Реферат: Магнитные свойства вещества. Ферромагнетики. Применение ферромагнетиков. Применение ферромагнетиков реферат


Магнитные свойства вещества. Ферромагнетики. Применение ферромагнетиков

ФИЗИКА. 11 класс. Задание № 84

Тема: Магнитные свойства вещества. Ферромагнетики. Применение ферромагнетиков

I уровень. Познакомимся с параграфом

1. Магнетики и их классификация

Любое вещество, помещенное в магнитное поле, влияет на значение магнитной индукции этого поля. Например, при внесе­нии железного сердечника в катушку (соленоид) с током индук­ция магнитного поля соленоида сильно возрастает, а сам сердеч­ник приобретает свойство притягивать мелкие железные предме­ты, т. е. намагничивается. Это явление было впервые обнаружено Ампером.

Впоследствии было установлено, что индукция магнитного поля в веществе может быть и больше и меньше, чем индукция того же поля в вакууме. Происходит это потому, что каждое вещество в большей или меньшей степени обладает магнитными свойствами. Вещества, способные изменять параметры магнитного поля, принято называть магнетиками.

Для характеристики магнитных свойств вещества введена величина, называемая магнитной проницаемостью этого вещества.

Магнитная проницаемость вещества – это физическая величина, показывающая, во сколько раз индукция магнитного поля в данной точке однородной изотропной среды отличается по модулю от индукции магнитного поля в этой же точке в вакууме : .

Вещества, у которых , называют диамагнетиками. К ним относятся, например, элементы , , , , , , , инертные газы и другие вещества.

Вещества, у которых , называют парамагнетиками. К ним, в частности, относятся , , , , , , , кисло­род и многие другие элементы, а также растворы некоторых солей.

Следует отметить, что значение у диа- и парамагнетиков отличается от единицы очень мало, всего на величину порядка , поэтому диа- и парамагнетики относятся к слабомаг­нитным веществам.

Вещества, у которых , называют ферромагнетиками. К ним относятся элементы , , , и многие сплавы. (При очень низких температурах ферромагнитные свойства обнару­живают элементы , , и .)

Значения у некоторых сплавов достигают десятков тысяч. Поэтому ферромагнетики относятся к сильномагнитным ве­ществам.

· Магнитный момент – векторная величи­на, характеризующая магнит­ные свойства тел и частиц вещества. Магнитный момент электри­ческого тока – вектор , численно равный произве­дению силы тока на пло­щадь , ограниченную конту­ром: . Направление определяется правилом правого винта относительно направления тока в контуре. Единица магнитного момента в СИ – . Магнитным моментом обладают все элементарные частицы и образованные из них системы (атомные ядра, атомы, молекулы). Каждый электрон, движущийся в атоме вокруг ядра по замкнутой орбите, представляет собой электронный ток, текущий в направ­лении, противоположном движению электрона. Магнитный момент электрон­ного тока называется орбитальным магнитным моментом электрона. Электрон, также, независимо от его пребывания в какой-либо системе частиц (атом, молекула, кристалл), обладает собственным механическим моментом количества движения , называе­мым спином. Элементарное представление о спине связывается с вращением электрона вокруг собствен­ной оси.

Если в какой-либо системе электронов (атом, кристалл) имеется четное число электронов, то спины каждой пары электронов, направленные в противоположные стороны, дают суммарный спин, равный нулю. Такая система назы­вается скомпенсированной по спину. При нечетном числе электронов система имеет нескомпенсированный спин, от­личный от нуля.

Наличием у электрона и некоторых других элементар­ных частиц спина объясняются многие важные закономерности в современной физике. Например, спином электрона объясняются магнитные свойства ферромагнети­ков.

Векторная сумма всех орбитальных и спиновых моментов электронов вну­три молекулы или атома и представляет собой маг­нитный момент частицы.

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле.

2. Диамагнетизм

У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против индукции внешнего поля.

  1. Парамагнетизм

В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие – микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания.

  1. Ферромагнетизм

Природа ферромагнетизма может быть до конца понята только на основе квантовых представлений. Качественно ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области размером порядка . Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит.

В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл в среднем окажется ненамагниченным. При наложении внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение.

Магнитная проницаемость ферромагнетиков не является постоянной величиной; она сильно зависит от индукции внешнего поля.

Непостоянство магнитной проницаемости приводит к сложной нелинейной зависимости индукции магнитного поля в ферромагнетике от индукции внешнего магнитного поля. Характерной особенностью процесса намагничивания ферромагнетиков является так называемый гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса. При наступает магнитное насыщение – намагниченность образца достигает максимального значения.

Если теперь уменьшать магнитную индукцию внешнего поля и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность – поле внутри образца будет равно . Для того, чтобы полностью размагнитить образец, необходимо, изменив знак внешнего поля, довести магнитную индукцию до значения , которое принято называть коэрцитивной силой. Далее процесс перемагничивания может быть продолжен, как это указано стрелками на рисунке.

У магнито-мягких материалов значения коэрцитивной силы невелико – петля гистерезиса таких материалов достаточно «узкая». Материалы с большим значением коэрцитивной силы, то есть имеющие «широкую» петлю гистерезиса, относятся к магнито-жестким.

II уровень. Ну а теперь вспомним кое-что из теории

1. Что называют магнитной проницаемостью вещества?

2. Какие вещества называются диамагнетиками? парамагнетиками? ферромагнетиками?

3. В чем сущность гипотезы Ампера?

4. Чем обусловлен магнетизм атомов? Что представляет собой магнитный момент частицы?

5. Какова природа ферромагнетизма? Объясните доменную структуру ферромагнетика.

Для начала неплохо. Попытайтесь ответить на вопросы

1. Насколько отличаются от единицы магнитные проницаемости диа-, пара- и ферромагнетиков? О чем это свидетельствует?

2. В чем состоит явление магнитного гистерезиса?

3. Что такое петля гистерезиса?

4. Какая величина называется коэрцитивной силой? Когда получается остаточная намагниченность?

5. Что называется точкой Кюри?

III уровень. Попробуйте выполнить задания

  1. Магнитная проницаемость среды – это величина, характеризующая …

A. … способность тел сохранять свою скорость; Б. … влияние на величину электрического тока;

B. … возможность тел накапливать электрический заряд; Г. … магнитные свойства среды, ее способность к намагничиванию;

Д. … электрические свойства среды.

  1. Экспериментальные исследования показали, что …

A. … есть вещества, которые совсем не обладают магнитными свойствами;

Б. … все вещества обладают в большей или меньшей степени магнитными свойствами.

  1. Магнитные свойства постоянного магнита по гипотезе Ампера объясняются …

A. … наличием магнитных зарядов; Б. … наличием внешнего магнитного поля; B. … движением свободных зарядов;

Г. … наличием молекулярных токов.

  1. Если – вектор магнитной индукции поля, созданного проводником с током, – результирующий вектор магнитной индукции поля в веществе с магнитной проницаемостью , то для парамагнетиков:

А. , ; Б. , ; В. , ; Г. .

  1. Сердечники трансформаторов изготавливаются из ферромагнетиков, петля гистерезиса которых …

А. … очень широка; Б. … очень узка; В. … может иметь произвольную форму; Г. … сердечники трансформаторов нельзя изготавливать из ферромагнетиков.

IV уровень. Проверьте, все ли Вы усвоили

1. По графику определить магнитную прони­цаемость стали при индукции намагничивающего поля и .

V уровень. Это сложная задача, однако, если Вы ее решите, то сделаете заметный шаг в познании физики, у Вас будут все основания относиться к себе с большим уважением, чем прежде

  1. Внутри соленоида без сердечника индукция поля . Каким станет магнитный поток, если в соленоид ввести чугунный сердечник сечением ? Использовать график.

www.yurii.ru

Ферромагнетики и их применение, реферат — allRefers.ru

Ферромагнетики и их применение - раздел Физика, ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ

 

Вещества, у которых магнитная проницаемость достигает сотен и даже миллионов единиц, выделены в особый класс – ферромагнетики. У ферромагнетиков есть ряд особенностей. Первая особенность – это характер намагничивания. У диа- и парамагнетиков вектор намагничивания, а, следовательно, и индукция магнитного поля пропорциональны напряженности внешнего поля. Для ферромагнетиков кривые намагничивания имеют вид (рисунок 33)

 

 

Рисунок 33

 

При некотором значении Н0 намагничивание М перестает изменяться, наступает насыщение. Кривая М(Н0) идет параллельно оси Н0. На графике зависимости В(Н0) кривая В(Н0) продолжает идти с наклоном к оси Н0 за счет коэффициента m0.

Магнитная проницаемость у ферромагнетиков не остается постоянной, а увеличивается с ростом Н по закону Столетова (рисунок 34).

В очень сильных полях m®1, и поэтому для получения сильных (Н=106 А/м) полей применять ферромагнитные сердечники бесполезно. При перемагничивании вещества наблюдается отставание в изменении магнитной индукции В от изменения напряженности Н0. Это явление получило название магнитного гистерезиса. При полном цикле перемагничивания кривая В = f(Н0) имеет вид петли, называемой петлей гистерезиса (рисунок35), где В0 – остаточное намагничивание, НК – коэрцитивная сила.

 

Рисунок 34 Рисунок 35

Петля гистерезиса в сильной мере зависит от материала и от его обработки. Площадь кривой пропорциональна работе перемагничивания.

В качестве сердечников в трансформаторах используют магнитомягкие материалы с узкой петлей, большим m и малой НК. Это железо (99,9%), пермалой (79,0%Ni, 6% Mo, 16% Fe). Для изготовления постоянных магнитов применяют магнитожесткие материалы: вольфрамовую сталь, альнико (Pb+Co), магнико. Чтобы избежать больших потерь на вихревые токи, в технике высокочастотных колебаний используют ферриты – химические соединения типа МеОFe2O3, где Ме – двухвалентный ион Mn2+, Co2+, Ni2+, Cu2+, Mg2+, Zn2+, Cd2+, Fe2+.

Другой особенностью ферромагнетиков является то, что их ферромагнитные свойства исчезают при некоторой температуре, называемой точкой Кюри (ТК). Например, для гадолиния ТК=17 0С, для никеля ТК=360 0С, а для кобальта ТК=1150 0С. При температурах более высоких, чем ТК ферромагнетик превращается в парамагнетик, причем магнитная восприимчивость зависит от температуры .

При перемагничивании многие ферромагнетики деформируются. Это явление носит название магнитострикции.

Магнитные свойства ферромагнетиков обусловлены спиновыми магнитными моментами. У атомов большинства элементов спиновые моменты попарно параллельны (скомпенсированы), поэтому результирующий спиновый момент равен нулю.

У таких материалов, как Cr, Mn, Fe, Co, Ni часть PS не скомпенсирована, что обуславливает большое значение (рисунок36).

 
 

 

 

Рисунок 36

Атомы ферромагнитных материалов сильно взаимодействуют, в результате в веществе возникают области спонтанного намагничивания – домены. Домены можно наблюдать визуально, если на поверхность образца насыпать железные опилки. Процесс намагничивания ферромагнетика происходит вначале за счет расширения границ тех доменов, у которых магнитные моменты направлены вдоль поля, а затем за счет ориентирования магнитных моментов в доменах. Магнитное насыщение наступает, когда все магнитные моменты будут строго параллельны направлению внешнего поля (рисунок 37).

 

Рисунок 37

В некоторых структурах энергетически выгодным является антипараллельное расположение спинов соседних узлов решетки. При абсолютном нуле магнитные моменты атомов компенсируют друг друга (рисунок 38).

       
   

 

 

Рисунок 38 Рисунок 39

При повышении температуры намагниченность материала повышается и достигает максимума при некоторой температуре (точка Нееля). Такие материалы называют антиферромагнетиками. Вещества с некомпенсированным антиферромагнетизмом называют ферритами. К ним относится большой класс веществ со структурой МеОFe2O3 (рисунок 39). Все они обладают спонтанной намагниченностью.

Замечательной особенностью ферритов является сочетание магнитных свойств с высоким электрическим сопротивлением. Именно поэтому ферриты произвели переворот в технике высоких и сверхвысоких частот, где металлические ферромагнетики не могут применяться из-за больших потерь на образование токов Фуко.

В настоящее время разработаны ферриты, обладающие большой коэрцитивной силой. Их используют для изготовления постоянных магнитов. Широкое применение получили ферриты, имеющие прямоугольную петлю гистерезиса. Их используют в качестве ячеек памяти в счетно-решающих машинах.

Очень широкое применение в науке и технике ферромагнетики получили благодаря своим особенностям. Высокие значения m приводят к тому, что ферромагнетики значительно сильнее взаимодействуют с внешним магнитным полем, чем парамагнетики. При этом собственное магнитное поле ферромагнетиков имеет такое же направление, как внешнее поле. Это приводит к тому, что ферромагнетик позволяет во много раз увеличивать индукцию внешнего магнитного поля. Поэтому для создания сильных магнитных полей в электромагнитах используют ферромагнитные сердечники. Кроме того, ферромагнетики сильно втягиваются в область более сильного магнитного поля и притягиваются к постоянным магнитам и электромагнитам. Это используют в самых различных устройствах – от электромагнитных подъемных кранов до приборов автоматического регулирования.

 

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ

Физические и химические свойства вещества от атома до живой клетки в значительной степени объясняются электрическими силами Электрические... Электростатическое... Пример Среда e Вакуум Воздух Керосин Вода...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Ферромагнетики и их применение

Все темы данного раздела:

Общие положения электростатики. Закон Кулона Электростатика изучает свойства и взаимодействие неподвижных зарядов. Фундаментальным свойство

Электрическое поле. Напряженность   Электрические заряды взаимодействуют через пространство, окружающее их. Это пространство обладае

Напряженность электростатического поля системы точечных зарядов равна векторной сумме напряженностей полей, созданных каждым зарядом в отдельности . (6) Принцип суперпозиции применяется при расчете поле

Теорема Гаусса   Задать электрическое поле – это значит указать в каждой точке величину и направление вектора напр

Потенциал Помимо разности потенциалов, характеризующие две точки поля, используют понятие потенциала, который являе

Поле внутри и вне проводника Особенности электрических свойств проводящих материалов определяются наличием в них свободных зарядов. В

Поляризация диэлектриков При внесении вещества в электрическое поле происходят изменения, как в веществе, так и в электрическом поле

Поле в диэлектрике   Поляризация диэлектрика приводит к возникновению в нем собственного электрического поля

Особые диэлектрики   Поляризованность большинства диэлектриков исчезает, когда исчезает ее причина, то есть внешнее эл

Электроемкость   Как мы видели, заряд, сообщенный проводнику, распределяется на его поверхности определенным образ

Емкость плоского конденсатора Плоский конденсатор представляет собой две пластины (обкладки), между которыми помещен диэлектрик (рисунок

Емкость цилиндрического конденсатора   Цилиндрический конденсатор представляет собой два коаксиальных цилиндра радиусами R1 и R2

Емкость сферического конденсатора   В сферическом конденсаторе с радиусами обкладок R1 и R2 (R1< R2) и диэлектриче

Батареи конденсаторов Для получения большей емкости конденсаторы соединяют в батарею параллельно (рисунок 34). При этом общий заря

Энергия электрического поля   При перемещении зарядов в электростатическом поле совершается работа за счет убыли потенциальной

Общие положения Одним из основных понятий электродинамики является электрический ток. Электрическим током называют упоря

Законы Ома и Джоуля-Ленца в дифференциальной форме Выведем закон Ома для металлов, исходя из модели электронного газа. Рассчитаем плотность

Законы Ома и Джоуля-Ленца в интегральной форме Законы Ома и Джоуля-Ленца в дифференциальной форме устанав

Электрический ток в диэлектрике В диэлектриках свободные заряды отсутствуют по определению. Идеальным диэлектриком является вак

Сторонние силы

Неоднородные цепи Электрическая цепь, в которой непрерывное протекание тока

МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ   Вблизи неподвижных зарядов возникает электростатическое поле. Движение зарядов (протекание элект

Циркуляция вектора магнитной индукции   По аналогии с электростатикой определяется понятие циркуляции вектора

Контур с током в однородном магнитном поле Применим закон Ампера к прямоугольному контуру с током в однородном магнитном поле. На ребра “a” дейст

Контур с током в неоднородном магнитном поле   Если контур с током находится в неоднородном магнитном поле, то на разные его участки действуют не

Контур с током в радиальном магнитном поле   Из формул (37) и (38) следует, что в однородном магнитном поле вращающий момент, действующий на контур

Электродвигатели   Из рисунка 23 следует, что при выбранной ориентации полюсов магнита и направления тока а контуре вр

Работа магнитного поля Если действующая на проводник с током со стороны магнитно

Намагниченность веществ Различные вещества в магнитном поле намагничиваются, то есть приобретают магнитный момент и сами становят

Диа-, пара- и ферромагнетики и их применение.   Магнитный момент атома включает несколько составляющих

Диамагнетики   У некоторых атомов (Cu, Au, Zn и др.) электронные оболочки имеют такое строение, что орбитальный и спино

Парамагнетики   У атомов таких веществ, как Al, Mn, Os и др. нескомпенсирован суммарный орбитальный момент, то есть в от

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ   В основе современного способа производства электроэнергии лежит физическое явление электромагни

Явление электромагнитной индукции Рассмотрим сущность электромагнитной индукции и принципы, которые приводят к этому явлению. Предполо

Электрогенератор   Закон Фарадея относится к фундаментальным законам природы, и является следствием закона сохранен

Самоиндукция Явление электромагнитной индукции наблюдается во всех случаях, когда изменяется магнитный поток, пронизыв

Переходные процессы в цепях с индуктивностью   Рассмотрим цепь, содержащую индуктивность и активное сопротивление (рисунок 44). В исходном состоян

Взаимная индукция. Трансформатор Явление взаимной индукции – это частный случай явления электромагнитной индукции.

УРАВНЕНИЯ МАКСВЕЛЛА   К середине XIX века было накоплено большое количество экспериментальных фактов по электричеству и

Энергия магнитного поля Рассчитаем энергию магнитного поля. Для этого вычислим работу источника тока в цепи с индуктивностью. При у

Вихревое электрическое поле   В соответствии с законом Фарадея для электромагнитной индукции в контуре, который движется в магн

Ток смещения   В соответствии с прямой гипотезой Дж. Максвелла изменяющееся магнитное поле порождает переменное

Уравнения Максвелла В 1860-65 гг. Максвелл развил теорию единого электромагнитного поля, которое описывается системой уравнений М

allrefers.ru

Магнитные свойства вещества. Ферромагнетики. Применение ферромагнетиков

ФИЗИКА. 11 класс. Задание № 84

Тема: Магнитные свойства вещества. Ферромагнетики. Применение ферромагнетиков

I уровень. Познакомимся с параграфом

1. Магнетики и их классификация

Любое вещество, помещенное в магнитное поле, влияет на значение магнитной индукции этого поля. Например, при внесе­нии железного сердечника в катушку (соленоид) с током индук­ция магнитного поля соленоида сильно возрастает, а сам сердеч­ник приобретает свойство притягивать мелкие железные предме­ты, т. е. намагничивается. Это явление было впервые обнаружено Ампером.

Возможно вы искали - Курсовая работа: Расчет параметров электрических цепей постоянного тока средствами EXCEL

Впоследствии было установлено, что индукция магнитного поля в веществе может быть и больше и меньше, чем индукция того же поля в вакууме. Происходит это потому, что каждое вещество в большей или меньшей степени обладает магнитными свойствами. Вещества, способные изменять параметры магнитного поля, принято называть магнетиками.

Для характеристики магнитных свойств вещества введена величина, называемая магнитной проницаемостью этого вещества.

Магнитная проницаемость вещества – это физическая величина, показывающая, во сколько раз индукция магнитного поля в данной точке однородной изотропной среды отличается по модулю от индукции магнитного поля в этой же точке в вакууме : .

Вещества, у которых , называют диамагнетиками. К ним относятся, например, элементы , , , , , , , инертные газы и другие вещества.

Вещества, у которых , называют парамагнетиками. К ним, в частности, относятся , , , , , , , кисло­род и многие другие элементы, а также растворы некоторых солей.

Похожий материал - Курсовая работа: Расчет параметров электрических цепей постоянного тока средствами EXCEL

Следует отметить, что значение у диа- и парамагнетиков отличается от единицы очень мало, всего на величину порядка , поэтому диа- и парамагнетики относятся к слабомаг­нитным веществам.

Вещества, у которых , называют ферромагнетиками. К ним относятся элементы , , , и многие сплавы. (При очень низких температурах ферромагнитные свойства обнару­живают элементы , , и .)

Значения у некоторых сплавов достигают десятков тысяч. Поэтому ферромагнетики относятся к сильномагнитным ве­ществам.

· Магнитный момент – векторная величи­на, характеризующая магнит­ные свойства тел и частиц вещества. Магнитный момент электри­ческого тока – вектор , численно равный произве­дению силы тока на пло­щадь , ограниченную конту­ром: . Направление определяется правилом правого винта относительно направления тока в контуре. Единица магнитного момента в СИ – . Магнитным моментом обладают все элементарные частицы и образованные из них системы (атомные ядра, атомы, молекулы). Каждый электрон, движущийся в атоме вокруг ядра по замкнутой орбите, представляет собой электронный ток, текущий в направ­лении, противоположном движению электрона. Магнитный момент электрон­ного тока называется орбитальным магнитным моментом электрона. Электрон, также, независимо от его пребывания в какой-либо системе частиц (атом, молекула, кристалл), обладает собственным механическим моментом количества движения , называе­мым спином. Элементарное представление о спине связывается с вращением электрона вокруг собствен­ной оси.

Если в какой-либо системе электронов (атом, кристалл) имеется четное число электронов, то спины каждой пары электронов, направленные в противоположные стороны, дают суммарный спин, равный нулю. Такая система назы­вается скомпенсированной по спину. При нечетном числе электронов система имеет нескомпенсированный спин, от­личный от нуля.

Очень интересно - Реферат: Расчет электрических цепей постоянного тока

Наличием у электрона и некоторых других элементар­ных частиц спина объясняются многие важные закономерности в современной физике. Например, спином электрона объясняются магнитные свойства ферромагнети­ков.

Векторная сумма всех орбитальных и спиновых моментов электронов вну­три молекулы или атома и представляет собой маг­нитный момент частицы.

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле.

2. Диамагнетизм

У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против индукции внешнего поля.

  1. Парамагнетизм

Вам будет интересно - Реферат: Электромеханика

В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие – микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания.

  1. Ферромагнетизм

Природа ферромагнетизма может быть до конца понята только на основе квантовых представлений. Качественно ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области размером порядка . Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит.

В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл в среднем окажется ненамагниченным. При наложении внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение.

Магнитная проницаемость ферромагнетиков не является постоянной величиной; она сильно зависит от индукции внешнего поля.

Непостоянство магнитной проницаемости приводит к сложной нелинейной зависимости индукции магнитного поля в ферромагнетике от индукции внешнего магнитного поля. Характерной особенностью процесса намагничивания ферромагнетиков является так называемый гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса. При наступает магнитное насыщение – намагниченность образца достигает максимального значения.

Похожий материал - Курсовая работа: Проектирование районной электрической сети

Если теперь уменьшать магнитную индукцию внешнего поля и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность – поле внутри образца будет равно . Для того, чтобы полностью размагнитить образец, необходимо, изменив знак внешнего поля, довести магнитную индукцию до значения , которое принято называть коэрцитивной силой. Далее процесс перемагничивания может быть продолжен, как это указано стрелками на рисунке.

У магнито-мягких материалов значения коэрцитивной силы невелико – петля гистерезиса таких материалов достаточно «узкая». Материалы с большим значением коэрцитивной силы, то есть имеющие «широкую» петлю гистерезиса, относятся к магнито-жестким.

II уровень. Ну а теперь вспомним кое-что из теории

1. Что называют магнитной проницаемостью вещества?

cwetochki.ru

Читать реферат по физике: "Магнитные свойства вещества. Ферромагнетики. Применение ферромагнетиков"

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

ФИЗИКА. 11 класс.Задание № 84 Тема: Магнитные свойства вещества. Ферромагнетики. Применение ферромагнетиковI уровень.Познакомимся с параграфом

    Магнетики и их классификация

Любое вещество, помещенное в магнитное поле, влияет на значение магнитной индукции этого поля. Например, при внесении железного сердечника в катушку (соленоид) с током индукция магнитного поля соленоида сильно возрастает, а сам сердечник приобретает свойство притягивать мелкие железные предметы, т. е. намагничивается. Это явление было впервые обнаружено Ампером. Впоследствии было установлено, что индукциямагнитного поля в веществе может быть и больше и меньше, чем индукциятого же поля в вакууме. Происходит это потому, что каждое вещество в большей или меньшей степени обладает магнитными свойствами. Вещества, способные изменять параметры магнитного поля, принято называть магнетиками. Для характеристики магнитных свойств вещества введена величина, называемая магнитной проницаемостью этого вещества. Магнитная проницаемость вещества – это физическая величина, показывающая, во сколько раз индукция магнитного поля в данной точке однородной изотропной средыотличается по модулю от индукции магнитного поля в этой же точке в вакууме :. Вещества, у которых , называют диамагнетиками. К ним относятся, например, элементы , , , , , , , инертные газы и другие вещества. Вещества, у которых , называют парамагнетиками. К ним, в частности, относятся , , , , , , , кислород и многие другие элементы, а также растворы некоторых солей. Следует отметить, что значениеу диа- и парамагнетиков отличается от единицы очень мало, всего на величину порядка , поэтому диа- и парамагнетики относятся к слабомагнитным веществам. Вещества, у которых , называют ферромагнетиками. К ним относятся элементы , , ,и многие сплавы. (При очень низких температурах ферромагнитные свойства обнаруживают элементы , ,и .) Значенияу некоторых сплавов достигают десятков тысяч. Поэтому ферромагнетики относятся к сильномагнитным веществам.

Если в какой-либо системе электронов (атом, кристалл) имеется четное число электронов, то спины каждой пары электронов, направленные в противоположные стороны, дают суммарный спин, равный нулю. Такая система называется скомпенсированной по спину. При нечетном числе электронов система имеет нескомпенсированный спин, отличный от нуля. Наличием у электрона и некоторых других элементарных частиц спина объясняются многие важные закономерности в современной физике. Например, спином электрона объясняются магнитные свойства ферромагнетиков. Векторная сумма всех орбитальных и спиновых моментов электронов внутри молекулы или атома и представляет собой магнитный момент частицы. Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле.

    Диамагнетизм

У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против индукции внешнего поля.

    Парамагнетизм

В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие – микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания.

    Ферромагнетизм

Природа ферромагнетизма может быть до конца понята только на основе квантовых представлений. Качественно ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области размером порядка . Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит. В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл в среднем окажется ненамагниченным. При наложении внешнего магнитного поляпроисходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение. Магнитная проницаемостьферромагнетиков не является постоянной величиной; она сильно зависит от индукциивнешнего поля. Непостоянство магнитной проницаемости приводит к сложной нелинейной зависимости индукциимагнитного поля в ферромагнетике от индукциивнешнего магнитного поля. Характерной особенностью процесса намагничивания ферромагнетиков является так называемый гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничиванияферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса. При наступает магнитное насыщение – намагниченность образца достигает максимального значения. Если теперь уменьшать магнитную индукциювнешнего поля и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность – поле внутри образца будет равно . Для того, чтобы полностью размагнитить образец, необходимо, изменив знак внешнего поля, довести магнитную индукциюдо значения , которое принято называть коэрцитивной силой. Далее процесс перемагничивания может быть продолжен, как это указано стрелками на рисунке. У магнито-мягких материалов значения коэрцитивной силыневелико – петля гистерезиса таких материалов достаточно «узкая». Материалы с большим значением коэрцитивной

referat.co

Ферромагнетики и их применение — реферат

Глава 3. Гипотеза элементарных магнитиков

     При нормальной температуре вещество ферромагнетика состоит из самопроизвольно намагниченных  в определенном направлении областей (доменов), в которых элементарные магнитики расположены почти параллельно один другому и удерживаются в таком положении магнитными силами и силами электрического взаимодействия.

     Магнитные поля отдельных областей не обнаруживаются во внешнем пространстве, т.к. все они намагничены в разных направлениях. Интенсивность самопроизвольного намагничивания доменов J зависит от температуры и при абсолютном нуле равна интенсивности полного насыщения. Тепловое движение разрушает упорядоченную структуру и при некоторой температуре q , характерной для данного вещества, упорядоченное расположение полностью разрушается. Эта температура называется точкой Кюри. Выше точки Кюри вещество обладает свойствами парамагнетика.

     Для никеля температура Кюри равна 360 °С. Если подвесить образец никеля вблизи пламени горелки так, чтобы он находился в поле сильного постоянного магнита, то не нагретый образец может располагаться горизонтально, сильно притягиваясь к магниту (рис 8). По мере нагрева образца и достижения температуры   ферромагнитные свойства у никеля исчезают и образец никеля падает. Остыв до температуры ниже точки Кюри, образец вновь притянется к магниту. Нагревшись, вновь падает и т.д., колебания будут продолжаться все время, пока горит свеча.

     

                          Рис. 8

     Под влиянием внешнего поля состояние вещества может изменяться двумя способами. Намагниченность может меняться либо за счет переориентации доменов, либо за счет смещения их границ в направлении  области с меньшей составляющей намагниченности, совпадающей по направлению с внешним полем. Смещение границы домена совершается обратимо только до определенного предела, после чего часть или вся область необратимо переориентируется. При быстрой скачкообразной переориентации домена создаются вихревые токи, вызывающие потери энергии при перемагничивании.

     Исследования  показывают, что второй способ изменения  ориентации характерен для крутого  участка кривой намагничивания, а  первый - для участка области насыщения.

     После уменьшения напряженности внешнего магнитного поля до нуля часть доменов  сохраняет новое направление  преимущественного намагничивания, что проявляется как остаточная намагниченность.                  

Глава 4. Отличие ферромагнетиков  от диа- и парамагнетиков

     В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных  атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями  его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, т. е. свойство кристаллов железа.

     В этом нас убеждает ряд фактов. Прежде всего на это указывает зависимость  магнитных свойств железа и других ферромагнитных материалов от обработки, изменяющей их кристаллическое строение (закалка, отжиг). Далее оказывается, что из парамагнитных и диамагнитных металлов можно изготовить сплавы, обладающие высокими ферромагнитными свойствами. Таков, например, сплав Гойслера, почти не уступающий по своим магнитным свойствам железу, хотя он состоит из таких слабо магнитных металлов, как медь (60%), марганец (25%) и алюминий (15%). С другой стороны, некоторые сплавы из ферромагнитных материалов, например сплав из 75% железа и 25% никеля, почти не магнитны. Наконец, самым веским подтверждением является то, что при достижении определенной температуры (точка Кюри) все ферромагнитные вещества теряют свои ферромагнитные свойства.

     Ферромагнитные  вещества отличаются от парамагнитных не только весьма большим значением магнитной проницаемости и ее зависимостью от напряженности поля, но и весьма своеобразной связью между намагничиванием и напряженностью намагничивающего поля. Эта особенность находит свое выражение в явлении гистерезиса со всеми его следствиями: наличием остаточного намагничивания и коэрцитивной силы.

     Подробное изучение процессов намагничивания и размагничивания железа и других ферромагнитных веществ показало, что  ферромагнитные свойства вещества определяются не магнитными свойствами отдельных атомов или молекул, которые сами по себе парамагнитны, а намагничиванием целых областей, называемых доменами,- небольших участков вещества, содержащих очень большое количество атомов.

     Взаимодействие  магнитных моментов отдельных атомов ферромагнетика приводит к созданию чрезвычайно сильных внутренних магнитных полей, действующих в пределах каждой такой области и выстраивающих, в пределах этой области, все атомные магнитики параллельно друг другу. Таким образом, даже при отсутствии внешнего поля ферромагнитное вещество состоит из ряда отдельных областей, каждая из которых самопроизвольно намагничена до насыщения. Но направление намагничивания для разных областей различно, так что вследствие хаотичности распределения этих областей тело в целом оказывается в отсутствии внешнего поля ненамагниченным.

     Под влиянием внешнего поля происходит перестройка  и перегруппировка таких «областей  самопроизвольного намагничивания», в результате которой получают преимущество те области, намагничивание которых параллельно внешнему полю, и вещество в целом оказывается намагниченным.

     При наложении поля Н часть атомов области В, в которой намагничивание перпендикулярно к полю, на границе  ее с областью А, в которой намагничивание параллельно полю, поворачивается, так что направление их магнитного момента становится параллельным полю. В результате область А, намагниченная параллельно внешнему полю, расширяется за счет тех областей, в которых направление намагничивания образует большие углы с направлением поля, и возникает преимущественное намагничивание тела по направлению внешнего поля. В очень сильных внешних полях возможны и повороты направления ориентации всех атомов в пределах целой области.

     При снятии (уменьшении) внешнего поля происходит обратный процесс распада и дезориентации этих областей, т. е. размагничивание тела. Ввиду больших по сравнению с атомами размеров «областей самопроизвольного намагничивания» как процесс ориентации их, так и обратный процесс дезориентации происходит с гораздо большими затруднениями, чем установление ориентации или дезориентации отдельных молекул или атомов, имеющее место в парамагнитных и диамагнитных телах. Этим и объясняется отставание намагничивания и размагничивания от изменения внешнего поля, т. е. гистерезис ферромагнитных тел.                        

Глава 5. Спиновая природа ферромагнетизма

     Измерения гиромагнитного отношения для ферромагнетиков на основе эффектов Эйнштейна — де Гааза и Барнетта показали, что ферромагнетизм имеет спиновую природу, т. е. обусловлен спиновыми магнитными моментами электронов атомов ферромагнетика. В атоме электроны распределяются по слоям, в каждом из которых в соответствии с квантовым принципом запрета Паули может находиться не более определенного числа электронов. Все слои атома, кроме первого (ближайшего к ядру атома), подразделяются на оболочки, число которых тем больше, чем больше номер слоя. Электроны распределяются по слоям и по оболочкам в них так, чтобы энергия атома была наименьшей. Результирующие спиновые и орбитальные магнитные моменты всех электронов, находящихся в целиком заполненной ими оболочке или слое атома, равны нулю. Атомы элементов, обладающих ферромагнитными свойствами (Fe, Со, Ni), принадлежат к числу переходных атомов периодической системы Д. И. Менделеева. В этих атомах нарушается последовательность заполнения электронами мест в слоях и оболочках. Прежде чем полностью «застроится» нижний слой, начинается заполнение выше расположенного слоя. Поэтому в переходном атоме имеются не полностью занятые электронами внутренние слои и оболочки. Например, в атоме железа 26 его электронов распределены по четырем слоям. Первый и второй слои целиком заполнены и содержат соответственно 2 и 8 электронов. Третий и четвертый слои не достроены: в третьем слое находится 14 электронов (вместо 18), а в четвертом — 2 (вместо 32). 14 электронов третьего слоя распределены по оболочкам следующим образом: в первой оболочке — 2, а во второй и третьей — по 6 электронов. Спины электронов, принадлежащих к каждой оболочке, могут быть ориентированы в двух противоположных направлениях. В застроенных первых двух слоях атома железа магнитные спиновые моменты электронов взаимно компенсируют друг друга. В третьем слое первые две оболочки также характерны тем, что спиновые магнитные моменты электронов на этих оболочках компенсируют друг друга. Что же касается третьей оболочки, то из шести находящихся на ней электронов пять имеют спины, ориентированные в одном направлении, и лишь один электрон имеет спин, ориентированный противоположно. Итак, в атоме железа спины четырех электронов в третьем слое остаются некомпенсированными. Что касается наружных валентных электронов атома железа, то нх спины, вообще говоря, тоже могут быть некомпенсированы. Однако, как показывает опыт, на магнитные свойства атома железа валентные электроны, слабо связанные с атомом, существенного влияния не оказывают.

     В изолированном атоме железа орбитальные движения электронов дают некоторый орбитальный магнитный момент. Однако при образовании кристалла железа происходит своеобразное «замораживание» электронных орбит, приводящее к тому, что орбитальные магнитные моменты электронов практически не участвуют в создании магнитных моментов атомов. Причины такого «замораживания» еще не вполне выяснены. Вместе с тем измерения гиромагнитного отношения ясно показывают, что магнитные свойства ферромагнитных веществ связаны с некомпенсированными спиновыми магнитными моментами небольшого числа электронов атома. Таким образом, ферромагнитными свойствами могут обладать только такие вещества, в атомах которых имеются недостроенные внутренние электронные оболочки. Однако это условие является необходимым, но не достаточным. Например, ряд атомов элементов переходной группы (Сг, Mn, Pt и др.) и редкоземельных элементов имеют недостроенные внутренние оболочки, но эти вещества являются парамагнетиками. Для объяснения самопроизвольной намагниченности ферромагнетиков необходимо предположить, что в них между носителями магнетизма — спинами электронов — существует взаимодействие, способное при температурах более низких, чем точка Кюри, обеспечить спонтанную намагниченность доменов. Естественно предположить, что между спиновыми магнитными моментами существует обыкновенное магнитное взаимодействие, подобное взаимодействию двух проводников с током или двух соленоидов. Однако расчеты показывают, что энергия этого взаимодействия оказывается весьма малой величиной порядка 10-23 Дж, так что даже при температуре жидкого воздуха средняя энергия теплового движения атомов превосходит энергию их магнитного взаимодействия. Поэтому за счет магнитного взаимодействия невозможно образование самопроизвольной намагниченности.

     Я. И. Френкель и В. Гейзенберг (1928) показали, что самопроизвольная намагниченность может быть следствием электрического взаимодействия электронов. Возникновение самопроизвольной намагниченности за счет электрических сил нельзя объяснить с точки зрения классической физики. Само существование спина у электрона является «неклассическим», т. е. чуждым классической физике явлением. Не удивительно поэтому, что и электрическое взаимодействие электронов, приводящее к состоянию самопроизвольной намагниченности ферромагнетиков, также является особым квантовым взаимодействием, называемым обменным взаимодействием.              

Глава 6. Применение ферромагнетиков

        Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнитомягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнитожесткие материалы применяют при изготовлении постоянных магнитов.

     При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т.е. создает магнитное поле в  окружающем пространстве.

     Упорядоченная ориентация элементарных токов не исчезает при выключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т.д.

     Широкое распространение в радиотехнике, особенно в высокочастотной радиотехнике, получили ферриты ( ) сочетающие ферромагнитные и полупроводниковые свойства. Из ферритов изготавливают сердечники катушек индуктивности, магнитные ленты, пленки и диски.

     Магнитные материалы широко используются в традиционной технологии записи информации в винчестере.         

Заключение

     Исходя  из информации в данном докладе, можно  сделать следующие выводы.

     Ферромагнетики – твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.

     Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. При перемагничивании ферромагнетика в нем происходят необратимые преобразования энергии в тепло.

     При высокой температуре ферромагнитные свойства всех ферромагнитных веществ исчезают.

     В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных  атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями  его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, т. е. свойство кристаллов железа.

freepapers.ru


Смотрите также