Разгон процессоров Intel. Разгон процессора реферат


Реферат Разгон компьютера

скачать

Реферат на тему:

План:

Введение

Разгон, оверклокинг (от англ. overclocking) — повышение быстродействия компонентов компьютера за счёт эксплуатации их в форсированных (нештатных) режимах работ.

1. Критерии штатного режима работы компьютера

Частота процессора, модулей системной памяти, системной шины, графического процессора и видеопамяти, а также «тайминги» (от анг. timings — задержки по времени) оперативной и видеопамяти соответствуют номинальным. Частоты должны соответствовать таблицам данных (datasheets) производителя для конкретной модели. В случае если используются видеокарты, модули памяти или материнские платы с измененными относительно референсных частотами или таймингами, за штатный принимается такой режим их работы, при котором частоты и тайминги соответствуют спецификациям производителей.

2. Способы повышения быстродействия

Для повышения быстродействия процессоров, как центрального, так и графического, разгон сводится к повышению тактовой частоты. Для повышения быстродействия памяти (в том числе видеопамяти) — к повышению тактовой частоты и понижению таймингов. Для повышения частоты работы процессоров и памяти используются как встроенные функции BIOS (в том числе BIOS видеоадаптера), так и программные средства. В большинстве случаев рост тактовой частоты центрального и графического процессоров, а также модулей памяти сопровождается увеличением рассеиваемой мощности, что приводит к росту температуры разогнанных компонентов. Этому явлению способствует также часто применяемое для повышения стабильности разогнанных компонентов увеличение питающего напряжения. Для снижения негативных эффектов разгона применяют улучшенные системы охлаждения компьютерных компонентов.

3. Разгон ЦП и памяти при помощи BIOS компьютера

BIOS многих материнских плат позволяет эксплуатировать центральный процессор и память в форсированных режимах. Некоторые производители даже выпускают материнские платы, имеющие много приспособлений, облегчающих разгон, таких, как улучшенное охлаждение чипсета, компоновка элементов упрощающая организацию эффективного охлаждения, радиаторы на импульсных MOSFET-транзисторах преобразователей питания процессора, а также расширенные настройки BIOS с увеличенными диапазонами регулировки напряжений. Популярные у оверклокеров серии материнских плат:

Для разгона процессора применяется изменение множителя (параметры Multiplier, CPU Ratio), изменение частоты системной шины (параметры FSB Frequency, Host Frequency, Host Speed и т. д.) или обе процедуры. Разгон памяти осуществляется увеличением частоты, которое, в свою очередь, достигается подбором делителя частоты системной шины (параметры Memory Mode, Memory Speed и т. д.). Разгон памяти также осуществляется модификацией задержек (таймингов) (параметры TRas, TCas, Precharge Delay и т. д., их число может доходить, в зависимости от модели материнской платы, до 50).

3.1. Разгон видеокарт при помощи BIOS видеоадаптера

Скриншот из программы RivaTuner, демонстрирующий разгон видеокарты

Большинство современных видеоадаптеров обладают возможностью модификации собственной BIOS. Модифицированный BIOS видеоадаптера может содержать повышенные частоты видеопроцессора и -памяти, а также изменённые тайминги.

Программы, используемые для модификации BIOS видеоадаптеров:

Программы, используемые для обновления BIOS видеоадаптеров:

3.2. Разгон ЦП и видеокарт из ОС

Существует множество программ, осуществляющих разгон процессора и оперативной памяти из под операционной системы. Такую возможность поддерживают не все материнские платы. Для разгона процессора и оперативной памяти из-под ОС Windows применяются следующие утилиты:

Для мониторинга разогнанной системы чаще всего используют:

Большинство современных видеоадаптеров поддерживают изменение тактовых частот графического процессора (видеопроцессора) из операционной системы. В последних версиях драйверов видеоадаптеров компаний ATI и NVIDIA имеется возможность разгонять видеокарты, не прибегая к помощи сторонних утилит. Для разгона популярных моделей видеоадаптеров из под ОС Windows используются утилиты:

Из сторонних утилит для разгона и настройки видеоподсистемы можно выделить популярную программу Powerstrip [5], поддерживающую множество видеокарт различных производителей.

3.3. Разгон ОЗУ (оперативного запоминающего устройства)

Непосредственный разгон ОЗУ сводится либо к повышению номинальной тактовой частоты оперирования микросхем модулей памяти (MEMCLK), либо к изменению задержек основных управляющих сигналов — синхроимпульсов, иначе — таймингов, таких как tCAS#, tRAS#, tRCD# и других. Для достижения более высоких частот оперирования памяти с учетом стабильной работы, как правило, повышают номинальное рабочее напряжение на модулях памяти (VDDIO). Изменение значений частоты MEMCLK и синхроимпульсов возможно в BIOS Setup материнской платы либо из-под ОС Windows с использованием соответствующих программ, например, Native Specialist, AMD OverDrive (для процессоров архитектуры AMD64) MemSet (Intel). Для изменения таймингов и тактовой частоты оперирования двух контроллеров ОЗУ независимо от режима их функционирования (Ganged или Unganged) современных процессоров AMD Family 10h, AMD Family 11h, AMD Ontario и AMD Llano можно воспользоваться оснасткой DCT Tuner утилиты Thaiphoon Burner.

Для постоянной фиксации измененных значений частотно-временных параметров модулей ОЗУ необходимо прибегнуть перепрограммированию содержимого их микросхемы SPD (Serial Presence Detect) ППЗУ. Для этих целей используется либо аппаратный, либо программный способ. Последний наиболее прост и не требует каких-либо дополнительных приспособлений и устройств программирования. Перезапись и редактирование данных SPD микросхемы ППЗУ, а также интеграция профилей автонастройки NVIDIA EPP 1.0, NVIDIA EPP 2.0 и Intel XMP 1.2 в SPD модулей памяти архитектуры SDRAM, DDR SDRAM, DDR2 SDRAM, DDR2 FBDIMM и DDR3 SDRAM осуществляется при помощи утилиты Thaiphoon Burner.

4. Критерий стабильности разогнанных компонентов

Основным критерием стабильности разогнанных компонентов компьютера является их способность выдерживать любую вычислительную нагрузку со статистической вероятностью выдать ошибку в вычислениях, не превышающей таковую для компонентов, эксплуатируемых в штатном режиме. Поскольку в большинстве случаев вычислительная нагрузка на компоненты компьютера намного меньше, чем потенциальная вычислительная мощность, для выявления ошибок в работе разогнанных компонент (нестабильности) применяют специальные тесты.

5. Повышение стабильности разогнанной системы

Для повышения стабильности разогнанных систем применяют охлаждение и улучшение отвода тепла, повышение питающих напряжений (и, как следствие, увеличение подаваемой и рассеиваемой мощностей), а также улучшение качества этих самых напряжений. Например установка более качественных конденсаторов с Low-ESR.

5.1. Повышение питающих напряжений из BIOS

BIOS большинства современных материнских плат позволяет изменять питающие напряжения процессора (параметры VCore, VCPU), северного моста из набора микросхем материнской платы (параметр Vdd), а также модулей памяти (параметры Vdimm, Vmem). Следует помнить, что поднятие напряжения, особенно при недостаточном охлаждении, может послужить причиной выхода компонента компьютера из строя.

5.2. Повышение питающих напряжений путём вольтмода

Иногда диапазона регулировок напряжений, предусмотренных материнской платой, оказывается недостаточно. В этом случае, а также для управления питающими напряжениями графического процессора и памяти видеоадаптеров прибегают к модификации питающих схем (вольт-модификация, вольт-мод от англ. voltage modification — изменение напряжения). Для этого в схему питания вносят такие конструктивные изменения, которые приводят к повышению напряжений на выходах этих схем. Зачастую для вольт-модификации достаточно изменить номинал резистора в схеме питания.

Существуют также промышленно выпускаемые устройства для модификации питающих напряжений компонент компьютера.

6. Используемые оверклокерами системы охлаждения

6.1. Воздушные системы охлаждения

Воздушное охлаждение в разогнанной системе

Абсолютное большинство оверклокеров пользуются наиболее доступными, воздушными системами охлаждения. В основе их лежит классический радиатор или кулер.

Радиаторы обычно применяются для охлаждения чипов памяти и чипсетов материнских плат, поскольку обладают достаточно скромными возможностями теплоотвода. Существуют и исключения (например, радиатор Ninja производства фирмы Scythe), когда радиатор с развитой поверхностью теплообмена может применяться для охлаждения разогнанного центрального процессора.

Кулеры, используемые оверклокерами, чаще всего обладают развитой поверхностью теплообмена (превышающей 3000 см²), а также могут оснащаться крупными (более 80 мм) вентиляторами, тепловыми трубками, термоэлектрическими элементами (элемент Пельтье) или другими приспособлениями, увеличивающими мощность, которую кулер способен рассеять.

Самодельная СВО

Известные торговые марки кулеров, используемых оверклокерами:

6.2. Жидкостные системы охлаждения

Второе место по популярности занимают жидкостные системы охлаждения, основным теплоносителем в которых является жидкость. Наиболее часто используются системы водяного охлаждения (СВО), в которых рабочим телом является вода (дистиллированная, часто с различными добавками антикоррозийного характера).

Типичная СВО состоит из:

Одним из вариантов жидкостного охлаждения компьютеров является погружение компьютера целиком или его компонентов в масло (предложено Tom’s Hardware Guide).

6.3. Прочие (экстремальные) системы охлаждения

Для охлаждения компьютерных компонентов, разогнанных до частот, близких к технологическому пределу, могут применяться экстремальные системы охлаждения. К ним относятся системы, использующие жидкий азот, жидкий гелий, сухой лёд, различные хладагенты (например, фреон), а также каскадные системы охлаждения. В большинстве случаев обеспечить продолжительное функционирование экстремальных систем охлаждения их создатели не в состоянии, поэтому обычное их применение — получение максимальных результатов в бенчмарках и участие в различных оверклокерских соревнованиях.

7. Проверка стабильности разогнанных компонентов

Для проверки стабильности разогнанных компонентов компьютера используют ряд программных тестов. Ни один из них сам по себе не гарантирует 100 % стабильности системы, однако, если тест выявил сбой в системе или не может пройти до конца, разгон следует считать неудачным. Большинство тестов создают интенсивную вычислительную нагрузку на различные блоки центрального процессора, системной памяти, графического процессора и набора системной логики. Только комбинация из нескольких тестов может служить основой для уверенности в стабильной работе компьютера. Вот некоторые из наиболее популярных тестов стабильности:

В режимах экстремального разгона во время бенчмаркинга стабильность разогнанных компонентов не так важна. Главное задача пройти определённый тест на максимальных частотах. В большинстве случаев для каждых тестов уровень максимального разгона разный.

8. Опасности разгона

Разгон является одной из причин преждевременного выхода компьютерного оборудования из строя, поэтому пользователь эксплуатирует аппаратное обеспечение компьютера в форсированном режиме на свой страх и риск (за исключением тех случаев, когда разгон предусмотрен производителем, например, в некоторых модулях памяти Corsair). Опасности разгона в большинстве случаев можно преодолеть, используя качественные системы охлаждения, наращивая частоту медленно и с постоянным контролем стабильности.

9. Оверклокерские соревнования

В последнее время во всём мире всё чаще и чаще проводятся соревнования оверклокеров, перед участниками которых ставится цель — добиться максимальной производительности от компьютера, эксплуатируемого в форсированном режиме. Инициаторами и спонсорами подобных конкурсов чаще всего выступают компании-производители систем охлаждения, а также материнских плат, процессоров и графических чипов.

Мировой рейтинг оверклокинга, где проявить себя может каждый — http://hwbot.org/.

wreferat.baza-referat.ru

Реферат Разгон компьютеров

скачать

Реферат на тему:

План:

Введение

Разгон, оверклокинг (от англ. overclocking) — повышение быстродействия компонентов компьютера за счёт эксплуатации их в форсированных (нештатных) режимах работ.

1. Критерии штатного режима работы компьютера

Частота процессора, модулей системной памяти, системной шины, графического процессора и видеопамяти, а также «тайминги» (от анг. timings — задержки по времени) оперативной и видеопамяти соответствуют номинальным. Частоты должны соответствовать таблицам данных (datasheets) производителя для конкретной модели. В случае если используются видеокарты, модули памяти или материнские платы с измененными относительно референсных частотами или таймингами, за штатный принимается такой режим их работы, при котором частоты и тайминги соответствуют спецификациям производителей.

2. Способы повышения быстродействия

Для повышения быстродействия процессоров, как центрального, так и графического, разгон сводится к повышению тактовой частоты. Для повышения быстродействия памяти (в том числе видеопамяти) — к повышению тактовой частоты и понижению таймингов. Для повышения частоты работы процессоров и памяти используются как встроенные функции BIOS (в том числе BIOS видеоадаптера), так и программные средства. В большинстве случаев рост тактовой частоты центрального и графического процессоров, а также модулей памяти сопровождается увеличением рассеиваемой мощности, что приводит к росту температуры разогнанных компонентов. Этому явлению способствует также часто применяемое для повышения стабильности разогнанных компонентов увеличение питающего напряжения. Для снижения негативных эффектов разгона применяют улучшенные системы охлаждения компьютерных компонентов.

3. Разгон ЦП и памяти при помощи BIOS компьютера

BIOS многих материнских плат позволяет эксплуатировать центральный процессор и память в форсированных режимах. Некоторые производители даже выпускают материнские платы, имеющие много приспособлений, облегчающих разгон, таких, как улучшенное охлаждение чипсета, компоновка элементов упрощающая организацию эффективного охлаждения, радиаторы на импульсных MOSFET-транзисторах преобразователей питания процессора, а также расширенные настройки BIOS с увеличенными диапазонами регулировки напряжений. Популярные у оверклокеров серии материнских плат:

Для разгона процессора применяется изменение множителя (параметры Multiplier, CPU Ratio), изменение частоты системной шины (параметры FSB Frequency, Host Frequency, Host Speed и т. д.) или обе процедуры. Разгон памяти осуществляется увеличением частоты, которое, в свою очередь, достигается подбором делителя частоты системной шины (параметры Memory Mode, Memory Speed и т. д.). Разгон памяти также осуществляется модификацией задержек (таймингов) (параметры TRas, TCas, Precharge Delay и т. д., их число может доходить, в зависимости от модели материнской платы, до 50).

3.1. Разгон видеокарт при помощи BIOS видеоадаптера

Скриншот из программы RivaTuner, демонстрирующий разгон видеокарты

Большинство современных видеоадаптеров обладают возможностью модификации собственной BIOS. Модифицированный BIOS видеоадаптера может содержать повышенные частоты видеопроцессора и -памяти, а также изменённые тайминги.

Программы, используемые для модификации BIOS видеоадаптеров:

Программы, используемые для обновления BIOS видеоадаптеров:

3.2. Разгон ЦП и видеокарт из ОС

Существует множество программ, осуществляющих разгон процессора и оперативной памяти из под операционной системы. Такую возможность поддерживают не все материнские платы. Для разгона процессора и оперативной памяти из-под ОС Windows применяются следующие утилиты:

Для мониторинга разогнанной системы чаще всего используют:

Большинство современных видеоадаптеров поддерживают изменение тактовых частот графического процессора (видеопроцессора) из операционной системы. В последних версиях драйверов видеоадаптеров компаний ATI и NVIDIA имеется возможность разгонять видеокарты, не прибегая к помощи сторонних утилит. Для разгона популярных моделей видеоадаптеров из под ОС Windows используются утилиты:

Из сторонних утилит для разгона и настройки видеоподсистемы можно выделить популярную программу Powerstrip [5], поддерживающую множество видеокарт различных производителей.

3.3. Разгон ОЗУ (оперативного запоминающего устройства)

Непосредственный разгон ОЗУ сводится либо к повышению номинальной тактовой частоты оперирования микросхем модулей памяти (MEMCLK), либо к изменению задержек основных управляющих сигналов — синхроимпульсов, иначе — таймингов, таких как tCAS#, tRAS#, tRCD# и других. Для достижения более высоких частот оперирования памяти с учетом стабильной работы, как правило, повышают номинальное рабочее напряжение на модулях памяти (VDDIO). Изменение значений частоты MEMCLK и синхроимпульсов возможно в BIOS Setup материнской платы либо из-под ОС Windows с использованием соответствующих программ, например, Native Specialist, AMD OverDrive (для процессоров архитектуры AMD64) MemSet (Intel). Для изменения таймингов и тактовой частоты оперирования двух контроллеров ОЗУ независимо от режима их функционирования (Ganged или Unganged) современных процессоров AMD Family 10h, AMD Family 11h, AMD Ontario и AMD Llano можно воспользоваться оснасткой DCT Tuner утилиты Thaiphoon Burner.

Для постоянной фиксации измененных значений частотно-временных параметров модулей ОЗУ необходимо прибегнуть перепрограммированию содержимого их микросхемы SPD (Serial Presence Detect) ППЗУ. Для этих целей используется либо аппаратный, либо программный способ. Последний наиболее прост и не требует каких-либо дополнительных приспособлений и устройств программирования. Перезапись и редактирование данных SPD микросхемы ППЗУ, а также интеграция профилей автонастройки NVIDIA EPP 1.0, NVIDIA EPP 2.0 и Intel XMP 1.2 в SPD модулей памяти архитектуры SDRAM, DDR SDRAM, DDR2 SDRAM, DDR2 FBDIMM и DDR3 SDRAM осуществляется при помощи утилиты Thaiphoon Burner.

4. Критерий стабильности разогнанных компонентов

Основным критерием стабильности разогнанных компонентов компьютера является их способность выдерживать любую вычислительную нагрузку со статистической вероятностью выдать ошибку в вычислениях, не превышающей таковую для компонентов, эксплуатируемых в штатном режиме. Поскольку в большинстве случаев вычислительная нагрузка на компоненты компьютера намного меньше, чем потенциальная вычислительная мощность, для выявления ошибок в работе разогнанных компонент (нестабильности) применяют специальные тесты.

5. Повышение стабильности разогнанной системы

Для повышения стабильности разогнанных систем применяют охлаждение и улучшение отвода тепла, повышение питающих напряжений (и, как следствие, увеличение подаваемой и рассеиваемой мощностей), а также улучшение качества этих самых напряжений. Например установка более качественных конденсаторов с Low-ESR.

5.1. Повышение питающих напряжений из BIOS

BIOS большинства современных материнских плат позволяет изменять питающие напряжения процессора (параметры VCore, VCPU), северного моста из набора микросхем материнской платы (параметр Vdd), а также модулей памяти (параметры Vdimm, Vmem). Следует помнить, что поднятие напряжения, особенно при недостаточном охлаждении, может послужить причиной выхода компонента компьютера из строя.

5.2. Повышение питающих напряжений путём вольтмода

Иногда диапазона регулировок напряжений, предусмотренных материнской платой, оказывается недостаточно. В этом случае, а также для управления питающими напряжениями графического процессора и памяти видеоадаптеров прибегают к модификации питающих схем (вольт-модификация, вольт-мод от англ. voltage modification — изменение напряжения). Для этого в схему питания вносят такие конструктивные изменения, которые приводят к повышению напряжений на выходах этих схем. Зачастую для вольт-модификации достаточно изменить номинал резистора в схеме питания.

Существуют также промышленно выпускаемые устройства для модификации питающих напряжений компонент компьютера.

6. Используемые оверклокерами системы охлаждения

6.1. Воздушные системы охлаждения

Воздушное охлаждение в разогнанной системе

Абсолютное большинство оверклокеров пользуются наиболее доступными, воздушными системами охлаждения. В основе их лежит классический радиатор или кулер.

Радиаторы обычно применяются для охлаждения чипов памяти и чипсетов материнских плат, поскольку обладают достаточно скромными возможностями теплоотвода. Существуют и исключения (например, радиатор Ninja производства фирмы Scythe), когда радиатор с развитой поверхностью теплообмена может применяться для охлаждения разогнанного центрального процессора.

Кулеры, используемые оверклокерами, чаще всего обладают развитой поверхностью теплообмена (превышающей 3000 см²), а также могут оснащаться крупными (более 80 мм) вентиляторами, тепловыми трубками, термоэлектрическими элементами (элемент Пельтье) или другими приспособлениями, увеличивающими мощность, которую кулер способен рассеять.

Самодельная СВО

Известные торговые марки кулеров, используемых оверклокерами:

6.2. Жидкостные системы охлаждения

Второе место по популярности занимают жидкостные системы охлаждения, основным теплоносителем в которых является жидкость. Наиболее часто используются системы водяного охлаждения (СВО), в которых рабочим телом является вода (дистиллированная, часто с различными добавками антикоррозийного характера).

Типичная СВО состоит из:

Одним из вариантов жидкостного охлаждения компьютеров является погружение компьютера целиком или его компонентов в масло (предложено Tom’s Hardware Guide).

6.3. Прочие (экстремальные) системы охлаждения

Для охлаждения компьютерных компонентов, разогнанных до частот, близких к технологическому пределу, могут применяться экстремальные системы охлаждения. К ним относятся системы, использующие жидкий азот, жидкий гелий, сухой лёд, различные хладагенты (например, фреон), а также каскадные системы охлаждения. В большинстве случаев обеспечить продолжительное функционирование экстремальных систем охлаждения их создатели не в состоянии, поэтому обычное их применение — получение максимальных результатов в бенчмарках и участие в различных оверклокерских соревнованиях.

7. Проверка стабильности разогнанных компонентов

Для проверки стабильности разогнанных компонентов компьютера используют ряд программных тестов. Ни один из них сам по себе не гарантирует 100 % стабильности системы, однако, если тест выявил сбой в системе или не может пройти до конца, разгон следует считать неудачным. Большинство тестов создают интенсивную вычислительную нагрузку на различные блоки центрального процессора, системной памяти, графического процессора и набора системной логики. Только комбинация из нескольких тестов может служить основой для уверенности в стабильной работе компьютера. Вот некоторые из наиболее популярных тестов стабильности:

В режимах экстремального разгона во время бенчмаркинга стабильность разогнанных компонентов не так важна. Главное задача пройти определённый тест на максимальных частотах. В большинстве случаев для каждых тестов уровень максимального разгона разный.

8. Опасности разгона

Разгон является одной из причин преждевременного выхода компьютерного оборудования из строя, поэтому пользователь эксплуатирует аппаратное обеспечение компьютера в форсированном режиме на свой страх и риск (за исключением тех случаев, когда разгон предусмотрен производителем, например, в некоторых модулях памяти Corsair). Опасности разгона в большинстве случаев можно преодолеть, используя качественные системы охлаждения, наращивая частоту медленно и с постоянным контролем стабильности.

9. Оверклокерские соревнования

В последнее время во всём мире всё чаще и чаще проводятся соревнования оверклокеров, перед участниками которых ставится цель — добиться максимальной производительности от компьютера, эксплуатируемого в форсированном режиме. Инициаторами и спонсорами подобных конкурсов чаще всего выступают компании-производители систем охлаждения, а также материнских плат, процессоров и графических чипов.

Мировой рейтинг оверклокинга, где проявить себя может каждый — http://hwbot.org/.

wreferat.baza-referat.ru

Реферат Разгон компьютера

скачать

Реферат на тему:

План:

Введение

Разгон, оверклокинг (от англ. overclocking) — повышение быстродействия компонентов компьютера за счёт эксплуатации их в форсированных (нештатных) режимах работ.

1. Критерии штатного режима работы компьютера

Частота процессора, модулей системной памяти, системной шины, графического процессора и видеопамяти, а также «тайминги» (от анг. timings — задержки по времени) оперативной и видеопамяти соответствуют номинальным. Частоты должны соответствовать таблицам данных (datasheets) производителя для конкретной модели. В случае если используются видеокарты, модули памяти или материнские платы с измененными относительно референсных частотами или таймингами, за штатный принимается такой режим их работы, при котором частоты и тайминги соответствуют спецификациям производителей.

2. Способы повышения быстродействия

Для повышения быстродействия процессоров, как центрального, так и графического, разгон сводится к повышению тактовой частоты. Для повышения быстродействия памяти (в том числе видеопамяти) — к повышению тактовой частоты и понижению таймингов. Для повышения частоты работы процессоров и памяти используются как встроенные функции BIOS (в том числе BIOS видеоадаптера), так и программные средства. В большинстве случаев рост тактовой частоты центрального и графического процессоров, а также модулей памяти сопровождается увеличением рассеиваемой мощности, что приводит к росту температуры разогнанных компонентов. Этому явлению способствует также часто применяемое для повышения стабильности разогнанных компонентов увеличение питающего напряжения. Для снижения негативных эффектов разгона применяют улучшенные системы охлаждения компьютерных компонентов.

3. Разгон ЦП и памяти при помощи BIOS компьютера

BIOS многих материнских плат позволяет эксплуатировать центральный процессор и память в форсированных режимах. Некоторые производители даже выпускают материнские платы, имеющие много приспособлений, облегчающих разгон, таких, как улучшенное охлаждение чипсета, компоновка элементов упрощающая организацию эффективного охлаждения, радиаторы на импульсных MOSFET-транзисторах преобразователей питания процессора, а также расширенные настройки BIOS с увеличенными диапазонами регулировки напряжений. Популярные у оверклокеров серии материнских плат:

Для разгона процессора применяется изменение множителя (параметры Multiplier, CPU Ratio), изменение частоты системной шины (параметры FSB Frequency, Host Frequency, Host Speed и т. д.) или обе процедуры. Разгон памяти осуществляется увеличением частоты, которое, в свою очередь, достигается подбором делителя частоты системной шины (параметры Memory Mode, Memory Speed и т. д.). Разгон памяти также осуществляется модификацией задержек (таймингов) (параметры TRas, TCas, Precharge Delay и т. д., их число может доходить, в зависимости от модели материнской платы, до 50).

3.1. Разгон видеокарт при помощи BIOS видеоадаптера

Скриншот из программы RivaTuner, демонстрирующий разгон видеокарты

Большинство современных видеоадаптеров обладают возможностью модификации собственной BIOS. Модифицированный BIOS видеоадаптера может содержать повышенные частоты видеопроцессора и -памяти, а также изменённые тайминги.

Программы, используемые для модификации BIOS видеоадаптеров:

Программы, используемые для обновления BIOS видеоадаптеров:

3.2. Разгон ЦП и видеокарт из ОС

Существует множество программ, осуществляющих разгон процессора и оперативной памяти из под операционной системы. Такую возможность поддерживают не все материнские платы. Для разгона процессора и оперативной памяти из-под ОС Windows применяются следующие утилиты:

Для мониторинга разогнанной системы чаще всего используют:

Большинство современных видеоадаптеров поддерживают изменение тактовых частот графического процессора (видеопроцессора) из операционной системы. В последних версиях драйверов видеоадаптеров компаний ATI и NVIDIA имеется возможность разгонять видеокарты, не прибегая к помощи сторонних утилит. Для разгона популярных моделей видеоадаптеров из под ОС Windows используются утилиты:

Из сторонних утилит для разгона и настройки видеоподсистемы можно выделить популярную программу Powerstrip [5], поддерживающую множество видеокарт различных производителей.

3.3. Разгон ОЗУ (оперативного запоминающего устройства)

Непосредственный разгон ОЗУ сводится либо к повышению номинальной тактовой частоты оперирования микросхем модулей памяти (MEMCLK), либо к изменению задержек основных управляющих сигналов — синхроимпульсов, иначе — таймингов, таких как tCAS#, tRAS#, tRCD# и других. Для достижения более высоких частот оперирования памяти с учетом стабильной работы, как правило, повышают номинальное рабочее напряжение на модулях памяти (VDDIO). Изменение значений частоты MEMCLK и синхроимпульсов возможно в BIOS Setup материнской платы либо из-под ОС Windows с использованием соответствующих программ, например, Native Specialist, AMD OverDrive (для процессоров архитектуры AMD64) MemSet (Intel). Для изменения таймингов и тактовой частоты оперирования двух контроллеров ОЗУ независимо от режима их функционирования (Ganged или Unganged) современных процессоров AMD Family 10h, AMD Family 11h, AMD Ontario и AMD Llano можно воспользоваться оснасткой DCT Tuner утилиты Thaiphoon Burner.

Для постоянной фиксации измененных значений частотно-временных параметров модулей ОЗУ необходимо прибегнуть перепрограммированию содержимого их микросхемы SPD (Serial Presence Detect) ППЗУ. Для этих целей используется либо аппаратный, либо программный способ. Последний наиболее прост и не требует каких-либо дополнительных приспособлений и устройств программирования. Перезапись и редактирование данных SPD микросхемы ППЗУ, а также интеграция профилей автонастройки NVIDIA EPP 1.0, NVIDIA EPP 2.0 и Intel XMP 1.2 в SPD модулей памяти архитектуры SDRAM, DDR SDRAM, DDR2 SDRAM, DDR2 FBDIMM и DDR3 SDRAM осуществляется при помощи утилиты Thaiphoon Burner.

4. Критерий стабильности разогнанных компонентов

Основным критерием стабильности разогнанных компонентов компьютера является их способность выдерживать любую вычислительную нагрузку со статистической вероятностью выдать ошибку в вычислениях, не превышающей таковую для компонентов, эксплуатируемых в штатном режиме. Поскольку в большинстве случаев вычислительная нагрузка на компоненты компьютера намного меньше, чем потенциальная вычислительная мощность, для выявления ошибок в работе разогнанных компонент (нестабильности) применяют специальные тесты.

5. Повышение стабильности разогнанной системы

Для повышения стабильности разогнанных систем применяют охлаждение и улучшение отвода тепла, повышение питающих напряжений (и, как следствие, увеличение подаваемой и рассеиваемой мощностей), а также улучшение качества этих самых напряжений. Например установка более качественных конденсаторов с Low-ESR.

5.1. Повышение питающих напряжений из BIOS

BIOS большинства современных материнских плат позволяет изменять питающие напряжения процессора (параметры VCore, VCPU), северного моста из набора микросхем материнской платы (параметр Vdd), а также модулей памяти (параметры Vdimm, Vmem). Следует помнить, что поднятие напряжения, особенно при недостаточном охлаждении, может послужить причиной выхода компонента компьютера из строя.

5.2. Повышение питающих напряжений путём вольтмода

Иногда диапазона регулировок напряжений, предусмотренных материнской платой, оказывается недостаточно. В этом случае, а также для управления питающими напряжениями графического процессора и памяти видеоадаптеров прибегают к модификации питающих схем (вольт-модификация, вольт-мод от англ. voltage modification — изменение напряжения). Для этого в схему питания вносят такие конструктивные изменения, которые приводят к повышению напряжений на выходах этих схем. Зачастую для вольт-модификации достаточно изменить номинал резистора в схеме питания.

Существуют также промышленно выпускаемые устройства для модификации питающих напряжений компонент компьютера.

6. Используемые оверклокерами системы охлаждения

6.1. Воздушные системы охлаждения

Воздушное охлаждение в разогнанной системе

Абсолютное большинство оверклокеров пользуются наиболее доступными, воздушными системами охлаждения. В основе их лежит классический радиатор или кулер.

Радиаторы обычно применяются для охлаждения чипов памяти и чипсетов материнских плат, поскольку обладают достаточно скромными возможностями теплоотвода. Существуют и исключения (например, радиатор Ninja производства фирмы Scythe), когда радиатор с развитой поверхностью теплообмена может применяться для охлаждения разогнанного центрального процессора.

Кулеры, используемые оверклокерами, чаще всего обладают развитой поверхностью теплообмена (превышающей 3000 см²), а также могут оснащаться крупными (более 80 мм) вентиляторами, тепловыми трубками, термоэлектрическими элементами (элемент Пельтье) или другими приспособлениями, увеличивающими мощность, которую кулер способен рассеять.

Самодельная СВО

Известные торговые марки кулеров, используемых оверклокерами:

6.2. Жидкостные системы охлаждения

Второе место по популярности занимают жидкостные системы охлаждения, основным теплоносителем в которых является жидкость. Наиболее часто используются системы водяного охлаждения (СВО), в которых рабочим телом является вода (дистиллированная, часто с различными добавками антикоррозийного характера).

Типичная СВО состоит из:

Одним из вариантов жидкостного охлаждения компьютеров является погружение компьютера целиком или его компонентов в масло (предложено Tom’s Hardware Guide).

6.3. Прочие (экстремальные) системы охлаждения

Для охлаждения компьютерных компонентов, разогнанных до частот, близких к технологическому пределу, могут применяться экстремальные системы охлаждения. К ним относятся системы, использующие жидкий азот, жидкий гелий, сухой лёд, различные хладагенты (например, фреон), а также каскадные системы охлаждения. В большинстве случаев обеспечить продолжительное функционирование экстремальных систем охлаждения их создатели не в состоянии, поэтому обычное их применение — получение максимальных результатов в бенчмарках и участие в различных оверклокерских соревнованиях.

7. Проверка стабильности разогнанных компонентов

Для проверки стабильности разогнанных компонентов компьютера используют ряд программных тестов. Ни один из них сам по себе не гарантирует 100 % стабильности системы, однако, если тест выявил сбой в системе или не может пройти до конца, разгон следует считать неудачным. Большинство тестов создают интенсивную вычислительную нагрузку на различные блоки центрального процессора, системной памяти, графического процессора и набора системной логики. Только комбинация из нескольких тестов может служить основой для уверенности в стабильной работе компьютера. Вот некоторые из наиболее популярных тестов стабильности:

В режимах экстремального разгона во время бенчмаркинга стабильность разогнанных компонентов не так важна. Главное задача пройти определённый тест на максимальных частотах. В большинстве случаев для каждых тестов уровень максимального разгона разный.

8. Опасности разгона

Разгон является одной из причин преждевременного выхода компьютерного оборудования из строя, поэтому пользователь эксплуатирует аппаратное обеспечение компьютера в форсированном режиме на свой страх и риск (за исключением тех случаев, когда разгон предусмотрен производителем, например, в некоторых модулях памяти Corsair). Опасности разгона в большинстве случаев можно преодолеть, используя качественные системы охлаждения, наращивая частоту медленно и с постоянным контролем стабильности.

9. Оверклокерские соревнования

В последнее время во всём мире всё чаще и чаще проводятся соревнования оверклокеров, перед участниками которых ставится цель — добиться максимальной производительности от компьютера, эксплуатируемого в форсированном режиме. Инициаторами и спонсорами подобных конкурсов чаще всего выступают компании-производители систем охлаждения, а также материнских плат, процессоров и графических чипов.

Мировой рейтинг оверклокинга, где проявить себя может каждый — http://hwbot.org/.

www.wreferat.baza-referat.ru

Реферат Разгон компьютеров

скачать

Реферат на тему:

План:

Введение

Разгон, оверклокинг (от англ. overclocking) — повышение быстродействия компонентов компьютера за счёт эксплуатации их в форсированных (нештатных) режимах работ.

1. Критерии штатного режима работы компьютера

Частота процессора, модулей системной памяти, системной шины, графического процессора и видеопамяти, а также «тайминги» (от анг. timings — задержки по времени) оперативной и видеопамяти соответствуют номинальным. Частоты должны соответствовать таблицам данных (datasheets) производителя для конкретной модели. В случае если используются видеокарты, модули памяти или материнские платы с измененными относительно референсных частотами или таймингами, за штатный принимается такой режим их работы, при котором частоты и тайминги соответствуют спецификациям производителей.

2. Способы повышения быстродействия

Для повышения быстродействия процессоров, как центрального, так и графического, разгон сводится к повышению тактовой частоты. Для повышения быстродействия памяти (в том числе видеопамяти) — к повышению тактовой частоты и понижению таймингов. Для повышения частоты работы процессоров и памяти используются как встроенные функции BIOS (в том числе BIOS видеоадаптера), так и программные средства. В большинстве случаев рост тактовой частоты центрального и графического процессоров, а также модулей памяти сопровождается увеличением рассеиваемой мощности, что приводит к росту температуры разогнанных компонентов. Этому явлению способствует также часто применяемое для повышения стабильности разогнанных компонентов увеличение питающего напряжения. Для снижения негативных эффектов разгона применяют улучшенные системы охлаждения компьютерных компонентов.

3. Разгон ЦП и памяти при помощи BIOS компьютера

BIOS многих материнских плат позволяет эксплуатировать центральный процессор и память в форсированных режимах. Некоторые производители даже выпускают материнские платы, имеющие много приспособлений, облегчающих разгон, таких, как улучшенное охлаждение чипсета, компоновка элементов упрощающая организацию эффективного охлаждения, радиаторы на импульсных MOSFET-транзисторах преобразователей питания процессора, а также расширенные настройки BIOS с увеличенными диапазонами регулировки напряжений. Популярные у оверклокеров серии материнских плат:

Для разгона процессора применяется изменение множителя (параметры Multiplier, CPU Ratio), изменение частоты системной шины (параметры FSB Frequency, Host Frequency, Host Speed и т. д.) или обе процедуры. Разгон памяти осуществляется увеличением частоты, которое, в свою очередь, достигается подбором делителя частоты системной шины (параметры Memory Mode, Memory Speed и т. д.). Разгон памяти также осуществляется модификацией задержек (таймингов) (параметры TRas, TCas, Precharge Delay и т. д., их число может доходить, в зависимости от модели материнской платы, до 50).

3.1. Разгон видеокарт при помощи BIOS видеоадаптера

Скриншот из программы RivaTuner, демонстрирующий разгон видеокарты

Большинство современных видеоадаптеров обладают возможностью модификации собственной BIOS. Модифицированный BIOS видеоадаптера может содержать повышенные частоты видеопроцессора и -памяти, а также изменённые тайминги.

Программы, используемые для модификации BIOS видеоадаптеров:

Программы, используемые для обновления BIOS видеоадаптеров:

3.2. Разгон ЦП и видеокарт из ОС

Существует множество программ, осуществляющих разгон процессора и оперативной памяти из под операционной системы. Такую возможность поддерживают не все материнские платы. Для разгона процессора и оперативной памяти из-под ОС Windows применяются следующие утилиты:

Для мониторинга разогнанной системы чаще всего используют:

Большинство современных видеоадаптеров поддерживают изменение тактовых частот графического процессора (видеопроцессора) из операционной системы. В последних версиях драйверов видеоадаптеров компаний ATI и NVIDIA имеется возможность разгонять видеокарты, не прибегая к помощи сторонних утилит. Для разгона популярных моделей видеоадаптеров из под ОС Windows используются утилиты:

Из сторонних утилит для разгона и настройки видеоподсистемы можно выделить популярную программу Powerstrip [5], поддерживающую множество видеокарт различных производителей.

3.3. Разгон ОЗУ (оперативного запоминающего устройства)

Непосредственный разгон ОЗУ сводится либо к повышению номинальной тактовой частоты оперирования микросхем модулей памяти (MEMCLK), либо к изменению задержек основных управляющих сигналов — синхроимпульсов, иначе — таймингов, таких как tCAS#, tRAS#, tRCD# и других. Для достижения более высоких частот оперирования памяти с учетом стабильной работы, как правило, повышают номинальное рабочее напряжение на модулях памяти (VDDIO). Изменение значений частоты MEMCLK и синхроимпульсов возможно в BIOS Setup материнской платы либо из-под ОС Windows с использованием соответствующих программ, например, Native Specialist, AMD OverDrive (для процессоров архитектуры AMD64) MemSet (Intel). Для изменения таймингов и тактовой частоты оперирования двух контроллеров ОЗУ независимо от режима их функционирования (Ganged или Unganged) современных процессоров AMD Family 10h, AMD Family 11h, AMD Ontario и AMD Llano можно воспользоваться оснасткой DCT Tuner утилиты Thaiphoon Burner.

Для постоянной фиксации измененных значений частотно-временных параметров модулей ОЗУ необходимо прибегнуть перепрограммированию содержимого их микросхемы SPD (Serial Presence Detect) ППЗУ. Для этих целей используется либо аппаратный, либо программный способ. Последний наиболее прост и не требует каких-либо дополнительных приспособлений и устройств программирования. Перезапись и редактирование данных SPD микросхемы ППЗУ, а также интеграция профилей автонастройки NVIDIA EPP 1.0, NVIDIA EPP 2.0 и Intel XMP 1.2 в SPD модулей памяти архитектуры SDRAM, DDR SDRAM, DDR2 SDRAM, DDR2 FBDIMM и DDR3 SDRAM осуществляется при помощи утилиты Thaiphoon Burner.

4. Критерий стабильности разогнанных компонентов

Основным критерием стабильности разогнанных компонентов компьютера является их способность выдерживать любую вычислительную нагрузку со статистической вероятностью выдать ошибку в вычислениях, не превышающей таковую для компонентов, эксплуатируемых в штатном режиме. Поскольку в большинстве случаев вычислительная нагрузка на компоненты компьютера намного меньше, чем потенциальная вычислительная мощность, для выявления ошибок в работе разогнанных компонент (нестабильности) применяют специальные тесты.

5. Повышение стабильности разогнанной системы

Для повышения стабильности разогнанных систем применяют охлаждение и улучшение отвода тепла, повышение питающих напряжений (и, как следствие, увеличение подаваемой и рассеиваемой мощностей), а также улучшение качества этих самых напряжений. Например установка более качественных конденсаторов с Low-ESR.

5.1. Повышение питающих напряжений из BIOS

BIOS большинства современных материнских плат позволяет изменять питающие напряжения процессора (параметры VCore, VCPU), северного моста из набора микросхем материнской платы (параметр Vdd), а также модулей памяти (параметры Vdimm, Vmem). Следует помнить, что поднятие напряжения, особенно при недостаточном охлаждении, может послужить причиной выхода компонента компьютера из строя.

5.2. Повышение питающих напряжений путём вольтмода

Иногда диапазона регулировок напряжений, предусмотренных материнской платой, оказывается недостаточно. В этом случае, а также для управления питающими напряжениями графического процессора и памяти видеоадаптеров прибегают к модификации питающих схем (вольт-модификация, вольт-мод от англ. voltage modification — изменение напряжения). Для этого в схему питания вносят такие конструктивные изменения, которые приводят к повышению напряжений на выходах этих схем. Зачастую для вольт-модификации достаточно изменить номинал резистора в схеме питания.

Существуют также промышленно выпускаемые устройства для модификации питающих напряжений компонент компьютера.

6. Используемые оверклокерами системы охлаждения

6.1. Воздушные системы охлаждения

Воздушное охлаждение в разогнанной системе

Абсолютное большинство оверклокеров пользуются наиболее доступными, воздушными системами охлаждения. В основе их лежит классический радиатор или кулер.

Радиаторы обычно применяются для охлаждения чипов памяти и чипсетов материнских плат, поскольку обладают достаточно скромными возможностями теплоотвода. Существуют и исключения (например, радиатор Ninja производства фирмы Scythe), когда радиатор с развитой поверхностью теплообмена может применяться для охлаждения разогнанного центрального процессора.

Кулеры, используемые оверклокерами, чаще всего обладают развитой поверхностью теплообмена (превышающей 3000 см²), а также могут оснащаться крупными (более 80 мм) вентиляторами, тепловыми трубками, термоэлектрическими элементами (элемент Пельтье) или другими приспособлениями, увеличивающими мощность, которую кулер способен рассеять.

Самодельная СВО

Известные торговые марки кулеров, используемых оверклокерами:

6.2. Жидкостные системы охлаждения

Второе место по популярности занимают жидкостные системы охлаждения, основным теплоносителем в которых является жидкость. Наиболее часто используются системы водяного охлаждения (СВО), в которых рабочим телом является вода (дистиллированная, часто с различными добавками антикоррозийного характера).

Типичная СВО состоит из:

Одним из вариантов жидкостного охлаждения компьютеров является погружение компьютера целиком или его компонентов в масло (предложено Tom’s Hardware Guide).

6.3. Прочие (экстремальные) системы охлаждения

Для охлаждения компьютерных компонентов, разогнанных до частот, близких к технологическому пределу, могут применяться экстремальные системы охлаждения. К ним относятся системы, использующие жидкий азот, жидкий гелий, сухой лёд, различные хладагенты (например, фреон), а также каскадные системы охлаждения. В большинстве случаев обеспечить продолжительное функционирование экстремальных систем охлаждения их создатели не в состоянии, поэтому обычное их применение — получение максимальных результатов в бенчмарках и участие в различных оверклокерских соревнованиях.

7. Проверка стабильности разогнанных компонентов

Для проверки стабильности разогнанных компонентов компьютера используют ряд программных тестов. Ни один из них сам по себе не гарантирует 100 % стабильности системы, однако, если тест выявил сбой в системе или не может пройти до конца, разгон следует считать неудачным. Большинство тестов создают интенсивную вычислительную нагрузку на различные блоки центрального процессора, системной памяти, графического процессора и набора системной логики. Только комбинация из нескольких тестов может служить основой для уверенности в стабильной работе компьютера. Вот некоторые из наиболее популярных тестов стабильности:

В режимах экстремального разгона во время бенчмаркинга стабильность разогнанных компонентов не так важна. Главное задача пройти определённый тест на максимальных частотах. В большинстве случаев для каждых тестов уровень максимального разгона разный.

8. Опасности разгона

Разгон является одной из причин преждевременного выхода компьютерного оборудования из строя, поэтому пользователь эксплуатирует аппаратное обеспечение компьютера в форсированном режиме на свой страх и риск (за исключением тех случаев, когда разгон предусмотрен производителем, например, в некоторых модулях памяти Corsair). Опасности разгона в большинстве случаев можно преодолеть, используя качественные системы охлаждения, наращивая частоту медленно и с постоянным контролем стабильности.

9. Оверклокерские соревнования

В последнее время во всём мире всё чаще и чаще проводятся соревнования оверклокеров, перед участниками которых ставится цель — добиться максимальной производительности от компьютера, эксплуатируемого в форсированном режиме. Инициаторами и спонсорами подобных конкурсов чаще всего выступают компании-производители систем охлаждения, а также материнских плат, процессоров и графических чипов.

Мировой рейтинг оверклокинга, где проявить себя может каждый — http://hwbot.org/.

www.wreferat.baza-referat.ru

Про Разгон: Как разогнать процессор Intel?

Разгон процессора когда-то был очень сложным и кропотливым трудом, заставляющим не один час посидеть с паяльником, а перед этим еще и выучив мат.часть, которую найти было не так уж и легко. Сейчас разгон, он же оверклокинг, удел не только энтузиастов, его может позволить себе абсолютно каждый. Пообщавшись с пользователями, а так же изучая комментарии на других ресурсах, мы поняли, что разгон все еще оставляет много вопросов и решили открыть отдельную рубрику «Про Разгон«, в которой будем рассказывать вам, как правильно разгонять актуальное «железо». В данном выпуске мы расскажем наглядно о разгоне процессоров Intel Core i7 — 7740X(4 ядра/8 потоков) и Intel Core i7 — 7820X(8 ядер/16 потоков), рассмотрим, как нащупать оптимальную рабочую частоту и будет ли препятствовать разгону пластичный термоинтерфейс под крышкой процессора.

Кратко про разгон

Начнем с того, что же это такое разгон и зачем он нужен? Разгон — это процесс повышения тактовых частот компьютерных комплектующих относительно их штатного режима, а нужен он, конечно же. для того, что бы получить больше производительности, чем нам предлагает производитель.

Если говорить про оверклокинг, в наше время это не только способ получения «бесплатной» дополнительной производительности, но и вид спорта, постоянно притягивающий все больше внимания.Условно, я бы разредил разгон на два основных вида: первый — «домашний» для повышения производительности вашего ПК; и «спортивный», который служит исключительно для установки рекордов и не актуален в домашних условиях.

Что потребуется для разгона процессора Intel?

Конечно, потребуется сам процессор, но здесь есть ограничения: для разгона подойдут процессоры Intel с разблокированным множителем. Определить модель можно без особых усилий, в ее названии должен присутствовать индекс «K» или «X», как раз таким примером и служат Intel Core i7 — 7740X и Intel Core i7 — 7820X, которые сегодня пойдут под разгон.Но так же стоит обратить внимание, что под разгон подойдут не все материнские платы. Ниже приведена таблица с названием архитектуры актуальных процессоров Intel и названием подходящего чипсета, поддерживающего разгон. Поскольку у нас процессоры на архитектуре Skylake-X и Kaby Lake-X, для их разгона мы будем использовать материнкую плату на чипсете X299 — ASUS ROG Strix X299-E Gaming.

Архитектура процессораЧипсет поддерживающий разгон
Skylake и Kaby LakeZ170 или Z270
Coffee LakeZ370
Skylake-X и Kaby Lake-XX299

Выбор процессора и материнской платы — это только основа и помимо этих компонентов стоит задуматься еще о системе охлаждения, оперативной памяти, блоке питания.

Разгоняя процессор, вы должны прекрасно понимать, что придется работать с повышенными температурами и охлаждение должно быть на должном уровне. Конечно, если мы говорим о простом «домашнем» разгоне не для рекордных результатов, система должна быть собрана в хорошо продуваемом корпусе, думаю, вряд ли кто-то будет у себя дома собирать открытый стенд. Хорошо продуваемый корпус — это не всегда значит дорогой, пример недорогого, но отлично продуваемого корпуса — Cooler Master MasterBox 5 Lite, обзор которого совсем скоро будет у нас на сайте.Выбор системы охлаждения очень важен, ведь разгон чаше всего упирается именно в температуры, так во время экстремального оверклокинга используется для охлаждения жидкий азот, температура которого впечатляющие «−196 °C». Нам подойдет более традиционное охлаждение. Но в любом случае, я рекомендую использовать именно жидкостное, для 2-6 ядерных процессоров двух-секционное, а для 8-18 ядерных трех-секционное или, вообще, кастомное и эти рекомендации относятся только для процессоров на выше указанных архитектурах.Экономить на блоке питания не стоит, важно понимать, что комплектующие под разгоном потребляют больше питания, чем обычно. Поэтому во-первых стоит брать с запасом, во-вторых присмотреться к качественным хорошо себя зарекомендовавшим брендовым моделям.Оперативная память так же влияет на производительность системы, но стоит ли тратить огромные деньги на покупку высокочастотной оперативной памяти, решает, конечно, каждый сам для себя. Лично для меня, оптимальные частоты оперативной памяти — 2800 МГц и выше. Стоит понимать, что процессоры Intel не так привязаны к оперативной памяти, как AMD Ryzen, и долго мучиться с выбором ОЗУ вам не придется.

Сразу скажу, что конфигурация моего тестового стенда сделана с запасом на более мощные сборки и я не рекомендую ее как эталонную, она просто приводится к сведению.

ПроцессорIntel Core i7 — 7740X/i7 — 7820X
Система охлаждения процессора

Alphacool Eisbaer 420

Материнская платаASUS ROG Strix X299-E Gaming
Оперативная памятьCorsair  Vengeance LPX 4х4Гб 2800 МГц
ВидеокартаASUS ROG Strix RX Vega 64 OC
HDDWD Red 2TB
SSDGeiL Zenith R3 120GB
Блок питанияAerocool HIGGS 850W
КорпусCooler Master MasterCase Maker 5t
Операционная системаWindows 10 Pro

Необходимый набор программного обеспечения

Если говорить про самый простой набор программ, то все сводится к Intel Extreme Tuning Utility,HWInfo и LinX. Как несложно догадаться, Intel Extreme Tuning Utility — программное обеспечение, разработанное самой Intel для максимально простого разгона процессора непосредственно в Windows, а это как раз то, что нам нужно.HWInfo — одна из лучших утилит мониторинга и, несмотря на ее малый размер, она показывает все возможные показатели.LinX — один из самых требовательных тестов стабильности системы, выжимающий абсолютно все из процессора.

Подготовка к разгону и как быстро найти предел

Современные материнские платы делают все возможное для того. что бы сохранять стабильность в любой ситуации и пока мы не догадываемся, они сами подстраиваются под рабочий режим. Для начала разгона расставим все по своим местам, Intel XTU с одной стороны экрана, а HWInfo — с другой, это позволит нам наблюдать за самыми интересными для нас параметрами, а именно: максимальный вольтаж, подаваемый на каждое ядро и температура каждого отдельного ядра. После расстановки приложений мы смело можем начать разгонять процессор. В Intel XTU в вкладке Basic Tuning стоит поднимать Processor Core Ratio на одну ступень, а после этого применять настройки нажатием на клавишу Apply. Это действие установит повышенный множитель и этим самым поднимет частоту процессора. После установки повышенного множителя стоит пройти бенчмарк нажатием на клавишу Run Benchmark. В случае успешного прохождения бенчмарка стоит обратить внимание на максимальный вольтаж(вольтаж стоит запомнить) на ядрах и максимальные их температуры, а эта информация, напомню, доступна в HWInfo. После ознакомления с информацией снова поднимаем множитель и повторяем все процедуры до тех пор, пока, в итоге, компьютер не выключится аварийно или не «зависнет» окончательно(в таком случае для отключения нужно зажать клавишу выключения на 5-10 секунд для отключения).Так, к примеру, базовый множитель Intel Core i7 — 7740X — 45, то есть максимальная его частота может достигать 4500 мегагерц. Несложными манипуляциями мы подняли множитель до 49 и соответственно частоту до 4900 МГц. Предел ли это? — Нет. Для дальнейшего поиска оптимальной частоты придется заглянуть в BIOS для установки адаптивного режима питания процессора. Далее установить вольтаж выше максимально полученного во время предыдущего тестирования. Так, к примеру, максимальный вольтаж  в полностью автоматическом режиме составил 1.257V, ставим значение немного выше, в моем случае, — это 1.260V и лимит надбавки к этому напряжению 0.050V. На этом этапе нужно быть максимально внимательным. Масимально допустимое напряжение, которое я могу рекомендовать, — это 1.350V, дальнейшее поднятие напряжения может быть опасно для вашего процессора. Хотя, если покопаться в документации к процессорам, то для Skylake, Kaby Lake, Coffee Lake максимально допустимый вольтаж аж 1.520V, но постоянная эксплуатация процессора при таком вольтаже, наверняка, не допустима.После успешной загрузки системы стоит еще попробовать поднять множитель и провести бенчмарк, если система его не проходит, стоит вернуться в BIOS и снова добавить напряжение, но не стоит его слишком накручивать, а держать максимальный ориентир на 1.350V. К примеру, наш образец Intel Core i7 — 7740X стабильно держит частоту 5 ГГц на 1.360V.Проверка стабильности системы — важный этап и для начала стоит пройти 5 минутный стресс-тест в Intel XTU и наблюдать за температурами в HWInfo, которые не должны превышать ∼95°С. Хотя при превышении допустимой температуры процессор сам сбросит частоты. Наша задача найти максимальную частоту и при этом найти для нее минимальный вольтаж — это позволит снизить температуру. В случае, если ваш процессор во время прохождения бенчмарка покоряет высокие частоты, но во время стресс-теста в Intel XTU сильно нагревается и сбрасывает частоты, то стоит снизить множитель, а вместе с этим и вольтаж.

Следующий тест на стабильность это LinX и к нему нужно относится с уважением, но не использовать его в качестве референса для проверки стабильности, а тем более, как средство определения максимальной температуры процессора под нагрузкой. Причина проста: во время стресс теста используется пакет Intel Linpack, активно использующий AVX-инструкции и создающий пиковую нагрузку на оборудование, которая не развивается даже во время монтажа сложнейших видео и 3D-проектов. По этой причине LinX остается лучшим стресс-тестом для оборудования, но он покажет нагрузку, которая никогда в работе не достигается, соответственно, во время его прохождения возможен тротлинг, который при обычной нагрузке не достигается.После успешного прохождения всех тестов стоит выставить найденные оптимальные параметры в BIOS, а это множитель и оптимальный вольтаж.

Пример разгона Intel Core i7 — 7740X

Как видно из текста выше, наш экземпляр процессора взял стабильную частоту 5 ГГц при вольтаже 1.360V, что, впрочем, не удивительно, по сути, — это тот же хорошо знакомый нам Intel Core i7 -7700K, только с заблокированным видео-ядром и выполненный в упаковке под сокет LGA2066. И это только в плюс, материнские платы для LGA2066, как правило, получили более надежные и точные системы питания.Рост производительности оценим в реальной рабочей задаче рендере в Adobe Premiere Pro небольшого видео в FullHD 30 кадров/c в кодеке H.264. Время рендера указанно в секундах и разогнанный Intel Core i7 — 7740X справился на 7% быстрее.

Пример разгона Intel Core i7 — 7820X

Intel Core i7 — 7820X — это 8 ядер и 16 потоков, и достаточно высокая, как для HEDT-платформы частота в Turbo Boost 4.3 ГГц, а вместе с этим и значительное тепловыделение — 140 Ватт. При разгоне HEDT-процессоров стоит помнить одно — даже малейшее повышение напряжения может привести к значительному повышению тепловыделения. Наш образец процессора заработал на полностью стабильной частоте 4.7 ГГц при максимальном вольтаже 1.310V на ядро.Говоря о росте производительности при рендере в Adobe Premiere Pro небольшого видео в FullHD 30 кадров/c в кодеке H.264, время рендера указанно в секундах и разогнанный Intel Core i7 — 7820X справился на 8% быстрее.

Возможные ошибки во время разгона

Чаше всего, начинающие энтузиасты компьютерного железа повторяют одни и те же ошибки и мы решили сразу о низ рассказать:

Мешает ли пластичный термоинтерфейс под крышкой процессора разгону?

Вопрос, на самом деле, сложный, но ответ на него есть. Для справки, ранее в процессорах Intel использовался металлический термоинтерфейс под крышкой процессора, но, начиная с третьего поколения Intel Core, а так же процессоры Intel Core X, с этого года комплектуются пластичным термоинтерфейсом(если проще, то термопастой) под крышкой. Как известно, у любой термопасты теплопроводность ниже, чем у металлического термоинтерфейса и во время разгона процессор, естественно, может упираться в то, что термоинтерфейс не способен отвести такое количество тепла. В новых поколениях процессоров, как вы видите, разгон актуален и процессоры покоряют частоты значительно выше номинальных, другой вопрос, что будет, если заменить термоинтерфейс на более эффективный? Исходя из тестов моих коллег, замена термоинтерфейса, которая стопроцентно приводит к потере гарантии, позволяет добиться дополнительных 100-200 МГц и то не всегда. Стоит ли это затраченных усилий? Скорее нет, чем да. Тем более, что термоинтерфейс Intel рассчитан для оптимальной эксплуатации процессора долгие годы и не ухудшает своих свойств со временем.

Выводы

Разгон сейчас стал предельно простым и для него потребуется минимальный багаж знаний, основу которых мы постарались изложить в этой статье. Если у вас остались вопросы, обязательно задавайте их в комментариях. В следующих публикациях мы оценим эффективность разгона в различных сценариях использования, а после поговорим про спортивную составляющую оверклокинга. Чтобы не пропустить интересные новости и анонсы подписывайся на нашу группу Вконтакте и наш Instagram.

Вконтакте

Facebook

Twitter

Одноклассники

Google+

najdidevice.ru

Разгон процессора - Online

В основе разгона лежит то, что каждая материнская плата рассчитана на несколько моделей процессоров. Соответственно мы ее можем обмануть, подсунув одну модель вместо другой и выжать из процессора еще на 20-50% больше производительности.

Для разгона процессора необходимо задать более высокую частоту FSB (частота системной шины) или повысить коэффициент умножения внутренней частоты процессора, если он разблокирован. Это делается либо джамперами, либо с помощью SoftMenu. Чтобы разогнанный процессор работал стабильно, требуются усиленное охлаждение и, как крайняя мера – повышенное напряжение питания ядра, памяти, AGP и других компонентов системы. Важно помнить, что высокая тактовая частота сама по себе не приводит к выходу разогнанного процессора из строя. Это происходит прежде всего из-за повышенного напряжения питания (что справедливо не только для процессора), а также вследствие продолжительной работы в экстремальном температурном режиме, обусловленном нестандартной тактовой частотой.

Необходимо также отметить, что значение тактовой частоты имеет большее значение для скорости работы процессора и всей системы в целом, нежели значение коэффициента умножения. При изменении FSB может меняться также частота шин PCI и AGP, что иногда приводит к нестабильной работе плат расширения (например, звуковой платы и видеокарты). Некоторые модели материнских плат позволяют сохранить частоту PCI и AGP в пределах нормы при повышении частоты FSB, и именно они лучше всего подходят для разгона. Другой момент, связанный с повышением частоты FSB, – изменение частоты, на которой работают модули оперативной памяти, что также может привести к нестабильной работе системы. И если даже предусмотрена возможность снижения частоты памяти с помощью соответствующего делителя, это не имеет особого смысла, так как при более медленной памяти разгон процессора теряет смысл. Наконец, требуется хороший кулер, который обеспечит адекватное охлаждение разогнанного процессора и убережет уши пользователя в штатном режиме работы, подобно тому как это делает Thermaltake Volcano 7+, оснащенный «коробкой передач».

В настоящее время большинство материнских плат дают возможность менять параметры работы процессора и других компонентов системы через BIOS. На сегодняшний день лучшими платами для разгона являются те, что базируются на чипсете Intel i845PE и VIA KT400, так как они поддерживают самые скоростные типы памяти. Наиболее удачные платы с точки зрения разгона выпускают компании ABIT, ASUS и EPoX, но и другие производители изо всех сил стремятся облегчить жизнь любителям разгона.

Самое главное для успешного разгона – это информация. Менять что-то наобум бессмысленно, для начала соберите все возможные сведения о том, с чем вам придётся работать. Достаньте запылённый мануал к материнской плате, узнайте её возможности. Неплохо перед разгоном обновить BIOS и убедиться, что материнская плата работает по-прежнему стабильно. Найдите в Интернет базу данных по статистике разгонов, узнайте теоретические возможности вашего процессора. Посетите специализированные сайты, посвященные вопросам разгона, там можно найти много полезной информации . Перед тем как начать оверклокинг переведите систему в максимально щадящий режим работы. В BIOS можно загрузить Fail Safe Options. Уберите разгон с видеокарты и памяти, если он был. На память установите максимально медленные тайминги, чтобы ничего не мешало разгону процессора. Позаботьтесь об охлаждении: свежая термопаста или дополнительный вентилятор лишними не будут.

Есть два противоположных подхода к оверклокингу процессора: разгон от максимума и от минимума, причём второй безопаснее, но первый быстрее. В первом случае вы, узнав теоретический предел разгона вашего процессора, сразу выставляете максимально разумное напряжение и частоту шины. Проверяете работоспособность и если всё стабильно работает (что маловероятно), то увеличиваете частоту, а если нет, то уменьшаете до тех пор, пока система не начнёт работать нормально. Этот вариант разгона относительно быстр и позволяет добиться максимально возможной для вашей системы частоты. Минус в том, что, не рассчитав, можно легко порушить операционную систему, даже спалить материнскую плату, процессор или и то и другое.

Для начинающих проще и безопаснее второй вариант, когда постепенно увеличивают частоту, после каждого изменения тестируя на стабильность. В этом случае что-то спалить практически невозможно, потому что при первом же сбое вы откатываетесь на несколько позиций назад и получаете в результате надёжно работающую разогнанную систему. Не нужно излишне увлекаться поднятием напряжения, поскольку чрезмерность приводит к перегреву. Зато небольшое поднятие напряжения может прибавить надёжности.

Уже после того, как с процессором вы разобрались, можно повышать общее быстродействие системы. Подстройка параметров BIOS, уменьшение таймингов и увеличение частоты работы памяти могут дать серьёзное улучшение производительности. Единственная рекомендация - не меняйте несколько параметров одновременно. Изменили – проверьте скорость и надёжность, лишь после этого продолжайте. Так вы не будете гадать, из-за чего возникают сбои.

Ещё один очень важный вопрос, чем тестировать разогнанную систему. Существует множество специально для этого предназначенных программ. Принцип действия не всех, но многих: процессор вычисляет какое-то сложное математическое выражение и полученный результат сравнивается с заранее известным. Если они совпадают, то всё в порядке и цикл повторяется снова. Если отличаются, то выдаётся сообщение об ошибке. Также очень распространенный способ – тестировать в играх. Действительно, в игре грузится вся система, и процессор, и видео, и память. Потом тестировать в играх гораздо интереснее, чем смотреть на меняющиеся циферки в какой-нибудь специально для проверки процессоров заточенной программе. Таким образом, если с разогнанным процессором все ваши любимые программы или игры работают без сбоев, значит разгон в пределах нормы. Если же постоянно возникают ошибки, то проще немного снизить частоту, чтобы работать спокойно.

Успешным разгоном можно считать тот, при котором мы получаем более высокую производительность ПК, не используя дорогостоящих систем охлаждения и не повышая напряжение питания CPU и других компонентов системы. Разумеется, стабильность работы системы должна оставаться на том же уровне, что и до разгона.

Для достижения самых высоких результатов обычно приходится повышать напряжение питания ядра, что может закончиться печально, либо применять системы водяного охлаждения или элемента Пельтье для достижения более выдающихся результатов, но стоят они довольно дорого, да и эксперименты с ними обычно проводят лишь энтузиасты ради «спортивного» интереса.

Для процессоров Intel существуют следующие штатные значения FSB: Pentium 4 – 400 или 533 MHz QDR (Quad Data Rate), Celeron 1.7 GHz и старше – 400 MHz QDR.

Перед разгоном процессора Pentium 4 рекомендуется определить версию ядра. Сделать это можно по адресу support.intel.com/support/processors/sspec/p4p.htm. Дело в том, что у младших моделей может быть старое ядро, и отличают их по коду S-Spec или же по напряжению питания. Например, процессор Pentium 4 с тактовой частотой 1.8 GHz делается по той же технологии, что и Pentium 4 2.8 GHz, и несложно догадаться, что запас быстродействия у него весьма велик. Во всяком случае, нет причин сомневаться в том, что он сможет работать на частоте FSB 533 MHz, достигнув таким образом 2.40 GHz. На практике же Pentium 4 1.80A GHz в разогнанном состоянии показывает феноменальные результаты, обогоняя даже Pentium 4 3.06 GHz в штатном режиме. В свое время такой же успех имел легендарный Celeron 300A MHz, который на частоте 450 MHz показывал чудеса производительности.

При разгоне со стандартным напряжением питания Pentium 4 2.40B GHz может достигнуть частоты 2,88 GHz, Pentium 4 2.66 GHz – 3 GHz, а Pentium 4 1.80A GHz – 2.7 GHz. Для остальных моделей для подобного разгона потребуется повысить напряжение до 1.6 или 1.7 В. Поднимать напряжение питания ядра 0.13-микронного Pentium 4 выше 1.7 В не стоит, но уже при таком значении процессор вполне может выйти из строя. Связано это, в частности, с тем, что материнские платы, как правило, добавляют напряжение сверх того, что требуется процессором или устанавливается пользователем.

Младшие процессоры Celeron тоже на что-то способны. Если их сильно «напрячь», они почти догонят Pentium 4 1.80A GHz и значительно превзойдут Celeron 2 GHz, что неудивительно, ведь Celeron Tualatin – это старый добрый Pentium III с частотой FSB 100 MHz. Разгон данных процессоров дается с большим трудом и чреват повышенным напряжением питания ядра, нестандартными частотами PCI и AGP, необходимостью применения самых качественных модулей памяти и интенсивного охлаждения.

Зато Celeron 2 GHz разгоняется просто великолепно, благодаря 0.13-микронному ядру в отличие от 0.18-микронных моделей Celeron 1.7 GHz и 1.8 GHz. Конечно, разгон до 3 GHz делает Celeron более привлекательным, но не настолько, чтобы предпочесть его процессорам Pentium 4 1.80A GHz или Pentium 4 2A GHz, которые не нуждаются в экстремальном разгоне, чтобы побить Celeron 2 GHz, разогнанный до 3 GHz. Разгон процессора Celeron поможет продлить жизнь старой системе, но если думать о радикальном повышении быстродействия, тогда придется «пересесть» на более перспективную машину на базе Pentium 4.

Для процессоров Duron штатная частота FSB составляет 200 MHz, для Athlon XP – 266 или 333 MHz DDR (Double Data Rate). Процессоры AMD Ahtlon XP (равно как и остальные современные процессоры для настольных ПК) поставляются с заблокированным коэффициентом умножения. Коэффициент фиксируется с целью ограничить полет фантазии оверклокеров и, тем самым, уберечь чипы от насильственной смерти. Впрочем блокировку Athlon XP несложно обойти – для этого достаточно замкнуть «волшебные» мостики процессора с помощью карандаша, проводящей пасты или любым другим способом. Проделав эту нехитрую операцию, любой желающий получает возможность менять коэффициент умножения процессора из BIOS'а материнской платы...

Процессоры Athlon XP более чувствительны к напряжению питания, поэтому лучше его сильно не увеличивать (штатное напряжение 1.65 В) либо вообще не трогать, но тогда большого разгона не добиться. Также придется всерьез подумать об усиленном охлаждении и использовать кулеры с большой скоростью вентилятора, что однако приводит к увеличению шума.

К несчастью для AMD, проблемы, возникшие с внедрением 0.13 мкм техпроцесса, не позволяют пока наращивать частоты Athlon XP с той же скоростью, с какой растут частоты Pentium 4. В этой ситуации наиболее целесообразный способ наращивания производительности это увеличении частоты системной шины. Отличить же новые Athlon XP от старых 0.18-микронных можно по кристаллу меньшего размера, имеющему продолговатую форму, и по наклейке, где указана модель (раньше эти данные наносились на кристалл).

При разгоне Athlon XP с тактовой частотой 1.74 GHz и частотами FSB/памяти 166/166 MHz оказывается быстрее в игровых приложениях, чем Athlon XP 1.8 GHz в режиме 133/200 MHz. Но и здесь есть свои нюансы: далеко не все материнские платы с поддержкой шины FSB 333 MHz позволяют произвольно менять частоту с 100 или 133 MHz до 166 MHz и выше, сохраняя в норме частоты PCI и AGP. Другой момент – нестабильная работа материнских плат на частотах FSB и памяти свыше 166 MHz (333 MHz DDR). Таким образом, «играть» с частотами FSB и памяти следует весьма осторожно. И во многих случаях единственным способом разгона разблокированного Athlon XP окажется повышение коэффициента умножения при неизменных частотах FSB и памяти.

С разгоном Athlon XP возни гораздо больше, и выигрыш не столь велик, как с младшими Pentium 4. Но получить от процессора стоимостью $65-70 производительность уровня Pentium 4 2.40B или Athlon XP 2400+ – такое возможно только с Athlon XP.

Повышение частоты FSB дает свои результаты и для Duron, но хороший результат возможен лишь в том случае, если Duron установлен в материнскую плату c поддержкой скоростной памяти DDR, что встречается нечасто.

Предупреждаем: для разгона необходимы навыки работы с компьютерным «железом», а кроме того, элементарное человеческое везение, ведь процессоры имеют различный запас быстродействия и, что даже более важно, различный запас прочности. Использование процессора за пределами его возможностей – на более высокой частоте или, что еще хуже, при повышенном напряжении питания, может привести к его преждевременной «смерти». Публикуя эту статью, мы не ставим своей целью вынуждать вас выжимать максимум из вашего процессора, а лишь говорим о теоретической и практической стороне этого весьма «азартного» мероприятия, и пытаемся предостеречь от возможных ошибок и опасностей. Решение о разгоне должно быть исключительно вашим собственным и тщательно обдуманным решением. Мы не несем никакой ответственности за возможно испорченные материнские платы и сгоревшие процессоры. И вообще… самый первый и лучший способ разгона – не заниматься им вообще, а сразу купить процессор с требуемым быстродействием.

sites.google.com


Смотрите также