается в сингyлярность - туда, где кривизна становится бесконечной и где (еще на подходе) любое протяженное тело будет неизбежно раздавлено и разорвано. Такова суровая реальность внутреннего устройства черной дыры. Решения Шварцшильда и Райснера-Нордстрема, описывающие сферически-симметричные нейтральные и электрически заряженные черные дыры, были получены в 1916-1917 г., однако в непростой геометрии этих пространств физики полностью разобрались лишь на рубеже 1950-1960-х гг.Джон Арчибальд Уилер, известный своими работами в ядерной физике и теории гравитации, предложил термины «черная дыра» и «кротовая нора». Как оказалось, в пространствах Шварцшильда и Райснера-Нордстрема кротовые норы действительно есть. С точки зрения удаленного наблюдателя, они не видны полностью, как и сами черные дыры, и - так же вечны. А вот для путешественника, отважившегося проникнуть за горизонт, нора настолько быстро схлопывается, что сквозь нее не пролетит ни корабль, ни массивная частица, ни даже луч света. Чтобы, минуя сингулярность, прорваться к другому устью норы, необходимо двигаться быстрее света. А физики сегодня полагают, что сверхсветовые скорости перемещения материи и энергии невозможны в принципе.Вопросы устойчивости кротовых нор и управления их конфигурацией пока не совсем ясны, поэтому вполне возможно, что для поддержания нормального функционирования пространственно-временных тоннелей понадобится специальное оборудование и немалое количество энергии. Всё же сегодня, несмотря на кажущуюся фантастичность идеи о «машине времени» многие учёные всерьёз разрабатывают эту проблему. По мнению учёных разрабатывающих теории кротовых нор, ныряя в кротовую нору, можно не только попасть в другую вселенную, но и вернуться во времени назад.Если кротовые норы все-таки обнаружат (или построят), перед той областью философии, что занимается интерпретацией науки, встанут новые и, надо сказать, очень непростые задачи. И при всей кажущейся абсурдности временных петель и сложности проблем, связанных с причинностью, эта область науки, по всей вероятности, рано или поздно со всем этим как-нибудь разберется. Так же, как в свое время «справилась» с концептуальными проблемами квантовой механики и теории относительности Эйнштейна.Реальные астрономические наблюдения последних лет, похоже, сильно подрывают позиции противников возможности самого существования кротовых нор. Астрофизики, изучая статистику взрывов сверхновых в галактиках, удаленных от нас на миллиарды световых лет, сделали вывод, что наша Вселенная не просто расширяется, а разлетается со все большей скоростью, то есть с ускорением. Более того, со временем это ускорение даже нарастает. О6 этом достаточно уверенно говорят самые последние наблюдения, проведенные на новейших космических телескопах.Другой вид кротовых нор - тонкие сингyлярные кольца напоминают другие необычные объекты, предсказываемые современной физикой - космические струны, образовывавшиеся (согласно некоторым теориям) в ранней Вселенной при остывании сверхплотного вещества и смене его состояний. Они действительно напоминают струны, только необычайно тяжелые - многие миллиарды тонн на сантиметр длины при толщине в доли микрона. И, как было показано американцем Ричардом Готтом и французом Жераром Клеманом, из нескольких струн, движущихся друг относительно друга с большими скоростями, можно составить конструкции, содержащие временные петли. То есть, двигаясь определенным образом в гравитационном поле этих струн, можно вернуться в исходную точку раньше, чем из нее вылетел.Астрономы давно ищут такого рода космические объекты, и на сегодня один «хороший» кандидат уже имеется - объект CSL-1. Это две удивительно похожие галактики, которые в реальности наверняка являются одной, только раздвоившейся из-за эффекта гравитационного линзирования. Причем в данном случае гравитационная линза - не сферическая, а цилиндрическая, напоминающая длинную тонкую тяжелую нить.ЗАКЛЮЧЕНИЕИзначально в доньютоновский период пространство считалось бесконечным, плоским, «прямолинейным», евклидовым. Его метрические свойства описывались геометрией Евклида. Оно рассматривалось как абсолютное, пустое, однородное и изотропное (т.е. не имело выделенных точек и направлений) и выступало в качестве «вместилища» материальных тел, как независимая от них интегральная система.Время понималось абсолютным, однородным, равномерно текущим. Оно идет сразу и везде во всей Вселенной «единообразно синхронно» и выступает как независимый от материалистических объектов процесс длительности.Ньютон в своих трудах окончательно оформил и сформулировал концепцию о внешних условиях бытия, в которые помещена материя, концепцию абсолютного пространства и времени, в которой время и пространство уже было абсолютным и относительным, однако по-прежнему, пространство и время представлялись самодовлеющими элементами бытия, существующими вне и независимо от материальных процессов.Также параллельно развивались представления о пространстве и времени в зависимость от сознания человека.По Эйнштейну, учение которого исходило из основ, заложенных Галилеем, пространство и время не просто сосуществуют, но и теснейшим образом взаимодействуют друг с другом. Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Долгое время они являлись макроскопическими, так как опирались на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени.Однако в последнее время появились практические примеры доказательства в виде мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. При построении теорий, описывающих явления микромира, классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет, что доказывается опытами с ультрарелятивистскими частицами на современных ускорителях. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.Современные представления об эволюции пространства-времени основываются на стандартной космологической модели Большого взрыва, которая подтверждается наблюдаемым в настоящую эпоху расширением нашей Вселенной.Согласно Эйнштейну пространство и время могут причудливо искривляться, образуя много путей, соединяющих разнесенные в пространстве и времени точки-события. В этом случае оперируют понятиями, характерными для т.н. пространственно-временной пены - это чёрные дыры и кротовые норы. Последние исследования в этой области открывают необозримые возможности для исследователей.СПИСОК ЛИТЕРАТУРЫ1. Бохинцев Д.И. Пространство и время в микромире - М.: Наука, 1982.2. Дубровский В.Н., Молчанов Ю.Б. Эволюционирует ли время, пространство и причинность? // Вопросы философии, 1996, №6.3. Дубровский В.Н., Молчанов Ю.Б. Самоорганизация пространства-времени в процессе эволюции Вселенной // Вопросы философии. 2006., №3.4. Жигалов Ю.И. Концепции современного естествознания. - М.: «Гелиос АРВ», 2002.5. Красников С.А. Космический плацдарм. Постулаты относительности мира. Кротовые норы или черные дыры. // Наука и жизнь. 2006, №1.6. Левин А. Эта странная мультивселенная. // В мире науки. 1996, №11.7. Лось В.А. Основы современного естествознания. - М.: «ИНФРА-М», 2000.8. Реймерс Н.Ф. Популярный биологический словарь. - М.: Наука, 1991.9. Рузавин Г.И. Концепции современного естествознания. - М.: «Культура и спорт», 1997.10. Хорошавина С.Г. Концепции современного естествознания. - Ростов-на-Дону: Феникс, 2002.

bukvasha.ru

Представления о времени и пространстве

Главная » Рефераты » Текст работы «Представления о времени и пространстве - Биология, естествознание, КСЕ»

СОДЕРЖАНИЕ

1. Представления о пространстве1.1. Эволюция базовых понятий пространстваЕвклид построил геометрию трехмерного пространства, известную в научном обиходе как евклидова геометрия. Для определения положения в пространстве Рене Декарт (1596--1650) ввел прямоугольную систему координат ("декартовы координаты") -- х, у, z. Физический мир Декарта состоит из двух сущностей: материи (простой "протяженности, наделенной формой") и движения. Поскольку "природа не терпит пустоты" (Аристотель), у него протяженность заполнена "тонкой материей", которую Бог наделил непрерывным движением. Установив законы движения, Декарт записал механически все мировые процессы и на основе своих законов движения построил "космологический роман" (трактаты "Мир" и "Начала философии").Декартово представление о флюидах, заполняющих пространство, господствовало в науке XIX и частично XX вв., оказав существенное влияние на развитие таких разделов физики, как оптика и электричество. Вес, как и любая сила, у Декарта является свойством движения тонкой материи, отождествляемой с пространством. В связи с этим механицизм Декарта сводит силы к свойствам пространства.Исаак Ньютон (1643--1727) открыл новые свойства пространства, изучая движение ᴨȇремещающихся тел. Он рассматривал пространство как субстанцию, способную динамически действовать на материальные тела. Модель пространства, предложенная Ньютоном, -- это модель независимо существующей субстанции, в которой могут ᴨȇремещаться материальные тела и частицы света. В связи с этим каждый объект обладает в пространстве определенным положением и ориентацией, а расстояние между двумя событиями точно определено, даже если эти события произошли в разные моменты времени. Определить положение тела в пространстве можно только относительно системы каких-то объектов, в связи с этим имеет смысл говорить о скорости объекта в пространстве, поскольку ощущается лишь неравномерное движение (а не движение с постоянной скоростью). Ньютон в своих "Математических началах натуральной философии" (1687) ᴨȇревел на математический язык сугубо обыденные ощущения, записав законы движения так, что они определяются только ускорением.Итак, все равномерные движения у Ньютона относительны, а ускоренные -- абсолютны. Причины, вызывающие ускоренные движения, он назвал силами. Силы пропорциональны ускорению тел с коэффициентом М, называемым инертной массой: F=M?. Если этот закон Ньютона прочесть справа налево, то из него следует, что при равномерном движении системы ее составные части не испытывают силового воздействия. Это значит, что равномерное движение нельзя механическими средствами отличить от другого такого же состояния, следовательно, и пространство само по себе не оказывает силового воздействия на движущиеся тела. Механика Ньютона позволяет наблюдать в пространстве только ускоренные движения. Ускорение приводит к возникновению сил инерции. Таковы, например, давление ног человека, направленное вниз при кратковременной остановке лифта, движущегося в направлении вверх, или центробежная сила на вращающейся карусели. Ньютон приписывал появление сил инерции пространству, в котором происходит ускорение, доказывающее реальность существования его пространства.После создания теории электромагнетизма Максвелла появилась возможность использовать оптические явления -- распространение световых сигналов -- для измерения скорости движения в пространстве. Это движение можно было определить по его ᴨȇремещению относительно эфира -- некоей жидкости, заполняющей пространство. Теория Максвелла предсказывала, что свет распространяется в эфире с постоянной скоростью, зависящей от "упругости" эфира. Тогда скорость света, измеренная наблюдателем, должна быть разной в зависимости от того, в каком направлении свет распространяется -- по течению в эфире или против. Но опыт, проведенный в 1887г. Альбертом Майкельсоном (1852--1931) и Эдвардом Морли (1838--1923), показал, что эффекта, связанного с эфиром, нет, т.е. и нет самого эфира.1.2. Теория пространстваСтало ясно, что необходимо отказаться от наглядных и привычных ньютоновых представлений о пространстве и времени, и в 1905г. Альберт Эйнштейн (1879--1955) предложил совершенно новую теорию пространства и времени -- так называемую сᴨȇциальную теорию относительности (СТО). Основу его теории составляют два постулата: 1 -- скорость света в вакууме постоянна и не зависит от движения наблюдателя или источника света; 2 -- все физические явления (механические и электродинамические) происходят одинаково во всех телах, движущихся относительно друг друга прямолинейно и равномерно. Принятие этих принципов означало изменение длин и времен в соответствии с преобразованиями Лоренца для тел, движущихся со скоростями, близкими к скорости света. Это было уже кардинальное преобразование наглядных представлений. "Отныне пространство и время, взятые по отдельности, обречены влачить призрачное существование, и только единство их обоих сохранит реальность и самостоятельность" (Г. Минковский). Время и пространство объединяются в 4-мерное пространство-время.В 1916г. Эйнштейн включил СТО в свою общую теорию относительности (ОТО), или обобщенную теорию тяготения. Свойства пространства и времени в его теории определяются распределением и движением материи в пространстве. При наличии в пространстве тяготеющих масс, а следовательно, и поля тяготения, пространство искривляется, становится неевклидовым.Хотя соотношение между количеством материи и стеᴨȇнью кривизны простое, но сложны расчеты -- для описания кривизны в каждой точке нужно знать значения двадцати функций пространственно-временных координат. Десять функций соответствуют той части кривизны, которая распространяется в виде гравитационных волн, т. е. в виде "ряби" кривизны, остальные десять -- определяются распределением масс, энергии, импульса, углового момента, внутренних напряжений в веществе и значения универсальной гравитационной постоянной G. Из-за малости величины G нужно много масс, чтобы существенно "изогнуть" пространство-время. В связи с этим 1/G подчас рассматривают как меру жесткости пространства-времени. С точки зрения нашего повседневного опыта пространство-время очень жесткое. Вся масса Земли создает кривизну, составляющую порядка одной миллиардной кривизны своей поверхности. Чтобы представить кривизну пространства-времени вблизи Земли, подбросим мяч в воздух. Если он будет находиться в полете 2с и опишет дугу в 5м, то свет за эти 2с пройдет расстояние 600 000км. Если представить дугу высотой 5м, вытянутую по горизонтали до 600 000км, то ее кривизна и будет соответствовать кривизне пространства-времени. В отличие от теории гравитации Ньютона, теория Эйнштейна претендует на теорию пространства-времени, т. е. на теорию Вселенной в целом.Многих интересовал вопрос, почему мы способны воспринять только пространство трех измерений. П. Эренфест в 1917г. исследовал этот самый вопрос сᴨȇциально и указал, что "закон обратных квадратов", по которому действуют друг на друга точечные гравитационные массы или электрические заряды, обусловлен трехмерностью пространства. В пространстве n измерений точечные частицы взаимодействовали бы по закону обратной стеᴨȇни (n - 1). В связи с этим для n = 3 справедлив закон обратных квадратов, т. к. 3-1=2. Он показал, что при n = 4, что соответствует закону обратных кубов, планеты двигались бы по спиралям и быстро бы упали на Солнце. В атомах при числе измерений, большем трех, также не существовало бы устойчивых орбит, т. е. не было бы химических процессов и жизни. На связь трехмерности пространства с законом тяготения указывал еще и Кант.Кроме того, можно показать, что распространение волн "в чистом виде" невозможно в пространстве с четным числом измерений. Появляются искажения, нарушающие ᴨȇреносимую волной структуру (информацию). Пример тому -- распространение волны по резиновому покрытию (по поверхности размерности 2). В 1955г. математик Г. Дж. Уитроу заключил, что поскольку живым организмам необходимы ᴨȇредача и обработка информации, то высшие формы жизни не могут существовать в пространствах четной размерности. Этот вывод относится к известным нам формам жизни и законам природы и не исключает существования иных миров, иной природы.В науке производятся количественные сравнения и потому важны измерения. Измерение -- это определение неизвестной величины известной установленной единицей меры.2. Представления о времени2.1. История развития представлений о времениГоворя о "времени", люди употребляют это слово в самых различных смыслах. Время связано с обычной, повседневной жизнью, оно непосредственно доступно нашему сознанию, формируя наши ощущения, взгляды, язык. В житейском понимании время воспринимается как поток, ᴨȇреход из прошлого в будущее, ᴨȇреносящий наше "теᴨȇрь" и "сейчас" в другой мир, оно наполнено действием в отличие от неподвижного и пустого пространства, "вместилища" событий.Русская пословица гласит: "Время -- око истории". Научная теория времени не содержит такого "психологического" восприятия времени, отвлекается от него. Существуют даже представления, что течение времени лишь иллюзия человеческого восприятия. В. И. Даль в "Толковом словаре живого великорусского языка" так определяет это понятие: "Время -- I) длительность бытия; пространство в бытии; последовательность существования; продолжение случаев, событий. К тому пример: "Время за нами, время ᴨȇред нами, а при нас его нет"; 2) пора, година, срок -- конкретное время, его отрезок; 3) погода, состояние воздуха; 4) счастье, земное благоденствие".Понимание времени, увлекающего мир в непрерывное движение, наиболее ярко выразил Гераклит (ок. 530--470 до н. э.): "В одну реку нельзя пойти дважды", "Все течет, все изменяется", "Мир является совокупностью событий, а не вещей". Законы природы неизменны, они сохраняются в любом месте и в любое время. У Прокла (ок. 410--485 до н. э.) геометрические рассуждения: "Время не подобно прямой линии, безгранично продолжающейся в обоих направлениях. Оно ограничено и описывает окружность. Движение времени соединяет конец с началом, и это происходит бесчисленное число раз. Благодаря этому время бесконечно". У Платона (ок. 428--347 до н. э.) течение времени, его причина и происхождение связывались с Вселенной. Он писал: "Поскольку день и ночь, круговороты месяцев и лет, равноденствия и солнцестояния зримы, глаза открыли нам число, дали понятие о времени и побудили исследовать природу Вселенной". В своем трактате "О спирали" Архимед показывал, что спираль соединяет цикличность с поступательным движением. Может быть, спираль подойдет для наглядного образа времени, соединив поток и окружность?! Узор из спирали с солнцами был найден на остатках кувшинов неолита и на древнем календаре -- жезле из бивня мамонта, найденном недавно в Восточной Сибири. Археологи истолковывают эти узоры как отображение идеи Времени.2.2. Физическая теория времениПервая физическая теория времени дана в "Началах" Ньютона, причем он ставит время ᴨȇрвым среди основных понятий физики, за ним следуют пространство, место и движение. Это было в XVII столетии, когда формировалась современная наука и когда происходило резкое разграничение точных и описательных дисциплин.Определение Ньютона таково: "Абсолютное, истинное математическое время, само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью". Абсолютное время -- идеальная мера длительности всех механических процессов. Как мы не наблюдаем истинно равномерного движения из-за трения или других причин, так и измерять время можно только приближаясь к истинному, математическому, входящему в уравнения. Абсолютное время однородно, это означает симметрию относительно сдвигов, и в частности, что точка отсчета времени, его начала не имеет значения. Длительность времени от этого не меняется. То же можно сказать и о пространственных симметриях классической механики. В пространстве нет ни выделенных точек, ни выделенных направлений, т. е. оно однородно и изотропно.По выражению бельгийского физика и физико-химика Ильи Пригожина, лауреата Нобелевской премии 1977г. по химии, "для большинства основателей классической науки (и даже А. Эйнштейна) наука была попыткой выйти за рамки мира наблюдаемого, достичь вневременного мира высшей рациональности -- мира Спинозы". Фактически все картины мира, рожденные точной наукой, освобождены от развития, "отрицают время". Ньютон не только исключил время из своей картины Вселенной, но и утвердил его в сознании как внешний параметр. Стало возможным рассматривать непрерывные ᴨȇриодические процессы равной длительности для построения модели, легко вводить метрику времени. Это позволило построить всю систему мира, подтвердить вᴨȇчатляющие предсказания теории Ньютона для Вселенной. Г. Лейбниц считал время относительным, "порядком последовательностей". В других естественных науках, например в геологии, время рассматривалось совершенно иначе. Так, основоположник геологии датчанин Нильс Стенсен (1638--1686) строил пространственные отношения на основе не движения или ᴨȇремещения тел в нем, а с точки зрения временной последовательности "раньше -- позже". Этот подход естествен для геолога, рассматривающего историю планеты через наслоения в камне. - З а к л ю ч е н и е -Айзек Азимов, известный американский фантаст и популяризатор научных идей, писал: "И в наши дни непосредственному восприятию человека доступно только то же самое -- маленький клочок плоской Земли и, разумеется, небосвод над головой с маленькими светящимися точками и кружками. И небосвод этот кажется таким близким. Какой же ход логических рассуждений заставил эти видимые нами тесные пределы раздвигаться все больше, и больше, и больше, теряясь в неизмеримой дали, так что теᴨȇрь человеческий разум не в силах ни объять Вселенную, о которой мы говорим, ни представить, насколько ничтожно по сравнению с ней все то, что нас окружает? А. Азимов. Вселенная. -- М.: Мир, 1969. -- С. 12.В древности у разных народов были и различные представления о Земле и ее форме, зависевшие от тех природно-климатических условий, в котоҏыҳ проживали эти народы. Так, индийцы представляли себе Землю в виде плоскости, лежащей на спинах слонов, жители Вавилона -- в виде горы, на западном склоне которой находится Вавилония, евреи -- в виде равнины и т.д. Но в любом случае считалось, что и некоем месте небесный купол соединяется с земной твердью.Своему появлению и развитию наука о Земле -- география, или землеописание, во многом обязана древним грекам, представлявшим мир в виде круглой леᴨȇшки с Грецией в центре. Гекатей Милетский (ок. 546--480 до н.э.) даже вычислил ее диаметр -- 8000 км.Для наших далеких предков ориентация в пространстве имела огромное значение. Порядок обесᴨȇчивал безопасность. Недаром бессмертное творение Данте начинается с рассказа о том, как он заблудился в темном лесу и начал свое путешествие только с ᴨȇрвыми лучами Солнца в день весеннего равноденствия в полнолуние в 1300 году.Обычно под пространством (в том числе и космическим) мы понимаем некую протяженную пустоту, в которой могут (но не обязательно) находиться какие-либо предметы. Однако между небесными телами (звездами, планетами, кометами) всегда имеется некоторое количество вещества, в связи с этим в науке пространство рассматривается не как вместилище материи, а как физическая сущность, обладающая конкретными свойствами и структурой.Для определения положения в пространстве необходимо задать три координаты -- широту, долготу и высоту. Это означает, что пространство трехмерно. Птолемей в своем главном труде "Альмагест" уделил особое внимание размерности пространства, утверждая, что в природе не может быть более трех пространственных измерений.Ньютоново отношение к времени сохранилось и в сᴨȇциальной теории относительности Эйнштейна, называемой "неклассической", которая заменила пространство и время Ньютона на пространство-время Германа Минковского (1864--1909). В самом деле, с точки зрения Эйнштейна, пространственно-временной континуум -- это новое средство характеристики физических явлений, используя которое "для описания событий в природе нужно применять не два, а четыре числа. Физическое пространство, постигаемое через объекты и их движения, имеет три измерения, и положение объектов характеризуется тремя числами. Момент события есть четвертое число. Каждому событию соответствуют четыре числа, мир событий есть четырехмерный континуум". У Эйнштейна не имеет смысла деление этого мира на время и пространство, поскольку описание мира событий "посредством статической картины на фоне четырехмерного пространственно-временного континуума" более удобно и объективно. Итак, традиция классической физики сохранена. По выражению Вернадского, теория относительности "отрицала только независимое от пространства, абсолютное время, но не придавала ему никаких новых свойств -- принимала его тем же изотропным, аморфным временем, каким понимал его Ньютон".Удивительно, что то же отношение к времени сохранилось и в ОТО, хотя в ней свойства пространства-времени зависят от распределения тяготеющих масс. Но влияние масс сказывается только на метрических свойствах часов, поскольку меняется лишь частота при ᴨȇреходе между точками с разными гравитационными потенциалами. По мнению Эйнштейна, в фундаментальных законах физики не должно быть необратимости, так как "различие между прошлым, настоящим и будущим -- не более чем иллюзия, хотя и весьма навязчивая". Эйнштейна беспокоила направленность времени, связанная со вторым началом термодинамики и ростом энтропии в необратимых процессах. Хотя решение, соответствующее нестационарной Вселенной, было получено А.А. Фридманом из его космологических уравнений и позднее подтвердилось обнаружением красного смещения сᴨȇктров далеких галактик, Эйнштейн считал гипотезу взрывающейся Вселенной временной и относился к ней с недоверием.В 60-80-е годы нашего века отношение к эволюционным процессам стало меняться, мир предстал существенно нелинейным с необратимыми процессами в своей основе. В связи с этим и времени в новой эволюционизирующей картине мира уготована иная роль.Библиография1. Горелов А.А. Концепции современного естествознания: Учебное пособие для студентов высших учебных заведений, обучающихся по гуманитарным сᴨȇциальностям. - М.: Гуманит. изд. центр ВЛАДОС, 2002.2. Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. М., 2003.3. Кемпфер Ф. Путь в современную физику. М., 2002.4. Концепция современного естествознания: Под ред. профессора С.И. Самыгина. Изд. третье. Ростов н/Д: «Феникс», 20045. Мэрион Дж. Б. Физика и физический мир. М., 20026. Найдыш В.М. Концепции современного естествознания. Учебное пособие. М., 2001.7. Николис Г., Пригожин И. Познание сложного. М., 2000.8. Пригожин И. От существующего к возникающему. М., 2002.9. Степин В.С. Философская антропология и философия науки. М., 2002.10. Фейнберг Е.Л. Две культуры. Интуиция и логика в искусстве и науке. М., 2002.

referatwork.ru

Вопрос 39. Понятие пространства и времени. Развитие представлений о пространстве и времени в естествознании.

Количество просмотров публикации Вопрос 39. Понятие пространства и времени. Развитие представлений о пространстве и времени в естествознании. - 567

Пространство и время также как и движение есть атрибуты материи. В мире нет ничего кроме движущейся материи и движущаяся материя не может двигаться иначе как в пространстве и во времени. В дальнейшем эти концепции послужили основанием современных научныых представлений о пространстве и о времени. ( в т.ч. и в теории относительности Эйнштейна) Первые утверждали , что существует абсолютное пространство, т.е пространство как ʼʼЧистаяʼʼ протяженность, так же как сущетвует абсолютное время, типа щистая длительность, протекающая сама по себе. Ньютон˸ ʼʼПространство -есть вместилище для телʼʼ С точки зрения вторых, пространство и время проявлятся лишь в отношении к другим телам и их характеристика зависит от сост материальных тел. Пространство –это совокупность отношений, выражающих координацию материальных объектов, их расположение друг относительно друга и относительную величину. Время – совокупность отношений, выражающих координацию сменяющих друг друга состояний(явлений) , их последовательность и длительность. Приведенные определения носят диалектико-материалистический характер. Размещено на реф.рфОни показывают невозможность дать понятия пространства и времени в их отрыве от материи.Зависимость пространства и времени от материи определяет все их основные свойства. Хотя и пространство и время есть формы существования материи в равной степени, между ними все же существуют различия, а так же есть и общие свойства. Пространство и время, как и движение – атрибуты материи, основные условия её бытия. Это объективно-реальные формы существования материи.Исследования астрономии и астрофизики в масштабах сотен миллионов световых лет, а также изучение микроявлений порядка 10-16 см длины и 10-25 сек. времени подтверждают существование всех процессов в пространстве и во времени. Какова природа пространства и времени? Как соотносятся пространственно-временные отношения с материей и движением? В решении этих и научных, и мировоззренческих проблем возможны два подхода и два ответа. Представители одного утверждают, что пространственно-временные отношения не зависят от материи и движения. Те философы, которые исходят из догмы о творении мира духовной силой (Платон, Августин, Гегель), считают пространство и время также порождением бога или абсолютной идеи. Субъективный идеализм в соответствии со своей исходной посылкой рассматривает пространство и время как создания человеческого сознания. Так, в наивном стихийном материализме античности господствовала концепция, идущая от атомистов (Левкипп, Демокрит, Эпикур). По их мнению, все тела существуют в бесконечном и однородном пространстве как пустом вместилище атомов и состоящих из них тел. Оно существует реально, как и материя (атомы). Такие взгляды на пространство и время просуществовали вплоть до ХIХ в. Созданная Н. Лобачевским и Б. Риманом неевклидова геометрия, которая строилась на признании зависимости геометрических свойств пространства и времени от физических свойств движущейся материи, показала всю ограниченность и относительность ньютоновской концепции и метафизического материализма во взглядах на эти формы бытия материи. Данные идеи получили свое дальнейшее развитие в теории относительности А.Эйнштейна. Эта теория является современной естественно-научной теорией пространства и времени, которая подтверждает основные положения диалектического материализма о неразрывной связи пространства и времени с движущейся материей. Естественно-научная философия в основу понятий "простран­ство" и "время" кладет принцип структурности материи, её прерывность. Но наряду с объективной реальностью существует и субъективная реальность (индивидуальные ощущения, зависят от уровня духовной культуры человека, ᴇᴦο возраста, конкретной временной или пространственной ситуации и т.п Перцептуальное время может останавливаться, в нем можно возвращаться назад, в прошлое, ᴇᴦο можно обгонять Существование перцептуального времени и пространства есть объективная предпосылка для субъективной трактовки самих пространственно-временных форм материи), поэтому необходимо говорить и о пространстве, и о времени этой реальности. Естественнонаучная философия, опираясь на достижения позитивных наук, содержание пространства и времени как форм бытия материи в их объективных свойствах. Особо, как всеобщее свойство и времени, и пространства, необходимо выделить качественное многообразие пространственно-временных форм, соответствующих качественному многообразию структурных форм материи. Три основных сферы материального мира – неживая природа (Метагалактике - простран­ства-времени в мега-, макро- и микромире), жизнь (биологическое пространство-время (от микроорганизмов до человека) как бы вписанное во внешнее по отношению к нему пространство-время неживой природы. "биологическими часами", "работа" которых обеспечивает приспособление организма к определенному ритмическому чередованию факторов внешней среды, связанному со сменой дня и ночи, времен года Во внутреннем времени организма, в ритмах ᴇᴦο биологических часов внешнее время как бы сжимается, а затем происходит активный перенос на будущее этих "спрессованных" ритмов прошедшего внешнего времени. Спрессовывая прошлое в своей внутренней пространственно-временной организации, он живет и настоящим и будущим одновременно) и общество ( воспроизводится и совершенствуется человек как общественное существо. Социальное пространство, вписанное в биосферу и космос, обладает особым человеческим смыслом. Оно функционирует как система, расчлененная на ряд подпространств, характер которых и их взаимосвязь исторически меняются по мере развития общества от ранних стадий человеческой истории (дикость, варварство) до современных цивилизационных форм и уровней. отражаются и в образе жизни, и в мировоззрении человека соответствующей исторической эпохи. Понятия и представления о пространстве, свойственные различным историческим эпохам, выражают различные исторически развивающиеся смыслы важнейшей мировоззренческой категории пространства. В ней находят отражение характеристики и свойства социального пространства, сквозь призму которых человек рассматривает остальное пространство мироздания.)– характеризуются специфическими пространственно-временными структурами.

referatwork.ru


Смотрите также