Сущность и практическое значение методов обработки: пастеризация и стерилизация; свет, радиоактивное излучение; ультразвук; антибиотики. Пастеризация реферат


Реферат Пастеризация

скачать

Реферат на тему:

План:

Введение

Луи Пастер.

Пастеризация — процесс одноразового нагревания чаще всего жидких продуктов или веществ до 60 °C в течение 60 минут или при температуре 70—80 °C в течение 30 мин[1]. Технология была открыта в середине XIX века французским микробиологом Луи Пастером. Применяется для обеззараживания пищевых продуктов, а также для продления срока их хранения.

При такой обработке в продукте погибают вегетативные формы микроорганизмов, однако споры остаются в жизнеспособном состоянии и при возникновении благоприятных условий начинают интенсивно развиваться. Поэтому пастеризованные продукты (молоко, пиво и др.) хранят при пониженных температурах в течение ограниченного периода времени. Считается, что пищевая ценность продуктов при пастеризации практически не изменяется, так как сохраняются вкусовые качества и ценные компоненты (витамины, ферменты)[2].

В зависимости от вида и свойств пищевого сырья используют разные режимы пастеризации. Различают длительную (при температуре 63—65 °C в течение 30—40 мин), короткую (при температуре 85—90 °C в течение 0,5—1 мин) и мгновенную пастеризацию (при температуре 98 °C в течение нескольких секунд).

Пастеризация не может применяться при консервировании продуктов, так как герметично закрытая тара является благоприятной средой для прорастания спор анаэробной микрофлоры (см.ботулизм). В целях долговременного консервирования продуктов (в особенности загрязненных первоначально землей, например, грибов, ягод), а также в медицинских и фармацевтических целях применяют дробную пастеризацию — тиндализацию[3].

1. Поведение бактерий при пастеризации

Мезофильные молочнокислые бактерии (S. lactis, S. cremoris и др.) в процессе пастеризации в основном погибают. Термофильные молочнокислые стрептококки и энтерококки (S. durans, S. bovis, S. faecalis) сохраняются в молоке после пастеризации в довольно значительном количестве. Однако их биологическая активность в процессе хранения молока при температурах ниже 8°С сравнительно низкая, и они не оказывают влияния на качество охлажденного пастеризованного молока. Термоустойчивые молочнокислые палочки также выдерживают принятые режимы пастеризации. Однако при низких температурах хранения молока они не развиваются. Их роль особенно велика в производстве кисломолочных продуктов, где повышенные температуры сквашивания и присутствие молочнокислых стрептококков стимулируют их развитие. Психротрофные бактерии в процессе пастеризации в основном погибают, хотя отдельные клетки более термоустойчивых видов могут выдерживать кратковременную пастеризацию при температурах 71—72°С-и даже 75—77°С. Эффективность пастеризации зависит от того, какие виды микроорганизмов преобладают в сыром молоке. Этот фактор, в свою очередь, определяется условиями хранения сырого молока до пастеризации. Если молоко охлаждают до температуры 0—3°С сразу после доения и хранят при этой температуре до переработки, в нем развивается преимущественно психротрофная микрофлора. Психротрофы обладают низкой термоустойчивостью, поэтому эффективность пастеризации глубоко охлажденного молока высокая (до 99,9%). Развиваясь в сыром молоке, психротрофы могут вырабатывать термостойкие липады и протеазы, не разрушающиеся при термической обработке, которые могут оказывать отрицательное влияние на качество стерилизованного молока и молочных консервов. Если молоко хранится при температурах выше 8—10°С, в нем преобладают термостойкие бактерии (энтерококки, термофильные стрептококки и др.), достигающие 50% и выше от общего количества микроорганизмов. В результате эффективность пастеризации молока бывает ниже 98%.

Источники

Примечания

  1. Что представляет собой пастеризация? - pharmspravka.ru/farmatsevticheskie-vorosyi-i-otvetyi/chto/chto-predstavlyaet-soboy-pasterizat.html  .
  2. Л.Б.Борисов Медицинская микробиология, вирусология и иммунология. — МИА, 2005. — С. 156. — ISBN 5-89481-278-X
  3. Что представляет собой тиндализация (дробная пастеризация)? - pharmspravka.ru/farmatsevticheskie-vorosyi-i-otvetyi/chto/chto-predstavlyaet-soboy-tindalizatsiya-drobnaya-pasterizat.html  .

wreferat.baza-referat.ru

Курсовой проект

Размещено на http://www.allbest.ru/

«Расчет и проектирование пастеризатора молока типа «труба в трубе»»

Уфа 2010

Реферат

пастеризационный аппарат молоко теплопередача

Объектом разработки являются теплообменник типа «труба в трубе» и процесс пастеризации молока.

Цель проекта – снижение эксплуатационных затрат у потребителя.

Описано устройство и принцип действия пастеризационной установки при производстве пастеризованного молока, рассмотрен механизм теплопередачи через разделяющую стенку от более нагретой среды к менее нагретой. Разработан метод расчета теплообменного аппарата, оптимизированы его конструктивные параметры. Спроектирована конструкция пастеризатора трубчатого типа.

Введение

Объектом разработки является теплообменник типа «труба в трубе» и процесс пастеризации молока.

Молочные продукты, в частности молоко, являются хорошей питательной средой для микроорганизмов. Микроорганизмы, размножаясь, могут значительно ускорить процесс порчи молочной продукции. Кроме того, микроорганизмы могут вызвать опасные заболевания людей. Поэтому важнейшая задача при выпуске молочных продуктов – уничтожить содержащиеся в них микроорганизмы.

Одним из способов уничтожения микроорганизмов является кипячение. Однако кипячение сильно изменяет свойства молочных продуктов, вкус, запах и т.д. Установлено, что для уничтожения активных форм микроорганизмов нет необходимости нагревать продукты до кипячения. Жизнедеятельность микроорганизмов при соблюдении некоторых условий может быть подавлено при нагревании до (85–95)°С. Впервые установил губительное действие на микроорганизмы высоких температур и применил их для обработки продуктов с целью их сохранения французский ученый Л. Пастер. По имени этого ученого такая обработка называется пастеризацией.

Пастеризация может быть длительной, кратковременной и мгновенной. При длительной пастеризации молоко нагревают до (63–65)°С и выдерживают при этой температуре 30 минут, при кратковременной молоко нагревают до (72–76)°С с выдержкой 15–20 секунд, при мгновенной пастеризации молоко нагревают до (85–95)°С без выдержки.

Выбор режимов пастеризации предопределяется технологическими условиями и свойствами продукта. При содержании в продукте компонентов, отличающихся низкой термоустойчивостью, следует применять длительную пастеризацию. Процесс длительной пастеризации хотя и обеспечивает надежное уничтожение патогенных микробов и наименьшее изменение физико-химических свойств молока, однако требует больших затрат, связанных с использованием малопроизводительного оборудования.

Наиболее распространенный способ в производстве пастеризованного молока, кисломолочных продуктов и мороженого – кратковременная пастеризация. Этот способ также надежен для инактивации микробов и максимального сохранения исходных свойств молока. Моментальная пастеризация по воздействию на микробы и свойства молока аналогична кратковременной. Она рекомендуется для пастеризации сливок, из которых вырабатывают масло, и при производстве молочных консервов. Таким образом, все способы пастеризации позволяют получить продукт, безвредный для непосредственного употребления в пищу, но имеющий ограниченный срок хранения.

В молочной промышленности для пастеризации молока и молочных продуктов применяют пастеризационные установки.

Наибольшее применение получили четыре типа пастеризационных аппаратов: ванны длительной пастеризации, паровые пастеризаторы с вытеснительными барабанами, пластинчатые пастеризаторы и трубчатые пастеризаторы. Пастеризационные установки пластинчатого типа, или пастеризационно-охладительные установки, предназначены для пастеризации и охлаждения в потоке питьевого молока, молока при выработке кисломолочных продуктов, сливок и смеси мороженного. Пастеризационные установки трубчатого типа предназначены для пастеризации в потоке молока и сливок. Все установки снабжаются системами автоматического контроля и регулирования температуры пастеризации. По производительности трубчатые пастеризаторы не уступают пластинчатым пастеризаторам.

Недостатком трубчатых пастеризаторов является их большие размеры в сравнении с пластинчатыми при равной производительности. Этот недостаток усугубляется еще и тем, что трубчатые аппараты требуют значительного свободного пространства с торцевой стороны, необходимого для работы длинными ершами при мойке аппарата.

Преимуществом трубчатых пастеризаторов в сравнении с пластинчатыми является значительно меньшее количество и меньшие размеры уплотнительных прокладок, требующих частого и трудоемкого ремонта. В трубчатых аппаратах нет секции рекуперации тепла. Поэтому трубчатые пастеризаторы применяются главным образом там, где регенерация тепла не нужна.

Процесс пастеризации молока, как все тепловые процессы, является весьма энергоемким и дорогостоящим. Поэтому расчет и проектирование теплообменника для пастеризации молока являются актуальными.

Целью данного курсового проекта является снижение себестоимости процесса пастеризации молока путем оптимизации конструктивных параметров теплообменного аппарата и кратности расхода воды.

Задачи исследования вытекают из поставленной цели и сводятся к следующему. При заданной производительности пастеризатора 1600 л/ч

определить оптимальные конструктивные параметры теплообменника типа «труба в трубе» и кратность расхода воды. Для этого необходимо разработать математическую модель процесса пастеризации в теплообменнике типа «труба в трубе» с выбором критерия оптимизации и решить задачу многомерной оптимизации по определению конструктивных оптимальных параметров данного теплообменника и кратности расхода воды.

studfiles.net

Процесс пастеризации молока — реферат

  1. КЛАССИФИКАЦИЯ ПРОЦЕССА ПАСТЕРИЗАЦИИ МОЛОКА

Основной задачей, стоящей  перед предприятиями пищевой  отрасли, является выпуск качественной продукции, соответствующей по физико-химическим, микробиологическим и органолептическим  показателям действующей нормативно-технической  документации.

Пастеризация – это процесс обработки пищевых продуктов нагреванием (не выше 100 ) или гамма-излучением и выдержки в этих условиях заданное время для уничтожения микробов в них. Этот процесс получил свое название по имени известного французского ученого Луи Пастера (1822— 1892), впервые применившего такой метод для уничтожения микроорганизмов в вине и пиве.

Пастеризацию проводят в  целях уничтожения болезнетворных микроорганизмов и снижения общего количества микроорганизмов. Бактерицидное  действие пастеризации определяется эффективностью подавления возбудителя туберкулеза, обладающего высокой тепловой устойчивостью, а также не менее термоустойчивой  кишечной палочки.

Подавление микроорганизмов  при воздействии температуры  протекает во времени. Поэтому температура  и продолжительность нагревания продукта являются основными факторами, определяющими эффективность пастеризации (таблица 1.1). В зависимости от этих факторов различают следующие режимы пастеризации молока:

Длительный – температура нагревания 60-63 и продолжительность воздействия (выдержка) 30 минут;

Кратковременный – температура нагревания 72-76 и выдержка 15-20 секунд;

Моментальный – температура нагревания 85-90 и выдержка 2 секунды. [1, стр. 45].

Таблица 1.1 – Зависимость продолжительности выдержки молока от температуры пастеризации

Температура,

3

65

66

67

68

69

70

71

72

73

74

Продолжительность выдержки, мин

25

8

5

2,5

1,6

1,0

0,6

0,3

0,2

0,15

0,1

[2, стр.28].

Профессор Г.А. Кук предложил  зависимость продолжительности  выдержки молока от температуры пастеризации :

 

Эффективность пастеризации оценивают коэффициентом скорости гибели микроорганизмов:

 

где продолжительность пастеризации, с;

 соответственно  начальное и конечное количество  микроорганизмов в продукте. [3, стр.173].

Режим пастеризации зависит  от свойств продукта. Если продукт  содержит термолабильные компоненты, разрушающиеся при высоких температурах, то пастеризацию проводят при 60 в течении 30 минут. В большинстве случаев пастеризацию следует проводить при высокой температуре до 95 в течение 2-30 секунд.  При пастеризации погибают ни все микроорганизмы, поэтому пастеризованный продукт следует хранить в охлажденном виде при температуре 2-6 . Охлаждение продукта препятствует развитию избежавшей летального исхода при пастеризации патогенной микрофлоры.

Рисунок 1.1 – Схема режимов пастеризации молока и сливок

Помимо тепловой применяют  ультразвуковую, ультрафиолетовую и  механическую пастеризацию.

При ультразвуковой пастеризации продукт подвергают действию ультразвука  с частотой колебаний свыше 25 кГц. При этом в жидкости возникают  гидравлические удары, которые вызывают кавитацию в жидкости. Под действием  кавитации происходит разрыв клеток микроорганизмов, что приводит к  их гибели.

Ультрафиолетовое облучение  применяют при тонкослойной пастеризации.

Источником ультрафиолетового  облучения служат кварцевые лампы, заполненные парами ртути. Бактерицидными свойствами обладают ультрафиолетовые лучи в диапазоне длин

При механическом способе пастеризации бактерицидный эффект достигается за счет центробежной силы. Механическую пастеризацию проводят в бактофугах, которые представляют собой разновидность высокоскоростного соплового сепаратора, выполненного в виде осветлителя и снабженного рубашкой для охлаждения, а также циклоном деаэрации.

[3, стр. 173].

 

    1. ОЦЕНКА СПОСОБОВ ПАСТЕРИЗАЦИИ МОЛОКА И ВЫБОР ОПТИМАЛЬНОГО

В условиях российского производства молока большую сложность оказывает  применении инновационных способов пастеризации. В применении ультразвука, сложность заключается в малом  исследовании этого физического  явления. В данном направлении только ведутся разработки, и неизведанность данного способа не дает на право считать его лучшим.

Ультрафиолет применяется  при тонкослойной пастеризации. А  следовательно сложность заключается  в создании тонкого слоя молока. Вследствие того, что слой небольшой, значит, за единицу времени перерабатывается небольшое количество молока, по сравнению  с другими методами. А также  это ультрафиолетовое облучение  молока, что может отрицательно сказываться  на здоровье человека.

Положительным качеством  этих двух методов является то, что  с их применением не стоит нагревать  молоко свыше 60 , а затем охлаждать его. А отрицательным, что в обоих случаях оборудование для реализации будет иметь высокую технологическую сложность и высокую стоимость.

Тепловые методы пастеризации молока, на данный момент,  являются самыми распространенными в России. Предприятия обладают оборудованием для тепловой обработки молока. Возникает сложность выбора между тремя видами данного метода.

При длительном методе переработки  падает производительность, т.к. молоко следует выдерживать 20-30 минут.

При мгновенной пастеризации резко увеличивается производительность, но в связи с большой температурой нагревания молока, затрачивается много  времени на его охлаждение. Т.к. время  выдержки молока очень короткое, то возможно, что вредные микроорганизмы будут уничтожены не в полном объеме.

Оптимальным способом для  реализации процесса пастеризации –  является кратковременная пастеризация. С применением данного способа  мы имеем высокую производительность, относительно небольшое время выдержки – 20-30 секунд (которого будет достаточно для создания благоприятной микрофлоры в молоке), не такую высокую температуру нагревания – 72-76 , как при мгновенной пастеризации.

 

freepapers.ru

Реферат - Контроль и регулирование температуры на стадии пастеризации

КОНТРОЛЬНАЯ РАБОТА

На тему: «Контроль и регулирование температуры на стадии пастеризации»

Содержание

Введение

1. Описание объекта автоматизации

2. Структурная схема объекта автоматизации

3. Описание схемы автоматизации

4. Структурная схема и описание регулятора

Список использованной литературы

Введение

Управление любым технологическим процессом или объектом в форме ручного или автоматического воздействия возможно лишь при наличии измерительной информации об отдельных параметрах, характеризующих процесс или состояние объекта. Параметры эти весьма своеобразны. К ним относятся электрические (сила тока, напряжение, сопротивление, мощность и другие), механические (сила, момент силы, скорость) и технологические (температура, давление, расход, уровень и другие) параметры, а также параметры характеризующие свойства и состав веществ (плотность, вязкость, электрическая проводимость, оптические характеристики, количество вещества и т.д.). Измерения параметров осуществляется с помощью самых разнообразных технических средств, обладающих нормированными метрологическими свойствами. Технологические измерения и измерительные приборы используются при управлении (ручном или автоматическом) многими технологическими процессами в различных отраслях народного хозяйства.

Средства измерений играют важную роль при построении современных автоматических систем регулирования отдельных технологических параметров и процессов (АСР) и особо автоматизированных систем управления технологическими процессами (АСУТП), которые требуют представления большого количества необходимой измерительной информации в форме, удобной для сбора, дальнейшего преобразования, обработки и представления ее, а в ряде случаев для дистанционной передачи в выше ниже стоящие уровни иерархической структуры управления различными производствами.

В основе измерений параметров и физических величин лежат различные физические явления и закономерности. Измерительные схемы с использованием современных достижений микроэлектронной техники: микропроцессорных схем, твердых или полупроводниковых электрохимических элементов и другие.

1. Описание объекта автоматизации

Основной задачей, стоящей перед предприятиями пищевой отрасли, является выпуск качественной продукции, соответствующей по физико-химическим, микробиологическим и органолептическим показателям действующей нормативно-технической документации.

При производстве молока, пива, вина, соков и других пищевых продуктов проблемы сохранения их качества имеют первоочередное значение. Предотвращению порчи продуктов, увеличению сроков их хранения способствует своевременная термообработка, при которой под воздействием высокой температуры уничтожается болезнетворная микрофлора. Поэтому без таких процессов, как пастеризация или стерилизация невозможно ни одно современное производство.

Пастеризация осуществляется при температурах ниже точки кипения продукта (от 65 до 95°С). Выбор температурно-временных комбинаций режима пастеризации зависит от вида вырабатываемого продукта и применяемого оборудования, обеспечивающих требуемый бактерицидный эффект (не менее 99,98%), и должен быть направлен на максимальное сохранение первоначальных свойств молока, его пищевой и биологической ценности.

Цели пастеризации следующие:

· уничтожение патогенной микрофлоры, получение продукта, безопасного для потребителя в санитарно-гигиеническом отношении;

· снижение общей бактериальной обсемененности, разрушение ферментов сырого продукта, вызывающих порчу пастеризованного продукта, сни-жение его стойкости в хранении;

· направленное изменение физико-химических свойств продукта для получения заданных свойств готового продукта, в частности, органо-лептических свойств, вязкости, плотности сгустка и т.д.

2. Структурная схема системы автоматизации

Пастеризатор включает три зоны пастеризации, зону охлаждения возду-хом, зону охлаждения водой и зоны загрузки и выгрузки. В зонах пасте-ризации банки погружаются в ванну с подогретой водой. Подогрев воды в ванне осуществляется паром путем барботирования. Уровень воды над банками при их погружении в ванну составляет 30 мм.

На рис. 1 представлена схема автоматизации пастеризатора. Схема предусматривает блокированный и деблокированный режимы работы конвейеров загрузки и пастеризатора. Выбор режима работы осуществляется ключом, установленным на щите. Со щита кнопками дистанционно управляют электроприводами пастеризатора.

В блокированном режиме пуск конвейера пастеризатора происходит при достижении температуры воды в ванне 90 °С. После запуска конвейера пастеризатора возможен пуск загрузочного конвейера.

Рассмотрев свойства данного объекта и исходный данные, разрабатываемые системы контроля, регулирования и управления приняты независимыми.

3. Описание схемы автоматизации

Система автоматизации предусматривает автоматический контроль давления пара, поступающего в пастеризатор, показывающим манометром типа ОБМ1. Стабилизация температуры в первых двух зонах пастеризации осуществляется одноконтурными системами регулирования с помощью манометрических регуляторов температуры типа ТРП, регулирующее воздействие которых поступает на регулирующие клапаны типа 25ч32нж, изменяющие расход пара в пастеризатор. Стабилизация температуры в третьей зоне пастеризации осуществляется с помощью термопреобразователя сопротивления типа ТСПи моста автоматического КСМЗ-Пс пропорционально-интегральным регулирующим устройством в комплекте с панелью дистанционного управления ПП12.2. При отклонении температуры воды в ванне от заданной (90°С) выходной сигнал от моста поступает на регулирующий клапан 25ч32нж, который изменяет расход пара в третью зону пастеризации. При повышении температуры в ванне пастеризатора до 95 °С срабатывает контактное устройство мостаи через электрическую схему обесточивается электромагнит клапана 22кч801бк; регулирующее устройство ПОУпрекращает подачу пара в пастеризатор.

Давление пара, поступающего в пастеризатор, автоматически контролируется манометром ОБМ1.

Схемой предусмотрен аварийный останов насоса охлаждения при повышении давления воды выше 0,2 МПа, при этом срабатывают контакты сигнального устройства показывающего манометра типа МП4-Ш.

Предусмотрена световая сигнализация работы приводов, а также световая и звуковая сигнализации аварийного останова насоса охлаждения и отклонения температуры в ванне.

4. Структурная схема и описание регулятора

Пропорционально-интегральное регулирование объединяет в себе свойства пропорционального (статичного) и интегрального (астатичного) регулирования. В таких регуляторах скорость изменения регулирующего действия (перестановки регулирующего органа) Y пропорциональна скорости изменения несогласованности и сама несогласованность, то есть:

или

y-y0=Kp x+K4xdф,

где x = t-t3 — отклонение температуры воды от задангого значения t3 ;

y — y0 — перемещение регулирующего органа, который изменяет расход пара в теплообменник;

Kp – коефициент передачи регулятора;

K4 = Kp / Tu — коефициент интегрирования регулятора, при этом Т4 — время интегрирования (изодрома) регулятора;

ф – время.

Таким образом, в системе с Пи-регулятором регулирование осуществляется за отклонением и интегралом от отклонения регулированной величины.

Качество регулирования зависит от установленных значений Кр и Тu .

Список использованной литературы

1.Автоматизация производственных процессов и АСУТП в пищевой промышленности /Под ред.Л.А.Широкова.-М.,1986.-311с.

2.Кулаков М.В. Технологические измерения и приборы для химических производств: Учебник.-М.,1983.-424с.

3.Основы автоматизации технологических процессов пищевых производств: Учеб.пособие.-М.,1982.-295с.

4.Полоцкий Л.М., Лапшенков Г.И.Автоматизация химических произ-водств: Учеб.пособие.-М.,1982.-295с.

5.Стефани Е.П.Основы построения АСУТП: Учеб.пособие.-М.,1982.-352с.

6.Автоматизация технологических процессов пищевых производств /Под ред. Е.Б.Карпина.-М.,1977.-426с.

7.Автоматизированные системы управления предприятиями молочной промышленности /Ю.П.Маркин, Б.В.Семенов, Н.П.Лакшин и др.-М.,1977.-271с.

8.Автоматические приборы, регуляторы и вычислительные системы: Справ.пособие/Под ред.Б.Д.Кошарского.-Л.,1976.-485с.

9.Брусиловский Л.П., Вайнберг А.Я., Черняков Ф.С.Автоматизированные системы управления технологическими процессами предприятий молочной промышленности.-М.,1986.-232с.

10.Брусиловский Л.П., Вайнберг А.Я. Автоматизация технологических процессов производства молочных консервов.-М.,1985.-280с.

www.ronl.ru

пастеризация и стерилизация; свет, радиоактивное излучение; ультразвук; антибиотики — реферат

  Сущность  и практическое значение методов обработки: пастеризация и стерилизация; свет, радиоактивное  излучение; ультразвук; антибиотики и  фитонциды

  Освобождение  какого-либо материала от живых микроорганизмов или их покоящихся форм называют обеспложиванием или стерилизацией. От стерилизации следует отличать частичное обеспложивание (пастеризацию), а также консервирование. Если стерильная среда или микробная культура загрязняется случайно попавшими в нее микроорганизмами, то говорят о контаминации, или загрязнении. Такие понятия, как дезинфекция (уничтожение всех патогенных микроорганизмов), асептика и антисептика, а также инфекция, употребляются главным образом в гигиене, а не в микробиологии.

  Микроорганизмы  проявляют разную чувствительность к средствам, применяемым для  их уничтожения. Существуют видовые  различия в чувствительности, а также  различия, зависящие от влажности  и рН среды, от возраста вегетативных клеток или спор и т.д. Эффективность различных агентов, применяемых для уничтожения микроорганизмов, характеризуют величиной D10 (время, необходимое для того, чтобы в определенной популяции при определенных условиях среды вызвать гибель 90% клеток).

  Стерилизация

  Стерилизация  – это нагревание при температурах, которые в течение определенного  времени вызывают гибель вегетативных клеток микроорганизмов и их спор. Стерилизуют различные баночные консервы, многие предметы и материалы, используемые в медицинской и  микробиологической практике. Процесс  проводят при температурах 112-125 °C в  течение 20-60 минут в специальных  приборах – автоклавах (перегретым паром под давлением) или при 160-180 °C в течение 1-2 часов в сушильных  шкафах (сухим горячим воздухом).

  Полная  или частичная стерилизация осуществляется с помощью влажного жара, сухого жара, фильтрации, облучения или  различных химических средств.

  Влажный жар

    Вегетативные клетки большинства  бактерий и грибов гибнут через  5-10 мин уже при температуре  около 60°С, споры дрожжей и мицелиальных грибов - лишь при температурах выше 80°С, а споры бактерий - выше 120°С (15 минут). Окончательный результат стерилизации зависит также от степени загрязнения обрабатываемого материала, то есть, например, от числа терморезистентных спор: чем их больше, тем длительнее должен быть нагрев. Для достижения температур выше точки кипения воды пользуются автоклавом. Температура насыщенного пара зависит от давления. При доступе воздуха определенному давлению соответствует значительно более низкая температура. Поскольку гибель микроорганизмов под действием влажного жара зависит от температуры, а не от давления, необходимо закрывать автоклав лишь после того, как воздух будет из него вытеснен водяным паром. Воздух удаляется вместе с выходящим паром или в результате отсасывания. При автоклавировании следует измерять температуру, а не давление, хотя по соображениям простоты и безопасности обычно все еще измеряют давление. Продолжительность стерилизации, естественно, зависит от объема (теплоемкости) сосудов, в которых ее проводят.

  Нередко удается достичь того же эффекта тиндализацией. Тиндализация - способ стерилизации, предложенный Дж. Тиндалем. Заключается в дробной обработке жидкостей и пищевых продуктов в текучем паре при 100 °С или при трёх- четырёхкратном нагревании их до 100—120 °С с промежутками в 24 ч. За это время споры бактерий, выжившие при 100 °С, прорастают, и вышедшие из них вегетативные клетки бактерий погибают при последующем нагревании.

    Жидкость стерилизуется в этом  случае при 100°С три дня подряд по 30 мин ежедневно; в промежутках между нагреваниями ее хранят в термостате, для того чтобы споры проросли, а затем вегетативные клетки были уничтожены при следующем нагревании.

  Способы консервирования ягод и косточковых плодов следует рассматривать как частичную стерилизацию. При обычном нагревании консервных банок в течение 20 мин при 80°С гибнут только вегетативные клетки и споры многих грибов, в то время как споры бактерий остаются жизнеспособными. Прорастанию бактериальных спор препятствуют низкие значения рН, обусловленные присутствием кислот во фруктовом соке. На пастеризованной клубнике часто появляется так называемый «клубничный гриб» Byssochlamys nivea. Его аскоспоры выдерживают 86°С; при этой температуре Dl0 составляет 14 мин.

  Сухой жар

    При стерилизации сухим жаром бактериальные споры переносят более высокие температуры и притом дольше, чем при стерилизации влажным жаром. Поэтому жаростойкую стеклянную посуду, порошки, масла и т. п. стерилизуют в течение 2 ч при 160°С в сухом стерилизаторе. В случае стерилизации материалов с высокой теплоемкостью или термоизоляционными свойствами следует учитывать время прогрева. В любом случае рекомендуется контролировать температуру с помощью индикаторов или проверять полноту стерилизации (для этого в аппарат помещают также пробу почвы, содержащей споры, которую потом высевают).

    В тех случаях, когда это  позволяет стерилизуемый материал, в настоящее время применяют 30-минутный нагрев при 180°С. Как показывает опыт, при этом погибают все споры. Стерилизация жаром основана на коагуляции клеточных белков.

  Фильтрация

    Растворы, содержащие термолабильные вещества, удобнее всего стерилизовать фильтрованием. Неглазурованные фарфоровые цилиндры (свечи Шамберлана) применялись уже в лаборатории Пастера. В лабораториях и для стерилизации питьевой воды используют фильтры Беркефельда (из прессованного кизельгура). Часто употребляют также асбестовые пластинки (в фильтрах Зейца), стеклянные фильтры и мембранные фильтры. Некоторые из них выпускаются с различной величиной пор, что позволяет даже разделять организмы разной величины и формы.

  Облучение

    Для полной или частичной стерилизации применяют ультрафиолетовые, рентгеновские и гамма-лучи. В лабораторных условиях наибольшее значение имеют ультрафиолетовые лучи. В спектре УФ-ламп преобладает излучение в области 260 нм, поглощаемое главным образом нуклеиновыми кислотами и при достаточно длительном воздействии вызывающее гибель всех бактерий. УФ-облучение используется для частичной стерилизации помещений; при этом бактерии погибают очень быстро, а споры грибов, гораздо менее чувствительные к ультрафиолету, -значительно медленнее. Ионизирующее излучение применяют для стерилизации пищевых продуктов и других компактных материалов.

  Химические средства

    При стерилизации пищевых продуктов, лекарственных препаратов и разного рода приборов, а также в лабораторной практике оправдало себя применение окиси этилена, которая убивает и вегетативные клетки, и споры, но действует только в том случае, если подвергаемые стерилизации материалы содержат некоторое количество (5-15%) воды. Окись этилена применяют в виде газовой смеси (с N2 или С02), в которой ее доля составляет от 2 до 50%.

  Для сохранения термолабильных веществ, содержащихся в питательных средах, в практику была введена стерилизация р-пропиолактоном. Он значительно активнее окиси этилена, но обладает, видимо, довольно сильным канцерогенным действием и вызывает ряд других побочных физиологических эффектов. Его добавляют в количестве 0,2% в готовые питательные среды, которые затем инкубируют 2 часа при 37°С. Если оставить среду на ночь, пропиолактон полностью разложится. Углеводы при этом не затрагиваются. Напитки стерилизуют также диэ-тилпирокарбонатом (0,003-0,02%).

  Пастеризация

  Пастеризация — процесс одноразового нагревания чаще всего жидких продуктов или веществ до 60 °C в течение 1 часа или при температуре 70—80 °C в течение 30 мин. Технология была открыта в середине XIX века французским микробиологом Луи Пастером. Применяется для обеззараживания пищевых продуктов, а также для продления срока их хранения.

  При такой обработке в продукте погибают вегетативные формы микроорганизмов, однако споры остаются в жизнеспособном состоянии и при возникновении благоприятных условий начинают интенсивно развиваться. Поэтому пастеризованные продукты (молоко, пиво и др.) хранят при пониженных температурах в течение ограниченного периода времени. Считается, что пищевая ценность продуктов при пастеризации практически не изменяется, так как сохраняются вкусовые качества и ценные компоненты (витамины, ферменты).

  В зависимости от вида и свойств  пищевого сырья используют разные режимы пастеризации. Различают длительную (при температуре 63—65 °C в течение 30—40 мин), короткую (при температуре 85—90 °C в течение 0,5—1 мин) и мгновенную пастеризацию (при температуре 98 °C в течение нескольких секунд).

  Пастеризация  не может применяться при консервировании продуктов, так как герметично закрытая тара является благоприятной средой для прорастания спор анаэробной микрофлоры.

  Поведение бактерий при пастеризации

  Мезофильные молочнокислые бактерии в процессе пастеризации в основном погибают. Термофильные молочнокислые стрептококки и энтерококки сохраняются в молоке после пастеризации в довольно значительном количестве. Однако их биологическая активность в процессе хранения молока при температурах ниже 8°С сравнительно низкая, и они не оказывают влияния на качество охлажденного пастеризованного молока. Термоустойчивые молочнокислые палочки также выдерживают принятые режимы пастеризации. Однако при низких температурах хранения молока они не развиваются. Их роль особенно велика в производстве кисломолочных продуктов, где повышенные температуры сквашивания и присутствие молочнокислых стрептококков стимулируют их развитие. Психротрофные бактерии в процессе пастеризации в основном погибают, хотя отдельные клетки более термоустойчивых видов могут выдерживать кратковременную пастеризацию при температурах 71—72°С-и даже 75—77°С. Эффективность пастеризации зависит от того, какие виды микроорганизмов преобладают в сыром молоке. Этот фактор, в свою очередь, определяется условиями хранения сырого молока до пастеризации. Если молоко охлаждают до температуры 0—3°С сразу после доения и хранят при этой температуре до переработки, в нем развивается преимущественно психротрофная микрофлора. Психротрофы обладают низкой термоустойчивостью, поэтому эффективность пастеризации глубоко охлажденного молока высокая (до 99,9%). Развиваясь в сыром молоке, психротрофы могут вырабатывать термостойкие липады и протеазы, не разрушающиеся при термической обработке, которые могут оказывать отрицательное влияние на качество стерилизованного молока и молочных консервов. Если молоко хранится при температурах выше 8—10°С, в нем преобладают термостойкие бактерии (энтерококки, термофильные стрептококки и др.), достигающие 50% и выше от общего количества микроорганизмов. В результате эффективность пастеризации молока бывает ниже 98%.

  Ультрапастеризация— процесс термической обработки с целью продлить срок годности продукта питания.

  Такой обработке обычно подвергается сырое молоко и фруктовые соки. Жидкость на 2-3 секунды нагревают до температуры 135—150 °C и сразу же охлаждают до 4—5 °C. При этом патогенные микроорганизмы уничтожаются. Молоко, например, после такой обработки пригодно для употребления 6 недель и дольше.

  Процесс ультрапастеризации происходит в закрытой системе. Длительность превышает две  секунды. Применяют два способа:

  В англоязычной литературе этот метод  пастеризации называется UHT - Ultra-high temperature processing, в русскоязычной литературе применяют термин "асептическая пастеризация".

  Свет

  Прямое  влияние солнечной энергии связано  с воздействием излучения на протоплазму  микробных клеток, а косвенное - с  химическими изменениями питательного субстрата, находящегося в самой  клетке. Наиболее сильным влиянием обладают световые лучи с короткой длиной волны и резко выраженным фотохимическим действием (ультрафиолетовая часть солнечного излучения с  длиной волны 0,200-0,300 мкм).

  Свет  необходим только для фотосинтезирующих  микробов, использующих световую энергию  в процессе ассимиляции углекислого  газа. Микроорганизмы, не способные  к фотосинтезу, хорошо растут в темноте. Прямые солнечные лучи губительны для  микроорганизмов, даже рассеянный свет подавляет в той или иной мере их рост. Однако развитие многих мицелиальных грибов при постоянном отсутствии света  протекает ненормально: хорошо развивается  только мицелий, а спорообразование тормозится. Патогенные бактерии (за редким исключением) менее устойчивы к свету, чем сапрофитные.

  Инфракрасные  лучи имеют сравнительно большую  длину волны. Энергия этих излучений  недостаточна, чтобы вызвать фотохимические изменения в поглощающих их веществах. В основном она превращается в  тепло, что и оказывает губительное  действие на микроорганизмы при термической  обработке продуктов ИК - излучениями.

  Гибель  микроорганизмов может быть следствием как непосредственного воздействия  УФ - лучей на клетки, так и неблагоприятного для них изменения облученного  субстрата.

turboreferat.ru

пастеризация и стерилизация; свет, радиоактивное излучение; ультразвук; антибиотики и фитонциды

Основные способы консервирования ягод и косточковых плодов. Стерилизация сухим жаром. Стерилизация пищевых продуктов и лекарственных препаратов. Поведение бактерий при пастеризации. Определенные частоты ультразвука при искусственном воздействии. Краткое сожержание материала:

Размещено на

Сущность и практическое значение методов обработки: пастеризация и стерилизация; свет, радиоактивное излучение; ультразвук; антибиотики и фитонциды

Освобождение какого-либо материала от живых микроорганизмов или их покоящихся форм называют обеспложиванием или стерилизацией. От стерилизации следует отличать частичное обеспложивание (пастеризацию), а также консервирование. Если стерильная среда или микробная культура загрязняется случайно попавшими в нее микроорганизмами, то говорят о контаминации, или загрязнении. Такие понятия, как дезинфекция (уничтожение всех патогенных микроорганизмов), асептика и антисептика, а также инфекция, употребляются главным образом в гигиене, а не в микробиологии.

Микроорганизмы проявляют разную чувствительность к средствам, применяемым для их уничтожения. Существуют видовые различия в чувствительности, а также различия, зависящие от влажности и рН среды, от возраста вегетативных клеток или спор и т.д. Эффективность различных агентов, применяемых для уничтожения микроорганизмов, характеризуют величиной D10 (время, необходимое для того, чтобы в определенной популяции при определенных условиях среды вызвать гибель 90% клеток).

Стерилизация

Стерилизация - это нагревание при температурах, которые в течение определенного времени вызывают гибель вегетативных клеток микроорганизмов и их спор. Стерилизуют различные баночные консервы, многие предметы и материалы, используемые в медицинской и микробиологической практике. Процесс проводят при температурах 112-125 °C в течение 20-60 минут в специальных приборах - автоклавах (перегретым паром под давлением) или при 160-180 °C в течение 1-2 часов в сушильных шкафах (сухим горячим воздухом).

Полная или частичная стерилизация осуществляется с помощью влажного жара, сухого жара, фильтрации, облучения или различных химических средств.

Влажный жар

Вегетативные клетки большинства бактерий и грибов гибнут через 5-10 мин уже при температуре около 60°С, споры дрожжей и мицелиальных грибов - лишь при температурах выше 80°С, а споры бактерий - выше 120°С (15 минут). Окончательный результат стерилизации зависит также от степени загрязнения обрабатываемого материала, то есть, например, от числа терморезистентных спор: чем их больше, тем длительнее должен быть нагрев. Для достижения температур выше точки кипения воды пользуются автоклавом. Температура насыщенного пара зависит от давления. При доступе воздуха определенному давлению соответствует значительно более низкая температура. Поскольку гибель микроорганизмов под действием влажного жара зависит от температуры, а не от давления, необходимо закрывать автоклав лишь после того, как воздух будет из него вытеснен водяным паром. Воздух удаляется вместе с выходящим паром или в результате отсасывания. При автоклавировании следует измерять температуру, а не давление, хотя по соображениям простоты и безопасности обычно все еще измеряют давление. Продолжительность стерилизации, естественно, зависит от объема (теплоемкости) сосудов, в которых ее проводят.

Нередко удается достичь того же эффекта тиндализацией. Тиндализация - способ стерилизации, предложенный Дж. Тиндалем. Заключается в дробной обработке жидкостей и пищевых продуктов в текучем паре при 100 °С или при трёх- четырёхкратном нагревании их до 100--120 °С с промежутками в 24 ч. За это время споры бактерий, выжившие при 100 °С, прорастают, и вышедшие из них вегетативные клетки бактерий погибают при последующем нагревании.

Жидкость стерилизуется в этом случае при 100°С три дня подряд по 30 мин ежедневно; в промежутках между нагреваниями ее хранят в термостате, для того чтобы споры проросли, а затем вегетативные клетки были уничтожены при следующем нагревании.

Способы консервирования ягод и косточковых плодов следует рассматривать как частичную стерилизацию. При обычном нагревании консервных банок в течение 20 мин при 80°С гибнут только вегетативные клетки и споры многих грибов, в то время как споры бактерий остаются жизнеспособными. Прорастанию бактериальных спор препятствуют низкие значения рН, обусловленные присутствием кислот во фруктовом соке. На пастеризованной клубнике часто появляется так называемый «клубничный гриб» Byssochlamys nivea. Его аскоспоры выдерживают 86°С; при этой температуре Dl0 составляет 14 мин.

Сухой жар

При стерилизации сухим жаром бактериальные споры переносят более высокие температуры и притом дольше, чем при стерилизации влажным жаром. Поэтому жаростойкую стеклянную посуду, порошки, масла и т. п. стерилизуют в течение 2 ч при 160°С в сухом стерилизаторе. В случае стерилизации материалов с высокой теплоемкостью или термоизоляционными свойствами следует учитывать время прогрева. В любом случае рекомендуется контролировать температуру с помощью индикаторов или проверять полноту стерилизации (для этого в аппарат помещают также пробу почвы, содержащей споры, которую потом высевают).

В тех случаях, когда это позволяет стерилизуемый материал, в настоящее время применяют 30-минутный нагрев при 180°С. Как показывает опыт, при этом погибают все споры. Стерилизация жаром основана на коагуляции клеточных белков.

Фильтрация

Растворы, содержащие термолабильные вещества, удобнее всего стерилизовать фильтрованием. Неглазурованные фарфоровые цилиндры (свечи Шамберлана) применялись уже в лаборатории Пастера. В лабораториях и для стерилизации питьевой воды используют фильтры Беркефельда (из прессованного кизельгура). Часто употребляют также асбестовые пластинки (в фильтрах Зейца), стеклянные фильтры и мембранные фильтры. Некоторые из них выпускаются с различной величиной пор, что позволяет даже разделять организмы разной величины и формы.

Облучение

Для полной или частичной стерилизации применяют ультрафиолетовые, рентгеновские и гамма-лучи. В лабораторных условиях наибольшее значение имеют ультрафиолетовые лучи. В спектре УФ-ламп преобладает излучение в области 260 нм, поглощаемое главным образом нуклеиновыми кислотами и при достаточно длительном воздействии вызывающее гибель всех бактерий. УФ-облучение используется для частичной стерилизации помещений; при этом бактерии погибают очень быстро, а споры грибов, гораздо менее чувствительные к ультрафиолету, -значительно медленнее. Ионизирующее излучение применяют для стерилизации пищевых продуктов и других компактных материалов.

Химические средства

При стерилизации пищевых продуктов, лекарственных препаратов и разного рода приборов, а также в лабораторной практике оправдало себя применение окиси этилена, которая убивает и вегетативные клетки, и споры, но действует только в том случае, если подвергаемые стерилизации материалы содержат некоторое количество (5-15%) воды. Окись этилена применяют в виде газовой смеси (с N2 или С02), в которой ее доля составляет от 2 до 50%.

Для сохранения термолабильных веществ, содержащихся в питательных средах, в практику была введена стерилизация р-пропиолактоном. Он значительно активнее окиси этилена, но обладает, видимо, довольно сильным канцерогенным действием и вызывает ряд других побочных физиологических эффектов. Его добавляют в количестве 0,2% в готовые питательные среды, которые затем инкубируют 2 часа при 37°С. Если оставить среду на ночь, пропиолактон полностью разложится. Углеводы при этом не затрагиваются. Напитки стерилизуют также диэ-тилпирокарбонатом (0,003-0,02%).

Пастеризация

Пастеризация -- процесс одноразового нагревания чаще всего жидких продуктов или веществ до 60 °C в течение 1 часа или при температуре 70--80 °C в течение 30 мин. Технология была открыта в середине XIX века французским микробиологом Луи Пастером. Применяется для обеззараживания пищевых продуктов, а также для продления срока их хранения.

При такой обработке в продукте погибают вегетативные формы микроорганизмов, однако споры остаются в жизнеспособном состоянии и при возникновении благоприятных условий начинают интенсивно развиваться. Поэтому пастеризованные продукты (молоко, пиво и др.) хранят при пониженных температурах в течение ограниченного периода времени. Считается, что пищевая ценность продуктов при пастеризации практически не изменяется, так как сохраняются вкусовые качества и ценные компоненты (витамины, ферменты).

В зависимости от вида и свойств пищевого сырья используют разные режимы пастеризации. Различают длительную (при температуре 63--65 °C в течение 30--40 мин), короткую (при температуре 85--90 °C в течение 0,5--1 мин) и мгновенную пастеризацию (при температуре 98 °C в течение нескольких секунд).

Пастеризация не может применяться при консервировании продуктов, так как герметично закрытая тара является благоприятной средой для прорастания спор анаэробной микрофлоры.

Поведение бактерий при пастеризации

Мезофильные молочнокислые бактерии в процессе пастеризации в основном погибают. Термофильные молочнокислые стрептококки и энтерококки сохраняются в молоке после пастеризации в довольно значительном количестве. Однако их биологическая активность в процессе хранения молока при температурах ниже 8°С сравнительно низкая, и они не оказывают влияния на качество охлажденного пастеризованного молока. Термоустойчивые молочнокислые палочки также выдерживают принятые режимы пастеризации. Однако при низких температурах хранения молока они не развиваются. Их роль особенно велика в производстве кисломолочных продуктов, где повышенные температуры сквашивания и присутствие молочнокислых стрептококков стимулируют их развитие. Психротрофные бактерии в процессе пастеризации в...

www.tnu.in.ua


Смотрите также