Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Физиология и биофизика возбудимых клеток. Общая физиология возбудимых клеток реферат


Общая физиология возбудимых тканей

         Биологические реакции. Живые организмы и все их клетки обладают раздражимостью, т.е. способностью отвечать на воздействия внешней среды или нарушения их состояния изменением своей структуры или функции, что неразрывно связано с количественными и качественными изменениями обмена веществ и энергии. Изменения структуры и функций организма и его клеток в ответ на различные воздействия называют биологическими реакциями, а сами воздействия, их вызывающие - раздражителями, или стимулами.

        Понятие биологической реакции включает все виды ответной деятельности организма, его клеток и органов на различные воздействия. Реакции клеток проявляются в изменении их формы, структуры, их роста и процесса деления, в образовании в них различных химических соединений, преобразовании потенциальной энергии в кинетическую (электрическую, механическую, тепловую, световую), совершении той или иной работы (перемещении в пространстве, выделении тех или иных веществ, работе по концентрированию в клетке определенных электролитов и т.п). Еще более разнообразны реакции целостного организма, в особенности - сложные формы поведения. В процессе их осуществления меняется деятельность многих органов и бесчисленного множества клеток, ибо организм всегда реагирует на различные воздействия как единое целое, как единая сложная система.

         Раздражители. Раздражителем живой клетки или организма как целого может оказаться любое изменение внешней среды или внутреннего состояния организма, если оно достаточно велико, возникло достаточно быстро, и продолжается достаточно долго.

          Все бесконечное многообразие возможных раздражителей можно разделить на 3 группы: физические, физико-химические и химические. К числу физических раздражителей относятся температурные, механические (удар, укол, давление, перемещение, ускорение и т.п.), электрические, световые. Физико-химические раздражители представлены изменениями осмотического давления, активной реакции среды, электролитного состава, коллоидального состояния. К числу химических раздражителей относится множество веществ, имеющих различный состав и свойства, и способных изменить обмен веществ клеток (вещества пищи, лекарства, яды, гормоны, ферменты, метаболиты и т.п.).

         Раздражителями клеток, вызывающими их деятельность, имеющими особо важное значение в жизненных процессах, являются нервные импульсы. Будучи естественными, т.е. возникающими в самом организме, электрохимическими раздражителями клеток, нервные импульсы, поступая по нервным волокнам от нервных окончаний в ЦНС или приходя от нее к периферическим органам, вызывают направленные изменения их состояния и деятельности.

       Все раздражители по месту возникновения делят на внешние (экстеро-) и внутренние (интеро-) раздражители, а по физиологическому значению - на адекватные и неадекватные. Адекватными называют те раздражители, которые действуют на данную биологическую структуру в естественных условиях, к восприятию которых она специально приспособлена эволюцией и чувствительность к которым у нее обычно чрезвычайно велика (глаз - свет, ухо - звук и т.д.). Неадекватными называются те раздражители, для восприятия которых данная клетка или орган специально не приспособлен, но которые в определенных условиях могут вызвать изменения структуры или функции (мышца - может сократиться при ударе, быстром согревании, воздействии электротока, внезапном растяжении, действии кислоты и т.п.).

         Возбудимость. Клетки нервной, мышечной и железистой тканей специально приспособлены к осуществлению быстрых реакций на раздражение (возбуждаться). Клетки этих тканей называют возбудимыми, а их способность отвечать на различные раздражения возбуждением - возбудимостью. Возбудимость - это свойство клеточной мембраны отвечать на действие раздражающего (возбуждающего) фактора изменением проницаемости и своего электрического состояния. Это явление и носит название возбуждение. Возбуждение представляет собою сложную биологическую реакцию, проявляющуюся в совокупности физических, физико химических и функциональных изменений. Обязательным признаком возбуждения является изменение электрического состояния поверхностной клеточной мембраны, (изменение ее мембранного потенциала, МП, и генерация распространяющегося потенциала действия, ПД). Возникнув в одной клетке или в одном ее участке, возбуждение распространяется на другие участки той же клетки или на другие клетки.

       Ответ живой клетки на раздражение в форме ли возбуждения и связанной с ним электрической реакции, или в форме сокращения или секреции, происходит всегда после некоторого скрытого, или латентного периода. Так называют период времени между началом действия раздражителя и реакцией ткани на его действие. В течение латентного периода должны пройти изменения состояния ткани, необходимые для того, чтобы проявилась реакция. Латентный период возбудимых тканей короче, чем у невозбудимых, а латентный период электрической реакции ткани короче, чем мышечного сокращения и тем более секреторной реакции. 

 

 История открытия электрических явления в тканях.

      В 1786 г. итальянский врач и физиолог Гальвани, развесив для просушки лягушачьи лапки на балконе заметил, что когда раскачиваемая ветром лапка соприкасается с металлической решеткой балкона, то возникает ее сокращение. Гальвани сделал вывод, что если между нервом и мышцей устанавливается замыкание посредством металлического проводника, и при этом мышца сокращается, то это есть доказательство проявления "животного электричества". Он считал, что нерв и мышца заряжены противоположно.

       Однако, физик Вольта показал ошибочность вывода Гальвани путем проведения такого опыта: он подметил, что перила балкона были медные, а крючки, на которых висели лапки - железные. Попробовав приложить к лапке пинцет, одна ножка которого была сделана из меди, а другая из цинка или из железа, Вольта получил сокращение мышцы. Следовательно, заключил он, мышцы сокращаются не потому, что выделяется "животное электричество", а потому, что между двумя металлами, соприкасающимися с электролитом, течет ток, который и раздражает нервы лапки лягушки.

      Не соглашаясь с Вольта, Гальвани поставил второй опыт. Он заключался в без металлическом сокращении мышцы. Сокращение достигалось путем накидывания нерва на отпрепарированную мышцу с помощью стеклянных инструментов. Однако оказалось, что сокращение удавалось получить только тогда, когда мышца была повреждена, а если мышца была отпрепарирована тщательно, без повреждения ее поверхности, то при таком опыте сокращения не возникало. Позднее немецкий физиолог Герман показал, что если к неповрежденной мышце приложить электроды гальванометра, то никакой разности потенциалов увидеть не удается. Но если на мышцу или нерв нанести повреждение, надрез, и погрузить в этот надрез один из электродов, то стрелка гальванометра отклоняется, что показывает, что между поврежденными и неповрежденными участками живой мышцы возникает электрический ток, причем поврежденный участок несет отрицательный заряд. Этот ток был назван током повреждения, или током покоя.

       В 1837 г. Маттеучи показал, что ток покоя скелетной мышцы при ее сокращении уменьшается. Маттеучи проделал и еще один опыт. Он брал два нервно-мышечных препарата и нерв 2-го набрасывал на мышцу 1-го. При этом он раздражал нерв 1-го препарата, заставляя мышцу сокращаться. Оказалось, что и 2-я мышца при этом начинала сокращаться. Объяснить это влиянием на нерв тока покоя нельзя, так как сокращение второй мышцы происходило лишь при возбуждении первой. Еще демонстративнее этот опыт, если вместо первой мышцы взять работающее сердце лягушки. При набрасывании стеклянным крючком нерва нервно-мышечного препарата на сердце лягушки мышца лапки начинает сокращаться в ритме работающего сердца. Причина этого явления была обнаружена позже.

      В 1850 г. знаменитый французский исследователь Дюбуа-Реймон, раздражая седалищный нерв лягушки, обнаружил, что вслед за раздражением по нерву пробегает волна электрического тока. В 1868 г. Герман показал, что причина этого в том, что возникающий при раздражении электрический ток достигает соседнего участка, возбуждает его, затем достигает следующего участка и путем таких контактов волна возбуждения бежит по нерву, как огонь по бикфордову шнуру.

       Если раздражать одиночными ударами постоянного тока участок нерва, а от следующего участка отводить двумя электродами ток на гальванометр или на трубку катодного осциллографа, то вначале, в момент нанесения раздражения, никаких отклонений не регистрируется. так как под обоими отводящими электродами одинаковый потенциал. Через некоторое время, распространяясь. возбуждение достигает первого отводящего электрода и тогда гальванометр регистрирует разность потенциалов в виде отрицательного колебания - стрелка отклоняется влево (на осциллографе - вниз). Когда волна возбуждения - оказывается между электродами, стрелка возвращается в исходное положение. Затем волна возбуждения достигает второго электрода - стрелка отклоняется вправо (луч вверх). Когда волна возбуждения уходит дальше, и луч осциллографа и стрелка гальванометра возвращаются в исходное положение.

        Из этих фактов можно сделать следующие выводы:

       1. В покое разность потенциалов существует только между неповрежденным и поврежденным участками ткани (ток повреждения, или ток покоя).

       2. При прохождении возбуждения по нерву в нем возникает ток действия.

       3. Этот ток действия не остается на месте, а распространяется.

       4. Ток действия представляет собой отрицательное колебание потенциала.

       Более точное изучение механизмов электрических изменений в тканях в покое и при возбуждении стало возможным с прогрессом электроизмерительной и микроэлектродной техники. Переходим теперь к рассмотрению современных данных об электрических процессах в тканях.

 

         Потенциал покоя. Оказалось, что между наружной поверхностью клетки и ее протоплазмой в состоянии покоя существует разность потенциалов порядка 60-90 мв., причем поверхность клетки заряжена электроположительно по отношению к протоплазме. Эта разность потенциала называется мембранным потенциалом, или потенциалом покоя. Точное его измерение возможно только с помощью внутриклеточных микроэлектродов.

      Согласно мембранно-ионной теории Ходжкина-Хаксли, биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов K+,Na+,Cl- внутри и вне клетки, и различной проницаемостью для них поверхностной мембраны.

      На основании данных электронной микроскопии, химического анализа и электрофизиологических исследований предполагают, что мембрана состоит из двойного слоя молекул фосфолипидов, покрытого изнутри слоем белковых молекул, а снаружи - слоем молекул белка и мукополисахаридов. Допускают, что в клеточной мембране имеются тончайшие каналы (поры) диаметром в несколько ангстрем. Через эти каналы молекулы воды и других веществ, а также ионы, имеющие соответствующий размеру пор диаметр, входят в клетку и покидают ее. На структурных элементах мембраны фиксируются различные заряженные группы, что придает стенкам каналов тот или иной заряд. Так, наличие в мембране нервных волокон диссоциированных фосфатных и карбоксильных групп является причиной того, что она (мембрана) значительно менее проницаема для анионов, чем для катионов.

       Проницаемость мембраны для различных катионов также неодинакова и закономерно изменяется при различных функциональных состояниях ткани. В покое мембрана нервных волокон примерно в 25 раз более проницаема для ионов К, чем для ионов Na, а при возбуждении натриевая проницаемость примерно в 20 раз превышает калиевую.

      Кроме проницаемости, большое значение для возникновения мембранного потенциала имеет градиент концентрации ионов по обе стороны мембраны. Показано, что цитоплазма нервных и мышечных клеток содержит в 30-59 раз больше ионов К+ (500 мэкв/л против 10 мэкв/л), но в 8-10 раз меньше ионов Na+ (35 мэкв/л против 350 мэкв/л) и в 50 раз меньше ионов Cl-, чем внеклеточная жидкость (см. табл.). Величина потенциала покоя нервных волокон и клеток определяется соотношением положительно заряженных ионов К+, диффундирующих в единицу времени из клетки наружу по градиенту концентрации, и положительно заряженных ионов Na+, диффундирующих по градиенту концентрации в обратном направлении. Так, в модельных опытах на аксоне кальмара при том градиенте концентрации К+, который имеет место в нервном волокне, величина тока К+ составляет -120 мв. Если же смоделировать в таком опыте только натриевый градиент, то величина тока Na+ составляет +30 мв. Реально измеряемый мембранный потенциал нерва равен сумме этих двух противоположно направленных токов, т.е. -90мв.

       Несмотря на то, что скорость диффузии ионов Na+ и К+ через мембрану в покое мала, разность их концентрации вне клетки и внутри нее должна была бы в конечном итоге полностью выровняться, если бы в клетке не существовало специального механизма, который обеспечивает активное выделение ("выкачивание") из протоплазмы проникающих в нее ионов Na+ и введение ("нагнетание") ионов К+. Этот механизм получил образное название натрий калиевого насоса.

      Для того, чтобы сохранялась ионная асимметрия, Na-К-насос должен совершать определенную работу против градиента концентрации ионов. Непосредственным источником энергии для работы насоса является расщепление АТФ, которое происходит под влиянием АТФ-азы, локализованной в мембране и активируемой ионами Na+ и К+ (т.н. Na-К-зависимая АТФ-аза). Торможение активности этого фермента приводит к нарушению работы насоса. В результате протоплазма обогащается Na+ и теряет К+. Прямым следствием этого является снижение или даже полное исчезновение МП (потенциала покоя, или мембранного потенциала).

        Деполяризация мембраны возникает потому, что в силу градиента концентрации К+ выходит наружу, но из-за того, что ионы CL-, которые не в состоянии пройти через мембрану, электростатически удерживают положительные ионы, в пограничном слое создается избыток К+, и между наружной и внутренней поверхностями мембраны, заряженными соответственно положительно и отрицательно, возникает разность потенциалов величиной около -90 мв. Мембрана в покое постоянно деполяризована, так как в результате работы Na-K-насоса поддерживается нужный для этого градиент концентрации ионов.

 

       Потенциал действия. Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

      При внутриклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженным электро-отрицательно по отношению к соседнему, покоящемуся участку, т.е. при возбуждении происходит т.н. "перезарядка мембраны". Точные измерения показали, что амплитуда ПД на 30-50 мв превышает величину МП. Причина этого состоит в том, что при возбуждении происходит не просто исчезновение ПП, а возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной отрицательно по отношению у ее внутренней стороне.

      В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал , или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

     Кроме пика, в ПД различают два следовых потенциала - следовую деполяризацию (следовой отрицательный потенциал) и следовую гиперполяризацию (следовой положительный потенциал. Амплитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

     Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К+ превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na+. Поэтому мембрана в покое снаружи заряжена положительно.

     При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К+ Поэтому поток ионов Na+ в клетку начинает значительно превышать направленный наружу поток К+. Ток Na+ достигает величины +150 мв. Одновременно несколько уменьшается выход К+ из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

      Повышение проницаемости мембраны для ионов Na+ продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na+-каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

      Наличие специальных Na- и К- каналов и сложного механизма запирания и открытия ворот изучено биофизиками достаточно хорошо. Показано, что существуют избирательные механизмы, регулирующие те или иные каналы. Например, яд тетродотоксин блокирует только Na-поры, а тетраэтиламмоний - только К-поры. Показано, что у некоторых клеток возникновение возбуждения связано в изменением проницаемости мембраны для Са++, в других - для Mg+. Исследования механизмов изменения проницаемости мембран продолжаются.

     В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса.

      Таким образом, в живой клетке существуют два различных типа движения ионов через мембрану. Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии, поэтому его называют пассивным транспортом. Он ответственен за возникновение МП и ПД и ведет в конечном итоге к выравниванию концентраций ионов по обе стороны клеточной мембраны. Второй тип движения ионов через мембрану, осуществляющийся против концентрационного градиента, состоит в "выкачивании" ионов Na+ из протоплазмы и "нагнетании" ионов К+ внутрь клетки. Этот тип ионного транспорта возможет лишь при условии затраты энергии - это активный транспорт. Он является результатом работы специальных ферментных систем (т.н. насосов), и благодаря ему восстанавливается исходная разность концентраций, необходимая для поддержания МП.

      Условия возникновения возбуждения. Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео ) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.

      Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации ( Ео <= Eк)

      Причины этого явления нам станут ясны позже, после выяснения некоторых механизмов действия постоянного электротока на возбудимые ткани.

       В лабораторных условиях и при проведении некоторых клинических исследований для раздражения нервов и мышц применяют электрические стимулы, которые легко дозировать как по амплитуде и длительности, так и по форме, имитируя естественные нервные импульсы. Механизм раздражающего действия тока на ткань в принципе одинаков при всех видах стимулов, максимально приближается к механизму действия самих нервных импульсов, однако в наиболее отчетливой форме эти механизмы выявляются при использовании постоянного тока. 

dendrit.ru

Физиология и биофизика возбудимых клеток

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей.

Раздражимость - это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением: физиологических параметров клетки, ткани организма, например изменением метаболизма.

Возбудимость - это способность живой ткани отвечать на раздражение активной специфической реакцией — возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани - нервную, мышечные, железистые, которые называются возбудимыми.

Возбуждение - это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д..

Возбудимые ткани обладают проводимостью -это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.

Раздражитель - это фактор внешней или внутренней среды действующий на живую ткань. Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением. Все раздражители делятся на следующие группы:

1. По природе

а) физические (электричество, свет, звук ,механические воздействия и т.д.)

б) химические (кислоты, щелочи, гормоны и т.д.)

в) физико-химические (осмотическое давление, парциальное давление газов и т.д.)

г) биологические (пища для животного, особь другого пола)

д) социальные (слово для человека).

2. По месту воздействия

а) внешние (экзогенные)

б) внутренние (эндогенные)

3. По силе :

а) подпороговые (не вызывающие ответной реакции)

б) пороговые (раздражители минимальной, силы, при которой возникает возбуждение)

в) сверхпороговые (силой выше пороговой)

4. По физиологическому характеру:

а) адекватные (физиологичные для данной клетки или рецептора, которые, приспособились к нему в процесс эволюции, например, свет для фоторецепторов глаза).

б) неадекватные

Если реакция на раздражитель является рефлекторной, то выделяют также

а) безусловно-рефлекторные раздражители

б) условно-рефлекторные

Законы раздражения. Параметры возбудимости.

Реакция клеток, тканей на раздражитель определяется законами раздражения

1. Закон "все или ничего": При допороговых раздражениях клетки в ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

2. Закон силы: Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость.

3. Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы длительности. По этой кривой можно определить ряд параметров возбудимости.

а) Порог раздражения - это минимальная сила раздражителя, при которой возникает возбуждение.

б) Реобаза - это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани.

в) Полезное время - минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

г) Хронаксия - это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения.

Этот параметр предложил рассчитывать Л. Лапик для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия тем выше возбудимость и наоборот. В клинической практике реобазу и хронаксию определяют с помощью метода хронаксимстрии для исследования возбудимости нервных стволов.

4. Закон градиента или аккомодации. Реакция ткани на раздражение зависит от его градиента, т.е. чем быстрее нарастает сила раздражителя во времени тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому если сила раздражителя , возрастает очень медленно возбуждения не будет. Это явление называется аккомодацией. Физиологическая лабильность (подвижность) - это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем Выше ее лабильность. Определение лабильности предложено Н.Е.Введенским. Наибольшая, лабильность у нервов, наименьшая у сердечной мышцы.

Действие постоянного тока на возбудимые ткани.

В первые закономерности действия постоянного тока на нерв нервно-мышечного препарата исследовал в 19веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным.. электродом т е. катодом

•возбудимость повышается, а под положительным - анодом снижается. Это называется законом действия постоянного Тока. Изменение возбудимости ткани (например: нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном. В настоящее время установлено, что под действием отрицательного электрода - катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном, Под положительным - анодом, он возрастает. Возникает физический катэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризации, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мсек и менее)МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.

Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физипроцедуры: ионофорез и гальванизация.

Строение и функции цитоплазматической мембраны клеток.

Цитоплазматическая клеточная мембрана состоит из трех слоев: наружного белкового, среднего бимолекулярного слоя липидов и внутреннего белкового. Толщина мембраны 7.5'-10 нм. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами. погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды. 15- 30% холестерина. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрана и периферические, находящиеся на наружной или внутренней поверхности. Интегральные белки образуют ионные каналы, обеспечивающие обмен определенных ионов между вне- и внутриклеточной жидкостью. Они также являются ферментами, осуществляющими противоградиентный перенос ионов через мембрану. Периферическими белками являются хеморецепторы наружной поверхности мембраны, которые могут взаимодействовать

функции мембраны:

1. Обеспечивает целостность клетки, как структурной единицы ткани.

2. Осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью,

3. Обеспечивает активный транспорт ионов и других веществ в клетку и из нее

4. Производит восприятие и переработку информации поступающей к клетке в виде химических и электрических

Механизмы возбудимости клеток. Ионные каналы мембраны. Механизмы возникновения мембранного потенциала (МП) и потенциалов действия (ПД)

В основном, передаваемая в организме информация имеет вид электрических сигналов (например нервные импульсы). Впервые наличие животного электричества установил физиолог Л Гальвани в 1736 г.. С целью исследования атмосферного электричества он подвешивал нервно-мышечные препараты лапок лягушек на медном крючке. Когда эти лапки касались железных перил балкона, происходило сокращение. мышц. Это свидетельствовало о действии какого-то электричества на нерв нервно-мышечного препарата. Гальвани посчитал, что это обусловлено наличием электричества в самих живых тканях. Однако А. Вольта установил, что источником электричества является место контакта двух разнородных металлов - .меди и железа. В физиологии первым классическим опытом Гальвани считается прикосновение к нерву нервно-мышечного препарата биметаллическим пинцетом, сделанным из меди и железа. Чтобы доказать свою правоту, Гальвани произвел второй опыт. Он набрасывал конец нерва, нннервируюшего нервно-мышеччый препарат, на разрез его мышцы. В результате возникало ее сокращение. Однако и этот опыт не убедил современников Гальвани. Поэтому другой итальянец Маттеучи произвел следующий эксперимент. Он накладывал нерв одного нервно-мышечного препарат лягушки на мышцу второго, которая сокращалась под действием раздражающего тока. В результате первый препарат тоже начинал сокращаться. Это свидетельствовало о передаче электричества (ПД) от одной мышце к другой. Наличие разности потенциалов между поврежденным и неповрежденным участками мышцы впервые точно установил, а 19 веке с помощью струнного гальванометра (амперметра) Маттеучи. Причем разрез имел отрицательный заряд, а поверхность мышцы положительный.

Классификация и структура ионных каналов цитоплазматической мембраны. Механизмы возникновения

мембранного потенциала и потенциалов действия.

Первый шаг в изучении причин возбудимости клеток сделал в своей работе "Теория мембранного равновесия" в 1924 г. английский физиолог Донанн. Он теоретически установил, что разность потенциалов внутри клетки и вне ее, т.г. потенциала покоя или МП, близка к калиевому равновесному потенциалу, Это потенциал, образующемуся на полупроницаемой мембране разделяющий растворы с разной концентрацией ионов калия, один из которых содержит крупные непроникающие анионы. Его расчеты уточнил Нернст. Он вывел уравнение диффузионного потенциала для калия он будет равен:

Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой, а также возбуждения клеток установили в 1939 году в Кембридже Ходжкин и Хаксли. Они исследовали нервное гигантское волокно (аксон) кальмара и обнаружили, что внутриклеточная жидкость нейрона содержит 400 мМ калия. 50 мМ натрия, 100 мМ хлора очень мало кальция.

Во внеклеточной жидкости содержалось всего 10 мМ калия, 440 мМ, "натрия, 560 мМ хлора и 10-мМ кальция. Таким образом, внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем ,что в клеточною мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора. Все ионные каналы подразделяются на следующие группы:

1. По избирательности:

а) Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов. б)Малоселективные, неспецифические, не имеющие определенной ионной избирательности: Их в мембране. небольшое количество.

2. По характеру пропускаемых ионов:

а) калиевые и натриевые

в) кальциевые

г)хлорные

3. По скорости инактивации, т.е. закрывания:

а) быстроинактивируюшиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

б) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

а) потенциалзависямые, т.е. те, которые открываются при определенном уровне потенциала мембраны.

б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически

активных веществ (нейромедиаторов. гормонов и т. д).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1 .Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго

определенных ионов.

2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависямых каналов имеется сенсор, который открывает их на определенном уровне МП.

3.Инактивационные ворота, обеспечивающие закрывания канала и прекращение проведения ионов по каналу на определенном уровне МП. (Рис). Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (м) и инактивационных (н) ворот (рис):

  1. Закрытом, когда активационные закрыты, а инактивацинные открыты.

  2. Активированном, и те и другие ворота открыты.

  3. Инактивированном активационные ворота открыты, а инактивационные закрыты

Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного

мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны

для калия и натрия в состоянии покоя составляет 1:0.04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов. Рис. Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е. накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ноны. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя. В среднем, величина потенциала покоя близка к калиевому равновесному потенциалу Нернста. Например, МП нервных клеток составляет 55-70 мВ, поперечно-полосатых - 90-100 мВ. гладких мышц - 40-60 мВ, железистых клеток - 20-45 мВ. Меньшая реальная величина МП клеток, объясняется тем, что его величину уменьшают ионы натрия, для которых мембрана незначительно проницаема, и они могут входить в цитоплазму. С другой стороны, отрицательные ионы хлора, поступающие в клетку, несколько увеличивают МП.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Это связано с тем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрио-калиевым насосом. Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны. Натрио-калиевый насос —это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит 2 иона калия т.к в клетку поступает меньше положительно заряженных ионов, чем выводится из неё, натрий-калиевая АТФ-аза. на5-10 мВ увеличивает мембранный потенциал. В мембране имеются следующие механизмы трансмембранного транспорта.

1.Активный транспорт осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калнезый насос, кальциевый насос, хлорный насос.

2.Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неё по калиевым каналам.

3.Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например таким образом происходит натрий натриевый, натрий-кальциевый, калий -калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкм стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помешается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец (рис).

Дальнейшие исследования Ходжкина и Хаксли показали, что при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму пика. Они назвали это колебание потенциалом действия (ПД). Так как электрический ток для возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны отрицательный электрод - катод, а внутреннюю положительный анод. Это приведет к снижению величины заряда мембраны - ее деполяризации. При действии слабого допороговсго тока происходит пассивная деполяризация, т.е. возникает катэлектротон (.рис). Если силу тока увеличить до определенного предела, то в конце периода его воздействия на плато катэлектротона появится небольшой самопроизвольный подъём - местный или локальный ответ. Он является следствием открывают небольшой части натриевых каналов, находящихся под катодом. При токе пороговой силы МП снижается до критического уровня деполяризации (КУД), при котором начинается генерация' потенциала действия. Он находится для нейронов примерно на уровне - 50 мВ. На кривой потенциала действия выделяют следующие фазы:

  1. Локальный ответ (местная деполяризация), предшествующий развитию ПД.

  2. Фаза деполяризации. Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд - внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2мсек.

  3. Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно -20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя Длительность фазы 3-5 мсек.

  4. Фаза следовой деполяризация или отрицательного следового потенциала. Период, когда возвращений МП к потенциалу покоя временно задерживается, он длится 15-30 мсек.

  5. Фаза следовой гиперполяризацин или положительного следового потенциала. В эту фазу. МП на некоторое время становится выше исходного уровне ПП. Ее длительность 250-300 мсек.

Линия 5Линия 6Линия 15

Линия 4Линия 7

Линия 170 3

2 4

кЛиния 3Линия 8Линия 14уд 1

Линия 9Линия 11Линия 12Линия 135

Линия 10

Амплитуда потенциала действия скелетных мышц в среднем 120-130 мВ. нейронов 80-90 мВ. гладкомышечных

клеток 40-50 мВ. При возбуждении нейронов ПД возникает в начальном сегменте аксона - аксоном холмике.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период

локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная

самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота

'натриевых каналов открываются, и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую

деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Т.е. натриевая проницаемость

мембраны резко возрастает. Причем от чувствительности активационных зависит величина критического уровня

деполяризации, чем она выше, тем ниже КУД и наоборот.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (-20 мВ). сила

концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации

быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко

усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации

специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смешения

МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и

активационных ворот натриевых каналов, что еще больше снижает натриевую проницаемость мембраны и ускоряет

реполяризацию.

Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов

остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД, калиевой проводимостью мембраны и тем, что более

активно работает натрий-калиезый насос, выносящий вошедшие в клетку во время ПД ионы натрия.

Изменяя проводимость быстрых натриевых и калиевых каналов можно влиять на генерацию ПД, а следовательно на

возбуждение клеток. При полной блокаде натриевых каналов, например ядом рыбы тетродонта - тетродотоксином,

клетка становится невозбудимой. Это используется в клинике. Такие местные анестетики, как новокаин, дикаин,

лидокаин тормозят переход натриевых каналов нервных волокон в открытое состояние. Поэтому проведение нервных

импульсов по чувствительным нервам прекращается, наступает обезболивание анестезия органа. При блокаде калиевых каналов затрудняется выход ионов калия из цитоплазмы на наружную поверхность мембраны, т.е высвобождаются ионы кальция из цитоплазмы т.е восстановление МП. поэтому удлиняется фаза реполяризации. Этот эффект блокаторов калиевых каналов также - используется в клинической практике. Например, один из них хинидин.' удлиняя фазу . реполяризации

кардиомиоцитов, урежает сердечные сокращения и нормализует сердечный ритм. 'Также следует отметить, что чем выше скорость распространения ПД по мембране клетки, ткани, тем выше ее проводимость.

Соотношение фаз потенциала действия и возбудимости

Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением. В фазу деполяризации ПД, когда открываются все натриевые каналы и ноны натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной не возбудимости или абсолютной рефрактерности, т.е. фазе реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной не возбудимости или относительной рефрактерности. Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно, в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она наводится в фазе субнормальной возбудимости. Рис. Следует отметить, что явление .аккомодации также связано с изменением проводимости ионных каналов. Если деполяризуюший ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

Физиология мышц.

В организме имеются 3 типа мышц: скелетные или поперечно-полосатые, гладкие и сердечная. Скелетные мышцы обеспечивают перемещение тела в пространстве, поддержание позы тела за счет тонуса мышц конечностей и тела. Гладкие мышцы необходимы для перистальтики органов желудочно-кишечного тракта, мочевыводящей системы, регуляции тонуса сосудов, бронхов и т.д.. Сердечная мышца служит для сокращения сердца и перекачивания крови. Все мышцы обладают возбудимостью, проводимостью и сократимостью, а сердечная и многие гладкие мышцы автоматией способностью к самопроизвольным сокращениям.

Ультраструктура скелетного мышечного волокна.

Двигательные единицы. Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона вызывают сокращения определенной группы мышечных волокон.

Скелетные мышцы состоят из мышечных пучков, образованных большим количеством мышечных волокон. Каждое волокно - это клетка цилиндрической формы диаметром 10-100 мкм и длиной от 5 до 400 мкм. Оно имеет клеточную мембрану - сарколемму. В саркоплазме находится несколько ядер, митохондрий образования саркоплазматического ретикулума (СР) и сократительные элементы - миофибрилы. Саркоплазматический ретикулум имеет своеобразное строение. Он состоит из системы поперечных, продольных трубочек и цистерн. Поперечные трубочки это впячивания саркоплазмы внутрь клетки. К ним примыкают продольные трубочки с цистернами. Благодаря этому, потенциал действия может распространяться от сарколеммы на систему саркоплазматического ретикулума. В мышечном волокне содержится более 1000 миофибрилл, расположенных вдоль него. Каждая миофибрилла состоит из 2500 протофибрилл или миофиламентов. Это нити сократительных белков актина и миозина. Миозиновые протофибрнллы толстые, актиновые тонкие. На миозиновых нитях расположены отходящие под углом поперечные отростки с головками. У скелетного мышечного волокна при световой микроскопии видна поперечная исчерченность, т.е. чередование светлых и темных полос. Темные полосы называют А-дисками или анизотропией светлые [-дисками (изотропными). В А-дисках сосредоточены нити миозина, обладающие анизотропией и поэтому имеющие темный цвет. 1-диски образованы нитями актина. В центре 1-дисков видна тонкая Z-пластинка. К ней прикрепляются актиновые протофибриллы. Участок миофибрилы между двумя 2-пластинками называется саркомером. Это структурный элемент миофибрилл. В покое толстые миозиновые нити лишь на небольшое расстояние входят в промежутки между актиновыми. Поэтому в средней части А-диска имеется более светлая Н-зона, где нет актиновых нитей. При электронной микроскопии в ее центре видна очень тонкая М-лнния. Она образована цепями опорных белков, к которым крепятся миозиновые протофибриллы (рис).

Механизмы мышечного сокращения.

При световой микроскопии было замечено, что в момент сокращения ширина А-диска не уменьшается, а 1-диски и Н-зоны саркомеров суживаются. При электронной, микроскопии было установлено, что длина нитей актина и миозина в момент сокращения не изменяется. Поэтому Хаксли и Хэнсон разработали теорию скольжения нитей. Согласно этой теории мышца укорачивается в результате движения тонких актиновых нитей в промежутки между миозиновыми. Это приводит к укорочению каждого саркомера, образующего миофирриллы. Скольжение же нитей обусловлено тем, что при переходе в активное состояние головки отростков миозина связываются с центрами актиновых нитей и вызывают их движение относительно себя (гребковые движения). Но это последний этап всего сократительного механизма. Сокращение начинается с того, что в области концевой пластинки двигательного нерва возникает ПД. Он с большой скоростью распространяется по сарколемме и переходит с неё по, системе поперечных трубочек СР., на продольные трубочки и цистерны. Возникает деполяризация мембранных цистерн и из них в саркоплазму высвобождаются ионы Са. На нитях актина расположены молекулы еще двух белков - тропонина и тропомиознна. При низкой (менее 10 в 8 степени) концентрации кальция, т.г. в состоянии покоя, тропомиозин блокирует присоединение мостиков миозина к нитям актина. Когда ноны кальция начинают выходить. из СР, молекула тропонина изменяет свою форму таким образом, что освобождает активные центры актина от тропомиозина. К этим центрам присоединяются головки миозина и начинается скольжение за счет ритмического прикрепления и разъединения поперечных мостиков с нитями актина. При этом головки ритмически продвигаются; по нитям актина к 2-мембранам. Для полного сокращения мышцы необходимо 50' таких циклов. Передача сигнала от возбужденной мембраны к миофибриллам называется электромеханическим сопряжением. Когда генерация ПД прекращается, и мембранный потенциал возвращается к исходному уровню, начинает работать Са-насос (фермент Са-АТФ-Фаза). Ионы кальция вновь закачиваются в цистерны саркоплазматического ретикулума и та концентрация подает ниже 10"'М. Молекулы тропонина приобретают исходную форму и тропомиозин вновь начинает блокировать активные центры актина. Головки миозина отсоединяются от них и мышца за счет эластичности приходит в исходное расслабленное состояние. Энергетика мышечного сокращения Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры. расщепляющие АТФ до АДФ и неорганического фосфата.. Т.е. миозин является одновременно ферментом АТФ-азой ПД Активность миозина как АТФ-фазы значительно возрастает при его взаимодействии с актином. При каждом цикле взаимодействия актина с головкой миозином расщепляется 1 молекула АТФ. Следовательно, чем больше мостиков переходят в активное состояние, тем больше расщепляется АТФ, тем сильнее сокращение. Для стимуляции АТФ-азной активности миозина требуются ионы кальция, выделяющиеся из СР. которые способствуют освобождению активных центров актина от тропомиозина. Однако запасы АТФ в клетке ограничены. Поэтому для восполнения запасов АТФ происходит его восстановление - ресинтез. Он осуществляется анаэробным и аэробным путем. Процесс анаэробного ресинтеза осуществляется фосфагенной и гликолитической системами. Первая использует для восстановления АТФ запасы креатинфосфата. Он расщепляется на креатин и фосфат, который с помощью ферментов переносится на АДФ (АДФ-Ф=АТФ). Фосфагенная система ресинтеза обеспечивает наибольшую мощность сокращения, но в связи с малым количеством креатинфосфата в клетке, она функционирует лишь 5-6 секунд сокращения. Гликолитическая система использует для ресинтеза АТФ анаэробное расщепление глюкозы (гликогена) до молочной кислоты. Каждая молекула глюкозы обеспечивает восстановление трех молекул АТФ. Энергетические возможности этой системы выше, чем фосфагенной, но и она может служить источником энергии сокращения лишь 0.5 - 2 мин. При этом работа гликолитической системы сопровождается накоплением в мышцах молочной кислоты ;1 снижением содержания кислорода. При продолжительной работе, с усилением кровообращения ресинтез АТФ начинает осуществляться с помощью окислительного фосфолирирования, т.е. аэробным путем. Энергетические возможности окислительной системы значительно больше остальных. Процесс происходит за счет окисления углеводов и жиров. При интенсивной работе в основном окисляются углеводы, при умеренной жиры. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых нитей до ферментативного аутолиза этих белков). Возникает трупное окоченение, АТФ необходима для расслабления потом, что обеспечивает работу Са-насоса.

Биомеханика мышечных сокращений. Одиночное сокращение, суммация. тетанус.

При нанесении на двигательный нерв или мышцу одиночного порогового или сверх порогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выделить три последовательных периода:

1.Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около -2 мсек. Во время латентного периода генерируется и распространяется ПД, происходит, высвобождения кальция ,13 СР. взаимодействие актина с миозином и т.д.

2. Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительность от 10 до 100 Мсек.,

3.Период расслабления. Его длительность несколько больше, чем укорочения. Рис. В: режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются. Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефракторного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, то суммации не будет, потому что мышца находится в состоянии рефрактерности. Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса: зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис).. Гладкий

тетанус возникает тогда, когда', каждое последующее раздражение наносится а конце периода укорочения т.е. имеет место полная суммация отдельных сокращений и (рис.). Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук;

при алкогольной интоксикации и болезни Паркинсона.

Влияние частоты и с-илы раздражения на амплитуду сокращения

Если постепенно увеличивать частоту раздражения, то амплитуда титанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется оптимальной; Дальнейшее увеличение частоты раздражения сопровождается снижением силы титанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается (рис.). Понятие оптимальной и пессимальной частот предложил Н.Е. Введенский. Он установил, что каждое раздражение пороговой или сверхпороговой силы. вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается.

Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону "все или ничего". Мышца подчиняется закону' силы. При увеличении силы раздражения, амплитуда сокращения ее растет. При определенной (оптимальной) силе амплитуда становится максимальной. Если и дальше повышать силу раздражения, амплитуда сокращения не увеличивается и даже уменьшается за счет католической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной вобудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе её волокна вовлекаются в сокращение. Католическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

Режимы сокращения. Сила и работа мышц.

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы. Например, при поддержании позы тела.

3. Ауксотонические сокращения. Изменяются и длина и тонус мышцы. С помощью их происходит передвижение тела.

другие двигательные акты.

Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от

строения мышцы, ее функционального состояния, исходной длины, пола. возраста, степени тренированности

человека. В зависимости от строения, выделяют мышцы с параллельными волокнами (например, портняжная'.

веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь

ш;!1еречного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон.

образующих мышцу. Наибольшая площадь поперечного физиологического сечения а, следовательно, сила, у перистых

мыши. Наименьшая у мышце параллельным расположением волокон (рис.).

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При

умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении.

нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами.

кистевым, становым и т.д..

Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной.

делённой на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет

и.2 кг см2. трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2.

работу мышц делят на динамическую и статическую. Динамическая выполняется при перемещении груза. При

динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотническом

режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме.

Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р*h)

Работа измеряется в кГ*М, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних

нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится

максимальной. Если увеличение нагрузки продолжается, то работа снижается (рис.). Такое же влияние на величину

работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в

расчете величины рабочей нагрузки имеет определение мощности мышцы. Это работа, выполняемая в единицу

времени (Р = А * Т). Вт

studfiles.net

Физиология и биофизика возбудимых клеток

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей.

Раздражимость - это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением: физиологических параметров клетки, ткани организма, например изменением метаболизма.

Возбудимость - это способность живой ткани отвечать на раздражение активной специфической реакцией — возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани - нервную, мышечные, железистые, которые называются возбудимыми. Возбуждение - это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д.. Возбудимые ткани обладают проводимостью-это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы. Раздражитель - это фактор внешней или внутренней среды действующий на живую ткань. Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением. Все раздражители делятся на следующие группы:

1. По природе

а) физические (электричество, свет, звук ,механические воздействия и т.д.)

б) химические (кислоты, щелочи, гормоны и т.д.)

в) физико-химические (осмотическое давление, парциальное давление газов и т.д.)

г) биологические (пища для животного, особь другого пола)

д) социальные (слово для человека).

2. По месту воздействия

а) внешние (экзогенные)

б) внутренние (эндогенные)

3. По силе :

а) подпороговые (не вызывающие ответной реакции)

б) пороговые (раздражители минимальной, силы, при которой возникает возбуждение)

в) сверхпороговые (силой выше пороговой)

4. По физиологическому характеру:

а) адекватные (физиологичные для данной клетки или рецептора, которые, приспособились к нему в процесс эволюции, например, свет для фоторецепторов глаза).

б) неадекватные

Если реакция на раздражитель является рефлекторной, то выделяют также

а) безусловно-рефлекторные раздражители

б) условно-рефлекторные

Законы раздражения. Параметры возбудимости.

Реакция клеток, тканей на раздражитель определяется законами раздражения

1. Закон "все или ничего": При допороговых раздражениях клетки в ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

2. Закон силы: Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость.

3. Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы длительности. По этой кривой можно определить ряд параметров возбудимости.

а) Порог раздражения - это минимальная сила раздражителя, при которой возникает возбуждение.

б) Реобаза - это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани.

в) Полезное время - минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

г) Хронаксия - это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения.

Этот параметр предложил рассчитывать Л. Лапик для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия тем выше возбудимость и наоборот. В клинической практике реобазу и хронаксию определяют с помощью метода хронаксимстрии для исследования возбудимости нервных стволов.

4. Закон градиента или аккомодации. Реакция ткани на раздражение зависит от его градиента, т.е. чем быстрее нарастает сила раздражителя во времени тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому если сила раздражителя , возрастает очень медленно возбуждения не будет. Это явление называется аккомодацией. Физиологическая лабильность (подвижность) - это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем Выше ее лабильность. Определение лабильности предложено Н.Е.Введенским. Наибольшая, лабильность у нервов, наименьшая у сердечной мышцы.

Действие постоянного тока на возбудимые ткани.

В первые закономерности действия постоянного тока на нерв нервно-мышечного препарата исследовал в 19веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным.. электродом т е. катодом

•возбудимость повышается, а под положительным - анодом снижается. Это называется законом действия постоянного Тока. Изменение возбудимости ткани (например: нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном. В настоящее время установлено, что под действием отрицательного электрода - катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном, Под положительным - анодом, он возрастает. Возникает физический катэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризации, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мсек и менее)МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.

Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физипроцедуры: ионофорез и гальванизация.

Строение и функции цитоплазматической мембраны клеток.

Цитоплазматическая клеточная мембрана состоит из трех слоев: наружного белкового, среднего бимолекулярного слоя липидов и внутреннего белкового. Толщина мембраны 7.5'-10 нм. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами. погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды. 15- 30% холестерина. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрана и периферические, находящиеся на наружной или внутренней поверхности. Интегральные белки образуют ионные каналы, обеспечивающие обмен определенных ионов между вне- и внутриклеточной жидкостью. Они также являются ферментами, осуществляющими противоградиентный перенос ионов через мембрану. Периферическими белками являются хеморецепторы наружной поверхности мембраны, которые могут взаимодействовать

функции мембраны:

1. Обеспечивает целостность клетки, как структурной единицы ткани.

2. Осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью,

3. Обеспечивает активный транспорт ионов и других веществ в клетку и из нее

4. Производит восприятие и переработку информации поступающей к клетке в виде химических и электрических

Механизмы возбудимости клеток. Ионные каналы мембраны. Механизмы возникновения мембранного потенциала (М П) и потенциалов действия /П.Л)

(в основном, передаваемая в организме информация имеет вид электрических сигналов (например нервные импульсы). Впервые наличие животного электричества установил физиолог Л Гальвани в 1736 г.. С целью исследования атмосферного электричества он подвешивал нервно-мышечные препараты лапок лягушек на медном крючке. Когда эти лапки касались железных перил балкона, происходило сокращение. мышц. Это свидетельствовало о действии какого-то электричества на нерв нервно-мышечного препарата. Гальвани посчитал, что это обусловлено наличием электричества в самих живых тканях. Однако А. Вольта установил, что источником электричества является место контакта двух разнородных металлов - .меди и железа. В физиологии первым классическим опытом Гальвани считается прикосновение к нерву нервно-мышечного препарата биметаллическим пинцетом, сделанным из меди и железа. Чтобы доказать свою правоту, Гальвани произвел второй опыт. Он набрасывал конец нерва, нннервируюшего нервно-мышеччый препарат, на разрез его мышцы. В результате возникало ее сокращение. Однако и этот опыт не убедил современников Гальвани. Поэтому другой итальянец Маттеучи произвел следующий эксперимент. Он накладывал нерв одного нервно-мышечного препарат лягушки на мышцу второго, которая сокращалась под действием раздражающего тока. В результате первый препарат тоже начинал сокращаться. Это свидетельствовало о передаче электричества (ПД) от одной мышце к другой. Наличие разности потенциалов между поврежденным и неповрежденным участками мышцы впервые точно установил, а 19 веке с помощью струнного гальванометра (амперметра) Маттеучи. Причем разрез имел отрицательный заряд, а поверхность мышцы положительный.

Классификация и структура ионных каналов цитоплазматической мембраны. Механизмы возникновения

мембранного потенциала и потенциалов действия.

.'Первый шаг в изучении причин возбудимости клеток сделал в своей работе "Теория мембранного равновесия" в 1924 г. английский физиолог Донанн. Он теоретически установил, что разность потенциалов внутри клетки и вне ее, т.г. потенциала покоя или МП, близка к калиевому равновесному потенциалу, Это потенциал, образующемуся на полупроницаемой мембране разделяющий растворы с разной концентрацией ионов калия, один из которых содержит крупные непроникающие анионы. Его расчеты уточнил Нернст. Он вывел уравнение диффузионного потенциала для калия он будет равен:

Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой, а также возбуждения клеток установили в 1939 году в Кембридже Ходжкин и Хаксли. Они исследовали нервное гигантское волокно (аксон) кальмара и обнаружили, что внутриклеточная жидкость нейрона содержит 400 мМ калия. 50 мМ натрия, 100 мМ хлора очень мало кальция.

Во внеклеточной жидкости содержалось всего 10 мМ калия, 440 мМ, "натрия, 560 мМ хлора и 10-мМ кальция. Таким образом, внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем ,что в клеточною мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора. Все ионные каналы подразделяются на следующие группы:

1. По избирательности:

а) Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов. б)Малоселективные, неспецифические, не имеющие определенной ионной избирательности: Их в мембране. небольшое количество.

2. По характеру пропускаемых ионов:

а) калиевые и натриевые

в) кальциевые

г)хлорные

3. По скорости инактивации, т.е. закрывания:

а) быстроинактивируюшиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

б) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

а) потенциалзависямые, т.е. те, которые открываются при определенном уровне потенциала мембраны.

б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически

активных веществ (нейромедиаторов. гормонов и т. д).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1 .Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго

определенных ионов.

2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависямых каналов имеется сенсор, который открывает их на определенном уровне МП.

3.Инактивационные ворота, обеспечивающие закрывания канала и прекращение проведения ионов по каналу на определенном уровне МП. (Рис). Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (м) и инактивационных (н) ворот (рис):

  1. Закрытом, когда активационные закрыты, а инактивацинные открыты.

  2. Активированном, и те и другие ворота открыты.

  3. Инактивированном активационные ворота открыты, а инактивационные закрыты

Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного

мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны

для калия и натрия в состоянии покоя составляет 1:0.04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов. Рис. Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е. накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ноны. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя. В среднем, величина потенциала покоя близка к калиевому равновесному потенциалу Нернста. Например, МП нервных клеток составляет 55-70 мВ, поперечно-полосатых - 90-100 мВ. гладких мышц - 40-60 мВ, железистых клеток - 20-45 мВ. Меньшая реальная величина МП клеток, объясняется тем, что его величину уменьшают ионы натрия, для которых мембрана незначительно проницаема, и они могут входить в цитоплазму. С другой стороны, отрицательные ионы хлора, поступающие в клетку, несколько увеличивают МП.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Это связано с тем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрио-калиевым насосом. Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны. Натрио-калиевый насос —это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит 2 иона калия т.к в клетку поступает меньше положительно заряженных ионов, чем выводится из неё, натрий-калиевая АТФ-аза. на5-10 мВ увеличивает мембранный потенциал. В мембране имеются следующие механизмы трансмембранного транспорта.

1.Активный транспорт осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калнезый насос, кальциевый насос, хлорный насос.

2.Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неё по калиевым каналам.

3.Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например таким образом происходит натрий натриевый, натрий-кальциевый, калий -калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкм стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помешается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец (рис).

Дальнейшие исследования Ходжкина и Хаксли показали, что при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму пика. Они назвали это колебание потенциалом действия (ПД). Так как электрический ток для возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны отрицательный электрод - катод, а внутреннюю положительный анод. Это приведет к снижению величины заряда мембраны - ее деполяризации. При действии слабого допороговсго тока происходит пассивная деполяризация, т.е. возникает катэлектротон (.рис). Если силу тока увеличить до определенного предела, то в конце периода его воздействия на плато катэлектротона появится небольшой самопроизвольный подъём - местный или локальный ответ. Он является следствием открывают небольшой части натриевых каналов, находящихся под катодом. При токе пороговой силы МП снижается до критического уровня деполяризации (КУД), при котором начинается генерация' потенциала действия. Он находится для нейронов примерно на уровне - 50 мВ. На кривой потенциала действия выделяют следующие фазы:

  1. Локальный ответ (местная деполяризация), предшествующий развитию ПД.

  2. Фаза деполяризации. Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд - внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2мсек.

  3. Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно -20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя Длительность фазы 3-5 мсек.

  4. Фаза следовой деполяризация или отрицательного следового потенциала. Период, когда возвращений МП к потенциалу покоя временно задерживается, он длится 15-30 мсек.

  5. Фаза следовой гиперполяризацин или положительного следового потенциала. В эту фазу. МП на некоторое время становится выше исходного уровне ПП. Ее длительность 250-300 мсек.

0 3

2 4

куд 1

5

Амплитуда потенциала действия скелетных мышц в среднем 120-130 мВ. нейронов 80-90 мВ. гладкомышечных

клеток 40-50 мВ. При возбуждении нейронов ПД возникает в начальном сегменте аксона - аксоном холмике.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период

локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная

самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота

'натриевых каналов открываются, и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую

деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Т.е. натриевая проницаемость

мембраны резко возрастает. Причем от чувствительности активационных зависит величина критического уровня

деполяризации, чем она выше, тем ниже КУД и наоборот.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (-20 мВ). сила

концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации

быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко

усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации

специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смешения

МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и

активационных ворот натриевых каналов, что еще больше снижает натриевую проницаемость мембраны и ускоряет

реполяризацию.

Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов

остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД, калиевой проводимостью мембраны и тем, что более

активно работает натрий-калиезый насос, выносящий вошедшие в клетку во время ПД ионы натрия.

Изменяя проводимость быстрых натриевых и калиевых каналов можно влиять на генерацию ПД, а следовательно на

возбуждение клеток. При полной блокаде натриевых каналов, например ядом рыбы тетродонта - тетродотоксином,

клетка становится невозбудимой. Это используется в клинике. Такие местные анестетики, как новокаин, дикаин,

лидокаин тормозят переход натриевых каналов нервных волокон в открытое состояние. Поэтому проведение нервных

импульсов по чувствительным нервам прекращается, наступает обезболивание анестезия органа. При блокаде калиевых каналов затрудняется выход ионов калия из цитоплазмы на наружную поверхность мембраны, т.е высвобождаются ионы кальция из цитоплазмы т.е восстановление МП. поэтому удлиняется фаза реполяризации. Этот эффект блокаторов калиевых каналов также - используется в клинической практике. Например, один из них хинидин.' удлиняя фазу . реполяризации

кардиомиоцитов, урежает сердечные сокращения и нормализует сердечный ритм. 'Также следует отметить, что чем выше скорость распространения ПД по мембране клетки, ткани, тем выше ее проводимость.

Соотношение фаз потенциала действия и возбудимости

Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением. В фазу деполяризации ПД, когда открываются все натриевые каналы и ноны натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной не возбудимости или абсолютной рефрактерности, т.е. фазе реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной не возбудимости или относительной рефрактерности. Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно, в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она наводится в фазе субнормальной возбудимости. Рис. Следует отметить, что явление .аккомодации также связано с изменением проводимости ионных каналов. Если деполяризуюший ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

Физиология мышц.

В организме имеются 3 типа мышц: скелетные или поперечно-полосатые, гладкие и сердечная. Скелетные мышцы обеспечивают перемещение тела в пространстве, поддержание позы тела за счет тонуса мышц конечностей и тела. Гладкие мышцы необходимы для перистальтики органов желудочно-кишечного тракта, мочевыводящей системы, регуляции тонуса сосудов, бронхов и т.д.. Сердечная мышца служит для сокращения сердца и перекачивания крови. Все мышцы обладают возбудимостью, проводимостью и сократимостью, а сердечная и многие гладкие мышцы автоматией способностью к самопроизвольным сокращениям.

Ультраструктура скелетного мышечного волокна.

Двигательные единицы. Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона вызывают сокращения определенной группы мышечных волокон.

Скелетные мышцы состоят из мышечных пучков, образованных большим количеством мышечных волокон. Каждое волокно - это клетка цилиндрической формы диаметром 10-100 мкм и длиной от 5 до 400 мкм. Оно имеет клеточную мембрану - сарколемму. В саркоплазме находится несколько ядер, митохондрий образования саркоплазматического ретикулума (СР) и сократительные элементы - миофибрилы. Саркоплазматический ретикулум имеет своеобразное строение. Он состоит из системы поперечных, продольных трубочек и цистерн. Поперечные трубочки это впячивания саркоплазмы внутрь клетки. К ним примыкают продольные трубочки с цистернами. Благодаря этому, потенциал действия может распространяться от сарколеммы на систему саркоплазматического ретикулума. В мышечном волокне содержится более 1000 миофибрилл, расположенных вдоль него. Каждая миофибрилла состоит из 2500 протофибрилл или миофиламентов. Это нити сократительных белков актина и миозина. Миозиновые протофибрнллы толстые, актиновые тонкие. На миозиновых нитях расположены отходящие под углом поперечные отростки с головками. У скелетного мышечного волокна при световой микроскопии видна поперечная исчерченность, т.е. чередование светлых и темных полос. Темные полосы называют А-дисками или анизотропией светлые [-дисками (изотропными). В А-дисках сосредоточены нити миозина, обладающие анизотропией и поэтому имеющие темный цвет. 1-диски образованы нитями актина. В центре 1-дисков видна тонкая Z-пластинка. К ней прикрепляются актиновые протофибриллы. Участок миофибрилы между двумя 2-пластинками называется саркомером. Это структурный элемент миофибрилл. В покое толстые миозиновые нити лишь на небольшое расстояние входят в промежутки между актиновыми. Поэтому в средней части А-диска имеется более светлая Н-зона, где нет актиновых нитей. При электронной микроскопии в ее центре видна очень тонкая М-лнния. Она образована цепями опорных белков, к которым крепятся миозиновые протофибриллы (рис).

Механизмы мышечного сокращения.

При световой микроскопии было замечено, что в момент сокращения ширина А-диска не уменьшается, а 1-диски и Н-зоны саркомеров суживаются. При электронной, микроскопии было установлено, что длина нитей актина и миозина в момент сокращения не изменяется. Поэтому Хаксли и Хэнсон разработали теорию скольжения нитей. Согласно этой теории мышца укорачивается в результате движения тонких актиновых нитей в промежутки между миозиновыми. Это приводит к укорочению каждого саркомера, образующего миофирриллы. Скольжение же нитей обусловлено тем, что при переходе в активное состояние головки отростков миозина связываются с центрами актиновых нитей и вызывают их движение относительно себя (гребковые движения). Но это последний этап всего сократительного механизма. Сокращение начинается с того, что в области концевой пластинки двигательного нерва возникает ПД. Он с большой скоростью распространяется по сарколемме и переходит с неё по, системе поперечных трубочек СР., на продольные трубочки и цистерны. Возникает деполяризация мембранных цистерн и из них в саркоплазму высвобождаются ионы Са. На нитях актина расположены молекулы еще двух белков - тропонина и тропомиознна. При низкой (менее 10 в 8 степени) концентрации кальция, т.г. в состоянии покоя, тропомиозин блокирует присоединение мостиков миозина к нитям актина. Когда ноны кальция начинают выходить. из СР, молекула тропонина изменяет свою форму таким образом, что освобождает активные центры актина от тропомиозина. К этим центрам присоединяются головки миозина и начинается скольжение за счет ритмического прикрепления и разъединения поперечных мостиков с нитями актина. При этом головки ритмически продвигаются; по нитям актина к 2-мембранам. Для полного сокращения мышцы необходимо 50' таких циклов. Передача сигнала от возбужденной мембраны к миофибриллам называется электромеханическим сопряжением. Когда генерация ПД прекращается, и мембранный потенциал возвращается к исходному уровню, начинает работать Са-насос (фермент Са-АТФ-Фаза). Ионы кальция вновь закачиваются в цистерны саркоплазматического ретикулума и та концентрация подает ниже 10"'М. Молекулы тропонина приобретают исходную форму и тропомиозин вновь начинает блокировать активные центры актина. Головки миозина отсоединяются от них и мышца за счет эластичности приходит в исходное расслабленное состояние. Энергетика мышечного сокращения Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры. расщепляющие АТФ до АДФ и неорганического фосфата.. Т.е. миозин является одновременно ферментом АТФ-азой ПД Активность миозина как АТФ-фазы значительно возрастает при его взаимодействии с актином. При каждом цикле взаимодействия актина с головкой миозином расщепляется 1 молекула АТФ. Следовательно, чем больше мостиков переходят в активное состояние, тем больше расщепляется АТФ, тем сильнее сокращение. Для стимуляции АТФ-азной активности миозина требуются ионы кальция, выделяющиеся из СР. которые способствуют освобождению активных центров актина от тропомиозина. Однако запасы АТФ в клетке ограничены. Поэтому для восполнения запасов АТФ происходит его восстановление - ресинтез. Он осуществляется анаэробным и аэробным путем. Процесс анаэробного ресинтеза осуществляется фосфагенной и гликолитической системами. Первая использует для восстановления АТФ запасы креатинфосфата. Он расщепляется на креатин и фосфат, который с помощью ферментов переносится на АДФ (АДФ-Ф=АТФ). Фосфагенная система ресинтеза обеспечивает наибольшую мощность сокращения, но в связи с малым количеством креатинфосфата в клетке, она функционирует лишь 5-6 секунд сокращения. Гликолитическая система использует для ресинтеза АТФ анаэробное расщепление глюкозы (гликогена) до молочной кислоты. Каждая молекула глюкозы обеспечивает восстановление трех молекул АТФ. Энергетические возможности этой системы выше, чем фосфагенной, но и она может служить источником энергии сокращения лишь 0.5 - 2 мин. При этом работа гликолитической системы сопровождается накоплением в мышцах молочной кислоты ;1 снижением содержания кислорода. При продолжительной работе, с усилением кровообращения ресинтез АТФ начинает осуществляться с помощью окислительного фосфолирирования, т.е. аэробным путем. Энергетические возможности окислительной системы значительно больше остальных. Процесс происходит за счет окисления углеводов и жиров. При интенсивной работе в основном окисляются углеводы, при умеренной жиры. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых нитей до ферментативного аутолиза этих белков). Возникает трупное окоченение, АТФ необходима для расслабления потом, что обеспечивает работу Са-насоса.

Биомеханика мышечных сокращений. Одиночное сокращение, суммация. тетанус.

При нанесении на двигательный нерв или мышцу одиночного порогового или сверх порогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выделить три последовательных периода:

1.Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около -2 мсек. Во время латентного периода генерируется и распространяется ПД, происходит, высвобождения кальция ,13 СР. взаимодействие актина с миозином и т.д.

2. Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительность от 10 до 100 Мсек.,

3.Период расслабления. Его длительность несколько больше, чем укорочения. Рис. В: режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются. Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефракторного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, то суммации не будет, потому что мышца находится в состоянии рефрактерности. Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса: зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис).. Гладкий

тетанус возникает тогда, когда', каждое последующее раздражение наносится а конце периода укорочения т.е. имеет место полная суммация отдельных сокращений и (рис.). Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук;

при алкогольной интоксикации и болезни Паркинсона.

Влияние частоты и с-илы раздражения на амплитуду сокращения

Если постепенно увеличивать частоту раздражения, то амплитуда титанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется оптимальной; Дальнейшее увеличение частоты раздражения сопровождается снижением силы титанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается (рис.). Понятие оптимальной и пессимальной частот предложил Н.Е. Введенский. Он установил, что каждое раздражение пороговой или сверхпороговой силы. вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается.

Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону "все или ничего". Мышца подчиняется закону' силы. При увеличении силы раздражения, амплитуда сокращения ее растет. При определенной (оптимальной) силе амплитуда становится максимальной. Если и дальше повышать силу раздражения, амплитуда сокращения не увеличивается и даже уменьшается за счет католической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной вобудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе её волокна вовлекаются в сокращение. Католическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

Режимы сокращения. Сила и работа мышц.

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы. Например, при поддержании позы тела.

3. Ауксотонические сокращения. Изменяются и длина и тонус мышцы. С помощью их происходит передвижение тела.

другие двигательные акты.

Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, пола. возраста, степени тренированности человека. В зависимости от строения, выделяют мышцы с параллельными волокнами (например, портняжная'. веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон. образующих мышцу. Наибольшая площадь поперечного физиологического сечения а, следовательно, сила, у перистых мышц. Наименьшая у мышце параллельным расположением волокон (рис.).

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении. нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами. кистевым, становым и т.д..

Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной. делённой на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет и.2 кг см2. трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2.

работу мышц делят на динамическую и статическую. Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме. Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р*h)

Работа измеряется в кГ*М, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних

нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится

максимальной. Если увеличение нагрузки продолжается, то работа снижается (рис.). Такое же влияние на величину

работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в

расчете величины рабочей нагрузки имеет определение мощности мышцы. Это работа, выполняемая в единицу

времени (Р = А * Т). Вт

studfiles.net

Общая физиология возбудимых тканей

1. Мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные на­правлены в водную фазу (рис. 2.1). Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной. В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул. Некоторые белковые молекулы свободно диффундируют в пло­скости липидного слоя; в обычном состоянии части белковых мо­лекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения. Здесь описана только общая схема строения клеточной мембраны и для других типов клеточных мем­бран возможны значительные различия. Электрические характеристики мембран. Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость. Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающихщих на клеточных мембранах. Проводимость (g) — величина, обратная электрическому сопро­тивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмемб­ранной разности потенциалов. Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность кле­точной мембраны пропускать эти вещества, зависит от разности кон­центраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мем­бране определяется подвижностью ионов, толщиной мембраны, рас­пределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток. Проводимость мембраны является мерой ее ионной проницаемо­сти. Увеличение проводимости свидетельствует об увеличении ко­личества ионов, проходящих через мембрану.

ФУНКЦИИ:

1.Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.

2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4.Высвобождение  нейромедиаторов  в  синаптических  окончаниях.

5.На ее поверхности протекает большинство биохимических реакций.

6.Мембрана координирует и регулируют физические процессы в клетке.

7.мембрана играет важную роль в образовании межклеточных контактов.

По способу активации выделяют:

потенциал-активируемые ионные каналы (переход из закрытого в открытое состояние и обратно осуществляется конформацией белковой молекулы при изменении потенциала мембраны). Примером может служить потенциал-зависимый натриевый канал, определяющий деполяризацию клетки при генерации потенциала действия.

механочувствительные ионные каналы (открываются при воздействии на мембрану клетки механического стимула, например, при активации механорецепторов кожи).

лиганд-активируемые ионные каналы. По способу активации они подразделены на две группы (экстраклеточные и внутриклеточные) в зависимости от того, с какой стороны мембраны воздействует лиганд. Если стимул (например, ацетилхолин) при осуществлении синаптической передачи возбуждения в нервно-мышечном синапсе действует на рецептор (в данном примере холинорецептор, представляющий собой одну из нескольких белковых субъединиц ионного канала), расположенный на внешней поверхности мембраны мышечной клетки, откроется ионный канал, проницаемый для катионов. Если лиганд-активируемые каналы зависят от вторичных посредников в клетке, их переход в открытое состояние осуществляется при изменении концентрации определенных ионов в цитоплазме. Примером может служить кальций-активируемый калиевый канал, активирующийся при увеличении концентрации ионов кальция в клетке. Такие каналы принимают участие в реполяризации мембраны при завершении потенциала действия.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. В состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация) (рис. 2.4). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

 

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов (см. табл. 2.1).

 Свойство проводимости различных каналов неодинаково. В ча­стности, для калиевых каналов процесс инактивации, как для на­триевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

 

Особый интерес представляют кальциевые каналы.

 

Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обес­печивается деполяризацией клеточной мембраны, например входя­щим натриевым током.

 

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации сво­бодного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существен­ную роль в клетках сердца. 

Электровозбудиые: раздражитель (электрический ток) -> сдвиг мембранного потенциала(до критического потенциала) -> активация потенциалуправляемых ионных каналов -> изменение ионной проницаемости мембраны -> изменение ионных токов через мембрану -> дальнейший сдвиг мембранного потенциала( ответ в виде формирования потенциала действия)

Хемовозбудимые: раздражитель( химическое вещество) -> химическое связывание раздражителя и рецептора хемоуправляемого ионного канала -> изменение конформации лигандрецепторного комплекса и открытие рецептруправляемых( хемоуправляемых) ионных каналов-> изменение ионной проницаемости мембраны -> изменение ионных токов через мембрану -> дальнейший сдвиг мембранного потенциала( ответ в виде формирования потенциала действия)

Механовозбудимые: раздражитель (механический стресс)-> изменение натяжения мембраны -> открытие механоуправляемых ионных каналов -> -> изменение ионной проницаемости мембраны -> изменение ионных токов через мембрану -> дальнейший сдвиг мембранного потенциала( ответ в виде формирования потенциала действия)

2. Все клетки имеют свой электрический заряд, который формируется в результате неодинаковой проницаемости мембраны для различных ионов. Клетки возбудимых тканей (нервная, мышечная, железистая) отличаются тем, что они под действием раздражителя меняют проницаемость своей мембраны для ионов, в результате чего ионы очень быстро транспортируются согласно электрохимическому градиенту. Это и есть процесс возбуждения. Его основой является потенциал покоя. Потенциал покоя – относительно стабильная разность электрических потенциалов между наружной и внутренней сторонами клеточной мембраны. Его величина обычно варьирует в пределах от -30 до -90 мВ. Внутренняя сторона мембраны в покое заряжена отрицательно, а наружная – положительно из-за неодинаковых концентраций катионов и анионов внутри и вне клетки.

основную роль в создании отрицательного заряда внутри клетки играют ионы K+ и высокомолекулярные внутриклеточные анионы, главным образом они представлены белковыми молекулами с отрицательно заряженными аминокислотами (глутамат, аспартат) и органическими фосфатами. Эти анионы, как правило, не могут транспортироваться через мембрану, создавая постоянный отрицательный внутриклеточный заряд. Во всех точках клетки отрицательный заряд практически одинаков. Заряд внутри клетки является отрицательным как абсолютно (в цитоплазме анионов больше, чем катионов), так и относительно наружной поверхности клеточной мембраны. Абсолютная разность невелика, однако этого достаточно для создания электрического градиента. Обеспечивающим формирование потенциала покоя (ПП), является K+. В покоящейся клетке устанавливается динамическое равновесие между числом входящих и выходящих ионов K+. Это равновесие устанавливается тогда, когда электрический градиент уравновесит концентрационный. Согласно концентрационному градиенту, создаваемому ионными насосами, K+ стремится выйти из клетки, однако отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому (электрический градиент). В случае равновесия на клеточной мембране устанавливается равновесный калиевый потенциал. В покое вход Na+ в клетку низкий (намного ниже, чем K+), но он уменьшает мембранный потенциал. Влияние Cl- противоположно, так как это анион. Отрицательный внутриклеточный заряд не позволяет большому количеству Cl- проникнуть в клетку, поэтому Cl- это в основном внеклеточный анион. Как внутри клетки, так и вне ее Na+ и Cl- нейтрализуют друг друга, вследствие чего их совместное поступление в клетку не оказывает существенного влияния на величину потенциала покоя.

Наружная и внутренняя стороны мембраны несут на себе собственные электрические заряды, преимущественно с отрицательным знаком. Это полярные составляющие мембранных молекул – гликолипидов, фосфолипидов, гликопротеинов. Ca2+, как внеклеточный катион, взаимодействует с наружными фиксированными отрицательными зарядами, а также с отрицательными карбоксильными группами интерстиция, нейтрализуя их, что приводит к увеличению и стабилизации потенциала покоя.

Для создания и поддержания электрохимических градиентов необходима постоянная работа ионных насосов. Ионный насос – это транспортная система, обеспечивающая перенос иона вопреки электрохимическому градиенту, с непосредственными затратами энергии. Градиенты Na+ и K+ поддерживаются с помощью Na/K – насоса. Сопряженность транспорта Na+ и K+ примерно в 2 раза уменьшает энергозатраты. В целом же траты энергии на активный транспорт огромны: лишь Na/K – насос потребляет около 1/3 всей энергии, расходуемой организмом в покое. 1АТФ обеспечивает один цикл работы – перенос 3 Na+ из клетки, и 2 K+ в клетку. Асимметричный перенос ионов способствует заодно формированию и электрического градиента (примерно 5 – 10мВ).

Активный транспорт- с затратой энергии АТФ, против концентрационного и электрического градиента(насосы)

-первичный(включает перенос отдельных ионов вопреки концентрационному и электрическому градиентам с помощью специальных ионных насосов, микровезикулярный транспорт( эндоцитоз, экзоцитоз, трансцитоз)и фильтрацию.

-вторичный(он осуществляется за счет энергии, запасенной ранее, которая создается в виде электрического и концентрационного градиентов, т. е. тоже в результате расхода энергии, поэтому называть его пассивным необоснованно, хотя частицы движутся согласно законам диффузии.)

Пассивный транспорт- без затраты энергии по концентрационному и электрическому градиенту.

-простая диффузия(ионные каналы)

-облегченная диффузия(белки-переносчики)

-осмос

В результате непрерывного перемещения различных ионов через клеточную мембрану их концентрация внутри и вне клетки постепенно должна выравниваться. Имеется активный механизм поддержания градиентов концентрации различных ионов внутри и вне клетки. Им являются ионные насосы, в частности Na/K- насос.

Ионный насос - обладающая АТФ-азной активностью молекула интегрального белка, обеспечивающая перенос ионов через мембрану с непосредственной затратой энергии вопреки концентрационному и электрическому градиентам.выведение Na+ сопряжено с транспортом К+, что мжно продемонстрировать при адалении К+ из наружного раствора. Если К+ вне клетки нет, работа насоса блокируется, перенос Na+ из клетки в этом случае падает,составляя примерно 30% от нормально уровня. Накопление Na+ в клетке стимулирует работу насоса, уменьшение Na+ в клетке снижает его активность, поскольку снижается вероятность контакта ионов с соответствующим переносчиком. В результате сопряженного транспорта Na+ K+ поддерживается постоянная разность концентраций этих ионов внутри и вне клетки. Одна молекула АТФ- обеспечивает один цикл работы Na/K насоса: перенос трех ионов Na+ за пределы клетки и двух ионов К+ внутрь клетки. Такой ассиметричный перенос ионов поддерживает избыток положительно заряженных частиц вне клетки и отрицательных зарядов внутри клетки,что позволяет считать Na/K насос структурной электрогенной,дополнительно увеличивающей потенциал покоя примерно на несколько милливольт.

Блокаторы - это вещества, препятствующее работе ионного канала, например, взаимодействию медиатора с молекулярным рецептором к нему и, следовательно, нарушающие управление каналом, блокирующие его. Например, действие ацетилхолина блокируют холиноблокаторы; норадреналина с адреналином - адреноблокаторы; гистамина - гистаминоблокаторы и т. д. Многие блокаторы применяются в терапевтических целях как лекарственные препараты.

Блокаторы - это вещества, препятствующее работе ионного канала, например, взаимодействию медиатора с молекулярным рецептором к нему и, следовательно, нарушающие управление каналом, блокирующие его. Например, действие ацетилхолина блокируют холиноблокаторы; норадреналина с адреналином - адреноблокаторы; гистамина - гистаминоблокаторы и т. д. Многие блокаторы применяются в терапевтических целях как лекарственные препараты.

3.

Два основных класса рецепторов — это метаботропные рецепторыиионотропные рецепторы.

Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а так же меняют внутриклеточные концентрации ионов, что может вторично приводитъ к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов являетсян-холинорецептор.

Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, измемению функционального состояния клетки.

Рецепторы, связанные с гетеротримерными G-белками(например, рецепторвазопрессина).

Рецепторы, обладающие внутренней тирозинкиназной активностью (например, рецепторинсулина).

Внутриклеточные рецепторы-факторы транскрипции (например, рецепторы глюкокортикоидов).

Рецепторы, связанные с G-белками, представляют собой трансмембранные белки, имеющие 7 трансмембранных доменов, внеклеточный N-конец и внутриклеточный C-конец. Сайт связывания с лигандом находится на внеклеточных петлях, домен связывания с G-белком — вблизи C-конца в цитоплазме.

Активация рецептора приводит к тому, что его α-субъединицадиссоциирует от βγ-субъединичного комплекса и таким образом активируется. После этого она либо активирует, либо наоборот инактивируетфермент, продуцирующий вторичные посредники.

Рецепторы с тирозинкиназной активностью фосфорилируютпоследующие внутриклеточные белки, часто тоже являющиеся протеинкиназами, и таким образом передают сигнал внутрь клетки. По структуре это — трансмембранные белки с одним мембранным доменом. Как правило, гомодимеры, субъединицы которых связаныдисульфидными мостиками. Внутриклеточные рецепторы после связывания с гормоном переходят в активное состояние, транспортируются в ядро клетки, там связываются с ДНК и либо индуцируют, либо супрессируют экспрессию некоторого гена или группы генов.

 Имеется несколько видов G-белков (GS, Gi ,Gq ,GO), которые влияют на ферменты (например, аденилатциклазу, фосфолипазу С), образующие различные вторые посредники (например, цАМФ, инозитолтрифосфат, диацилглицерол). При этом G-белки могут как активировать (GS), так и ингибировать (Gi) образование вторых посредников. Вторые посредники, в свою очередь, активируют соответствующие им протеинкиназы, фосфорилирующие различные клеточные белки по остаткам серина и треонина, что изменяет их функциональную активность (чаще увеличивает). Наряду с этим активированные G-белки оказывают выраженное влияние на проницаемость кальциевых и калиевых каналов мембраны.

4 вопрос Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин: 1) неодинакового распределения ионов по обе стороны мембраны; 2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ. За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концент-рации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил: 1) силы диффузии; 2) силы электростатического взаимодействия. Значение электрохимического равновесия: 1) поддержание ионной асимметрии; 2) поддержание величины мембранного потенциала на постоянном уровне. В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентра-ционно-электрохимическим. Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – натрий-калиевый насос. Натрий-калиевый насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. Любая живая клетка поддерживает на мембране определенной величины потенциал. Его величина колеблется в значительных пределах, у нервных и мышечных клеток его величина составляет обычно 60 - 90 мВ, у других тканей не превышает 10 мВ. Различные внешние воздействия, способные изменяющие ионную проницаемость мембраны (то есть повлиять на воротный механизм канала), вызывают изменения величины ПП. Его уменьшение называется деполяризацией, а увеличение - гиперполяризацией мембраны

5 вопрос Возбужде́ние в физиологии — ответ ткани на раздражение, проявляющийся помимо неспецифических реакций (генерация потенциала действия, метаболические изменения) в выполнении специфической для этой ткани функции; возбудимыми являются нервная (проведение возбуждения), мышечная (сокращение) и железистая (секреция) ткани. Возбудимость — свойство клеток отвечать на раздражение возбуждением. Реакция клеток, тканей на раздражитель определяется законами раздражения 1. Закон "все или ничего": При допороговых раздражениях клетки в ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца. 2. Закон силы: Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость. 3. Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы длительности. По этой кривой можно определить ряд параметров возбудимости. а) Порог раздражения - это минимальная сила раздражителя, при которой возникает возбуждение. б) Реобаза - это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани. в) Полезное время - минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение. г) Хронаксия - это минимальное время действия раздражителя силой в две реобазы, необходимое для возникнов4. Закон градиента или аккомодации. Реакция ткани на раздражение зависит от его градиента, т.е. чем быстрее нарастает сила раздражителя во времени тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому если сила раздражителя , возрастает очень медленно возбуждения не будет. Это явление называется аккомодацией. Физиологическая лабильность (подвижность) - это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем Выше ее лабильность. Определение лабильности предложено Н.Е.Введенским. Наибольшая, лабильность у нервов, наименьшая у сердечной мышцы. ения возбуждения. Действие постоянного тока на возбудимые ткани. •возбудимость повышается, а под положительным - анодом снижается. Это называется законом действия постоянного Тока. Изменение возбудимости ткани (например: нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном. В настоящее время установлено, что под действием отрицательного электрода - катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном, Под положительным - анодом, он возрастает. Возникает физический катэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризации, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мсек и менее)МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами. Критический уровень деполяризации (Ек)- это та разность потенциалов, которая должна быть достигнута, чтобы местные изменения перешли в пик потенциала действия. Ек - пороговая величин

6 вопрос Фаза деполяризации возникает в результате лавинообразного движения Nа+ внутрь клетки. Этому способствуют две причины: открываются потенциалзависимые Nа+-каналы. В этом случае происходит деполяризация по типу процесса с положительной обратной связью (самоподкрепляющийся процесс). Освобождение натриевых каналов от Са2+.  Заряд клеточной мембраны сначала снижается до 0 (это собственно деполяризация), а затем меняется на противоположный (инверсия или овершут). Для характеристики фазы деполяризации вводится понятие реверсии - это та разность потенциалов, на которую потенциал действия превышает потенциал покоя. Р (реверсия)- это то количество мВ на которое произошла перезарядка мембраны. Фаза деполяризации продолжается до достижения электрохимического равновесия по Nа+. Затем наступает следующая фаза. Амплитуда потенциала действия не зависит от силы раздражителя. Она зависит от концентрации Nа+ (как снаружи, так и внутри клетки), от количества натриевых каналов, особенностей натриевой проницаемости. Фаза реполяризации характеризуется: снижением проницаемости клеточной мембраны для Nа+ (Nа-инактивация). Натрий накапливается на наружной поверхности клеточной мембраны; возрастает проницаемость мембраны для К+, в результате повышается выход К+ из клетки с увеличением положительного заряда на мембране; изменение активности Nа+-К+ насоса.  Реполяризация - это процесс восстановления заряда мембраны. Но полного восстановления нет, т. к. возникают следовые потенциалы. Гиперполяризация – при частом возбуждении канал не успевает захлопнуться, калий выходит из клетки, мембрана становится более электроотрицателной. Так как в формировании потенциала покоя мембраны участвуют многие ионы, равновесие клетки может нарушаться посредством изменений проводимости различных ионов. Так, например, при дополнительном выходящем токе ионов К+ или при входящем токе ионов Сl может увеличиваться потенциал покоя мембраны, это означает что она гиперполяризуется. Гиперполяризация мембраны - противоположность возбуждения, т.е. определенные химические процессы на постсинаптической мембране могут вызывать торможение нейрона.

7. Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

Стадия покоя. Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала

Фаза деполяризации. В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь клетки. Нормальное поляризованное состояние немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией,

Фаза реполяризации. В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые — открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны.

Изменения мембранного потенциала,следующие за пиком потэнциала действия,называют СЛЕДОВЫМИ ПОТЕНЦИАЛАМИ.

Различают 2 вида следовых потенциалов-следовую деполяризацию и следовую гиперполяризацию.Амплитуда следовых потенциалов обычно не превышает нескольких милливольт,а длительность их у различных волокон составляет от нескольких миллисекунд до десятков и сотен секунд.

Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.

Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декрементное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к «—». В месте выхода кругового тока повышается проницаемость плазматической мембраны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.

В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70—120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).

Возникновению потенциала действия предшествует в точке раздражения мышцы или нерва активные под пороговые изменения мембранного потенциала. Они проявляются в форме локального (местного) ответа.

8. Для локального ответа характерны:

1)         зависимость от силы раздражения

2)         нарастание постепенно величины ответа.

3)         нераспространение по нервному волокну.

Первые признаки локального ответа обнаруживаются при действии стимулов составляющих 50-70% пороговой величины. Локальный ответ как и потенциал действия обусловлен повышением натриевой проницаемости. Однако это повышение было недостаточно, чтобы вызвать потенциал действия.

Потенциал действия возникает когда деполяризация мембраны достигнет критического уровня. Но локальный ответ важен. Он подготавливает ткани к последующим воздействиям.

Сравнительная характеристика локального потенциала и ПД

Свойство

Локальный потенциал

Потенциал действия

Распространение

На 1 – 2 мм с затуханием (декрементом)

Без декремента на большие расстояния по всей длине нервного волокна

Зависимость от величины стимула

Возрастает с увеличением силы раздражителя, т. е. подчиняется закону «силы»

Не зависит (подчиняется закону «все или ничего»)

Явление суммации

Суммируется – возрастает при частых повторных подпороговых раздражениях

Не суммируется

Амплитуда

10 – 40 мВ

80 – 130 мВ

Возбудимость ткани при возникновении потенцала

Увеличивается

Уменьшается вплоть до абсолютной рефрактерности

 

Повышение возбудимости клетки во время локального потенциала объясняется тем, что мембрана оказывается частично деполяризованной. Если КУД остается на постоянном уровне, то для его достижения требуется гораздо меньший раздражитель. Амплитуда ПД не зависит от силы раздражителя, потому что он возникает вследствие регенеративных процессов.

При стимуляции рецептора внешним воздействием, к которому чувствителен рецептор , происходит деполяризация сомы , которая исчезает с прекращением стимуляции. Деполяризация называется рецепторным потенциалом (или генераторным потенциалом ). Длительность его соответствует длительности стимула, а его амплитуда возрастает с увеличением интенсивности стимуляции, таким образом, он является отражением стимула, а не ответом по типу "все или ничего", как потенциал действия . Рецепторный потенциал обусловлен повышением Na+ - проводимости мембраны дендритов , в результате чего вход ионов натрия создает деполяризующий рецепторный потенциал, который электротонически распространяется к соме . Эта первичная трансформация стимула в рецепторный потенциал называется преобразованием, а рецептор, таким образом, является преобразователем, датчиком.

Пороговая Сила тока увеличивается при уменьшении крутизны его нарастания,а при некоторой минимальной крутизне ответы на раздражение исчезают.Это я вление принято обозначать термином « аккомодация »

В основе аккомодации лежат инактивация натриевой и повышение калиевой проводимостей,развивающиеся во время медленно нарастающей деполяризации мембраны.Аккомодация различных нервных волокон варьирует в широких пределах, но у двигательных неравных волокон скорость аккомодации,как правило,значительно выше,чем у чувствительных волокон.

Кратковременное снижение возбудимости (См. Возбудимость) нервной и мышечной тканей непосредственно вслед за потенциалом действия (См. Потенциал действия). Р. обнаруживается при стимуляции нервов и мышц парными электрическими импульсами. Если сила 1-го импульса достаточна для возникновения потенциала действия, ответ на 2-й будет зависеть от длительности паузы между импульсами. При очень коротком интервале ответ на 2-й импульс отсутствует, как бы ни увеличивалась интенсивность стимуляции (абсолютный Рефрактерный период). Удлинение интервала приводит к тому, что 2-й импульс начинает вызывать ответ, но меньший по амплитуде, чем 1-й импульс (в опытах на нервных стволах, состоящих из большого числа параллельных нервных проводников), либо для возникновения ответа на 2-й импульс необходимо увеличить силу раздражающего тока (в опытах на одиночных нервных волокнах). Период сниженной возбудимости нервной или мышечной клетки называется относительным рефракторным периодом. За ним следует супернормальный период, или фаза экзальтации (См. Экзальтация), т. е. фаза повышенной возбудимости, сменяющаяся периодом несколько сниженной возбудимости — субнормальным периодом. В основе наблюдаемых колебаний возбудимости лежит изменение проницаемости биологических мембран (См. Проницаемость биологических мембран), сопровождающее возникновение потенциала действия (см. Биоэлектрические потенциалы). Длительность каждого периода определяется кинетикой этих процессов в данной ткани. В быстропроводящих нервных волокнах Р. длится не более 3—5 мсек, в мышце сердца период изменений возбудимости занимает до 500 мсек. Р. — один из факторов, ограничивающих частоту воспроизведения биологических сигналов, их суммацию и скорость проведения. При изменении температуры или действии некоторых лекарственных веществ длительность рефракторных периодов может меняться, чем пользуются для управления возбудимостью ткани, например сердечной мышцы: удлинение относительного рефрактерного периода приводит к снижению частоты сердечных сокращений и устранению нарушений ритма работы сердца.

studfiles.net


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.