Как в древние времена люди представляли себе Землю. Представление древних об устройстве мира реферат


История астрономии. Представления древних астрономов о вселенной. | Земля

Первые же телескопические наблюдения Галилея привели к открытию пятен на Солнце. Однако их природа была непонятна первым наблюдателям. Во время полных солнечных затмений на краю Солнца наблюдались протуберанцы, напоминавшие огненные фонтаны.

Рисунок изображает вид Солнца согласно наблюдениям А. Кирхера и П. Шейнера в 1635 году по рисунку первого. Пятна на Солнце считались тогда разрывами во внешнем раскаленном слое Солнца, под которым расположены гораздо более холодные слои, пригодные для жизни. «Хвостатые светила» — кометы — в древности и в средние века наводили ужас на суеверных людей.

Даже люди, близкие к науке, изображали кометы в виде мечей, следуя уверениям цер­ковников, что они — знамения божьего гнева. Другие изображения более реалистичны. Для картины на открытке использованы изоб­ражения комет второй половины XV века.

Стоунхендж- обсерватория бронзового века. Это сооружение из гигантских камней с положенными на вертикально стоящие глыбы горизонтальными перекладинами находится на юге Англии. Уже давно оно привлекало внимание ученых. Но лишь недавно современными методами археологии удалось доказать, что его строительство начато свыше 4000 лет назад, на границе каменного и бронзового веков. В плане Стоунхендж представляет собой ряд почти точных окружностей с общим центром, вдоль которых через равные интервалы поставлены громадные камни.

Внешний ряд камней имеет диаметр около 100 метров. Их расположение симметрично направлению на точку восхода Солнца в день летнего солнцестояния, а некоторые направления соответствуют направлениям на точки восхода и захода Солнца в дни равноденствий и в некоторые другие дни.

Несомненно, Стоунхендж служил и для астрономических наблюдений, и для совершения каких-то обрядов культового характера, поскольку в те далекие эпохи небесным светилам приписывали божественное значение. Аналогичные сооружения обнаружены во многих местах Британских островов, а также в Бретани (северо-запад Франции) и на Оркнейских островах.

Представления о мире древних египтян. В своих представлениях об окружающем мире древние народы исходили, прежде всего, из показаний своих органов чувств: Земля казалась им плоской, а небо – громадным куполом, раскинувшимся над Землей.

На картине показано, как небесный свод опирается на четыре высокие горы, расположенные где-то на краю света! Египет нах-ся в центре Земли. Небесные светила как бы подвешены на своде.

В Древнем Египте существовал культ бога Солнца Ра, который объезжает небо на своей колеснице. Этот рисунок нах-ся на стене внутри одной из пирамид.

Представления о мире народов Междуречья. Близки к древнеегипетским были и представления халдеев – народов, населявших Междуречье, начиная с 7 века до н.э. По их воззрениям Вселенная была замкнутым миром, в центре которого находилась Земля, покоившаяся на поверхности мировых вод и представлявшая собой огромную гору.

Между Землей и "плотиной небес ” – высокой непроницаемой стеной, окружавшей мир, - находилось море, которое считалось запретным. Каждый, кто пытался бы исследовать его дали, был обречен на гибель. Небо халдеи считали большим куполом, возвышающимся над миром и опирающимся на "плотину небес”. Он сделан из твердого металла верховным бором Мардуком.

Днем небосвод отражал солнечный свет, а ночью служил темно-синим фоном для игры богов – планет, Луны и звезд.

Вселенная по представлению древних греков. Как и многие другие народы, они представляли себе Землю плоской. Такого мнения, например, придерживался и древнегреческий философ Фалес Милетский. Все явления природы он объяснил, исходя из единого материального начала, которым он считал воду. Земля он считал плоским диском, окруженным недоступным человеку морем, из которого каждый вечер выходят и заходят звезды.

Из восточного моря в золотой колеснице поднимался каждое утро бог Солнца Гелиос и совершал свой путь по небу. Позднее пифагорейцы отошли от теории Фалеса, высказав предположение об округлости земли. А. Самосский утверждал, что Земля, вместе с другими планетами вращается вокруг солнца. За это он был подвергнут изгнанию.

Система мира по Аристотелю. Великий греческий философ Аристотель понимал, что Земля имеет форму шара и приводил одно из сильнейших доказательств этого- круглую форму тени Земли на Луне во время лунных затмений . Он понимал и то, что Луна темный шар , освещаемый Солнцем и обращающийся вокруг Земли. Но Аристотель считал Землю центром мира. Материю он полагал состоящей из четырех элементов, которые образуют четыре сферы: земли, воды, воздуха и огня. Еще дальше расположены сферы планет – семи светил, перемещающихся между звездами.

Еще дальше расположена сфера неподвижных звезд. Учения Аристотеля были прогрессивными с точки зрения науки, хотя его мировоззрение было идеалистическим, поскольку он признавал божественное начало. Позднее все это было использовано церковью против передовых идей сторонников гелиоцентрической системы устройства мира. Это водяные часы – основной прибор для измерения времени в древности наряду с солнечными часами.

Астрономические представления в Индии. В священных книгах древних индусов отражены их представления о строении мира, имеющие много общего с воззрениями египтян. Согласно этим представлениям, плоская Земля с громадной горой в центре поддерживается 4 слонами, которые стоят на огромной черепахе, плавающей в океане.

В 400-650 года в Индии был создан цикл математических и астрономических сочинений, так называемая СидХанта, написанная разными авторами. В этих работах мы уже встречаем картину мира с шарообразной Землей в центре и круговыми орбитами вокруг ее, близкую к системе мира Аристотеля и слегка упрощенную по сравнению с системой Птолемея.

Несколько раз упоминается вращение Земли вокруг оси. Из Индии астрономические познания стали распространяться на запад, в первую очередь к арабам и народам Средней Азии. Это солнечные часы обсерватории в Дели.

Обсерватории древних Майя. В Центральной Америке в 250-900 год достигла высокого развития астрономия народов Майя, населявшего южную часть современной Мексики, Гватемала и Гондураса. Основные сооружения майя сохранились до наших дней. На картинке изображена обсерватория майя (около 900г.)

По форме это сооружение напоминает нам современные обсерватории, однако каменный купол майя не вращался вокруг своей оси и у низ не было телескопов. Наблюдения небесных светил производились невооруженным глазом с помощью угломерных приборов.

У майя существовал культ Венеры, что нашло отражение в их календаре, построенным на синодическом периоде Венеры (период смены конфигураций Венеры относительно Солнца), равном 584 суткам. После 900 года культура майя начала приходить в упадок, а затем прекратило свое существование вообще. Их культурное наследие было уничтожено завоевателями и монахами. На обороте изображена голова бога Солнца древних майя.

Представления о мире в средневековье. В средние века под влиянием католической церкви произошел возврат к примитивным представлениям древности о плоской Земле и опирающимся на нее полушарии неба. Здесь изображено наблюдения неба с примитивными инструментами астрономов 13 века.

Великий узбекский астроном Улугбек. Одним из замечательных астрономов средневековья является Мухаммедд Тарагбайблин Улугбекблин, внук известного завоевателя Тимураблин. Будучи назначен своим отцом Шахрухомблин правителем Самарблинкарда , Улугбекблин построил там обсерваторию, где был установлен гигантский квадрант радиусом 40 метров, не имевший себе равных среди угломерных предметов того времени.

Составленный Улугбекблином каталог положений 1018 звезд по точности превосходил другие и много раз переиздавался в Европе вплоть до 17 века. Улугбекблин определил наклон эклиптики к экватору, постоянную годичной процессии, им также составлены таблицы движения планет. Просветительская деятельность Улугбекблина и его пренебрежение к религии вызвали гнев мусульманской церкви. Он был предательски убит. Здесь показана плита квадранта Улугбекблина с градусными делениями.

Определение положения в открытом море с помощью секстанта. Успехи мореплавания и эпоха великих географических открытий потребовали нового развития астрономии, поскольку положение корабля в океане можно было определить только астрономиче­скими средствами. На рисунке, сделанном по оригиналу И. Страда-нуса и гравюре И. Галле (1520), изображен капитан корабля, опре­деляющий высоту Солнца над горизонтом с помощью секстанта — прибора, позволяющего путем поворота плоского зеркала совме­стить изображение Солнца с горизонтом и по отсчету на шкале определить угол возвышения Солнца над горизонтом.

Широта и долгота определялись по карте графически. Для определения широт и долгот до XVI11 века применялась также астролябия — угломерный прибор, с помощью которого можно было измерять как азимуты, так и зенитные расстояния светил. На обороте открытки изображена астролябия немецкого астронома второй половины XV века И. Региомонтана, изготовлен­ная в 1468 году.

Небесный глобус. Расположение созвездий и звезд на небосводе было удобно изображать на его уменьшенной модели — небесном глобусе. Первые небесные глобусы в Европе начали изготовлять в середине XVI века в Германии, Однако на Востоке такие глобусы появились значительно раньше — во второй половине XIII века.

Сохранился небесный глобус, изготовленный в обсерватории в Марате под руководством замечательного азербайджанского астрономй Наси-рэддина Туей мастером Мухаммедом бен Мюйидом эль Орди в 1279 году. На картине изображен небесный глобус 1584 г ода. описанный и, яе роят но, использованный датским астрономом XVI века Тихо Браге. На нем размечены небесный экватор, эклип­тика, круги склонений и круги широт, сходящиеся к полюсу мира и к полюсу эклиптики соответственно. Горизонтальное кольцо, охватывающее глобус, означает плоскость горизонта.

Вертикаль­ный круг с делениями в плоскости рисунка — небесный меридиан. На глобусе изображены символические очертания созвездий и нанесены звезды, видимые невооруженным глазом (кроме самых слабых).

Кабинет астронома начала XVI века. Картина сделана на основе современного рисунка И. Страдану-са, гравированного И. Галле около 1520 года. Мы видим астронома начала XVI века, современника Коперника. С помощью циркуля он измеряет положение звезды на планисфере (изображение сферы на плоскости). Рядом, на его столе, — небесный глобус, песочные часы, наугольник, таблицы, с которыми он сверяет свои измерения.

На другом столе мы видим армиллярную сферу (модель основных кругов небесной сферы), эклиметр, книги, другие приборы. На первом плане — модель Вселенной с твердой Землей в центре, вокруг нее видны орбиты планет. На заднем плане — модель ко­рабля той эпохи. Основная задача астрономов того времени заклю­чалась в возможно более точном определении положений звезд и Луны, по ко-1 о рой определялась долгота. Кроме того, астрономы той эпохи старались усовершенствовать теорию движения планет, основанную на системе мира Птолемея.

Портрет Коперника. Великий польский ученый Николай Коперник (1473—1543) произ­вел революцию в мировоззрении, доказав, что Земля не находится в центре мира, а является рядовой планетой, обращающейся вокруг Солнца. Сын купца, Коперник получил прекрасное образование сначала в Краковском университете, а затем в университетах Ита­лии. Кроме астрономии, он изучил юриспруденцию и медицину.

Ознакомившись с системой мира Птолемея, Коперник убедился в ее несостоятельности и уже в молодости начал разрабатывать гелиоцентрическую систему мира. В ходе этой работы Коперник составил точный каталог положений звезд, систематически наблю­дал положения планет. Лишь убедившись в справедливости своей теории, Коперник отдал свой труд «Об обращении небесных сфер» в печать. Книга вышла накануне смерти Коперника.

Система мира по Копернику. Согласно гелиоцентрической системе мира центром нашей планетной системы является Солнце. Вокруг него обращаются (в порядке удаленности от Солнца) планеты Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Единственным небесным телом, которое обращается вокруг Земли, является Луна. Значение труда Коперника трудно переоценить. Ф. Энгельс писал об этом: «Революционным актом, которым исследование природы заявило о своей независимости... было издание бессмерт­ного творения, в котором Коперник бросил — хотя и робко и, так сказать, лишь на смертном одре — вызов церковному автори­тету в вопросах природы».

Дальнейшее развитие теория Коперника получила в работах И. Кеплера и И. Ньютона, из которых первый открыл кинематические законы движения планет, а второй обна­ружил силу, которая управляет этими движениями, — силу всемир­ного тяготения. Большое значение для подтверждения системы Коперника имели телескопические открытия Галилея и пропаганда этой системы мира Джордано Бруно во второй половине XVI — начале XVII века.

earth-chronicles.ru

История развития представлений о Вселенной

С ранних времен человек задумывался об устройстве окружающего его мира как единого целого. И в каждой культуре оно понималось и представлялось по-разному. Так, в Вавилоне жизнь на Земле тесно связывали с движением звезд, а в Китае идеи гармонии переносились на всю Вселенную.

Развитие этих представлений в разных частях света шло по-разному. Но если в Старом Свете накопленные знания и представления в целом никуда не исчезли, лишь передаваясь от одной цивилизации к другой, то о Новом Свете такого сказать нельзя. Виной тому — колонизация Америки европейцами, уничтожавшая многие памятники древних культур.

В период Средневековья представление о мире как о едином целом не претерпевает существенных изменений. И тому две причины. Первая — сильное давление ортодоксальных богословов, характерное как для католической Европы, так и для исламского мира. Вторая — наследие прошлого, когда представления о мире строились из неких философских концепций. Необходимо было осознать, что астрономия являлась частью физики.

Первый значительный толчок в сторону современных представлений о Вселенной совершил Коперник.

Второй по величине вклад внесли Кеплер и Ньютон. Но поистине революционные изменения в наших представлениях о Вселенной происходят лишь в XX веке. Даже в начале его некоторые учёные считали, что Млечный Путь — вся Вселенная.

Космогония

Космогония — учение о происхождении или о сотворении Вселенной.[1] Со времён Гесиода она служила сюжетом множества философских трактатов.[1] В настоящее время космогония является областью науки, изучающей образование и развитие всех астрономических объектов. Системология рассматривает непрерывность и системность природы, в том числе системогенез объектов — рождение, жизнь, перерождение и эволюцию систем-объектов и объектов мироздания. Космогония охватывает непрерывность жизни космоса в его разнообразии. Астрофизика рассматривает физику мироздания, а космогония отражает эволюционный процесс мироздания, отражая его историю и тенденции.

Космогония (греч. kosmogonía, от kósmos — мир, Вселенная и gone, goneia — рождение) — область науки, в которой изучается происхождение и развитие космических тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех входящих в неё тел — Солнца, планет (включая Землю), их спутников, астероидов (или малых планет), комет, метеоритов.

— БСЭ[2]

Изучение космогонических процессов является одной из главных задач астрофизики. Поскольку все небесные тела возникают и развиваются, идеи об их эволюции тесно связаны с представлениями о природе этих тел вообще. В современной космогонии широко используется методология физики и химии.

Древняя космография и ранняя астрономия

Цивилизации Азии и Средиземноморья

Месопотамия
Предположительно карта мира у древних шумер.

На относительно небольшой территории между Тигром и Евфратом, последовательно сменяя друг друга, существовали несколько культур. Их космогонические воззрения похожи друг, на друга. Меняются имена богов, некоторые детали, но суть остается.

Согласно описанию Диодора Сицилийского у народов Месопотамии Вселенная делиться на три мира: небесный мир бога Ану, наземный мира Бела, отождествляемого с Энлилем, и подземный мира, где владычествует Эа. Второй мир, надземный, подобен горе и имеет вид вид опрокинутой круглой барки, выдолбленной снизу. Небесный мир повторяет форму наземного, отмежевываваясь от него небесный океаном. Солнце ходит с востока на запад, следуя установленного ему пути, ровно как и звезды[3].

Что касается астрономических познаний, то тут все гораздо сложнее. В-первых, датировка древнейших и по сути единственных источников на данную тему mul APIN и «Астролябии» крайне неточна и в различных работах может отличаться на тысячелетия, хотя большинство исследователей склоняются к касситскому периоду. Во-вторых, до сих пор объекты, описанные в астролябиях и mul APIN до сих пор отождествлены лишь частично, хотя гипотез высказано не мало. В-третьих, кроме как неподвижности звезд из этих источников о представлении древневавилонских астрономов ничего сказать невозможно: нет никакого объяснения насчет движения планет и нет ничего насчет собственного движения звезд, которое можно было нетрудно заметить, учитывая период и точность наблюдения.

Также нет уверенности в том, как рассчитывалось движение звезд. Часть исследователей утверждают, что вавилоняне уже использовали сферическую систему координат, однако оппоненты опираясь на противоречие с космогоническими воззрениями и ряд других несоответствий оспаривают данную точку зрения.

Древний Египет

В египетской мифологии не существовало единых представлений о сотворении мира. Существовало несколько различных версий[4].

Так в одной, ставили в центр мироздания солнечного бога Ра и считали его отцом всех прочих богов. Он и восемь его потомков образовывали так называемую эннеаду Гелиополиса. По гелиопольской легенде, Атум появился из изначальных вод, и по его воле из них же начал расти священный камень Бенбен. Стоя на его вершине, Атум породил Шу, бога воздуха, и Тефнут, богиню влаги. Эта пара родила своих детей, Геба, бога земли, и Нут, богиню неба. Эти первые поколения богов представляют в эннеаде основу творения. Геб и Нут произвели на свет Осириса, Исиду, Сета и Нефтиду, олицетворяющих соответственно плодородную пойму Нила и бесплодную пустыню.

Противоположная версия существовала в городе Гермополисе, где считали, что мир произошёл от восьмерых древних божеств, так называемой огдоады. Эта восьмерка состояла из четырёх пар богов и богинь, символизирующих элементы творения. Нун и Наунет соответствуют изначальным водам, Ху и Хаухет — бесконечности пространства, Кук и Каукет — вечной тьме. Четвёртая пара неоднократно менялась, но, начиная с Нового царства, она состоит из Амона и Амаунет, олицетворяющих невидимость и воздух. По гермопольской версии, эти божества были матерями и отцами бога солнца, принесшего в мир свет и дальнейшее творение.

Пространство мира не было для египтян однородным и изотропным. Каждый крупный храм считался особым местом, «сгустком бытия». Особыми местами были и пирамиды со своей сложной и загадочной топологией. А влияние направления течения Нила с юга на север было крайне сильным. Настолько, что когда египетские войска увидели Евфрат, текущий в обратную сторону, они назвали его перевернутой рекой (Му кеду, досл. «Перевёрнутая вода», транслит. егип. mw-qd.w)[5].

Из астрономических текстов в оригинале до нашего времени ничего не дошло, кроме художественных росписей на саркофагах времен Среднего царства и надписи времен Нового царства. Также к астрономическим документам можно отнести и карты «деканов». По всей видимости речь идет о звездах или созвездиях, но уверено отождествить можно лишь Сириус и Орион. Возможно, древние египтяне имели свой способ вычисления положения деканов, значительно отличающийся от нашего и утерянный к началу Среднего царства[6].

Древняя Греция

Древняя Греция, как и многие другие древние цивилизации, создала своё представление о Вселенной. Но уникальность древней Греции состояла в том, что она имела не одну модель: различные философские школы выдвинули крайне различные модели мира, и каждая была тем или иным образом «аргументирована».

Ранние философские школы выделяли те или иные вещества или фигуры как основополагающие. Через эти основы и строились ранние представления о Вселенной. Так, то земной диск плавает в воде, как это было у Фалеса из Милета, то просто цилиндр плавает в бесконечном пространстве, как это было у Анаксимандра и т. д.

Пифагорейцы предложили пироцентрическую модель Вселенной, в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня (Гестии). Чтобы в сумме получилось священное число — десять — сфер, шестой планетой объявили Противоземлю (Антихтон). Как Солнце, так и Луна, по этой теории, светили отражённым светом Гестии[7]. Эта система мира была описана Филолаем Кротонским.

Большинство древнегреческих учёных, однако, были сторонниками геоцентрической системы мира, также основанной пифагорейцами.

Расстояния между светилами у пифагорейцев соответствовали музыкальным интервалам в гамме; при вращении их звучит «музыка сфер», не слышимая нами. Пифагорейцы считали Землю шарообразной, а некоторые из них (Экфант и Гикет из Сиракуз) — даже вращающейся вокруг оси, отчего и происходит смена дня и ночи.

Платон (ок. 428-ок 347) анализировал весь мир через призму своих представлений о духовной сущности. Неизбежно это сказывалось и на устройстве мира. Звезды у него были «божественными сущностями» с телом и душой. Их видимая форма — это огонь, и он светит для того, чтобы они выглядели самыми яркими и прекрасными. А для сходства со Всецелым они были созданы шарообразными. Космос в представлении Платона не вечен, так как всё, что ощущается, есть вещь, а вещи старятся и умирают. Более того, само Время родилось вместе с Космосом.

Платон же первым предложил разложить неравномерные движения светил на «совершенные» движения по окружностям. На этот призыв откликнулся Евдокс Книдский. В своих (несохранившихся) сочинениях он изложил теорию гомоцентрических сфер — кинематическую схему движения планет, объясняющую попятное движение планет (с несколькими наложенными круговыми движениями) всего по четырём сферам, в центре которых находилась Земля.

Структура Вселенной по Аристотелю. Цифрами обозначены сферы: земли (1), воды (2), воздуха (3), огня (4), эфира (5), Перводвигатель (6). Масштаб не соблюдён

Космологическую систему, имевщую большое значение в Средневековье, создал Аристотель. Он полагал, что небесные тела переносятся в своём движении твёрдыми небесными сферами, к которым они прикреплены. По его мнению, всё, что движется, приводится в движение чем-нибудь внешним, которое, в свою очередь, также чем-то движется, и так далее, пока мы не дойдем до двигателя, который сам по себе неподвижен — до Перводвигателя. Землю он считал неподвижной.

Гераклид Понтийский (2-я половина IV века до н. э.) предполагал вращение Земли вокруг оси. Кроме того, на основании дошедших до нас скудных сведений можно предположить, что Гераклид считал Венеру и Меркурий обращающимися вокруг Солнца, которое, в свою очередь, обращается вокруг Земли. Существует и другая реконструкция система мира Гераклида: и Солнце, и Венера, и Земля вращаются по окружностям вокруг единого центра, причём период одного оборота Земли равен году[8]. В таком случае теория Гераклида являлась органическим развитием системы мира Филолая и непосредственным предшественником гелиоцентрической системы мира Аристарха.

В первой половине III в до н. э. Аристарх Самосский предложил гелиоцентрическую систему мира. Исходя из гелиоцентрической системы и ненаблюдаемости годичных параллаксов звёзд он сделал вывод, что расстояние от Земли до Солнца пренебрежимо мало по сравнению с расстоянием от Солнца до звёзд. Кроме того, он предложил метод измерения расстояния до Солнца и Луны и их размеров. По его оценке, Земля по объёму в 250 раз меньше Солнца. Хотя численно он и ошибся, его метод позволил установить, что Земля намного меньше Солнца.

С III века до н. э. греческая наука усвоила достижения вавилонян, в том числе достижения в астрономии и математике. Но греки пошли значительно дальше. Около 230 года до н. э. Аполлоний Пергский разработал новый метод представления неравномерного периодического движения через базовую окружность — деферент — и кружащуюся вокруг деферента вторичную окружность — эпицикл; само светило движется по эпициклу. В астрономию этот метод ввёл Гиппарх, работавший на Родосе.

В I веке до н. э. Гемин обнародовал мнение, что звёзды только кажутся лежащими на одной сфере, а на самом деле они располагаются на разных расстояниях от Земли. Есть все основания полагать, что это мнение также зародилось ранее, в III или II веке до н. э., поскольку оно ассоциируется с возможностью существования собственных движений звёзд, возможность которых предполагал Гиппарх: наличие таких движений несовместимо с представлением о звёздах как о телах, закреплённых на одной сфере.

Эпицикл и деферент, согласно теории вложенных сфер.

После длительного упадка в конце I в н. э. — начале II в н. э. возобновляются исследование небесных и разработка моделей мира. Теон Смирнский описывает теорию вложенных сфер — физическую теорию, пытающуюся объяснить теорию эпициклов. Суть её в следующем. Представим себе две сделанные из твёрдого материала концентрические сферы, между которыми помещена маленькая сфера. Среднее арифметическое радиусов больших сфер является радиусом деферента, а радиус малой сферы — радиусом эпицикла. Вращение двух больших сфер заставит маленькую сферу вращаться между ними. Если поместить на экватор малой сферы планету, то её движение будет в точности таким, как в теории эпициклов; таким образом, эпицикл является экватором малой сферы.

Этой теории, с некоторыми модификациями, придерживался и Птолемей. Она описана в его труде Планетные гипотезы[9]. Там отмечается, в частности, что максимальное расстояние до каждой из планет равно минимальному расстоянию до планеты, следующей за ней, то есть максимальное расстояние до Луны равно минимальному расстоянию до Меркурия и т. д. Максимальное расстояние до Луны Птолемей смог оценить с помощью метода, аналогичного методу Аристарха: 64 радиуса Земли. Это дало ему масштаб всей Вселенной. В результате вышло, что звезды расположены на расстоянии около 20 тысяч радиусов Земли. Птолемей также сделал попытку оценить размеры планет. В результате случайной компенсации ряда ошибок Земля у него оказалась средним по размеру телом Вселенной, а звезды — имеющими примерно тот же размер, что и Солнце.

По мнению Птолемея, совокупность эфирных сфер, принадлежащих каждой из планет — это разумное одушевленное существо, где сама планета выполняет роль мозгового центра; исходящие от него импульсы (эманации) приводят в движение сферы, которые, в свою очередь, переносят планету. Птолемей приводит следующую аналогию: мозг птицы посылает в её тело сигналы, заставляющие двигаться крылья, несущие птицу по воздуху. При этом Птолемей отвергает точку зрения Аристотеля о Перводвигателе как причине движения планет: небесные сферы совершают движения по своей воле, и только самая внешняя из них приводится в движение Перводвигателем[10].

Были и другие попытки придать физический смысл теории эпициклов, которые также основывались на геоцентрической системе мира[11].

Развивались также взгляды, выходящие за рамки геоцентризма. Так, Птолемей дискутирует с некоторыми учёными (не называя их по имени), которые предполагают суточное вращение Земли. Латинский автор V в. н. э. Марциан Капелла в сочинении Брак Меркурия и филологии описывает систему, в которой Солнце обращается по окружности вокруг Земли, а Меркурий и Венера — вокруг Солнца.

Древняя Индия

Представление о космосе в ведийский период (XVI-VI века до н. э.) содержится в Махабхарата.

Астрономические знания на тот период описаны в ведах, а также в примыкающей к ним Джьотиша-веданга. В них описываются 28[12] лунных стоянок, накштар, а также даются способы расчета положения Солнца и Луны.

Позже, в брахманский период были составлены пураны, в частности Бхагавата-пурана, содержащая представления о мире в то время. Дословная её трактовка приводит к многочисленным противоречиям и логическим неувязкам внутри самого текста. Ричард Томпсон в цикле своих работ показал, что большинство из них исчезают, если рассматривать текст как художественное описание цепочки различных проекций.

Так, модель Солнечной системы — геоцентрическая модель, ныне носящая название системы Тихо Браге: все планеты кроме Земли вращаются вокруг Солнца, а само Солнце вокруг Земли. Известные на тот момент планеты это Меркурий, Венера, Марс, Юпитер и Сатурн, то есть все, видимые невооруженным глазом. Самая дальняя орбита у Сатурна, она же объявляется той границей, до которой распространяется свет. Примечательно, что указанные размеры орбит всех известных планет по порядку согласуются с современными измерениями, в то время как учёные античной и средневековой эпох сильно занижали масштабы солнечной системы. Однако, истинных масштабов Вселенной древние индусы себе не представляли: как и в древней Греции звёзды считались чем-то близким, а их свет — это отражённый свет Солнца.

Описание Земли — это проекция глобуса на плоскость, с нанесённой видимым движением Солнца — эклиптикой. Более позднее понимание Земли как плоского диска связано, по всей видимости, с деградацией понимания это описания: оно начинает пониматься буквально. Ричард Томпсон, ссылаясь на сторонние исследования также отмечает, что такая деградация происходила повсеместно. Есть косвенные указания, что размер Земли и её формы тоже понимались правильно. Но при этом она считалась неподвижной. В гораздо более поздний период индийский учёный Арьябхата в своём трактате, изданном в 499 году, предположил, что Земля вращается вокруг своей оси, однако в дальнейшем эта гипотеза не получила широкого распространения[13].

Цивилизации Северной и Южной Америк

Месоамерика

К цивилизациям месоамерики относятся Ацтеки, Майя, Миштеки, Ольмеки, Пурепеча, Сапотеки, Тольтеки, Тотонаки, Уастеки, Чичимеки. И хотя даже в рамках одной цивилизации в разных областях жизни различия могли быть огромны, но что касается общих представлений о мире, то тут наблюдается единство взглядов с незначительными отклонениями.

Месоамериканцы очень рано начали проводить точные астрономические наблюдения, обычно это связывают с сельскохозяйственными нуждами. Они точно могли вычислять солнечные и лунные затмения, а также координаты Венеры на небе. Также был создан точный календарь.

Однако, значительное место в месоамериканских представлениях занимают не результаты наблюдений, а астрология и календарь[14]. Так, идея цикличности, заложенная в календаре, перекладывается на все события этого мира, периоды этих повторений связаны со священными числами для месоамериканцев, такими как 400, 20, 52. Цикличность также присутствует и в космогонии: мир разрушается и воссоздается вновь. Всего таких циклов было четыре, текущий — пятый. Если считать, что дата начала хронологии установлена верно, то конец текущего цикла приходится на 2012 г[15].

Устройство мира также было схожим: мир имеет вертикальное и горизонтальное деление. В проекции это четырёхугольник, углы которого ориентированы на стороны света. Через центр мира проходит мировое древо, соединяющее 13 небесных миров, наземный мир и 9 подземных. Каждая часть света имела своего бога и цвет, которые различались у разных народов. Рождение миру давала борьба двух противоположных начал: добра и зла, света и тьмы и т. д.[16]

Инки

Мир инков крайне сильно отличался от представлений о мире, распространенных в Европе и Азии. Они по иному представляли себе окружающий мир, по иному им виделись масштабы Вселенной.

Для инков время совмещалось с пространством, как это выражается уже в самом слове на языке кечуа «pacha», что значит время и пространство (длина, ширина и глубина) одновременно, то есть в одном слове отображены значения сразу четырёх измерений и представления о статике и динамике. Эта синонимия между временем и пространством обозначает, что первое показывалось конкретно и проецировалось на географическое пространство. Время Пача делилось на: настоящее — пача, и прошлое-будущее — ньявпа-пача. И оно показывается идущим по кругу:

Близкими к термину ньявпа были: урин — давнее и невидимая зона, и ханан — недавнее и видимая зона.

В представлении инков существовало три мира: Ханан Пача, Кай Пача, Уку Пача. Горизонт (в условиях гористой местности это была не только горизонтальная линия, но и вертикальные и любые другие) назывался кинрай, в свою очередь предполагаемая за горизонтом земля, не видимая наблюдателем, называлась кинрайнин[17].

Происхождение/начало мира называлось — Паккарик пача.

Пространственно север у инков находился внизу, а юг — вверху[18].

В доколумбовом мире, где время показано конкретно, понятие «нуля» не соотносится с понятием «ничто», как наш «нуль», а соотносится чем-то конкретным и предметным. Уже сам по себе символ «нуль» у инков и майя является чем-то осязаемым: это шнур без узла для инков, раковина для майя и кукурузный початок для ацтеков. Иными словами — начало чего-либо.[19]

Как показал новый анализ языка и жестов аймара американскими учёными, индейцы представляют время наоборот: в воображаемой пространственно-временной шкале будущее для них остаётся позади, а прошлое ещё только предстоит увидеть.

Средневековье

Европа

В Средние века в католической Европе господствовала геоцентрическая система мира по Птолемею. Эта система вкупе с воззрениями Аристотеля получила официальное признание и поддержку со стороны Церкви и Папского престола. Одним из главных популяризаторов системы гомоцентрических сфер Аристотеля являлся знаменитый философ и богослов Фома Аквинский[20]. Он считал эту систему единственно правильной; эпициклы и эксцентры, закреплённые в науке Птолемеем, считались «неизбежным злом», удобной математической фикцией, созданной для удобства расчётов.

В то же время в Европе начали возникать университеты. Несмотря на то, что они находились в той или иной степени под контролем католической Церкви, они стали главными центрами научной мысли, содействовали развитию и накоплению знаний об устройстве мироздания[21].

Исламский мир

В области натуральной философии и космологии большинство арабских учёных следовали учению Аристотеля. В его основе лежало разбиение Вселенной на две принципиально различные части — подлунный и надлунный мир. Подлунный мир — это область изменчивого, непостоянного, преходящего; напротив, надлунный, небесный мир — это область вечного и неизменного. С этим представлением связана концепция естественных мест. Существует пять видов материи, и все они имеют свои естественные места в пределах нашего мира: элемент земли — в самом центре мира, далее следуют естественные места элементов воды, воздуха, огня, эфира.

В области космологии учёные стран ислама были сторонниками геоцентрической системы мира. Однако велись споры насчет того, какой её вариант следует предпочесть: теорию гомоцентрических сфер или теорию эпициклов.

В XII — начале XIII столетия теория эпициклов подверглась массированной атаке со стороны арабских философов и учёных Андалусии. Это движение иногда называется «Андалусийским бунтом»[22]. Его основателем был Мухаммад ибн Баджа, известный в Европе как Авемпац (ум. 1138), дело продолжил его ученик Мухаммад ибн Туфайл (ок. 1110—1185) и ученики последнего Hyp ад-Дин ал-Битруджи (ум. в 1185), известный также как Альпетрагий, и Аверроэс; к их числу можно отнести и Маймонида, представителя иудейской общины Андалусии. Эти учёные были убеждены, что теория эпициклов, несмотря на все её преимущества с математической точки зрения, не соответствует действительности, поскольку существование эпициклов и эксцентрических деферентов противоречит физике Аристотеля, согласно которой единственным центром вращения небесных светил может быть только центр мира, совпадающий с центром Земли.

Однако и модель эпициклов в её птолемеевском варианте (теории бисекции эксцентриситета) не могла полностью удовлетворить астрономов. В этой теории для объяснения неравномерности движения планет предполагается, что движение центра эпицикла по деференту выглядит равномерным при наблюдении не из центра деферента, но некоторой точки, которая называется эквантом, или уравнивающей точкой. При этом Земля также находится не в центре деферента, а смещена в сторону симметрично точке экванта относительно центра деферента. В теории Птолемея угловая скорость центра эпицикла относительно экванта неизменна, а при наблюдении из центра деферента угловая скорость центра эпицикла при движении планеты меняется. Это противоречит общей идеологии докеплеровой астрономии, согласно которой все движения небесных тел слагаются из равномерных и круговых.

Мусульманские астрономы (начиная с ибн ал-Хайсама, XI век) отметили ещё одну, чисто физическую трудность теории Птолемея. Согласно теории вложенных сфер, которую развивал и сам Птолемей, движение центра эпицикла по деференту представлялось как вращение некоторой материальной сферы. Однако совершенно невозможно представить себе вращение твердого тела вокруг оси, проходящей через её центр, чтобы скорость вращения была неизменной относительно некоторой точки за пределами оси вращения.

Были попытки выйти и за пределы геоцентрической системы, однако, они встречали значительное сопротивление ортодоксальных богословов, которые отвергали любые натурфилософские теории как противоречащие тезису о всемогуществе Аллаха.

Русь

Картина мира по Косме Индикоплову (из «Христианской топографии»)

Представление о мире в ранней христианской Руси было тесно связано с богословием. Необходимо было объяснить окружающий мир и не войти в противоречие со Священным Писанием. Ещё в VI в. появилась рукопись «Христианская топография» за авторством купца из Александрии Космы Индикоплова. В самой Византии к ней не относились серьёзно. Патриарх Фотий писал болгарскому царю Михаилу о ней как о не заслуживающей внимания, указывал на абсурдность заключённых в ней представлений о небе и видел в авторе «более рассказчика басен, чем повествователя истины». Однако в Западной Европе сочинение получило широкое распространение. В домонгольский период оно проникло на Русь и оставалось в авторитете вплоть до XVII в[23].

Косма Индикоплов отвергал гипотезу о шароподобности Земли и всю систему Птолемея, называя такие мысли «круглообразной ересью». Обосновывал это он тем, что в Священном Писании говорится — ангелы по Втором пришествии будут созывать трубным звуком народы «от конец небес до конец их». И если Земля кругообразна, то и небо кругообразно, то есть не имеет края, а это противоречит Писанию. Далее, если небо «кругообразно» и, следовательно, не прикасается краями к земному шару, то как же тогда люди при всеобщем воскресении будут всходить от земли во время Второго пришествия? По мнению Космы Земля имела форму прямоугольника. Сверху этот прямоугольник возвышается в гору, верхушка которой наклонена к северо-западу, и по склону этой земли-горы от севера до юга живут разные народы. При прохождении Солнце оказывается ближе к южным землям, чем к северным. Вокруг же Земли расположен океан, и на его краю возвышается твердая, но прозрачная стена небесного свода, непосредственно смыкающаяся с заокеанской землей.

Помимо сочинения Космы Индикоплова была и другая книга — «Шестоднев», дошедшая до нас в древней рукописи, восходящей к 1263 г. Автор «Шестоднева» — Иоанн, экзарх Болгарский[23]. Данный труд гораздо противоречивее, чем первый. С одной стороны Иоанн излагает взгляды похожие на взгляды Космы, однако есть намеки и на то, что автор представляет себе Землю как шар. Также, в отличие от Космы, он отличает планеты от звёзд.

Третье космографическое сочинение Древней Руси находится в книге Иоанна Дамаскина «Точное изложение православной веры». Взгляды, изложенные в ней, уже прямо противоположны взглядам Космы: Зодиак описывается во всех подробностях, описываются астрологические дома планет, заметна симпатия к кругообразности земли. В книге Дамаскина не выделяется целостного мнения насчёт природы неба, но приводятся все воззрения на естество неба. Сочувственно цитируется взгляд Василия Великого: «сего небесе божественный Василий тонкое быти, глаголет, естество, аки дым».

XV—XVII вв

Система мира Тихо Браге

Новаторский характер носит космология Николая Кузанского (1401—1464), изложенная в трактате Об учёном незнании. Он предполагал материальное единство Вселенной и считал Землю одной из планет, также совершающей движение; небесные тела населены, как и наша Земля, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. По его мнению, Вселенная безгранична, но конечна, поскольку бесконечность может быть свойственна одному только Богу. Вместе с тем у Кузанца сохраняются многие элементы средневековой космологии, в том числе вера в существование небесных сфер, включая внешнюю из них — сферу неподвижных звёзд. Однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной)[24].

Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд; по-видимому, сохранялась у него и вера в существование небесных сфер[25].

Идеи Коперника вызвали живой интерес среди исследователей, породив волну новых идей об устройстве Вселенной. Так Джордано Бруно, Томас Диггес высказывали предположения, что пространство бесконечно и заполнено звездами[26][27][28]. Помимо этого Галилео Галилей, оставляя открытым вопрос о бесконечности Вселенной, Бруно отстаивали мнение, что звезды подобны Солнцу. В середине — второй половине XVII века эти идеи поддержали Рене Декарт, Отто фон Герике и Христиан Гюйгенс. Гюйгенсу принадлежит первая попытка определения расстояния до звезды (Сириуса) в предположении о равенстве её светимости солнечной.

С этими взглядами не соглашался Кеплер. Вселенную он представлял в виде шара конечного радиуса с полостью посередине, где располагалась Солнечная система. Шаровой слой за пределами этой полости Кеплер считал заполненным звёздами — самосветящимися объектами, но имеющими принципиально другую природу, чем Солнце однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной)[29]. Один из его доводов является непосредственным предшественником фотометрического парадокса. С именем Кеплера связана ещё одна революция. Он заменяет круговые движения, отягчённые многочисленными эквантами, на одно — по эллипсу и выводит законы движения по нему, ныне носящие его имя.

Однако не все учёные приняли концепцию Коперника. Так, одним из оппонентов был Тихо Браге, называя её математической спекуляцией. Он предложил свою компромиссную геогелиоцентрическую систему мира, которая представляла собой комбинацию учений Птолемея и Коперника: Солнце, Луна и звёзды вращаются вокруг неподвижной Земли, а все планеты и кометы — вокруг Солнца. Суточного вращения Земли Браге тоже не признавал. Среди немногочисленных сторонников системы Браге в XVII веке был видный итальянский астроном Риччиоли (у Риччиоли, впрочем, Юпитер и Сатурн обращаются вокруг Земли, а не Солнца). Прямое доказательство движения Земли вокруг Солнца появилось только в 1727 году (аберрация света), но фактически система Браге была отвергнута большинством учёных ещё в XVII веке как неоправданно и искусственно усложнённая по сравнению с системой Коперника-Кеплера.

Космология Джордано Бруно

Космология Джордано Бруно — один из ключевых компонентов учения выдающегося итальянского философа эпохи Возрождения Джордано Бруно (наст. имя: Филиппо, прозвище — Ноланец; 1548 г., Нола близ Неаполя — 17 февраля 1600, Рим)[30]. Космологические вопросы затрагивались во многих сочинениях Джордано Бруно, наиболее полно в диалогах Пир на пепле (1584) и О бесконечности, Вселенной и мирах (1584) и поэме О безмерном и неисчислимых (1591).

Ряд положений космологии Бруно имеет новаторский и даже революционный для своего времени характер, в значительной мере предвосхитившие многие положения космологии Нового времени: представление о бесконечности Вселенной и числа миров в ней, отождествление звёзд с далёкими солнцами, представление о материальном единстве мироздания. Большое значение для развития науки имеет его пропаганда гелиоцентризма. Вместе с тем, некоторые представления Джордано Бруно (в первую очередь, идея о всеобщей одушевлённости материи) были вскоре оставлены наукой.

Метафорический язык Бруно, его богатая поэтическая фантазия, неразрывная связь его космологии с теологией, метафизикой, этикой, эстетикой затрудняют оценку его научных представлений и являются причиной непрекращающихся споров среди историков науки и философов.

XVIII—XIX вв

На пороге XVIII века выходит в свет книга, имеющая колоссальное значение для всей современной физики — «Математические начала натуральной философии» Ньютона[31]. Ещё только создаваемый математический анализ даёт возможность физике строго оценивать факты, а также достоверно судить о качестве пытающихся описать их теорий.

На этой основе уже в XVIII в. Ньютон строит свою модель Вселенной. Он осознаёт, что в конечном мире, наполненном гравирующими телами, неизбежно наступит момент, когда все они сольются друг с другом. Таким образом, он полагает, что пространство Вселенной бесконечно.

В трактате 1755 года, основанном на работах Томаса Райта (англ. Thomas Wright), Иммануил Кант предположил, что Галактика может быть вращающимся телом, которое состоит из огромного количества звёзд, удерживаемых гравитационными силами, сходными с теми, что действуют в Солнечной системе, но в бо́льших масштабах. С точки наблюдателя, расположенного внутри Галактики (в частности, в нашей Солнечной системе), получившийся диск будет виден на ночном небе как светлая полоса. Кант высказал и предположение, что некоторые из туманностей, видимых на ночном небе, могут быть отдельными галактиками.

Уильям Гершель высказал предположение, что туманности могут быть далёкими звёздными системами, аналогичными системе Млечного Пути. В 1785 году он попытался определить форму и размеры Млечного Пути и положения в нём Солнца, используя метод «черпков» — подсчёта звёзд по разным направлениям. В 1795 году, наблюдая планетарную туманность NGC 1514, он отчётливо увидел в её центре одиночную звезду, окружённую туманным веществом. Существование подлинных туманностей, таким образом, не подлежало сомнению, и не было необходимости думать, что все туманные пятна — далёкие звёздные системы[32].

В 1837 году В. Я. Струве на основании собственных наблюдений обнаружил и измерил параллакс α Лиры (опубликовал в 1839 году). Полученное им значение (0,125" ± 0,055") было первым успешным определением параллакса звезды вообще. Это был первый шаг в осознании истинных пространственных масштабов Вселенной.

XX—XXI века

XX век — век рождения современной космологии. Она возникает в начале века и по мере развития вбирает в себя все новейшие достижения, такие как технологии постройки больших телескопов, космические полёты и компьютеры.

Первые шаги к уже современной космологии были сделаны в 1908—1916 годы. В это время открытие прямо-пропорциональной зависимости между периодом и видимой звёздной величиной у цефеид в Малом Магеллановом облаке (Генриетта Ливитт, США) позволило Эйнар Герцшпрунг и Харлоу Шепли разработать метод определения расстояний по цефеидам.

В 1916 А. Эйнштейн пишет уравнения общей теории относительности — теории гравитации, ставшей основой для доминирующих космологических теорий. В 1917 году, пытаясь получить решение, описывающее «стационарную» Вселенную, Эйнштейн вводит в уравнения общей теории относительности дополнительный параметр — космологическую постоянную.

В 1922—1924 гг. А. Фридман применяет уравнения Эйнштейна (без космологической постоянной и с ней) ко всей Вселенной и получает нестационарные решения.

В 1929 Эдвин Хаббл открывает закон пропорциональности между скоростью удаления галактик и расстоянием до них, позже названный его именем. Становится очевидным, что Млечный путь — лишь небольшая часть окружающей Вселенной. Вместе с этим появляется доказательство для гипотезы Канта — некоторые тумманости — галактики подобные нашей. Одновременно подтверждаются выводы Фридмана о нестационарности окружающего мира, а вместе с тем и верность выбранного направления развития космологии[33].

С этого момента и вплоть до 1998 года классическая модель Фридмана без космологической постоянной становится доминирующей. Влияние космологической постоянной на итоговое решение изучается, но ввиду отсутствия экспериментальных указаний на её существенность для описания Вселенной такие решения для интерпретации наблюдательных данных не применяются.

В 1932 году Ф. Цвикки выдвигает идею о существовании тёмной материи — вещества, не проявляющего себя электромагнитным излучением, но участвующего в гравитационном взаимодействии. В тот момент идея была встречена скептически, и только около 1975 года она получает второе рождение и становится общепринятой[34].

В 1946—1949 годах Г. Гамов, пытаясь объяснить происхождение химических элементов, применяет законы ядерной физики к началу расширения Вселенной. Так возникает теория «горячей Вселенной» — теория Большого Взрыва, а вместе с ней и гипотеза об изотропном реликтовом излучении с температурой в несколько Кельвин.

В 1964 году А. Пезиас, Р. Вилсон открывают изотропный источник помех в радиодиапазоне. Тогда же выясняется, что это реликтовое излучение, предсказанное Гамовым. Теория горячей Вселенной получает подтверждение, а в космологию приходит физика элементарных частиц.

В 1991—1993 годах в космических экспериментах «Реликт-1» и COBE открыты флуктуации реликтового излучения. Правда, нобелевской награды позже удостоятся только некоторые члены команды COBE[33].

В 1998 году по далеким сверхновым типа Ia строится диаграмма Хаббла для больших z. Выясняется, что Вселенная расширяется с ускорением. Модель Фридмана допускает подобное только при введении антигравитации, описываемой космологической постоянной. Возникает мысль о существовании особого рода энергии, ответственного за это — тёмной энергии. Появляется современная теория расширения — ΛCDM -модель, включающая в себя как тёмную энергию, так и тёмную материю.

Большой спор

В истории астрономии Большой спор (иногда Великий спор, Большие дебаты, Большая дискуссия), который также называется дебатами между Харлоу Шепли и Гебером Кёртисом, был важнейшей дискуссией, которая касалась природы спиральных туманностей и размера Вселенной. Основной вопрос в рамках обсуждения формулировался так: были ли далекие туманности относительно небольшими объектами, лежащими в пределах нашей Галактики, или же они были большие, независимые галактики, подобные Млечному Пути. Обсуждение состоялось 26 апреля 1920 года в зале им. Байрда в Национальном музее естественной истории в Вашингтоне. Двое ученых впервые представили независимые научные работы по теме «Шкала расстояний во Вселенной» в течение дня, а затем приняли участие в совместном обсуждении, которое состоялось в тот же вечер. Большая часть информации о Большом споре нам известна из двух работ, опубликованных Шепли и Кёртисом в мае 1921 года в выпуске Бюллетеня Национального совета по научным исследованиям. Опубликованные работы включают набор аргументов и позицию, которой придерживался каждый ученый в 1920 году.

Шепли приводил доводы в пользу того, что Млечный Путь — это и есть вся Вселенная. Он считал, что туманности, такие как Туманность Андромеды и другие объекты спиральной формы, просто часть Млечного Пути. Его основным доводом был относительный размер туманностей: если бы Туманность Андромеды не была частью Млечного пути, то расстояние до неё должно быть порядка 108световых лет, с чем большинство астрономов того времени не могло согласиться. Адриан ван Маанен также предоставил доказательства аргументов Шепли. Ван Маанен был весьма уважаемым астрономом того времени, и он утверждал, что лично наблюдал, как спиральная туманность Вертушка вращается. Если бы она на самом деле была отдельной галактикой и можно было бы наблюдать изменения в ней, то это было бы нарушением универсального ограничения скорости — скорости света. Позднее стало ясно, что наблюдения ван Маанена были некорректными — никто не может увидеть вращение Галактики Цевочное колесо даже за время, сопоставимое с продолжительностью жизни человека. Ещё одним фактом, который, казалось, свидетельствовал в пользу теории Шепли, была вспышка новой в Туманности Андромеды, которая на время затмила собой ядро галактики, то есть она выделила совершенно абсурдное количество энергии для нормальной новой. Таким образом, новая и туманность должны были находиться в пределах нашей Галактики, поскольку, если Туманность Андромеды сама была бы галактикой, то новой пришлось бы быть немыслимо яркой, чтобы быть видимой с такого большого расстояния.

Со своей стороны Кёртис утверждал, что Туманность Андромеды и другие такие же туманности были отдельными галактиками, или «островами во Вселенной». Он показал, что в Туманности Андромеды было больше новых, чем во всём Млечном Пути. Исходя из этого, он мог спросить, почему в одной небольшой части галактики новых больше, чем во всех остальных местах. Это наблюдение заставляет его полагать, что Туманность Андромеды является отдельной галактикой со своей историей и своим набором новых звезд. Он также отметил, что в других галактиках есть тёмные прожилки, похожие на облака пыли, найденные в нашей Галактике, и также существуют большие значения доплеровских сдвигов.

Благодаря работе Эдвина Хаббла в настоящее время известно, что Млечный Путь является лишь одной из сотен миллиардов галактик в видимой Вселенной, и доказательства Кёртиса были более верными в прениях по этому вопросу. Кроме того, в настоящее время известно, что Новая Шепли, упомянутая в его аргументах, была на самом деле сверхновой, которая действительно временно затмила по яркости всю галактику. Но в других аспектах результаты дискуссии были не столь однозначны: фактический размер Млечного Пути находится между размерами, предложенными Шепли и Кёртисом[35]. Также победила модель Галактики Шепли: Кёртис поместил Солнце в центр Галактики, в то же время как Шепли правильно поместил Солнце во внешние области галактики[36].

WMAP

Основная статья: WMAP Карта микроволнового излучения, построенная WMAP

WMAP (Wilkinson Microwave Anisotropy Probe) — космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва в момент зарождения Вселенной.

Собранная WMAP информация позволила учёным построить самую детальную на сегодняшний день карту флуктуаций температуры распределения микроволнового излучения на небесной сфере. Ранее подобную карту удалось построить по данным аппарата НАСА COBE, однако её разрешение существенно — в 35 раз — уступало данным, полученным WMAP.

Данные WMAP показали, что распределение температуры реликтового излучения по небесной сфере соответствует полностью случайным флуктуациям с нормальным распределением. Параметры функции, описывающей измеренное распределение, согласуются с моделью Вселенной, состоящей:

Данные WMAP позволяют утверждать, что тёмная материя является холодной (то есть состоит из тяжёлых частиц, а не из нейтрино или каких-либо других лёгких частиц). В противном случае лёгкие частицы, движущиеся с релятивистскими скоростями, размывали бы малые флуктуации плотности в ранней Вселенной.

Среди других параметров, из данных WMAP определены (исходя из ΛCDM-модели, то есть фридмановской космологической модели с Λ-членом и холодной тёмной материей англ. Cold Dark Matter)[37]:

Улисс

«Улисс» — космический аппарат совместного производства ЕКА и НАСА, предназначенный для изучения Солнца и, в качестве дополнительной миссии, Юпитера.

Аппарат предоставляет важные для космологических исследований данные по гамма-всплескам, которые невозможно получить на Земле и в околоземном пространстве.

Примечания

  1. ↑ 1 2 История развития представлений о Вселенной — статья из Малого энциклопедического словаря Брокгауза и Ефрона
  2. ↑ Космогония — статья из Большой советской энциклопедии
  3. ↑ Литовка И.И. Представления о пространстве и времени в древней Месопотамии касситского И ассирийского периода // Философия история. — 2011. — Т. 4. — С. 105-113.
  4. ↑ Коростовцев М. А. — Религия Древнего Египта
  5. ↑ Культурное пространство Древнего Египта — История и культура Древнего Египта
  6. ↑ Литовка И.И. Проблемные аспекты древнеегипетской астрономии, хронологии и календаря // Философия история. — 2009. — Т. 1. — С. 134-154.
  7. ↑ А. Панекук. Греческие поэты и философы // История Астрономии = A history of astronomy. — второе. — Москва: URSS, 2010. — 592 с. — (Физико-математическое наследие). — ISBN 978-5-382-01147-9
  8. ↑ B. L. van der Waerden, On the motion of the planets according to Heraclides of Pontus, Arch. Internat. Hist. Sci. 28 (103) (1978)
  9. ↑ James Evans. History and practice of ancient astronomy. — Oxford: Oxford. University Press, 1998. — С. 384-392.
  10. ↑ Murschel, Andrea The Structure and Function of Ptolemy's Physical Hypotheses of Planetary Motion. — 1995.
  11. ↑ Aiton, E. J. Celestial Spheres and Circles. — History of Science, 1981.
  12. ↑ http://www.encyclopedia.com/utility/printdocument.aspx?id=1G2:2830904948#A
  13. ↑ Thompson Richard L Vedic Cosmography and Astronomy. — Los Angeles: Bhaktivedanta Book Trust, 1989. — ISBN 8120819543
  14. ↑ К.Таубе. Мифы ацтеков и майя / К. Ткаченко. — Москва: Фаир-пресс, 2005.
  15. ↑ Энциклопедия мифологии. Астрология народов Мезоамерики.
  16. ↑ А.И. Давлетшин Заметки о религиозно-мифологических представлениях в Мезоамерике.
  17. ↑ Atuq Eusebio Manga Qespi. Pacha: un concepto andino de espacio y tiempo // Revista Espanola de Antropología Americana, № 24, pp.158. Edit. Complutense, Madrid. 1994
  18. ↑ Хуан де Бетансос, кипукамайоки Кальапиньа, Супно и др. Сообщение о Происхождении и Правлении Инков, 1542 г.. www.kuprienko.info (А.Скромницкий) (3 января 2010). — Первая хроника перуанских индейцев, из книги Juan de Betanzos. Suma y Narracion de los Incas. — Madrid, Ediciones Polifemo, 2004, ISBN 84-86547-71-7, стр. 358-390. Проверено 17 ноября 2012.
  19. ↑ Лаура Лауренсич-Минелли. Любопытное понятие мезоамериканского и андского «нуля предметного» и логика инкских богов-чисел.
  20. ↑ Биленкин Д. А. Путь мысли. — Научно-худ. лит-ра. — М.: Дет. лит., 1982. — С. С. 166.
  21. ↑ Астрономия. Большая советская энциклопедия. Архивировано из первоисточника 19 декабря 2012. Проверено 18 декабря 2012.
  22. ↑ Sabra A. I. The Andalusian Revolt Against Ptolemaic Astronomy: Averroes and al-Bitrûjî // in: Transformation and Tradition in the Sciences: Essays in honor of I. Bernard Cohen. — Cambridge University Press, 1984. — P. 233—253.
  23. ↑ 1 2 Астрономия древней Руси Д. О. Святский
  24. ↑ Койре А. От замкнутого мира к бесконечной вселенной. — Москва: Логос, 2001. — С. 2-17.
  25. ↑ Barker P. Copernicus, the orbs, and the equant. — Synthese, 1990..
  26. ↑ Джордано Бруно. О бесконечности, Вселенной и мирах
  27. ↑ Gatti H. Giordano Bruno and Renaissance Science. — Cornell Univercity Press, 1999. — С. 105-106.
  28. ↑ Койре 2001; Granada 2008.
  29. ↑ Койре А. От замкнутого мира к бесконечной вселенной. — Москва: Логос, 2001. — С. 49-74.
  30. ↑ Краткую биографическую справку см., например, в статье Чанышев 2003.
  31. ↑ Ньютон И. Математические начала натуральной философии / Перевод с латинского и примечания А.Н. Крылова. — М.: Наука, 1989. — 688 с.
  32. ↑ Ю. Н. Ефремов. Постоянная Хаббла. Архивировано из первоисточника 11 августа 2011.
  33. ↑ 1 2 А. В. Засов, К. А. Постнов. Общая астрофизика. — М.: ВЕК 2, 2006. — 398 с. — 1500 экз. — ISBN 5-85099-169-7
  34. ↑ Яан Эйнасто. Сказание о тёмной материи = Tumeda aine lugu / сост. Mihkel Jõeveer, ред. Urmas Tõnisson. — Tumeda aine lugu. — Tartu: Ilmamaa, 2006. — Т. 71. — С. 259-415. — (Eesti mõtteloo (История эстонской мысли)). — ISBN 978-9985-77-192-1
  35. ↑ Trimble, V. The 1920 Shapley-Curtis Discussion: Background, Issues, and Aftermath. Publications of the Astronomical Society of the Pacific, v.107, p.1133. Архивировано из первоисточника 2 июля 2012. (англ.)
  36. ↑ Why the 'Great Debate' was important. NASA/Goddard Space Flight Center. (англ.)
  37. ↑ D.N. Spergel, R. Bean, O. Dore et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology. Astrophysics, abstract astro-ph/0603449

Ссылки

dic.academic.ru

Как древние люди представляли себе Вселенную и Землю: от греков до славян

Земля в древние временаТысячелетиями люди наблюдали за движением небесных тел и природными явлениями. И всегда задавались вопросом: как же устроена Вселенная. В древние времена картина устройства мироздания была сильно упрощена. Люди просто делили мир на две части — Небо и Землю. О том, как устроена твердь, каждый народ строил свои представления.

Древние представления о Вселенной

Земля в представлении народов античности была большим плоским диском, поверхность которого населяют люди и все что их окружает. Солнце, Луна и 5 планет (Меркурий, Венера, Марс, Юпитер, Сатурн), по мнению древних людей, — это небольшие светящиеся небесные тела, прикреплённые к сфере, которые непрерывно вращаются вокруг диска, делая полный оборот в течение суток.

Считалось, что земная твердь неподвижна и находится в центре Вселенной, то есть каждый древний народ так или иначе, приходил к мысли: наша планета — это средоточие мира.

Вселенная и как она устроенаТакой геоцентрический (от греческого слова Гео — земля) взгляд присутствовал практически у всех народов древнего мира — греков, египтян, славян, индусов…

Почти все теории о мироустройстве, происхождении неба и земли, которые появлялись в то время, были идеалистическими, поскольку имели божественное начало.

Но отличия в представлении устройства вселенной были, так как основывались они на мифах, преданиях и легендах, присущих разным цивилизациям.

Главными теориями были четыре: различные, но в чем-то сходные представления о строении вселенной древними народами.

Легенды Индии

Древние народы Индии представляли землю как полусферу, опирающуюся на спины четырёх громадных слонов, стоящих, в свою очередь, на черепахе, а все околоземное пространство замыкала чёрная змея Шешу.

Представление об устройстве мира в Греции

Древняя ГрецияДревние греки утверждали, что Земля имеет форму выпуклого диска, напоминающего по форме щит воина. Вокруг сушу окружало бескрайнее море, из которого каждую ночь выходили звёзды. Они каждое утро тонули в его глубине. Солнце в лице бога Гелиоса на золотой колеснице поднималось ранним утром из восточного моря, совершало круг по небу и опять возвращалось на своё место поздним вечером. А небесный свод держал на своих плечах могучий Атлант.

Древнегреческий философ Фалес Милетский представлял Вселенную в виде жидкой массы, внутри которой находится большая полусфера. Изогнутая поверхность полусферы — небесный свод, а нижняя, плоская поверхность, свободно плавающая в море, — Земля.

Однако эта устаревшая гипотеза была опровергнута древнегреческими учёными материалистами, которые привели убедительные доказательства об округлости суши. В этом убедился Аристотель, наблюдая за природой, за тем, как звёзды меняют высоту за горизонтом, а корабли исчезают за выпуклостью земли.

Земля глазами древних египтян

Совсем по-иному представлял себе нашу планету народ Египта. Планета казалась египтянам плоской, а небо в виде огромного купола опиралось на четыре высокие горы, расположенные по четырём краям света. Египет был расположен в центре Земли.

Древние египтяне использовали образы своих богов для олицетворения пространств, поверхностей и стихий. Земля — богиня Геба — лежала внизу, над ней, изгибаясь, стояла богиня Нут (звёздное небо), а находящийся между ними бог воздуха Шу не давал ей упасть на Землю. Считалось, что богиня Нут каждый день проглатывала звёзды и рождала их вновь. Солнце ежедневно проходило свой путь по небосводу на золотой лодке, которой правил бог Ра.

Картина мира у славян

Древние славяне тоже имели своё представление об устройстве мира. Свет, по их мнению, был разделен на три части:

Между собой все три мира соединяются, как осью, Мировым древом. В ветвях священного древа живут звёзды, Солнце и Месяц, а у корней — Змей. Священное дерево считалось опорой, без которой рухнет мир, если его уничтожить.

Ответ на вопрос о том, как в древности люди представляли нашу планету, помогают найти древние артефакты, которые сохранились до наших дней.

Учёные находят первые прообразы географических карт в разных странах, они известны нам в виде изображений на стенах храмов, фресках, рисунках в первых астрономических книгах. В древности человек стремился передать информацию об устройстве мира последующим поколениям. Представление человека о Земле во многом зависело от рельефа, природы и климата тех мест, где он проживал.

obrazovanie.guru

Доклад - Представления древних мистиков и современная картина мира

НОВОСИБИРСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ЭКОНОМИКИ И УПРАВЛЕНИЯ

Представления древних мистиков и современная картина мира.

БМ-72

Березин Сергей Александрович

проверил

Пигарев Александр Юрьевич

НОВОСИБИРСК 1997

План:

1. Введение.

2. Представления древних.

3. Современная картина мира.

4. Заключение.

5. Список литературы.

Введение.

В каждый период развития человечества формируется научная картина мира, которая отражает мир с той истинностью, которая доступна человеку. Кроме этого картина мира содержит и нечто такое, что на данном этапе наукой не доказано, но есть некоторые представления и гипотезы, которые в будущем могут быть доказаны, а может быть и нет.

В древности природа исследовалась силой ума, а опыты игнорировались. Научные обобщения строились на начальных обобщениях, и в красочных картинах мира мирно уживались реальность и вымысел, который сейчас кажется несовместимым с мудростью древних. Однако многое в представлениях древних мистиков было верным и современные люди так или иначе порой возвращаются к тому, что казалось смешным и нелепым еще десятилетия назад.

Представления древних.

Древние мыслители часто оказывались мистиками и по-своему искали единое в многообразии окружающего мира. Так Фалес отожествлял с “душами” действующие в мире силы. Например, по его мнению, магнит имеет душу, потому что он притягивает железо. Фалес учил, что все знания надо сводить к единой основе — душе.

Другой мыслитель древности Анаксимандр первоначалом всего сущего считал “алейрон” — некое бесконечное и неопределенное начало. Все состоит из алейрона и из него возникает. Алейрон все из себя производит сам. Земля оказывается в центре как самое тяжелое. Вокруг Земли расположены три кольца, как три колеса. Живое зародилось на границе моря и суши из ила под воздействием небесного огня. Человек зародился в громадной морской рыбе и уже взрослым вышел на сушу.

Даже Аристотель, создавший довольно верную материалистическую картину мира, создавал нечто, что создало этот мир. Бог у Аристотеля безличен, но он не смог обойтись без него, так как невозможно было объяснить движение звезд, планет, Луны и Солнца. Согласно Аристотелю, все небесные тела прикреплены к сферам, и движутся не сами тела, а эти эфирные сферы. Первую сферу движет Бог, на ней находятся звезды, а ее движение передается другим сферам все ниже и ниже, вплоть до Земли, где вследствие несовершенства подлунных элементов совершенное круговое движение распадается на множество несовершенных.

Более этого, древние люди воспринимали процесс жизни в виде нагромождения событий, а действительность управлялась некими силами. Мифы создавали картины мира исходя из фантастических идей, абстрагированных понятий о космосе, пространстве и времени. Четыре стороны света и три слоя (уровня) мироздания — небо, земля и преисподняя давали в сумме священную семерку. Космос представлялся возникшим из хаоса, боги, помещенные на небо, инициировали обряды. Рациональные знания древних, включавшие в себя календарно-астрономические и математические представления, биологические, медицинские, географические, исторические сведения причудливо переплетались с вымыслами. Из тех далеких времен пришла идея о том, что звезды управляют судьбами людей и названия знаков зодиака вместе с названиями созвездий, оттуда идет идея философского камня и эликсира жизни ( начиная с олимпийского нектара), оттуда идеи о множестве жизней и жизни после смерти. Нельзя сказать, что абсолютно все отрицается сегодня.

Современная картина мира.

Картина мира, которую начали создавать Галилей и Ньютон, а завершили Фарадей, Максвелл и Эйнштейн, отражает воззрения, которые идут еще из древности. Так, доказано, что атомное ядро состоит из множества электронов, а открытие квантовой теории и дискретности, механистическая картина мира потерпела сокрушительный удар. Эксперименты в области физики высоких энергий изменили представление о мире. Следует отметить, что сейчас уже невозможно подразделить науки на физику, биологию, химию и так далее. Связи их очевидны и на макро и на микро уровне. Синтез картины мира создал выдающийся ученый В. И. Вернадский. Биосфера — философское обобщение естественных наук, впитало в себя новейшие достижения научной мысли и стало фундаментом для новых исследований. В этом учении нашли отражение идеи Дарвина об эволюции видов, идеи Эйнштейна о единстве пространства, времени и материи, связь периодического закона с закономерностью биологической миграции атомов, идеи квантовой механики об отличии движения макрообъектов и микрообъектов. В современном мире наука и научное представление о мире являются как бы основой всего того, на что опирается современный человек. Поэтому очень важно понять, какое место в современной картине мира занимают ненаучные знания. Иногда их толкуют как нашествие антинауки и т.д., хотя эти понятия приходят к людям из древности. Но человеческий дух мечется в поисках истины и не только заблуждается, но и “блуждает”. Разум многообразен, и поэтому не следует высокомерно отбрасывать эти линии поиска, которые не сочетаются с научными представлениями о мире, так как они имеют многотысячелетнюю традицию и добавляют яркие краски в современную картину мира. Построение Каббалы, тексты Библии и Корана, вера и астрология — выполнены и сохранены в веках. Это не наука, но иные формы освоения мира, отворачиваться от которых было бы неразумно.

И в наши дни мы сталкиваемся с ситуациями, о которых говорил сверхрационалист Л. Витгенштейн, утверждавший, что склонность к мистическому следует из того, что наука оставляет наши желания невыполненными.

Мир целостен, но не монотонен. Он не представляет собой сплошную, безликую и однородную пустыню формул, теорем, аксиом и доказанности всего. Мир целостен и обладает богатой внутренней организацией, динамичной и вечно меняющейся.

Заключение.

Современная картина мира — результат долгого развития человеческого общества. Поколение за поколением входили в жизнь, опираясь на традиции, эмпирический опыт, мифы и религию. Мифы, магия, оккультная практика, передача опыта личным путем, крупицы “наукоподобных” знаний — все это стало первоистоками образования представлений о мире. От палеолита до античности накапливались предпосылки наук, которые впоследствии создадут современную картину мира. И в ней есть место и научным и вненаучным знаниям, так как весь мир составляет многоликую картину, в которую включен не только окружающий мир, но и человек, его разум, его идеи и идеалы. Таким образом, представления древних мистиков нашли свое место в современной картине мира.

Литература.

1. Азимов А. “В начале” М.,1989

2. Моисеев Н. “Алгоритмы развития” М.,1987

3. “Философия” М.,1995

4. Ильченко В. “Перекрестки физики,

химии, биологии” М.,1986

www.ronl.ru


Смотрите также