www.ronl.ru

Курсовая работа - Пространство и время как философские категории

www.ronl.ru

Пространство и время как философские категории

Количество просмотров публикации Пространство и время как философские категории - 557

 

1) объективистская концепция

2) субъективистская

1) субстанциональная концепция

2) реляционная концепция

Аристотель˸ пространство и время с одной позиции это объект, но с другой позиции время – это число движений. Т.е. время без движения не существует и наоборот. Число не может существовать без считающего, т.е. время независимо от души не может существовать

Объективистская концепция. Получает развитие в философии нового времени. Ньютон˸ пространство и время – это характеристики самих вещей.

Субъективистская концепция. Не согласен Беркли, Кант, которые предлагали, что пространство и время – это не свойство самих вещей, не их объективная характеристика, а сугубо личные наши представления об окружающем нас мире. Мы с помощью пространства и времени и казуальности сами упорядочиваем свои переживания, ощущения.

Субстанциональная концепция. Пространство и время отделяются от вещей реального мира и превращаются в отдельные независимые друг от друга и независимые от материи субстанции. Пустота получает статус существования наряду с атомами. Ньютон в натурфилософии˸ пространство и время превращаются в абсолютные параметры существования мира. Пространство – бесконечный сундук, который отличается от обычного тем, что не имеет стенок, но похож тем, что если из него все убрать, он сам не исчезнет. Пространство обладает самостоятельным существованием по отношению к отдельным вещам. Если все вещи убрать, оно сохранит свою субстанциональность, оно одинаково везде и всюду.

Реляционная концепция. Пространство и время – формы существования самих вещей, это порядок существования всех вещей. Аристотель. Философия нового времени. Декарт отрицал существование пустоты, пространство везде заполнено. Пространство – протяженность, это атрибут протяженной материи. Лейбниц˸ пространство и время – суть формы существования вещей, пространство выражает порядок одновременного сосуществования вещей друг с другом. Время – порядок последовательного существования вещей друг с другом или одной вещи. Пространство и время – атрибутивные характеристики мира, всех вещей. Пространство и время выражают отношение существования между вещами, которое невозможно без своего носителя (они связаны˸ ʼʼреляциоʼʼ - связь).

Теория относительности доказала единство материи, пространства и времени. Абсолютен пространственно-временной континуум по частной теории относительности. Общая теория относительности доказала и ᴇᴦο относительность, т.е. пространство и время не самостоятельные субстанции.

Читайте также

  • - ПРОСТРАНСТВО И ВРЕМЯ КАК ФИЛОСОФСКИЕ КАТЕГОРИИ

    На уровне повседневного сознания бросается в глаза факт текучести времени: от прошлого к настоящему и от настоящего к будущему. Не­которым представляется, что можно также "убить время", заявляют, что "время - это деньги" и т.п. Конечно, внимание заслуживают разные... [читать подробнее].

  • - Пространство и время как философские категории.

    В истории философии сложилось два подхода в понимании пространства и времени. 1) Субстанциальная концепция 2) Реляционная концепция Сторонники субстанциальной концепции считают, что пространство и время – это две независимые друг от друга, особого рода субстанции,... [читать подробнее].

  • - Пространство и время как философские категории (субстанциальный и реляционные подходы)

    (она большая лучше почитайте и сократите, как вам будет удобней) Современное понимание пространства и времени сложилось в итоге длительного исторического процесса познания, содержанием которого, в частности, была борьба субстанционального и реляционного подходов к... [читать подробнее].

  • - Пространство и время как философские категории

    Пространство и время – атрибуты движения материи, в этом смысле - основные формы ее существования. Движение – атрибут бытия вообще (не только бытия материи). Если взять французских материалистов, еще Дени Дидро писал, что материи присуще движение в пространстве и времени.... [читать подробнее].

  • - Пространство и время как философские категории

    Пространство – обычно протяженность, время – длительность. Пространство и время обладают своими свойствами. Пространство обладает трехмерностью (положение любого объекта в пространстве может быть определено с помощью трех независимых величин), оно симметрично, т.е. нет... [читать подробнее].

  • referatwork.ru

    Научная работа - Пространство и время как философские категории

    www.ronl.ru

    Пространство и время как философские категории

    www.coolreferat.com

    Книга - Пространство и время как философские категории

    www.ronl.ru

    Шпаргалка - Пространство и время как философские категории

    www.ronl.ru

     

    Начальная

    Windows Commander

    Far
    WinNavigator
    Frigate
    Norton Commander
    WinNC
    Dos Navigator
    Servant Salamander
    Turbo Browser

    Winamp, Skins, Plugins
    Необходимые Утилиты
    Текстовые редакторы
    Юмор

    File managers and best utilites

    Научная работа: Пространство и время как философские категории. Пространство и время как философские категории реферат


    Статья - Пространство и время как философские категории

    Само по себе четырехмерное представление движения частицы может быть легко усвоено, оно кажется почти очевидным и, в сущности привычным. Всем известно, что реальные события определяются четырьмя числами: тремя пространственными координатами и временем, прошедшим до события с начала летосчисления, или с начала года, или от начала суток. Будем откладывать на листе бумаги по горизонтальной прямой место какого-либо события — расстояние этого места от начального пункта, например расстояние до точки, достигнутой поездом, от станции отправления. По вертикальной оси отложим время, когда поезд достиг этой точки, измеряя его с начала суток или с момента выхода поезда со станции отправления. Тогда мы получим график движения поезда в двумерном пространстве, на географической карте, лежащей на столе, а время показывать вертикалями над картой. Тогда мы не обойдемся чертежом, понадобится трехмерная модель, например проволока, укрепленная над картой. Она будет трехмерным графиком движения: высота проволоки в каждой точке над лежащей картой будет изображать время, а на самой карте проекция проволоки изобразит движение поезда по местности. Изобразим теперь не только перемещение поезда на плоскости, но и его подъемы и спуски, т.е. его движение в трехмерном пространстве. Тогда вертикали уже не могут изобразить время, они будут означать высоту поезда над уровнем моря. Где е откладывать время — четвертое измерение? Четырехмерный график нельзя построить и даже нельзя представить себе. Но математика уже давно умеет находить подобные геометрические величины, пользуясь аналитическим методом, производя вычисления. В формулы и вычисления наряду с тремя пространственными измерениями можно ввести четвертое — время и, отказавшись от наглядности, создать таким образом четырехмерную геометрию.

    Если бы существовала мгновенная передача импульсов и вообще сигналов, то мы могли бы говорить о двух событиях, происшедших одновременно, т.е. отличающихся только пространственными координатами. Связь между событиями была бы физическим прообразом чисто пространственных трехмерных геометрических соотношений. Но Эйнштейн в 1905 г. отказался от понятий абсолютной одновременности и абсолютного, независимого от течения времени. Теория Эйнштейна исходит из ограниченности и относительности трехмерного, чисто пространственного представления о мире и вводит более точное пространственно-временное представление. С точки зрения теории относительности в картине мира должны фигурировать четыре координаты и ей должна соответствовать четырехмерная геометрия.

    В 1908 г. Миньковский представил теорию относительности в форме четырехмерной геометрии. Он назвал пребывание частицы в точке, определенной четырьмя координатами, «событием», так как под событием в механике следует понимать нечто определенное в пространстве и во времени — пребывание частицы в определенной пространственной точке в определенный момент. Далее он назвал совокупность событий — пространственно-временное многообразие -«миром», так как действительный мир развертывается в пространстве и во времени. Линию, изображающую движение частицы, т.е. четырехмерную линию, каждая точка которой определяется четырьмя координатами, Миньковский назвал «мировой линией».

    Длина отрезка «мировой линии» инвариантна при переходе от одной системы отсчета к другой, прямолинейно и равномерно движущейся по отношению к первой. В этом и состоит исходное утверждение теории относительности, из него можно получить все ее соотношения.

    Следует подчеркнуть, что геометрические соотношения, с помощью которых Миньковский изложил теорию относительности, подчиняются Евклидовой геометрии. Мы можем получить соотношения теории относительности, предположив, что четырехмерное «расстояние» выражается таким же образом через четыре разности — три разности пространственных координат и время, прошедшее между событиями, — как и трехмерное расстояние выражается в евклидовой геометрии через разности пространственных координат. Для этого, как уже говорилось, необходимо только выразить время в особых единицах. Длина отрезка мировой линии определяется по правилам евклидовой геометрии, только не трехмерной, а четырехмерной. Ее квадрат равен сумме четырех квадратов приращений пространственных координат и времени. Иными словами, это — геометрическая сумма приращений четырех координат, из которых три — пространственные, а четвертая — время, измеренное особыми единицами. Мы можем назвать теорию относительности учением об инвариантах четырехмерной евклидовой геометрии. Поскольку время измеряется особыми единицами, то говорят о псевдоевклидовой четырехмерной геометрии.

    Однородность пространства выражается в сохранении импульса, а однородность времени — в сохранении энергии. Можно ожидать, что в четырехмерной формулировке закон сохранении импульса и закон сохранения энергии сливаются в один закон сохранения энергии и импульса. Действительно, в теории относительности фигурирует такой объединенный закон импульса.

    Однородность пространства-времени означает, что в природе нет выделенных пространственно-временных мировых точек. Нет события, которое было бы абсолютным началом четырехмерной, пространственно-временной системы отсчета. В свете идей, изложенных Эйнштейном в 1905 г., четырехмерное расстояние между мировыми точками, т.е. пространственно-временной интервал не будет меняться при совместном переносе этих точек вдоль мировой линии. Это значит, что пространственно-временная связь двух событий не зависит от того, какая мировая точка выбрана в качестве начала отсчета, и что любая мировая точка может играть роль подобного начала.

    Однородность пространства стала исходной идеей науки после того, как Галилей и Декарт, сформулировав принцип инерции и принцип сохранения импульса, показали, что в мировом пространстве нет выделенной точки — начала привилегированной системы отсчета, что расстояния между телами и их взаимодействия не зависят от движения состоящей из этих тел материальной системы. Однородность времени стала исходной идеей науки после того, как физика XIX века, сформулировав принцип сохранения энергии, показала независимость процессов природы от их смещения во времени и отсутствие абсолютного начала отсчета времени. Теперь исходной идеей науки становится однородность пространства-времени.

    Разделение на пространство и время не имеет смысла. Пространство и время в специальной теории относительности трактуется с точки зрения реляционной концепции. Однако когда Эйнштейн попытался расширить концепцию относительности на класс явлений, происходящих в неинерциальных системах отсчёта, это привело к созданию новой теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект. Новая теория — общая теория относительности – строилась путём построения обобщённого пространства — времени и перехода от теоретической структуры исходной теории — специальной теории относительности — к теоретической структуре новой, обобщённой теории с последующей её эмпирической интерпретацией. Далее мы рассмотрим представление о пространстве и времени в свете общей теории относительности.

    Пространство и время в общей теории относительности и в релятивистской космологии.

    В общей теории относительности были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Эта теория подвела физические основания под неевклидовы геометрии и связала кривизну пространства, и отступление его метрики от евклидовой с действием гравитационных полей, создаваемых массами тел. Общая теория относительности исходит из принципа эквивалентности инерционной и гравитационной масс, количественное равенство которых давно было установлено в классической физике. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Эйнштейн усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить загадку гравитации. Эйнштейн сформулировал принцип эквивалентности: «физически невозможно отличить действие однородного гравитационного поля и поля, порождённого равноускоренным движением». Принцип эквивалентности помог сформулировать основные принципы, на которых базируется новая теория: гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.

    Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это — модель пространства. Расположим на этом листе большие и маленькие шарики — модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана). Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца — достаточно небольшой звезды по космическим мерка — влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала — при таком же вблизи Солнца составляет около 0,0002 с.

    Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея — Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым. Речь идет о следующем положении специальной теории относительности: "… двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определённой длины, независимо как от положения и ориентации тела, так и от времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определённой величины, независимо от места и времени". Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.

    В работе «Относительность и проблема пространства» Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное «тому, что заполняет пространство» и что зависит от координат. «Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля». Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга, и возникло представление о пространственно-временном четырехмерном континууме.

    Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам. Теория предсказала и объяснила три общелелятивистских эффекта: были предсказаны и вычислены конкретные значения смещения перегелия Меркурия, было предсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий.

    Рассмотрим далее релятивистскую космологию, именно с ней связано дальнейшее развитие пространственно-временных представлений современной физики.

    Классические представления о Вселенной можно охарактеризовать следующим образом: вселенная бесконечна и однородна в пространстве и стационарна во времени. Они являлись одним из следствий механики Ньютона — это абсолютные пространство и время, последнее по своему характеру евклидово. Такая модель казалась очень гармоничной и единственной, на уровне бытового сознания данная модель доминирует и в начале нашего 21-го века.

    Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений (стационарность Вселенной, её однородность и изотропность, евклидовость пространства), чтобы преодолеть противоречия. Однако в рамках классической космологии преодолеть противоречия не удалось.

    Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства — времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологии: общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной.

    Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна ли вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной — это соответствует пространству положительной кривизны.

    Вселенная Эйнштейна представляет собой трёхмерную сферу — замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться. Чтобы устранить это противоречие Эйнштейн ввёл в уравнения теории новый член с помощью которого во вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

    Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра. Оказалось, что скорость разбегания галактик возрастает с расстоянием и подчиняется закону Хаббла V = H*L, где Н — постоянная Хаббла, L — расстояние. В связи с этим встают две важные проблемы: проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние «разбегание галактик» — наглядное обозначение раскрытой космологией нестационарности пространственной метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство.

    Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к моменту времени t=0, когда произошёл так называемый «Большой взрыв», понятие времени до этого момента лишено физического, да и любого другого смысла".

    В релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчёта. Это положение особо чётко отразилось в представлениях о «чёрных дырах». Речь идет об одном из наиболее интересных явлений современной космологии — гравитационном коллапсе. С.Хокинс и Дж. Эллис отмечают: «Расширение Вселенной во многих отношениях подобно коллапсу звезды, если не считать того, что направление времени при расширении обратное».

    Как «начало» Вселенной, так и процессы в «чёрных дырах» связаны со сверхплотным состоянием материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда. Независимо от того, в каком состоянии космический объект пересёк соответствующую сферу Шварцшильда, далее он стремительно переходит в сверхплотное состояние в процессе гравитационного коллапса. После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство — время: образуется «чёрная дыра».

    Между черной дырой и наблюдателем в обычном мире пролегает бесконечность, т. к. такая звезда находится за бесконечностью во времени. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронной звезды, а вблизи черной дыры, у ее гравитационного радиуса, оно столь велико, что время там как бы замирает. Для тела, попадающего в поле тяготения черной дыры, образованной массой, равной 3 массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса занимает всего около часа. Но по часам, которые покоятся вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело к гравитационному радиусу, тем более медленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигает его. В этом проявляется замедление времени вблизи черной дыры.

    Таким образом, оказалось, что пространство — время в общей теории относительности содержит сингулярности, наличие которых заставляет пересмотреть концепцию пространственно — временного континуума как некоего дифференцируемого «гладкого» многообразия. Возникает проблема, связанная с представлением о конечной стадии гравитационного коллапса, когда вся масса звезды спрессовывается в точку ( r -> 0 ), когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает обоснованное сомнение. Некоторые ученные считают, что в заключительной стадии гравитационного коллапса вообще не существует пространства — времени. С. Хокинг пишет: «Сингулярность — это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства — времени. Этих представлений придерживаются большинство современных физиков.

    На заключительных стадиях гравитационного коллапса вблизи следует принимать во внимание квантовые эффекты. Представляется, что они играют на этом уровне доминирующую роль и могут вообще не допускать сингулярности. Предполагается, что в этой области происходят субмикроскопические флуктуации материи, которые и составляют основу глубокого микромира.

    Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

    Пространство и время на уровне микромира.

    В квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственно – временных представлений классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

    Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно — временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня:

    1. уровень молекулярно — атомных явлений,

    2. уровень релятивистских квантовоэлектродинамических процессов,

    3. уровень элементарных частиц,

    4. уровень ультрамалых масштабов, где пространственно — временные отношения оказываются несколько иными, чем в физике макромира.

    В этой области по-иному следует понимать природу пустоты — вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают как особый вид материи — как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая „пустота“ — это одно из состояний материи.

    На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь иные пространственно — временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого. Ещё более радикальных изменений пространственно — временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. Поэтому на повестку дня встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе — с гипотезой о возможной макроскопической природе пространства и времени.

    Рассмотрим более подробно эти направления.

    Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона — частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д. ).

    Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно — временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д. ). Эти трудности учёные пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает выход из неопределённости бесконечности, так как содержит фундаментальную длину — основу атомистического пространства.

    В физике микромира широкое развитие получило также направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения, что понятие локального взаимодействия лишено смысла. Второй основан на отрицании понятия точечной координаты пространства — времени, что приводит к теории квантового пространства — времени. Протяжённая элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного.

    Отказ от представлений о точечности взаимодействия влечёт за собой изменение наших представлений о структуре пространства — времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения „раньше“ и „позже“. В области нелокального взаимодействия события связаны в некий „комок“, в котором они взаимно обуславливают друг друга, но не следуют одно за другим.

    Таково принципиальное положение дел, сложившееся в представление о пространстве – времени на микроуровне, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства — времени на области „малые“, где причинность нарушена, и большие, где она выполнена, невозможно без появления в теории новой константы размерности длины — элементарной длины. С этим „атомом“ пространства связан и элементарный момент времени (хронон), и именно в соответствующей им пространственно — временной области протекает сам процесс взаимодействия частиц. Теория дискретного пространства — времени продолжает развиваться. Открытым остаётся вопрос о внутренней структуре „атомов“ пространства и роли (наличии) времени и пространства в них.

    ЗАКЛЮЧЕНИЕ

    Проблема времени и пространства всегда интересовала человека не только в рациональном, но и на эмоциональном уровне. Люди не только сожалеют о прошлом, но и боятся будущего, не в последнюю очередь потому, что неотвратимый поток времени влечет к их смерти. Человечество в лице своих выдающихся деятелей на протяжении всей своей сознательной истории задумалось над проблемами пространства и времени, немногим из них удалось создать свои теории, описывающие данные фундаментальные атрибуты бытия. Пространство и время лежат в основе нашей картины мира.

    Прошлый век — век бурного развития науки был наиболее плодотворным в плане познания времени и пространства. Появление в начале века сначала специальной, а потом и общей теории относительности заложило основу современного научного представления о мире, многие положения теории были подтверждены опытными данными. Тем не менее, как показывает, в том числе и эта работа, вопрос познания пространства и времени, их природы, взаимосвязи и даже наличия во многом остается открытым. Представляется уместным привести высказывание основоположника современного представления о пространстве и времени А. Эйнштейна, – «пространство и время являются способом, которым мы мыслим, а не условиями, в которых мы живем», в котором во многом отразилась противоречивость и нерешенность проблемы.

    ЛИТЕРАТУРА.

    1. Аскин Я. Проблема времени. Её физическое истолкование. — М., 1986 г.

    2. Ахундов М. Концепции пространства и времени: истоки, эволюция, перспективы. — М., 1982 г.

    3. Ахундов М. Пространство и время в физическом познании. — М., 1982 г.

    4. Еремеева А. Астрономическая картина мира и ее творцы. — М., 1984 г.

    5. Рейхенбах Г. Философия пространства и времени. — М., 1985 г.

    6. Эйнштейн А. Собрание научных трудов в четырёх томах. Том I. Работы по теории относительности 1905-1920. — М., 1965 г.

    7. Эйнштейн А., Инфельд Л. Эволюция физики. — М., 1967 г.

    [1] Еремеева А. И. Астрономическая картина мира и ее творцы. — М.: Наука, 1984. С. 157

    [2] Эйнштейн А., Инфельд Л. Эволюйия физики. -С. 130.

    [3] Там же. — С. 126.

    [4] Рейхенбах Г. Философия пространства и времени. — М.: Наука, 1985. С. 225.

    Само по себе четырехмерное представление движения частицы может быть легко усвоено, оно кажется почти очевидным и, в сущности привычным. Всем известно, что реальные события определяются четырьмя числами: тремя пространственными координатами и временем, прошедшим до события с начала летосчисления, или с начала года, или от начала суток. Будем откладывать на листе бумаги по горизонтальной прямой место какого-либо события — расстояние этого места от начального пункта, например расстояние до точки, достигнутой поездом, от станции отправления. По вертикальной оси отложим время, когда поезд достиг этой точки, измеряя его с начала суток или с момента выхода поезда со станции отправления. Тогда мы получим график движения поезда в двумерном пространстве, на географической карте, лежащей на столе, а время показывать вертикалями над картой. Тогда мы не обойдемся чертежом, понадобится трехмерная модель, например проволока, укрепленная над картой. Она будет трехмерным графиком движения: высота проволоки в каждой точке над лежащей картой будет изображать время, а на самой карте проекция проволоки изобразит движение поезда по местности. Изобразим теперь не только перемещение поезда на плоскости, но и его подъемы и спуски, т.е. его движение в трехмерном пространстве. Тогда вертикали уже не могут изобразить время, они будут означать высоту поезда над уровнем моря. Где е откладывать время — четвертое измерение? Четырехмерный график нельзя построить и даже нельзя представить себе. Но математика уже давно умеет находить подобные геометрические величины, пользуясь аналитическим методом, производя вычисления. В формулы и вычисления наряду с тремя пространственными измерениями можно ввести четвертое — время и, отказавшись от наглядности, создать таким образом четырехмерную геометрию.

    Если бы существовала мгновенная передача импульсов и вообще сигналов, то мы могли бы говорить о двух событиях, происшедших одновременно, т.е. отличающихся только пространственными координатами. Связь между событиями была бы физическим прообразом чисто пространственных трехмерных геометрических соотношений. Но Эйнштейн в 1905 г. отказался от понятий абсолютной одновременности и абсолютного, независимого от течения времени. Теория Эйнштейна исходит из ограниченности и относительности трехмерного, чисто пространственного представления о мире и вводит более точное пространственно-временное представление. С точки зрения теории относительности в картине мира должны фигурировать четыре координаты и ей должна соответствовать четырехмерная геометрия.

    В 1908 г. Миньковский представил теорию относительности в форме четырехмерной геометрии. Он назвал пребывание частицы в точке, определенной четырьмя координатами, «событием», так как под событием в механике следует понимать нечто определенное в пространстве и во времени — пребывание частицы в определенной пространственной точке в определенный момент. Далее он назвал совокупность событий — пространственно-временное многообразие -«миром», так как действительный мир развертывается в пространстве и во времени. Линию, изображающую движение частицы, т.е. четырехмерную линию, каждая точка которой определяется четырьмя координатами, Миньковский назвал «мировой линией».

    Длина отрезка «мировой линии» инвариантна при переходе от одной системы отсчета к другой, прямолинейно и равномерно движущейся по отношению к первой. В этом и состоит исходное утверждение теории относительности, из него можно получить все ее соотношения.

    Следует подчеркнуть, что геометрические соотношения, с помощью которых Миньковский изложил теорию относительности, подчиняются Евклидовой геометрии. Мы можем получить соотношения теории относительности, предположив, что четырехмерное «расстояние» выражается таким же образом через четыре разности — три разности пространственных координат и время, прошедшее между событиями, — как и трехмерное расстояние выражается в евклидовой геометрии через разности пространственных координат. Для этого, как уже говорилось, необходимо только выразить время в особых единицах. Длина отрезка мировой линии определяется по правилам евклидовой геометрии, только не трехмерной, а четырехмерной. Ее квадрат равен сумме четырех квадратов приращений пространственных координат и времени. Иными словами, это — геометрическая сумма приращений четырех координат, из которых три — пространственные, а четвертая — время, измеренное особыми единицами. Мы можем назвать теорию относительности учением об инвариантах четырехмерной евклидовой геометрии. Поскольку время измеряется особыми единицами, то говорят о псевдоевклидовой четырехмерной геометрии.

    Однородность пространства выражается в сохранении импульса, а однородность времени — в сохранении энергии. Можно ожидать, что в четырехмерной формулировке закон сохранении импульса и закон сохранения энергии сливаются в один закон сохранения энергии и импульса. Действительно, в теории относительности фигурирует такой объединенный закон импульса.

    Однородность пространства-времени означает, что в природе нет выделенных пространственно-временных мировых точек. Нет события, которое было бы абсолютным началом четырехмерной, пространственно-временной системы отсчета. В свете идей, изложенных Эйнштейном в 1905 г., четырехмерное расстояние между мировыми точками, т.е. пространственно-временной интервал не будет меняться при совместном переносе этих точек вдоль мировой линии. Это значит, что пространственно-временная связь двух событий не зависит от того, какая мировая точка выбрана в качестве начала отсчета, и что любая мировая точка может играть роль подобного начала.

    Однородность пространства стала исходной идеей науки после того, как Галилей и Декарт, сформулировав принцип инерции и принцип сохранения импульса, показали, что в мировом пространстве нет выделенной точки — начала привилегированной системы отсчета, что расстояния между телами и их взаимодействия не зависят от движения состоящей из этих тел материальной системы. Однородность времени стала исходной идеей науки после того, как физика XIX века, сформулировав принцип сохранения энергии, показала независимость процессов природы от их смещения во времени и отсутствие абсолютного начала отсчета времени. Теперь исходной идеей науки становится однородность пространства-времени.

    Разделение на пространство и время не имеет смысла. Пространство и время в специальной теории относительности трактуется с точки зрения реляционной концепции. Однако когда Эйнштейн попытался расширить концепцию относительности на класс явлений, происходящих в неинерциальных системах отсчёта, это привело к созданию новой теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект. Новая теория — общая теория относительности – строилась путём построения обобщённого пространства — времени и перехода от теоретической структуры исходной теории — специальной теории относительности — к теоретической структуре новой, обобщённой теории с последующей её эмпирической интерпретацией. Далее мы рассмотрим представление о пространстве и времени в свете общей теории относительности.

    Пространство и время в общей теории относительности и в релятивистской космологии.

    В общей теории относительности были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Эта теория подвела физические основания под неевклидовы геометрии и связала кривизну пространства, и отступление его метрики от евклидовой с действием гравитационных полей, создаваемых массами тел. Общая теория относительности исходит из принципа эквивалентности инерционной и гравитационной масс, количественное равенство которых давно было установлено в классической физике. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Эйнштейн усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить загадку гравитации. Эйнштейн сформулировал принцип эквивалентности: «физически невозможно отличить действие однородного гравитационного поля и поля, порождённого равноускоренным движением». Принцип эквивалентности помог сформулировать основные принципы, на которых базируется новая теория: гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.

    Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это — модель пространства. Расположим на этом листе большие и маленькие шарики — модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана). Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца — достаточно небольшой звезды по космическим мерка — влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала — при таком же вблизи Солнца составляет около 0,0002 с.

    Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея — Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым. Речь идет о следующем положении специальной теории относительности: "… двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определённой длины, независимо как от положения и ориентации тела, так и от времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определённой величины, независимо от места и времени". Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.

    В работе «Относительность и проблема пространства» Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное «тому, что заполняет пространство» и что зависит от координат. «Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля». Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга, и возникло представление о пространственно-временном четырехмерном континууме.

    Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам. Теория предсказала и объяснила три общелелятивистских эффекта: были предсказаны и вычислены конкретные значения смещения перегелия Меркурия, было предсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий.

    Рассмотрим далее релятивистскую космологию, именно с ней связано дальнейшее развитие пространственно-временных представлений современной физики.

    Классические представления о Вселенной можно охарактеризовать следующим образом: вселенная бесконечна и однородна в пространстве и стационарна во времени. Они являлись одним из следствий механики Ньютона — это абсолютные пространство и время, последнее по своему характеру евклидово. Такая модель казалась очень гармоничной и единственной, на уровне бытового сознания данная модель доминирует и в начале нашего 21-го века.

    Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений (стационарность Вселенной, её однородность и изотропность, евклидовость пространства), чтобы преодолеть противоречия. Однако в рамках классической космологии преодолеть противоречия не удалось.

    Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства — времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологии: общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной.

    Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна ли вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной — это соответствует пространству положительной кривизны.

    Вселенная Эйнштейна представляет собой трёхмерную сферу — замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться. Чтобы устранить это противоречие Эйнштейн ввёл в уравнения теории новый член с помощью которого во вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

    Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра. Оказалось, что скорость разбегания галактик возрастает с расстоянием и подчиняется закону Хаббла V = H*L, где Н — постоянная Хаббла, L — расстояние. В связи с этим встают две важные проблемы: проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние «разбегание галактик» — наглядное обозначение раскрытой космологией нестационарности пространственной метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство.

    Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к моменту времени t=0, когда произошёл так называемый «Большой взрыв», понятие времени до этого момента лишено физического, да и любого другого смысла".

    В релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчёта. Это положение особо чётко отразилось в представлениях о «чёрных дырах». Речь идет об одном из наиболее интересных явлений современной космологии — гравитационном коллапсе. С.Хокинс и Дж. Эллис отмечают: «Расширение Вселенной во многих отношениях подобно коллапсу звезды, если не считать того, что направление времени при расширении обратное».

    Как «начало» Вселенной, так и процессы в «чёрных дырах» связаны со сверхплотным состоянием материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда. Независимо от того, в каком состоянии космический объект пересёк соответствующую сферу Шварцшильда, далее он стремительно переходит в сверхплотное состояние в процессе гравитационного коллапса. После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство — время: образуется «чёрная дыра».

    Между черной дырой и наблюдателем в обычном мире пролегает бесконечность, т. к. такая звезда находится за бесконечностью во времени. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронной звезды, а вблизи черной дыры, у ее гравитационного радиуса, оно столь велико, что время там как бы замирает. Для тела, попадающего в поле тяготения черной дыры, образованной массой, равной 3 массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса занимает всего около часа. Но по часам, которые покоятся вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело к гравитационному радиусу, тем более медленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигает его. В этом проявляется замедление времени вблизи черной дыры.

    Таким образом, оказалось, что пространство — время в общей теории относительности содержит сингулярности, наличие которых заставляет пересмотреть концепцию пространственно — временного континуума как некоего дифференцируемого «гладкого» многообразия. Возникает проблема, связанная с представлением о конечной стадии гравитационного коллапса, когда вся масса звезды спрессовывается в точку ( r -> 0 ), когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает обоснованное сомнение. Некоторые ученные считают, что в заключительной стадии гравитационного коллапса вообще не существует пространства — времени. С. Хокинг пишет: «Сингулярность — это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства — времени. Этих представлений придерживаются большинство современных физиков.

    На заключительных стадиях гравитационного коллапса вблизи следует принимать во внимание квантовые эффекты. Представляется, что они играют на этом уровне доминирующую роль и могут вообще не допускать сингулярности. Предполагается, что в этой области происходят субмикроскопические флуктуации материи, которые и составляют основу глубокого микромира.

    Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

    Пространство и время на уровне микромира.

    В квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственно – временных представлений классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

    Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно — временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня:

    1. уровень молекулярно — атомных явлений,

    2. уровень релятивистских квантовоэлектродинамических процессов,

    3. уровень элементарных частиц,

    4. уровень ультрамалых масштабов, где пространственно — временные отношения оказываются несколько иными, чем в физике макромира.

    В этой области по-иному следует понимать природу пустоты — вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают как особый вид материи — как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая „пустота“ — это одно из состояний материи.

    На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь иные пространственно — временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого. Ещё более радикальных изменений пространственно — временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. Поэтому на повестку дня встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе — с гипотезой о возможной макроскопической природе пространства и времени.

    Рассмотрим более подробно эти направления.

    Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона — частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д. ).

    Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно — временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д. ). Эти трудности учёные пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает выход из неопределённости бесконечности, так как содержит фундаментальную длину — основу атомистического пространства.

    В физике микромира широкое развитие получило также направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения, что понятие локального взаимодействия лишено смысла. Второй основан на отрицании понятия точечной координаты пространства — времени, что приводит к теории квантового пространства — времени. Протяжённая элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного.

    Отказ от представлений о точечности взаимодействия влечёт за собой изменение наших представлений о структуре пространства — времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения „раньше“ и „позже“. В области нелокального взаимодействия события связаны в некий „комок“, в котором они взаимно обуславливают друг друга, но не следуют одно за другим.

    Таково принципиальное положение дел, сложившееся в представление о пространстве – времени на микроуровне, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства — времени на области „малые“, где причинность нарушена, и большие, где она выполнена, невозможно без появления в теории новой константы размерности длины — элементарной длины. С этим „атомом“ пространства связан и элементарный момент времени (хронон), и именно в соответствующей им пространственно — временной области протекает сам процесс взаимодействия частиц. Теория дискретного пространства — времени продолжает развиваться. Открытым остаётся вопрос о внутренней структуре „атомов“ пространства и роли (наличии) времени и пространства в них.

    ЗАКЛЮЧЕНИЕ

    Проблема времени и пространства всегда интересовала человека не только в рациональном, но и на эмоциональном уровне. Люди не только сожалеют о прошлом, но и боятся будущего, не в последнюю очередь потому, что неотвратимый поток времени влечет к их смерти. Человечество в лице своих выдающихся деятелей на протяжении всей своей сознательной истории задумалось над проблемами пространства и времени, немногим из них удалось создать свои теории, описывающие данные фундаментальные атрибуты бытия. Пространство и время лежат в основе нашей картины мира.

    Прошлый век — век бурного развития науки был наиболее плодотворным в плане познания времени и пространства. Появление в начале века сначала специальной, а потом и общей теории относительности заложило основу современного научного представления о мире, многие положения теории были подтверждены опытными данными. Тем не менее, как показывает, в том числе и эта работа, вопрос познания пространства и времени, их природы, взаимосвязи и даже наличия во многом остается открытым. Представляется уместным привести высказывание основоположника современного представления о пространстве и времени А. Эйнштейна, – «пространство и время являются способом, которым мы мыслим, а не условиями, в которых мы живем», в котором во многом отразилась противоречивость и нерешенность проблемы.

    ЛИТЕРАТУРА.

    1. Аскин Я. Проблема времени. Её физическое истолкование. — М., 1986 г.

    2. Ахундов М. Концепции пространства и времени: истоки, эволюция, перспективы. — М., 1982 г.

    3. Ахундов М. Пространство и время в физическом познании. — М., 1982 г.

    4. Еремеева А. Астрономическая картина мира и ее творцы. — М., 1984 г.

    5. Рейхенбах Г. Философия пространства и времени. — М., 1985 г.

    6. Эйнштейн А. Собрание научных трудов в четырёх томах. Том I. Работы по теории относительности 1905-1920. — М., 1965 г.

    7. Эйнштейн А., Инфельд Л. Эволюция физики. — М., 1967 г.

    [1] Еремеева А. И. Астрономическая картина мира и ее творцы. — М.: Наука, 1984. С. 157

    [2] Эйнштейн А., Инфельд Л. Эволюйия физики. -С. 130.

    [3] Там же. — С. 126.

    [4] Рейхенбах Г. Философия пространства и времени. — М.: Наука, 1985. С. 225.

    Само по себе четырехмерное представление движения частицы может быть легко усвоено, оно кажется почти очевидным и, в сущности привычным. Всем известно, что реальные события определяются четырьмя числами: тремя пространственными координатами и временем, прошедшим до события с начала летосчисления, или с начала года, или от начала суток. Будем откладывать на листе бумаги по горизонтальной прямой место какого-либо события — расстояние этого места от начального пункта, например расстояние до точки, достигнутой поездом, от станции отправления. По вертикальной оси отложим время, когда поезд достиг этой точки, измеряя его с начала суток или с момента выхода поезда со станции отправления. Тогда мы получим график движения поезда в двумерном пространстве, на географической карте, лежащей на столе, а время показывать вертикалями над картой. Тогда мы не обойдемся чертежом, понадобится трехмерная модель, например проволока, укрепленная над картой. Она будет трехмерным графиком движения: высота проволоки в каждой точке над лежащей картой будет изображать время, а на самой карте проекция проволоки изобразит движение поезда по местности. Изобразим теперь не только перемещение поезда на плоскости, но и его подъемы и спуски, т.е. его движение в трехмерном пространстве. Тогда вертикали уже не могут изобразить время, они будут означать высоту поезда над уровнем моря. Где е откладывать время — четвертое измерение? Четырехмерный график нельзя построить и даже нельзя представить себе. Но математика уже давно умеет находить подобные геометрические величины, пользуясь аналитическим методом, производя вычисления. В формулы и вычисления наряду с тремя пространственными измерениями можно ввести четвертое — время и, отказавшись от наглядности, создать таким образом четырехмерную геометрию.

    Если бы существовала мгновенная передача импульсов и вообще сигналов, то мы могли бы говорить о двух событиях, происшедших одновременно, т.е. отличающихся только пространственными координатами. Связь между событиями была бы физическим прообразом чисто пространственных трехмерных геометрических соотношений. Но Эйнштейн в 1905 г. отказался от понятий абсолютной одновременности и абсолютного, независимого от течения времени. Теория Эйнштейна исходит из ограниченности и относительности трехмерного, чисто пространственного представления о мире и вводит более точное пространственно-временное представление. С точки зрения теории относительности в картине мира должны фигурировать четыре координаты и ей должна соответствовать четырехмерная геометрия.

    В 1908 г. Миньковский представил теорию относительности в форме четырехмерной геометрии. Он назвал пребывание частицы в точке, определенной четырьмя координатами, «событием», так как под событием в механике следует понимать нечто определенное в пространстве и во времени — пребывание частицы в определенной пространственной точке в определенный момент. Далее он назвал совокупность событий — пространственно-временное многообразие -«миром», так как действительный мир развертывается в пространстве и во времени. Линию, изображающую движение частицы, т.е. четырехмерную линию, каждая точка которой определяется четырьмя координатами, Миньковский назвал «мировой линией».

    Длина отрезка «мировой линии» инвариантна при переходе от одной системы отсчета к другой, прямолинейно и равномерно движущейся по отношению к первой. В этом и состоит исходное утверждение теории относительности, из него можно получить все ее соотношения.

    Следует подчеркнуть, что геометрические соотношения, с помощью которых Миньковский изложил теорию относительности, подчиняются Евклидовой геометрии. Мы можем получить соотношения теории относительности, предположив, что четырехмерное «расстояние» выражается таким же образом через четыре разности — три разности пространственных координат и время, прошедшее между событиями, — как и трехмерное расстояние выражается в евклидовой геометрии через разности пространственных координат. Для этого, как уже говорилось, необходимо только выразить время в особых единицах. Длина отрезка мировой линии определяется по правилам евклидовой геометрии, только не трехмерной, а четырехмерной. Ее квадрат равен сумме четырех квадратов приращений пространственных координат и времени. Иными словами, это — геометрическая сумма приращений четырех координат, из которых три — пространственные, а четвертая — время, измеренное особыми единицами. Мы можем назвать теорию относительности учением об инвариантах четырехмерной евклидовой геометрии. Поскольку время измеряется особыми единицами, то говорят о псевдоевклидовой четырехмерной геометрии.

    Однородность пространства выражается в сохранении импульса, а однородность времени — в сохранении энергии. Можно ожидать, что в четырехмерной формулировке закон сохранении импульса и закон сохранения энергии сливаются в один закон сохранения энергии и импульса. Действительно, в теории относительности фигурирует такой объединенный закон импульса.

    Однородность пространства-времени означает, что в природе нет выделенных пространственно-временных мировых точек. Нет события, которое было бы абсолютным началом четырехмерной, пространственно-временной системы отсчета. В свете идей, изложенных Эйнштейном в 1905 г., четырехмерное расстояние между мировыми точками, т.е. пространственно-временной интервал не будет меняться при совместном переносе этих точек вдоль мировой линии. Это значит, что пространственно-временная связь двух событий не зависит от того, какая мировая точка выбрана в качестве начала отсчета, и что любая мировая точка может играть роль подобного начала.

    Однородность пространства стала исходной идеей науки после того, как Галилей и Декарт, сформулировав принцип инерции и принцип сохранения импульса, показали, что в мировом пространстве нет выделенной точки — начала привилегированной системы отсчета, что расстояния между телами и их взаимодействия не зависят от движения состоящей из этих тел материальной системы. Однородность времени стала исходной идеей науки после того, как физика XIX века, сформулировав принцип сохранения энергии, показала независимость процессов природы от их смещения во времени и отсутствие абсолютного начала отсчета времени. Теперь исходной идеей науки становится однородность пространства-времени.

    Разделение на пространство и время не имеет смысла. Пространство и время в специальной теории относительности трактуется с точки зрения реляционной концепции. Однако когда Эйнштейн попытался расширить концепцию относительности на класс явлений, происходящих в неинерциальных системах отсчёта, это привело к созданию новой теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект. Новая теория — общая теория относительности – строилась путём построения обобщённого пространства — времени и перехода от теоретической структуры исходной теории — специальной теории относительности — к теоретической структуре новой, обобщённой теории с последующей её эмпирической интерпретацией. Далее мы рассмотрим представление о пространстве и времени в свете общей теории относительности.

    Пространство и время в общей теории относительности и в релятивистской космологии.

    В общей теории относительности были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Эта теория подвела физические основания под неевклидовы геометрии и связала кривизну пространства, и отступление его метрики от евклидовой с действием гравитационных полей, создаваемых массами тел. Общая теория относительности исходит из принципа эквивалентности инерционной и гравитационной масс, количественное равенство которых давно было установлено в классической физике. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Эйнштейн усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить загадку гравитации. Эйнштейн сформулировал принцип эквивалентности: «физически невозможно отличить действие однородного гравитационного поля и поля, порождённого равноускоренным движением». Принцип эквивалентности помог сформулировать основные принципы, на которых базируется новая теория: гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.

    Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это — модель пространства. Расположим на этом листе большие и маленькие шарики — модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана). Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца — достаточно небольшой звезды по космическим мерка — влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала — при таком же вблизи Солнца составляет около 0,0002 с.

    Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея — Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым. Речь идет о следующем положении специальной теории относительности: "… двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определённой длины, независимо как от положения и ориентации тела, так и от времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определённой величины, независимо от места и времени". Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.

    В работе «Относительность и проблема пространства» Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное «тому, что заполняет пространство» и что зависит от координат. «Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля». Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга, и возникло представление о пространственно-временном четырехмерном континууме.

    Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам. Теория предсказала и объяснила три общелелятивистских эффекта: были предсказаны и вычислены конкретные значения смещения перегелия Меркурия, было предсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий.

    Рассмотрим далее релятивистскую космологию, именно с ней связано дальнейшее развитие пространственно-временных представлений современной физики.

    Классические представления о Вселенной можно охарактеризовать следующим образом: вселенная бесконечна и однородна в пространстве и стационарна во времени. Они являлись одним из следствий механики Ньютона — это абсолютные пространство и время, последнее по своему характеру евклидово. Такая модель казалась очень гармоничной и единственной, на уровне бытового сознания данная модель доминирует и в начале нашего 21-го века.

    Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений (стационарность Вселенной, её однородность и изотропность, евклидовость пространства), чтобы преодолеть противоречия. Однако в рамках классической космологии преодолеть противоречия не удалось.

    Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства — времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологии: общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной.

    Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна ли вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной — это соответствует пространству положительной кривизны.

    Вселенная Эйнштейна представляет собой трёхмерную сферу — замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться. Чтобы устранить это противоречие Эйнштейн ввёл в уравнения теории новый член с помощью которого во вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

    Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра. Оказалось, что скорость разбегания галактик возрастает с расстоянием и подчиняется закону Хаббла V = H*L, где Н — постоянная Хаббла, L — расстояние. В связи с этим встают две важные проблемы: проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние «разбегание галактик» — наглядное обозначение раскрытой космологией нестационарности пространственной метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство.

    Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к моменту времени t=0, когда произошёл так называемый «Большой взрыв», понятие времени до этого момента лишено физического, да и любого другого смысла".

    В релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчёта. Это положение особо чётко отразилось в представлениях о «чёрных дырах». Речь идет об одном из наиболее интересных явлений современной космологии — гравитационном коллапсе. С.Хокинс и Дж. Эллис отмечают: «Расширение Вселенной во многих отношениях подобно коллапсу звезды, если не считать того, что направление времени при расширении обратное».

    Как «начало» Вселенной, так и процессы в «чёрных дырах» связаны со сверхплотным состоянием материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда. Независимо от того, в каком состоянии космический объект пересёк соответствующую сферу Шварцшильда, далее он стремительно переходит в сверхплотное состояние в процессе гравитационного коллапса. После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство — время: образуется «чёрная дыра».

    Между черной дырой и наблюдателем в обычном мире пролегает бесконечность, т. к. такая звезда находится за бесконечностью во времени. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронной звезды, а вблизи черной дыры, у ее гравитационного радиуса, оно столь велико, что время там как бы замирает. Для тела, попадающего в поле тяготения черной дыры, образованной массой, равной 3 массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса занимает всего около часа. Но по часам, которые покоятся вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело к гравитационному радиусу, тем более медленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигает его. В этом проявляется замедление времени вблизи черной дыры.

    Таким образом, оказалось, что пространство — время в общей теории относительности содержит сингулярности, наличие которых заставляет пересмотреть концепцию пространственно — временного континуума как некоего дифференцируемого «гладкого» многообразия. Возникает проблема, связанная с представлением о конечной стадии гравитационного коллапса, когда вся масса звезды спрессовывается в точку ( r -> 0 ), когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает обоснованное сомнение. Некоторые ученные считают, что в заключительной стадии гравитационного коллапса вообще не существует пространства — времени. С. Хокинг пишет: «Сингулярность — это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства — времени. Этих представлений придерживаются большинство современных физиков.

    На заключительных стадиях гравитационного коллапса вблизи следует принимать во внимание квантовые эффекты. Представляется, что они играют на этом уровне доминирующую роль и могут вообще не допускать сингулярности. Предполагается, что в этой области происходят субмикроскопические флуктуации материи, которые и составляют основу глубокого микромира.

    Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

    Пространство и время на уровне микромира.

    В квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственно – временных представлений классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

    Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно — временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня:

    1. уровень молекулярно — атомных явлений,

    2. уровень релятивистских квантовоэлектродинамических процессов,

    3. уровень элементарных частиц,

    4. уровень ультрамалых масштабов, где пространственно — временные отношения оказываются несколько иными, чем в физике макромира.

    В этой области по-иному следует понимать природу пустоты — вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают как особый вид материи — как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая „пустота“ — это одно из состояний материи.

    На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь иные пространственно — временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого. Ещё более радикальных изменений пространственно — временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. Поэтому на повестку дня встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе — с гипотезой о возможной макроскопической природе пространства и времени.

    Рассмотрим более подробно эти направления.

    Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона — частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д. ).

    Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно — временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д. ). Эти трудности учёные пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает выход из неопределённости бесконечности, так как содержит фундаментальную длину — основу атомистического пространства.

    В физике микромира широкое развитие получило также направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения, что понятие локального взаимодействия лишено смысла. Второй основан на отрицании понятия точечной координаты пространства — времени, что приводит к теории квантового пространства — времени. Протяжённая элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного.

    Отказ от представлений о точечности взаимодействия влечёт за собой изменение наших представлений о структуре пространства — времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения „раньше“ и „позже“. В области нелокального взаимодействия события связаны в некий „комок“, в котором они взаимно обуславливают друг друга, но не следуют одно за другим.

    Таково принципиальное положение дел, сложившееся в представление о пространстве – времени на микроуровне, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства — времени на области „малые“, где причинность нарушена, и большие, где она выполнена, невозможно без появления в теории новой константы размерности длины — элементарной длины. С этим „атомом“ пространства связан и элементарный момент времени (хронон), и именно в соответствующей им пространственно — временной области протекает сам процесс взаимодействия частиц. Теория дискретного пространства — времени продолжает развиваться. Открытым остаётся вопрос о внутренней структуре „атомов“ пространства и роли (наличии) времени и пространства в них.

    ЗАКЛЮЧЕНИЕ

    Проблема времени и пространства всегда интересовала человека не только в рациональном, но и на эмоциональном уровне. Люди не только сожалеют о прошлом, но и боятся будущего, не в последнюю очередь потому, что неотвратимый поток времени влечет к их смерти. Человечество в лице своих выдающихся деятелей на протяжении всей своей сознательной истории задумалось над проблемами пространства и времени, немногим из них удалось создать свои теории, описывающие данные фундаментальные атрибуты бытия. Пространство и время лежат в основе нашей картины мира.

    Прошлый век — век бурного развития науки был наиболее плодотворным в плане познания времени и пространства. Появление в начале века сначала специальной, а потом и общей теории относительности заложило основу современного научного представления о мире, многие положения теории были подтверждены опытными данными. Тем не менее, как показывает, в том числе и эта работа, вопрос познания пространства и времени, их природы, взаимосвязи и даже наличия во многом остается открытым. Представляется уместным привести высказывание основоположника современного представления о пространстве и времени А. Эйнштейна, – «пространство и время являются способом, которым мы мыслим, а не условиями, в которых мы живем», в котором во многом отразилась противоречивость и нерешенность проблемы.

    ЛИТЕРАТУРА.

    1. Аскин Я. Проблема времени. Её физическое истолкование. — М., 1986 г.

    2. Ахундов М. Концепции пространства и времени: истоки, эволюция, перспективы. — М., 1982 г.

    3. Ахундов М. Пространство и время в физическом познании. — М., 1982 г.

    4. Еремеева А. Астрономическая картина мира и ее творцы. — М., 1984 г.

    5. Рейхенбах Г. Философия пространства и времени. — М., 1985 г.

    6. Эйнштейн А. Собрание научных трудов в четырёх томах. Том I. Работы по теории относительности 1905-1920. — М., 1965 г.

    7. Эйнштейн А., Инфельд Л. Эволюция физики. — М., 1967 г.

    [1] Еремеева А. И. Астрономическая картина мира и ее творцы. — М.: Наука, 1984. С. 157

    [2] Эйнштейн А., Инфельд Л. Эволюйия физики. -С. 130.

    [3] Там же. — С. 126.

    [4] Рейхенбах Г. Философия пространства и времени. — М.: Наука, 1985. С. 225.

     

     

    Само по  себе  четырехмерное  представление движения частицы может быть легко усвоено,  оно кажется почти очевидным и,  в сущности привычным. Всем известно, что реальные события определяются четырьмя числами: тремя пространственными координатами и  временем, прошедшим  до  события с начала летосчисления,  или с начала года, или от начала суток.  Будем откладывать на листе бумаги  по горизонтальной прямой место какого-либо события - расстояние этого места от начального пункта, например расстояние до точки, достигнутой поездом, от станции отправления. По вертикальной оси отложим время,  когда поезд достиг этой точки, измеряя его с начала суток или  с момента выхода поезда со станции отправления.  Тогда мы получим график движения поезда в  двумерном  пространстве,  на географической карте, лежащей на столе, а время показывать вертикалями над картой.  Тогда мы не  обойдемся  чертежом,  понадобится трехмерная модель,  например  проволока,  укрепленная над картой. Она будет трехмерным графиком движения: высота проволоки в каждой точке над лежащей картой будет изображать время, а на самой карте проекция проволоки изобразит движение поезда по местности.  Изобразим теперь  не только перемещение поезда на плоскости, но и его подъемы и спуски,  т.е. его движение в трехмерном пространстве. Тогда вертикали уже не могут изобразить время, они будут означать высоту поезда над уровнем моря.  Где е откладывать время - четвертое  измерение?  Четырехмерный  график нельзя построить и даже нельзя представить себе. Но математика уже давно умеет находить подобные  геометрические  величины,  пользуясь аналитическим методом, производя вычисления.  В формулы и вычисления  наряду  с тремя пространственными измерениями можно ввести четвертое - время и,  отказавшись от наглядности, создать таким образом четырехмерную геометрию.

    Если бы существовала мгновенная передача импульсов и  вообще сигналов, то  мы  могли бы говорить о двух событиях,  происшедших одновременно, т.е.  отличающихся только пространственными координатами. Связь между событиями была бы физическим прообразом чисто пространственных трехмерных геометрических соотношений.  Но Эйнштейн в 1905 г. отказался от понятий абсолютной одновременности и абсолютного, независимого от течения времени. Теория  Эйнштейна исходит из ограниченности и относительности трехмерного, чисто пространственного представления о мире и  вводит более точное пространственно-временное представление. С точки зрения теории относительности в картине мира должны  фигурировать четыре координаты  и ей должна соответствовать четырехмерная геометрия.

    В 1908  г.  Миньковский  представил теорию относительности в форме четырехмерной геометрии.  Он назвал  пребывание  частицы  в точке, определенной  четырьмя координатами,  "событием",  так как под событием в механике следует  понимать  нечто  определенное  в пространстве и  во  времени  -  пребывание частицы в определенной пространственной точке в определенный момент. Далее он назвал совокупность событий  -  пространственно-временное  многообразие  -"миром", так как действительный мир развертывается в пространстве и во времени. Линию, изображающую движение частицы, т.е. четырехмерную линию, каждая точка которой определяется четырьмя координатами, Миньковский назвал "мировой линией".

    Длина отрезка "мировой линии" инвариантна  при  переходе  от одной системы отсчета к другой,  прямолинейно и равномерно движущейся по отношению к первой.  В этом и состоит исходное утверждение теории относительности, из него можно получить все ее соотношения.

    Следует подчеркнуть,  что геометрические соотношения,  с помощью которых Миньковский изложил теорию относительности,  подчиняются Евклидовой геометрии. Мы можем получить соотношения теории относительности, предположив,  что четырехмерное "расстояние" выражается таким  же  образом  через четыре разности - три разности пространственных координат и время,  прошедшее между событиями, - как и трехмерное расстояние выражается в евклидовой геометрии через разности пространственных координат. Для этого, как уже говорилось, необходимо только выразить время в особых единицах. Длина отрезка мировой линии определяется по правилам евклидовой геометрии, только не трехмерной, а четырехмерной. Ее квадрат равен сумме четырех квадратов приращений пространственных координат и времени. Иными словами,  это - геометрическая сумма приращений четырех координат,  из которых три - пространственные,  а четвертая - время, измеренное особыми единицами.  Мы можем назвать теорию относительности учением об инвариантах четырехмерной евклидовой геометрии. Поскольку время измеряется особыми единицами, то говорят о псевдоевклидовой четырехмерной геометрии.

    Однородность пространства  выражается в сохранении импульса, а однородность времени - в сохранении энергии. Можно ожидать, что в четырехмерной  формулировке  закон  сохранении импульса и закон сохранения энергии сливаются в один закон  сохранения  энергии  и импульса. Действительно,  в теории относительности фигурирует такой объединенный закон импульса.

    Однородность пространства-времени  означает,  что  в природе нет выделенных пространственно-временных мировых точек. Нет события, которое было бы абсолютным началом четырехмерной, пространственно-временной системы отсчета.  В свете идей,  изложенных Эйнштейном в 1905 г., четырехмерное расстояние между мировыми точками, т.е. пространственно-временной интервал не будет меняться при совместном переносе  этих точек вдоль мировой линии.  Это значит, что пространственно-временная связь двух событий  не  зависит  от того, какая  мировая  точка выбрана в качестве начала отсчета,  и что любая мировая точка может играть роль подобного начала.

    Однородность пространства  стала  исходной идеей науки после того, как Галилей и Декарт, сформулировав принцип инерции и принцип сохранения импульса, показали, что в мировом пространстве нет выделенной точки - начала привилегированной системы отсчета,  что расстояния между  телами и их взаимодействия не зависят от движения состоящей из этих тел материальной системы. Однородность времени стала исходной идеей науки после того,  как физика XIX века, сформулировав принцип сохранения энергии,  показала независимость процессов природы от их смещения во времени и отсутствие абсолютного начала отсчета времени.  Теперь исходной идеей науки становится однородность пространства-времени.

    Разделение на пространство и время не имеет смысла. Пространство и время в специальной теории относительности трактуется с точки зрения реляционной концепции. Однако когда Эйнштейн попытался расширить концепцию относительности    на класс явлений, происходящих в неинерциальных системах отсчёта, это привело к созданию  новой  теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект. Новая  теория - общая  теория  относительности – строилась путём  построения  обобщённого пространства - времени и перехода от теоретической структуры  исходной теории - специальной теории относительности - к  теоретической  структуре новой, обобщённой теории с последующей  её эмпирической  интерпретацией. Далее мы рассмотрим представление о пространстве и времени в свете общей теории относительности.

    Пространство и время в  общей теории относительности и в релятивистской космологии.

    В общей теории относительности были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Эта теория подвела физические основания под неевклидовы геометрии и связала кривизну пространства, и отступление его метрики от евклидовой с действием гравитационных полей, создаваемых массами тел. Общая теория относительности исходит из принципа эквивалентности инерционной и гравитационной масс, количественное равенство которых давно было установлено в классической физике. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Эйнштейн усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить  загадку гравитации. Эйнштейн сформулировал принцип эквивалентности:  "физически невозможно отличить действие однородного гравитационного поля и поля, порождённого равноускоренным движением". Принцип эквивалентности помог  сформулировать основные принципы, на которых базируется новая теория: гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности  инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.

                Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это - модель пространства. Расположим на этом листе большие и маленькие шарики - модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана). Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца - достаточно небольшой звезды по космическим мерка - влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала - при таком же  вблизи Солнца составляет около 0,0002 с.

                Одной из причин создания общей теории относительности было желание Эйнштейна  избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции  пространства и времени в полевой доктрине Фарадея - Максвелла и специальной теории  относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым.  Речь идет о следующем положении специальной   теории относительности: "...двум выбранным материальным точкам покоящегося  тела  всегда соответствует некоторый  отрезок  определённой длины, независимо как  от положения и ориентации тела, так и от  времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой  системы  координат, всегда   соответствует интервал времени определённой величины, независимо от места и времени". Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.

      В  работе "Относительность и проблема пространства" Эйнштейн специально  рассматривает  вопрос о специфике  понятия пространства  в  общей   теории относительности. Согласно этой теории пространство не существует   отдельно, как нечто противоположное   "тому,  что  заполняет  пространство"  и  что зависит от координат. "Пустое пространство, т.е. пространство без поля не  существует. Пространство-время существует не само по себе, а только как структурное свойство поля". Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга, и возникло представление о пространственно-временном четырехмерном континууме.

    Для  общей  теории относительности  до сих  пор актуальной является проблема  перехода от теоретических к физическим наблюдаемым величинам. Теория  предсказала и объяснила три общелелятивистских эффекта: были предсказаны и  вычислены конкретные значения смещения перегелия Меркурия, было предсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий.

    Рассмотрим далее релятивистскую космологию, именно с ней связано дальнейшее развитие пространственно-временных представлений современной физики.

    Классические представления о Вселенной можно охарактеризовать  следующим образом: вселенная бесконечна и однородна в пространстве и стационарна во времени. Они являлись одним из следствий механики Ньютона - это абсолютные пространство и время, последнее по своему характеру евклидово. Такая  модель казалась очень гармоничной и единственной, на уровне бытового сознания данная модель доминирует и в начале нашего 21-го века.

    Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений (стационарность Вселенной, её однородность и   изотропность,   евклидовость  пространства), чтобы преодолеть противоречия. Однако в рамках классической космологии преодолеть противоречия не удалось.

    Модель Вселенной, которая следовала из общей теории относительности, связана   с   ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства - времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных  положений  классической космологии: общая  теория   относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности.  На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В  применении к неевклидову пространству условия однородности и изотропности  влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной.

    Возможность для пространства и времени иметь различные значения   постоянной кривизны подняли в космологии вопрос конечна ли вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной - это соответствует пространству положительной кривизны.

         Вселенная Эйнштейна представляет собой трёхмерную сферу - замкнутое в себе   неевклидово трёхмерное пространство. Оно является конечным, хотя и  безграничным. вселенная Эйнштейна конечна в пространстве, но бесконечна во  времени. Однако стационарность вступала в противоречие с общей теорией  относительности, вселенная оказалась неустойчивой и стремилась либо   расшириться, либо сжаться.   Чтобы   устранить   это   противоречие   Эйнштейн  ввёл  в  уравнения теории новый член с помощью которого во вселенную вводились  новые   силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

                Дальнейшее развитие космологии оказалось связанным не со статической  моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во  времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал  красное смещение спектра. Оказалось, что скорость разбегания галактик возрастает с  расстоянием и подчиняется закону Хаббла V = H*L, где Н - постоянная Хаббла, L - расстояние. В связи с этим  встают две важные проблемы: проблема расширения пространства и проблема  начала времени. Существует  гипотеза, что так  называние "разбегание галактик" - наглядное обозначение раскрытой космологией  нестационарности пространственной   метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а  расширяется само пространство.

                Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к моменту времени t=0, когда произошёл так называемый «Большой взрыв», понятие времени до этого момента лишено физического, да и любого другого смысла".

    В релятивистской космологии была показана относительность конечности и  бесконечности времени в различных системах отсчёта. Это положение особо чётко отразилось в представлениях о "чёрных дырах".  Речь идет об  одном из  наиболее  интересных явлений  современной   космологии  -  гравитационном  коллапсе. С.Хокинс и Дж. Эллис  отмечают: "Расширение Вселенной во многих отношениях  подобно  коллапсу звезды, если не считать того, что  направление времени при расширении обратное".

    Как "начало"  Вселенной, так  и процессы в "чёрных  дырах" связаны  со  сверхплотным состоянием  материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда. Независимо от того, в каком состоянии  космический объект пересёк соответствующую сферу Шварцшильда, далее он  стремительно переходит в сверхплотное состояние в процессе гравитационного   коллапса. После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство -  время: образуется "чёрная дыра".

         Между черной дырой и наблюдателем в обычном мире пролегает бесконечность,   т. к. такая звезда находится за бесконечностью во времени. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронной звезды, а вблизи черной дыры, у ее гравитационного радиуса, оно столь велико, что время там как бы замирает. Для тела, попадающего в поле тяготения черной дыры, образованной массой, равной 3 массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса занимает всего около часа. Но по часам, которые покоятся вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело к гравитационному радиусу, тем более медленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигает его. В этом проявляется замедление времени вблизи черной дыры.

    Таким образом, оказалось,  что пространство - время в общей теории относительности содержит сингулярности,   наличие которых заставляет пересмотреть концепцию пространственно - временного  континуума как некоего дифференцируемого "гладкого" многообразия. Возникает  проблема, связанная с представлением о конечной стадии гравитационного   коллапса, когда вся масса звезды спрессовывается в точку ( r -> 0 ), когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает  обоснованное сомнение. Некоторые ученные считают, что в заключительной стадии   гравитационного  коллапса вообще не существует  пространства - времени. С. Хокинг  пишет: "Сингулярность - это место, где разрушается классическая концепция  пространства и времени так же, как и  все известные законы физики, поскольку все они формулируются на основе классического пространства - времени. Этих   представлений придерживаются большинство современных физиков.

    На заключительных  стадиях гравитационного коллапса вблизи следует принимать во внимание квантовые эффекты. Представляется, что они играют на этом уровне доминирующую роль и могут вообще не допускать сингулярности. Предполагается, что в этой области происходят субмикроскопические флуктуации  материи, которые и составляют основу глубокого микромира.

    Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

    Пространство и время на уровне микромира.

            

    В квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена  важная проблема о необходимости пересмотра пространственно – временных представлений  классической физики. Они оказались  лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм   упорядоченности событий, в которых учитывалось бы существование   принципиальной неопределённости в состоянии объекта, наличие  черт целостности  и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

                Квантовая механика была положена в основу бурно                                                             развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды  взаимодействий и специфические свойства пространственно - временных  отношений. Область доступных в эксперименте микроскопических интервалов  условно делится на четыре уровня:

    1.      уровень молекулярно -  атомных  явлений,

    2.      уровень релятивистских  квантовоэлектродинамических  процессов,

    3.      уровень элементарных частиц,

    4.      уровень ультрамалых масштабов, где пространственно - временные отношения   оказываются  несколько  иными, чем в физике макромира.

    В этой области  по-иному следует понимать природу пустоты - вакуум. В квантовой   электродинамике вакуум является сложной системой виртуально рождающихся и  поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают  как особый вид материи - как поле в состоянии с минимально возможной энергией.  Квантовая электродинамика впервые наглядно показала, что  пространство  и  время нельзя оторвать от материи, что так называемая "пустота" - это одно из состояний материи.

    На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь  иные   пространственно - временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части  и целого.  Ещё  более радикальных изменений  пространственно - временных представлений требует переход к исследованию   процессов, характерных для слабых взаимодействий. Поэтому на повестку дня  встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и  левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки  принципиально нового истолкования пространства и времени. Одно направление связано с изменением  представлений о прерывности и непрерывности пространства и времени, а второе - с гипотезой о возможной макроскопической природе пространства и времени.

    Рассмотрим более подробно эти направления.

              Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные  теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона - частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица,  это  обусловлено фундаментальными положениями современной теории  и  связано  с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д. ).

                Исторически первой квантовой теорией поля была квантовая  электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории  элементарных частиц,  которая  достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно - временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные  с  бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д. ). Эти трудности учёные  пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает выход из  неопределённости  бесконечности, так как содержит фундаментальную длину -  основу атомистического пространства.

    В физике микромира широкое развитие получило также направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия  микрообъектов может осуществляться двумя методами. При первом исходят из положения, что понятие локального взаимодействия лишено смысла.  Второй основан на отрицании понятия точечной координаты пространства - времени, что приводит к теории квантового пространства - времени. Протяжённая   элементарная частица обладает сложной динамической структурой. Подобная    сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство  элементарности,  но и  с пересмотром самой диалектики  элементарного и сложного  в  микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они  не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного.

    Отказ от представлений о точечности взаимодействия влечёт за собой изменение наших представлений о структуре пространства - времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения "раньше" и "позже". В области нелокального  взаимодействия события связаны в некий "комок",  в котором они  взаимно обуславливают друг друга, но не следуют одно за другим.

    Таково принципиальное положение дел, сложившееся в представление о пространстве – времени на микроуровне, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства - времени на области "малые", где причинность нарушена, и большие, где она выполнена, невозможно без появления в теории новой константы размерности  длины - элементарной длины. С этим "атомом" пространства связан  и элементарный момент  времени (хронон), и именно в соответствующей им пространственно - временной области протекает сам процесс взаимодействия частиц. Теория дискретного  пространства - времени продолжает развиваться. Открытым остаётся вопрос о внутренней структуре "атомов" пространства и роли (наличии) времени и пространства в них.

    ЗАКЛЮЧЕНИЕ

    Проблема времени и пространства всегда интересовала человека не только в рациональном, но и на эмоциональном уровне. Люди не только сожалеют о прошлом, но и боятся будущего, не в последнюю очередь потому, что неотвратимый поток времени влечет к их смерти. Человечество в лице своих выдающихся деятелей на протяжении всей своей сознательной истории задумалось над проблемами пространства и времени, немногим из них удалось создать свои теории, описывающие данные фундаментальные атрибуты бытия. Пространство и время лежат в основе нашей картины мира.

     Прошлый век  - век бурного развития науки был наиболее плодотворным в плане познания времени и пространства. Появление в начале века сначала специальной, а потом и общей теории относительности заложило основу современного научного представления о мире, многие положения теории были подтверждены опытными данными. Тем не менее, как показывает, в том числе и эта работа, вопрос познания пространства и времени, их природы, взаимосвязи и даже наличия во многом остается открытым. Представляется уместным привести высказывание основоположника современного представления о пространстве и времени А. Эйнштейна, – «пространство и время являются способом, которым мы мыслим, а не условиями, в которых мы живем», в котором во многом отразилась противоречивость и нерешенность проблемы.

    ЛИТЕРАТУРА.

    1.      Аскин Я. Проблема времени. Её физическое истолкование. - М., 1986 г.

    2.      Ахундов М. Концепции пространства и времени: истоки, эволюция, перспективы. - М., 1982 г.

    3.      Ахундов М. Пространство и время в физическом познании. - М., 1982 г.

    4.      Еремеева А. Астрономическая картина мира и ее творцы. - М., 1984 г.

    5.      Рейхенбах Г. Философия пространства и времени. - М., 1985 г.

    6.      Эйнштейн А. Собрание научных трудов в четырёх томах. Том I. Работы по теории относительности 1905-1920. - М., 1965 г.

    7.      Эйнштейн А.,  Инфельд Л. Эволюция физики. - М., 1967 г.

    [1] Еремеева А. И. Астрономическая картина мира и ее творцы. - М.: Наука, 1984. С. 157

    [2] Эйнштейн А., Инфельд Л. Эволюйия физики. -С. 130.

    [3] Там же. - С. 126.

    [4] Рейхенбах Г. Философия пространства и времени. - М.: Наука, 1985. С. 225.

    Само по себе четырехмерное представление движения частицы может быть легко усвоено, оно кажется почти очевидным и, в сущности привычным. Всем известно, что реальные события определяются четырьмя числами: тремя пространственными координатами и временем, прошедшим до события с начала летосчисления, или с начала года, или от начала суток. Будем откладывать на листе бумаги по горизонтальной прямой место какого-либо события — расстояние этого места от начального пункта, например расстояние до точки, достигнутой поездом, от станции отправления. По вертикальной оси отложим время, когда поезд достиг этой точки, измеряя его с начала суток или с момента выхода поезда со станции отправления. Тогда мы получим график движения поезда в двумерном пространстве, на географической карте, лежащей на столе, а время показывать вертикалями над картой. Тогда мы не обойдемся чертежом, понадобится трехмерная модель, например проволока, укрепленная над картой. Она будет трехмерным графиком движения: высота проволоки в каждой точке над лежащей картой будет изображать время, а на самой карте проекция проволоки изобразит движение поезда по местности. Изобразим теперь не только перемещение поезда на плоскости, но и его подъемы и спуски, т.е. его движение в трехмерном пространстве. Тогда вертикали уже не могут изобразить время, они будут означать высоту поезда над уровнем моря. Где е откладывать время — четвертое измерение? Четырехмерный график нельзя построить и даже нельзя представить себе. Но математика уже давно умеет находить подобные геометрические величины, пользуясь аналитическим методом, производя вычисления. В формулы и вычисления наряду с тремя пространственными измерениями можно ввести четвертое — время и, отказавшись от наглядности, создать таким образом четырехмерную геометрию.

    Если бы существовала мгновенная передача импульсов и вообще сигналов, то мы могли бы говорить о двух событиях, происшедших одновременно, т.е. отличающихся только пространственными координатами. Связь между событиями была бы физическим прообразом чисто пространственных трехмерных геометрических соотношений. Но Эйнштейн в 1905 г. отказался от понятий абсолютной одновременности и абсолютного, независимого от течения времени. Теория Эйнштейна исходит из ограниченности и относительности трехмерного, чисто пространственного представления о мире и вводит более точное пространственно-временное представление. С точки зрения теории относительности в картине мира должны фигурировать четыре координаты и ей должна соответствовать четырехмерная геометрия.

    В 1908 г. Миньковский представил теорию относительности в форме четырехмерной геометрии. Он назвал пребывание частицы в точке, определенной четырьмя координатами, «событием», так как под событием в механике следует понимать нечто определенное в пространстве и во времени — пребывание частицы в определенной пространственной точке в определенный момент. Далее он назвал совокупность событий — пространственно-временное многообразие -«миром», так как действительный мир развертывается в пространстве и во времени. Линию, изображающую движение частицы, т.е. четырехмерную линию, каждая точка которой определяется четырьмя координатами, Миньковский назвал «мировой линией».

    Длина отрезка «мировой линии» инвариантна при переходе от одной системы отсчета к другой, прямолинейно и равномерно движущейся по отношению к первой. В этом и состоит исходное утверждение теории относительности, из него можно получить все ее соотношения.

    Следует подчеркнуть, что геометрические соотношения, с помощью которых Миньковский изложил теорию относительности, подчиняются Евклидовой геометрии. Мы можем получить соотношения теории относительности, предположив, что четырехмерное «расстояние» выражается таким же образом через четыре разности — три разности пространственных координат и время, прошедшее между событиями, — как и трехмерное расстояние выражается в евклидовой геометрии через разности пространственных координат. Для этого, как уже говорилось, необходимо только выразить время в особых единицах. Длина отрезка мировой линии определяется по правилам евклидовой геометрии, только не трехмерной, а четырехмерной. Ее квадрат равен сумме четырех квадратов приращений пространственных координат и времени. Иными словами, это — геометрическая сумма приращений четырех координат, из которых три — пространственные, а четвертая — время, измеренное особыми единицами. Мы можем назвать теорию относительности учением об инвариантах четырехмерной евклидовой геометрии. Поскольку время измеряется особыми единицами, то говорят о псевдоевклидовой четырехмерной геометрии.

    Однородность пространства выражается в сохранении импульса, а однородность времени — в сохранении энергии. Можно ожидать, что в четырехмерной формулировке закон сохранении импульса и закон сохранения энергии сливаются в один закон сохранения энергии и импульса. Действительно, в теории относительности фигурирует такой объединенный закон импульса.

    Однородность пространства-времени означает, что в природе нет выделенных пространственно-временных мировых точек. Нет события, которое было бы абсолютным началом четырехмерной, пространственно-временной системы отсчета. В свете идей, изложенных Эйнштейном в 1905 г., четырехмерное расстояние между мировыми точками, т.е. пространственно-временной интервал не будет меняться при совместном переносе этих точек вдоль мировой линии. Это значит, что пространственно-временная связь двух событий не зависит от того, какая мировая точка выбрана в качестве начала отсчета, и что любая мировая точка может играть роль подобного начала.

    Однородность пространства стала исходной идеей науки после того, как Галилей и Декарт, сформулировав принцип инерции и принцип сохранения импульса, показали, что в мировом пространстве нет выделенной точки — начала привилегированной системы отсчета, что расстояния между телами и их взаимодействия не зависят от движения состоящей из этих тел материальной системы. Однородность времени стала исходной идеей науки после того, как физика XIX века, сформулировав принцип сохранения энергии, показала независимость процессов природы от их смещения во времени и отсутствие абсолютного начала отсчета времени. Теперь исходной идеей науки становится однородность пространства-времени.

    Разделение на пространство и время не имеет смысла. Пространство и время в специальной теории относительности трактуется с точки зрения реляционной концепции. Однако когда Эйнштейн попытался расширить концепцию относительности на класс явлений, происходящих в неинерциальных системах отсчёта, это привело к созданию новой теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект. Новая теория — общая теория относительности – строилась путём построения обобщённого пространства — времени и перехода от теоретической структуры исходной теории — специальной теории относительности — к теоретической структуре новой, обобщённой теории с последующей её эмпирической интерпретацией. Далее мы рассмотрим представление о пространстве и времени в свете общей теории относительности.

    Пространство и время в общей теории относительности и в релятивистской космологии.

    В общей теории относительности были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Эта теория подвела физические основания под неевклидовы геометрии и связала кривизну пространства, и отступление его метрики от евклидовой с действием гравитационных полей, создаваемых массами тел. Общая теория относительности исходит из принципа эквивалентности инерционной и гравитационной масс, количественное равенство которых давно было установлено в классической физике. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Эйнштейн усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить загадку гравитации. Эйнштейн сформулировал принцип эквивалентности: «физически невозможно отличить действие однородного гравитационного поля и поля, порождённого равноускоренным движением». Принцип эквивалентности помог сформулировать основные принципы, на которых базируется новая теория: гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.

    Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это — модель пространства. Расположим на этом листе большие и маленькие шарики — модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана). Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца — достаточно небольшой звезды по космическим мерка — влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала — при таком же вблизи Солнца составляет около 0,0002 с.

    Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея — Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым. Речь идет о следующем положении специальной теории относительности: "… двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определённой длины, независимо как от положения и ориентации тела, так и от времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определённой величины, независимо от места и времени". Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.

    В работе «Относительность и проблема пространства» Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное «тому, что заполняет пространство» и что зависит от координат. «Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля». Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга, и возникло представление о пространственно-временном четырехмерном континууме.

    Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам. Теория предсказала и объяснила три общелелятивистских эффекта: были предсказаны и вычислены конкретные значения смещения перегелия Меркурия, было предсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий.

    Рассмотрим далее релятивистскую космологию, именно с ней связано дальнейшее развитие пространственно-временных представлений современной физики.

    Классические представления о Вселенной можно охарактеризовать следующим образом: вселенная бесконечна и однородна в пространстве и стационарна во времени. Они являлись одним из следствий механики Ньютона — это абсолютные пространство и время, последнее по своему характеру евклидово. Такая модель казалась очень гармоничной и единственной, на уровне бытового сознания данная модель доминирует и в начале нашего 21-го века.

    Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений (стационарность Вселенной, её однородность и изотропность, евклидовость пространства), чтобы преодолеть противоречия. Однако в рамках классической космологии преодолеть противоречия не удалось.

    Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства — времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологии: общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной.

    Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна ли вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной — это соответствует пространству положительной кривизны.

    Вселенная Эйнштейна представляет собой трёхмерную сферу — замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться. Чтобы устранить это противоречие Эйнштейн ввёл в уравнения теории новый член с помощью которого во вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

    Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра. Оказалось, что скорость разбегания галактик возрастает с расстоянием и подчиняется закону Хаббла V = H*L, где Н — постоянная Хаббла, L — расстояние. В связи с этим встают две важные проблемы: проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние «разбегание галактик» — наглядное обозначение раскрытой космологией нестационарности пространственной метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство.

    Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к моменту времени t=0, когда произошёл так называемый «Большой взрыв», понятие времени до этого момента лишено физического, да и любого другого смысла".

    В релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчёта. Это положение особо чётко отразилось в представлениях о «чёрных дырах». Речь идет об одном из наиболее интересных явлений современной космологии — гравитационном коллапсе. С.Хокинс и Дж. Эллис отмечают: «Расширение Вселенной во многих отношениях подобно коллапсу звезды, если не считать того, что направление времени при расширении обратное».

    Как «начало» Вселенной, так и процессы в «чёрных дырах» связаны со сверхплотным состоянием материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда. Независимо от того, в каком состоянии космический объект пересёк соответствующую сферу Шварцшильда, далее он стремительно переходит в сверхплотное состояние в процессе гравитационного коллапса. После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство — время: образуется «чёрная дыра».

    Между черной дырой и наблюдателем в обычном мире пролегает бесконечность, т. к. такая звезда находится за бесконечностью во времени. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронной звезды, а вблизи черной дыры, у ее гравитационного радиуса, оно столь велико, что время там как бы замирает. Для тела, попадающего в поле тяготения черной дыры, образованной массой, равной 3 массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса занимает всего около часа. Но по часам, которые покоятся вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело к гравитационному радиусу, тем более медленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигает его. В этом проявляется замедление времени вблизи черной дыры.

    Таким образом, оказалось, что пространство — время в общей теории относительности содержит сингулярности, наличие которых заставляет пересмотреть концепцию пространственно — временного континуума как некоего дифференцируемого «гладкого» многообразия. Возникает проблема, связанная с представлением о конечной стадии гравитационного коллапса, когда вся масса звезды спрессовывается в точку ( r -> 0 ), когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает обоснованное сомнение. Некоторые ученные считают, что в заключительной стадии гравитационного коллапса вообще не существует пространства — времени. С. Хокинг пишет: «Сингулярность — это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства — времени. Этих представлений придерживаются большинство современных физиков.

    На заключительных стадиях гравитационного коллапса вблизи следует принимать во внимание квантовые эффекты. Представляется, что они играют на этом уровне доминирующую роль и могут вообще не допускать сингулярности. Предполагается, что в этой области происходят субмикроскопические флуктуации материи, которые и составляют основу глубокого микромира.

    Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

    Пространство и время на уровне микромира.

    В квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственно – временных представлений классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

    Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно — временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня:

    1. уровень молекулярно — атомных явлений,

    2. уровень релятивистских квантовоэлектродинамических процессов,

    3. уровень элементарных частиц,

    4. уровень ультрамалых масштабов, где пространственно — временные отношения оказываются несколько иными, чем в физике макромира.

    В этой области по-иному следует понимать природу пустоты — вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают как особый вид материи — как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая „пустота“ — это одно из состояний материи.

    На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь иные пространственно — временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого. Ещё более радикальных изменений пространственно — временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. Поэтому на повестку дня встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе — с гипотезой о возможной макроскопической природе пространства и времени.

    Рассмотрим более подробно эти направления.

    Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона — частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д. ).

    Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно — временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д. ). Эти трудности учёные пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает выход из неопределённости бесконечности, так как содержит фундаментальную длину — основу атомистического пространства.

    В физике микромира широкое развитие получило также направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения, что понятие локального взаимодействия лишено смысла. Второй основан на отрицании понятия точечной координаты пространства — времени, что приводит к теории квантового пространства — времени. Протяжённая элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного.

    Отказ от представлений о точечности взаимодействия влечёт за собой изменение наших представлений о структуре пространства — времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения „раньше“ и „позже“. В области нелокального взаимодействия события связаны в некий „комок“, в котором они взаимно обуславливают друг друга, но не следуют одно за другим.

    Таково принципиальное положение дел, сложившееся в представление о пространстве – времени на микроуровне, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства — времени на области „малые“, где причинность нарушена, и большие, где она выполнена, невозможно без появления в теории новой константы размерности длины — элементарной длины. С этим „атомом“ пространства связан и элементарный момент времени (хронон), и именно в соответствующей им пространственно — временной области протекает сам процесс взаимодействия частиц. Теория дискретного пространства — времени продолжает развиваться. Открытым остаётся вопрос о внутренней структуре „атомов“ пространства и роли (наличии) времени и пространства в них.

    ЗАКЛЮЧЕНИЕ

    Проблема времени и пространства всегда интересовала человека не только в рациональном, но и на эмоциональном уровне. Люди не только сожалеют о прошлом, но и боятся будущего, не в последнюю очередь потому, что неотвратимый поток времени влечет к их смерти. Человечество в лице своих выдающихся деятелей на протяжении всей своей сознательной истории задумалось над проблемами пространства и времени, немногим из них удалось создать свои теории, описывающие данные фундаментальные атрибуты бытия. Пространство и время лежат в основе нашей картины мира.

    Прошлый век — век бурного развития науки был наиболее плодотворным в плане познания времени и пространства. Появление в начале века сначала специальной, а потом и общей теории относительности заложило основу современного научного представления о мире, многие положения теории были подтверждены опытными данными. Тем не менее, как показывает, в том числе и эта работа, вопрос познания пространства и времени, их природы, взаимосвязи и даже наличия во многом остается открытым. Представляется уместным привести высказывание основоположника современного представления о пространстве и времени А. Эйнштейна, – «пространство и время являются способом, которым мы мыслим, а не условиями, в которых мы живем», в котором во многом отразилась противоречивость и нерешенность проблемы.

    ЛИТЕРАТУРА.

    1. Аскин Я. Проблема времени. Её физическое истолкование. — М., 1986 г.

    2. Ахундов М. Концепции пространства и времени: истоки, эволюция, перспективы. — М., 1982 г.

    3. Ахундов М. Пространство и время в физическом познании. — М., 1982 г.

    4. Еремеева А. Астрономическая картина мира и ее творцы. — М., 1984 г.

    5. Рейхенбах Г. Философия пространства и времени. — М., 1985 г.

    6. Эйнштейн А. Собрание научных трудов в четырёх томах. Том I. Работы по теории относительности 1905-1920. — М., 1965 г.

    7. Эйнштейн А., Инфельд Л. Эволюция физики. — М., 1967 г.

    [1] Еремеева А. И. Астрономическая картина мира и ее творцы. — М.: Наука, 1984. С. 157

    [2] Эйнштейн А., Инфельд Л. Эволюйия физики. -С. 130.

    [3] Там же. — С. 126.

    [4] Рейхенбах Г. Философия пространства и времени. — М.: Наука, 1985. С. 225.

    Само по себе четырехмерное представление движения частицы может быть легко усвоено, оно кажется почти очевидным и, в сущности привычным. Всем известно, что реальные события определяются четырьмя числами: тремя пространственными координатами и временем, прошедшим до события с начала летосчисления, или с начала года, или от начала суток. Будем откладывать на листе бумаги по горизонтальной прямой место какого-либо события — расстояние этого места от начального пункта, например расстояние до точки, достигнутой поездом, от станции отправления. По вертикальной оси отложим время, когда поезд достиг этой точки, измеряя его с начала суток или с момента выхода поезда со станции отправления. Тогда мы получим график движения поезда в двумерном пространстве, на географической карте, лежащей на столе, а время показывать вертикалями над картой. Тогда мы не обойдемся чертежом, понадобится трехмерная модель, например проволока, укрепленная над картой. Она будет трехмерным графиком движения: высота проволоки в каждой точке над лежащей картой будет изображать время, а на самой карте проекция проволоки изобразит движение поезда по местности. Изобразим теперь не только перемещение поезда на плоскости, но и его подъемы и спуски, т.е. его движение в трехмерном пространстве. Тогда вертикали уже не могут изобразить время, они будут означать высоту поезда над уровнем моря. Где е откладывать время — четвертое измерение? Четырехмерный график нельзя построить и даже нельзя представить себе. Но математика уже давно умеет находить подобные геометрические величины, пользуясь аналитическим методом, производя вычисления. В формулы и вычисления наряду с тремя пространственными измерениями можно ввести четвертое — время и, отказавшись от наглядности, создать таким образом четырехмерную геометрию.

    Если бы существовала мгновенная передача импульсов и вообще сигналов, то мы могли бы говорить о двух событиях, происшедших одновременно, т.е. отличающихся только пространственными координатами. Связь между событиями была бы физическим прообразом чисто пространственных трехмерных геометрических соотношений. Но Эйнштейн в 1905 г. отказался от понятий абсолютной одновременности и абсолютного, независимого от течения времени. Теория Эйнштейна исходит из ограниченности и относительности трехмерного, чисто пространственного представления о мире и вводит более точное пространственно-временное представление. С точки зрения теории относительности в картине мира должны фигурировать четыре координаты и ей должна соответствовать четырехмерная геометрия.

    В 1908 г. Миньковский представил теорию относительности в форме четырехмерной геометрии. Он назвал пребывание частицы в точке, определенной четырьмя координатами, «событием», так как под событием в механике следует понимать нечто определенное в пространстве и во времени — пребывание частицы в определенной пространственной точке в определенный момент. Далее он назвал совокупность событий — пространственно-временное многообразие -«миром», так как действительный мир развертывается в пространстве и во времени. Линию, изображающую движение частицы, т.е. четырехмерную линию, каждая точка которой определяется четырьмя координатами, Миньковский назвал «мировой линией».

    Длина отрезка «мировой линии» инвариантна при переходе от одной системы отсчета к другой, прямолинейно и равномерно движущейся по отношению к первой. В этом и состоит исходное утверждение теории относительности, из него можно получить все ее соотношения.

    Следует подчеркнуть, что геометрические соотношения, с помощью которых Миньковский изложил теорию относительности, подчиняются Евклидовой геометрии. Мы можем получить соотношения теории относительности, предположив, что четырехмерное «расстояние» выражается таким же образом через четыре разности — три разности пространственных координат и время, прошедшее между событиями, — как и трехмерное расстояние выражается в евклидовой геометрии через разности пространственных координат. Для этого, как уже говорилось, необходимо только выразить время в особых единицах. Длина отрезка мировой линии определяется по правилам евклидовой геометрии, только не трехмерной, а четырехмерной. Ее квадрат равен сумме четырех квадратов приращений пространственных координат и времени. Иными словами, это — геометрическая сумма приращений четырех координат, из которых три — пространственные, а четвертая — время, измеренное особыми единицами. Мы можем назвать теорию относительности учением об инвариантах четырехмерной евклидовой геометрии. Поскольку время измеряется особыми единицами, то говорят о псевдоевклидовой четырехмерной геометрии.

    Однородность пространства выражается в сохранении импульса, а однородность времени — в сохранении энергии. Можно ожидать, что в четырехмерной формулировке закон сохранении импульса и закон сохранения энергии сливаются в один закон сохранения энергии и импульса. Действительно, в теории относительности фигурирует такой объединенный закон импульса.

    Однородность пространства-времени означает, что в природе нет выделенных пространственно-временных мировых точек. Нет события, которое было бы абсолютным началом четырехмерной, пространственно-временной системы отсчета. В свете идей, изложенных Эйнштейном в 1905 г., четырехмерное расстояние между мировыми точками, т.е. пространственно-временной интервал не будет меняться при совместном переносе этих точек вдоль мировой линии. Это значит, что пространственно-временная связь двух событий не зависит от того, какая мировая точка выбрана в качестве начала отсчета, и что любая мировая точка может играть роль подобного начала.

    Однородность пространства стала исходной идеей науки после того, как Галилей и Декарт, сформулировав принцип инерции и принцип сохранения импульса, показали, что в мировом пространстве нет выделенной точки — начала привилегированной системы отсчета, что расстояния между телами и их взаимодействия не зависят от движения состоящей из этих тел материальной системы. Однородность времени стала исходной идеей науки после того, как физика XIX века, сформулировав принцип сохранения энергии, показала независимость процессов природы от их смещения во времени и отсутствие абсолютного начала отсчета времени. Теперь исходной идеей науки становится однородность пространства-времени.

    Разделение на пространство и время не имеет смысла. Пространство и время в специальной теории относительности трактуется с точки зрения реляционной концепции. Однако когда Эйнштейн попытался расширить концепцию относительности на класс явлений, происходящих в неинерциальных системах отсчёта, это привело к созданию новой теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект. Новая теория — общая теория относительности – строилась путём построения обобщённого пространства — времени и перехода от теоретической структуры исходной теории — специальной теории относительности — к теоретической структуре новой, обобщённой теории с последующей её эмпирической интерпретацией. Далее мы рассмотрим представление о пространстве и времени в свете общей теории относительности.

    Пространство и время в общей теории относительности и в релятивистской космологии.

    В общей теории относительности были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Эта теория подвела физические основания под неевклидовы геометрии и связала кривизну пространства, и отступление его метрики от евклидовой с действием гравитационных полей, создаваемых массами тел. Общая теория относительности исходит из принципа эквивалентности инерционной и гравитационной масс, количественное равенство которых давно было установлено в классической физике. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Эйнштейн усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить загадку гравитации. Эйнштейн сформулировал принцип эквивалентности: «физически невозможно отличить действие однородного гравитационного поля и поля, порождённого равноускоренным движением». Принцип эквивалентности помог сформулировать основные принципы, на которых базируется новая теория: гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.

    Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это — модель пространства. Расположим на этом листе большие и маленькие шарики — модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана). Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца — достаточно небольшой звезды по космическим мерка — влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала — при таком же вблизи Солнца составляет около 0,0002 с.

    Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея — Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым. Речь идет о следующем положении специальной теории относительности: "… двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определённой длины, независимо как от положения и ориентации тела, так и от времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определённой величины, независимо от места и времени". Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.

    В работе «Относительность и проблема пространства» Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное «тому, что заполняет пространство» и что зависит от координат. «Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля». Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга, и возникло представление о пространственно-временном четырехмерном континууме.

    Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам. Теория предсказала и объяснила три общелелятивистских эффекта: были предсказаны и вычислены конкретные значения смещения перегелия Меркурия, было предсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий.

    Рассмотрим далее релятивистскую космологию, именно с ней связано дальнейшее развитие пространственно-временных представлений современной физики.

    Классические представления о Вселенной можно охарактеризовать следующим образом: вселенная бесконечна и однородна в пространстве и стационарна во времени. Они являлись одним из следствий механики Ньютона — это абсолютные пространство и время, последнее по своему характеру евклидово. Такая модель казалась очень гармоничной и единственной, на уровне бытового сознания данная модель доминирует и в начале нашего 21-го века.

    Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений (стационарность Вселенной, её однородность и изотропность, евклидовость пространства), чтобы преодолеть противоречия. Однако в рамках классической космологии преодолеть противоречия не удалось.

    Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства — времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологии: общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной.

    Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна ли вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной — это соответствует пространству положительной кривизны.

    Вселенная Эйнштейна представляет собой трёхмерную сферу — замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться. Чтобы устранить это противоречие Эйнштейн ввёл в уравнения теории новый член с помощью которого во вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

    Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра. Оказалось, что скорость разбегания галактик возрастает с расстоянием и подчиняется закону Хаббла V = H*L, где Н — постоянная Хаббла, L — расстояние. В связи с этим встают две важные проблемы: проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние «разбегание галактик» — наглядное обозначение раскрытой космологией нестационарности пространственной метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство.

    Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к моменту времени t=0, когда произошёл так называемый «Большой взрыв», понятие времени до этого момента лишено физического, да и любого другого смысла".

    В релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчёта. Это положение особо чётко отразилось в представлениях о «чёрных дырах». Речь идет об одном из наиболее интересных явлений современной космологии — гравитационном коллапсе. С.Хокинс и Дж. Эллис отмечают: «Расширение Вселенной во многих отношениях подобно коллапсу звезды, если не считать того, что направление времени при расширении обратное».

    Как «начало» Вселенной, так и процессы в «чёрных дырах» связаны со сверхплотным состоянием материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда. Независимо от того, в каком состоянии космический объект пересёк соответствующую сферу Шварцшильда, далее он стремительно переходит в сверхплотное состояние в процессе гравитационного коллапса. После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство — время: образуется «чёрная дыра».

    Между черной дырой и наблюдателем в обычном мире пролегает бесконечность, т. к. такая звезда находится за бесконечностью во времени. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронной звезды, а вблизи черной дыры, у ее гравитационного радиуса, оно столь велико, что время там как бы замирает. Для тела, попадающего в поле тяготения черной дыры, образованной массой, равной 3 массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса занимает всего около часа. Но по часам, которые покоятся вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело к гравитационному радиусу, тем более медленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигает его. В этом проявляется замедление времени вблизи черной дыры.

    Таким образом, оказалось, что пространство — время в общей теории относительности содержит сингулярности, наличие которых заставляет пересмотреть концепцию пространственно — временного континуума как некоего дифференцируемого «гладкого» многообразия. Возникает проблема, связанная с представлением о конечной стадии гравитационного коллапса, когда вся масса звезды спрессовывается в точку ( r -> 0 ), когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает обоснованное сомнение. Некоторые ученные считают, что в заключительной стадии гравитационного коллапса вообще не существует пространства — времени. С. Хокинг пишет: «Сингулярность — это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства — времени. Этих представлений придерживаются большинство современных физиков.

    На заключительных стадиях гравитационного коллапса вблизи следует принимать во внимание квантовые эффекты. Представляется, что они играют на этом уровне доминирующую роль и могут вообще не допускать сингулярности. Предполагается, что в этой области происходят субмикроскопические флуктуации материи, которые и составляют основу глубокого микромира.

    Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта классическая геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум), была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

    Пространство и время на уровне микромира.

    В квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственно – временных представлений классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

    Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно — временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня:

    1. уровень молекулярно — атомных явлений,

    2. уровень релятивистских квантовоэлектродинамических процессов,

    3. уровень элементарных частиц,

    4. уровень ультрамалых масштабов, где пространственно — временные отношения оказываются несколько иными, чем в физике макромира.

    В этой области по-иному следует понимать природу пустоты — вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов и других частиц. На этом уровне вакуум рассматривают как особый вид материи — как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая „пустота“ — это одно из состояний материи.

    На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь иные пространственно — временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого. Ещё более радикальных изменений пространственно — временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. Поэтому на повестку дня встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе — с гипотезой о возможной макроскопической природе пространства и времени.

    Рассмотрим более подробно эти направления.

    Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона — частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д. ).

    Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно — временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д. ). Эти трудности учёные пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает выход из неопределённости бесконечности, так как содержит фундаментальную длину — основу атомистического пространства.

    В физике микромира широкое развитие получило также направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения, что понятие локального взаимодействия лишено смысла. Второй основан на отрицании понятия точечной координаты пространства — времени, что приводит к теории квантового пространства — времени. Протяжённая элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного.

    Отказ от представлений о точечности взаимодействия влечёт за собой изменение наших представлений о структуре пространства — времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения „раньше“ и „позже“. В области нелокального взаимодействия события связаны в некий „комок“, в котором они взаимно обуславливают друг друга, но не следуют одно за другим.

    Таково принципиальное положение дел, сложившееся в представление о пространстве – времени на микроуровне, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства — времени на области „малые“, где причинность нарушена, и большие, где она выполнена, невозможно без появления в теории новой константы размерности длины — элементарной длины. С этим „атомом“ пространства связан и элементарный момент времени (хронон), и именно в соответствующей им пространственно — временной области протекает сам процесс взаимодействия частиц. Теория дискретного пространства — времени продолжает развиваться. Открытым остаётся вопрос о внутренней структуре „атомов“ пространства и роли (наличии) времени и пространства в них.

    ЗАКЛЮЧЕНИЕ

    Проблема времени и пространства всегда интересовала человека не только в рациональном, но и на эмоциональном уровне. Люди не только сожалеют о прошлом, но и боятся будущего, не в последнюю очередь потому, что неотвратимый поток времени влечет к их смерти. Человечество в лице своих выдающихся деятелей на протяжении всей своей сознательной истории задумалось над проблемами пространства и времени, немногим из них удалось создать свои теории, описывающие данные фундаментальные атрибуты бытия. Пространство и время лежат в основе нашей картины мира.

    Прошлый век — век бурного развития науки был наиболее плодотворным в плане познания времени и пространства. Появление в начале века сначала специальной, а потом и общей теории относительности заложило основу современного научного представления о мире, многие положения теории были подтверждены опытными данными. Тем не менее, как показывает, в том числе и эта работа, вопрос познания пространства и времени, их природы, взаимосвязи и даже наличия во многом остается открытым. Представляется уместным привести высказывание основоположника современного представления о пространстве и времени А. Эйнштейна, – «пространство и время являются способом, которым мы мыслим, а не условиями, в которых мы живем», в котором во многом отразилась противоречивость и нерешенность проблемы.

    ЛИТЕРАТУРА.

    1. Аскин Я. Проблема времени. Её физическое истолкование. — М., 1986 г.

    2. Ахундов М. Концепции пространства и времени: истоки, эволюция, перспективы. — М., 1982 г.

    3. Ахундов М. Пространство и время в физическом познании. — М., 1982 г.

    4. Еремеева А. Астрономическая картина мира и ее творцы. — М., 1984 г.

    5. Рейхенбах Г. Философия пространства и времени. — М., 1985 г.

    6. Эйнштейн А. Собрание научных трудов в четырёх томах. Том I. Работы по теории относительности 1905-1920. — М., 1965 г.

    7. Эйнштейн А., Инфельд Л. Эволюция физики. — М., 1967 г.

    [1] Еремеева А. И. Астрономическая картина мира и ее творцы. — М.: Наука, 1984. С. 157

    [2] Эйнштейн А., Инфельд Л. Эволюйия физики. -С. 130.

    [3] Там же. — С. 126.

    [4] Рейхенбах Г. Философия пространства и времени. — М.: Наука, 1985. С. 225.


    Смотрите также

     

    ..:::Новинки:::..

    Windows Commander 5.11 Свежая версия.

    Новая версия
    IrfanView 3.75 (рус)

    Обновление текстового редактора TextEd, уже 1.75a

    System mechanic 3.7f
    Новая версия

    Обновление плагинов для WC, смотрим :-)

    Весь Winamp
    Посетите новый сайт.

    WinRaR 3.00
    Релиз уже здесь

    PowerDesk 4.0 free
    Просто - напросто сильный upgrade проводника.

    ..:::Счетчики:::..

     

         

     

     

    .