Лимфатическая система. Лимфа реферат


Реферат Лимфа

Образование лимфы

Лимфа – жидкость, возвращаемая в кровоток из тканевых пространств по лимфатической системе. Лимфа образуется из тканевой (интерстициальной) жидкости, накапливающейся в межкле­точном пространстве в результате преобладания фильтрации жид­кости над реабсорбцией через стенку кровеносных капилляров. Дви­жение жидкости из капилляров и внутрь их определяется соотношением гидростатического и осмотического давлений, дейст­вующих через эндотелий капилляров. Осмотические силы стремятся удержать плазму внутри кровеносного капилляра для сохранения равновесия с противоположно направленными гидростатическими силами. Вследствие того, что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое количе­ство белковых молекул постоянно просачивается через нее в интерстициальное пространство. Накопление белков в тканевой жид­кости увеличивает ее осмотическое давление и приводит к нару­шению баланса сил, контролирующих обмен жидкости через капиллярную мембрану. В результате концентрация белков в ин­терстициальной ткани повышается, и белки по градиенту концент­рации начинают поступать непосредственно в лимфатические ка­пилляры. Кроме того, движение белков внутрь лимфатических ка­пилляров осуществляется посредством пиноцитоза.

 

Утечка белков плазмы в тканевую жидкость, а затем в лимфу зависит от органа. Так, в легких она равна 4%, в желудочно-ки­шечном тракте – 4,1%, сердце –4,4%, в печени достигает 6,2%.

Состав лимфы

В состав лимфы входят клеточные элементы, белки, липиды, низкомолекулярные органические соединения (аминокислоты, глю­коза, глицерин), электролиты. Клеточный состав лимфы представлен в основном лимфоцитами. В лимфе грудного протока их число достигает 8*109/л. Эритроциты в лимфе в норме встречаются в ограниченном количестве, их число значительно возрастает при травмах тканей, тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции. Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. В то же время по содержанию и составу белков и липидов лимфа значительно отличается от плазмы крови. В лимфе человека содер­жание белков составляет в среднем 2–3% от объема. Концентрация белков в лимфе зависит от скорости ее образования: увеличение поступления жидкости в организм вызывает рост объема образую­щейся лимфы и уменьшает концентрацию белков в ней. В лимфе в небольшом количестве содержатся все факторы свертывания, ан­титела и различные ферменты, имеющиеся в плазме. Холестерин и фосфолипиды находятся в лимфе в виде липопротеинов. Содер­жание свободных жиров, которые находятся в лимфе в виде хиломикронов, зависит от количества жиров, поступивших в лимфу из кишечника. Тотчас после приема пищи в лимфе грудного протока содержится большое количество липопротеинов и липидов, всосав­шихся в желудочно-кишечном тракте. Между приемами пищи со­держание липидов в грудном протоке минимально.

Движение лимфы

Скорость и объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве оста­ется 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150–180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.

 

Движение лимфы начинается с момента ее образования в лим­фатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Фак­торами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей по­верхности функционирующих капилляров (при повышении функ­циональной активности органов), увеличение проницаемости капил­ляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первона­чального гидростатического давления, необходимого для перемеще­ния лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.

 

В лимфатических сосудах основной силой, обеспечивающей пе­ремещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфангионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит пе­ремещение лимфы в следующий центрипетальный лимфангион. За­полнение лимфой проксимального лимфангиона приводит к растя­жению его стенок, возбуждению и сокращению гладких мышц и перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемеще­нию порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан­гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия

 

Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические со­кращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому по­ступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увели­чивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и ам­плитуду сокращений гладких мышц лимфангионов. Миоциты лимф­ангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.

 

В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Во время вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы – периодическое сдавление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не толь­ко на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфа­тические сосуды, повышают внутрилимфатическое давление и вы­давливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях –увеличивается. Ритмическое растя­жение и массаж скелетных мышц способствуют не только механи­ческому перемещению лимфы, но и усиливают собственную сокра­тительную активность лимфангионов в этих мышцах.

Функции лимфатической системы

Наиболее важной функцией лимфатической системы является возврат белков, электролитов и воды из интерстициального про­странства в кровь. За сутки в составе лимфы в кровоток возвращается более 100 г белка, профильтровавшегося из кровеносных капилляров в интерстициальное пространство. Нормальная лимфоциркуляция необходима для формирования максимально концентрированной мочи в почке. Через лимфатическую систему переносятся многие продукты, всасывающиеся в желудочно-кишечном тракте, и прежде всего жиры. Некоторые крупномолекулярные ферменты, такие как гистаминаза и липаза, поступают в кровь исключительно по системе лимфатических сосудов. Лимфатическая система действует как транспортная система по удалению эритроцитов, оставшихся в ткани после кровотечения, а также по удалению и обезвреживанию бак­терий, попавших в ткани. Лимфатическая система продуцирует и осуществляет перенос лимфоцитов и других важнейших факторов иммунитета. При возникновении инфекции в каких-либо частях тела региональные лимфатические узлы воспаляются в результате задержки в них бактерий или токсинов. В синусах лимфатических узлов, расположенных в корковом и мозговом слоях, содержится эффективная фильтрационная система, которая позволяет практи­чески стерилизовать поступающую в лимфатические узлы инфици­рованную лимфу.

 

В клинической лимфологии применяют различные способы вве­дения лекарственных препаратов непосредственно в лимфатическую систему. Эндолимфотерапию применяют при лечении тяжелых вос­палительных процессов, а также раковых заболеваний. В последние годы появился новый способ лечения – лимфотропная терапия. При лимфотропной терапии лекарственные препараты поступают в лимфатическую систему при их внутримышечном или подкожном введении.

Лимфати́ческий у́зел (лимфоузел) – периферический орган лимфатической системы, выполняющий функцию биологического фильтра, через который протекает лимфа, поступающая от органов и частей тела.В теле человека выделяют около 150 групп лимфоузлов, называемых регионарными.

Анатомия и физиология

Структура лимфатического узла и течение лимфы через лимфатические синусы.

Лимфатические узлы представляют собой образования округлой, овальной, бобовидной, реже лентовидной формы размерами от 0,5 до 50 мм и более. Лимфоузлы окрашены в розовато-серый цвет. Лимфатические узлы располагаются по ходу лимфатических сосудов, как правило, гроздьями до десяти штук, возле кровеносных сосудов, чаще – возле крупных вен.

Поверхность лимфатического узла покрыта соединительнотканной капсулой, от которой внутрь узла отходят трабекулы – балки, также образованные соединительной тканью. Они представляют собой опорные структуры. Строма – основа лимфатического узла образована ретикулярной соединительной тканью, отростчатые клетки которой и, образованные ими ретикулярные волокна, формируют трехмерную сеть. В состав стромы входят также фагоцитирующие клетки – макрофаги, представленные в лимфатических узлах несколькими разновидностями.

На разрезе органа выделяются две основные зоны. Ближе к капсуле – корковое вещество, в котором различают поверхностную часть и зону глубокой коры (паракортикальную зону). Внутренняя часть лимфатического узла получила название мозговое вещество.

Внутреннее пространство органа содержит скопления лимфоидной ткани. В области поверхностной коры, ближе к капсуле располагаются лимфатические узелки (фолликулы). На окрашенных препаратах они имеют более светлую центральную часть – герминативный центр, в котором происходит антигензависимая пролиферация и дифференцировка B-лимфоцитов (бурсазависимая зона). Поверхностная, более темная на препаратах часть узелка – лимфоидная корона содержит большое количество мелких, плотно расположенных лимфоцитов.

В зоне глубокой коры (паракортикальной зоне) лимфоциты располагаются плотно, довольно равномерно. В этой области преобладают T-лимфоциты, которые проходят здесь антигензависимую пролиферацию и дифференцировку (тимусзависимая зона).

В мозговом веществе скопления лимфоидной ткани представлены мозговыми тяжами (мякотными шнурами), в которые мигрируют B-лимфоциты из поверхностной коры. B-лимфоциты дифференцируются окончательно в плазматические клетки, продуцирующие иммуноглобулины – антитела.

Лимфа притекает к лимфатическим узлам по приносящим лимфатическим сосудам, подходящим к узлу с выпуклой стороны, и оттекает по выносящему лимфатическому сосуду, отходящему с вогнутой стороны узла в области ворот. Внутри узла лимфа медлено протекает (просачивается) по внутренним пространствам, которые называются лимфатическими синусами. Синусы располагаются между капсулой, трабекулами и скоплениями лимфоидной ткани. Как и сосуды, синусы имеют собственную выстилку, образованную литоральными (береговыми) клетками. Их отростки направлены внутрь синуса, где они контактируют с отросками ретикулярных клеток. Таким образом, в отличие от сосудов синусы не имеют свободной полости, она перегорожена трехмерной сетью, образованой ретикулярными и литоральными клетками, благодаря этому лимфа медлено просачивается по синусам. Это способствует её очищению от инородных частиц благодаря макрофагам, которые располагаются по краю лимфоидных скоплений. Протекая по синусам мозгового вещества лимфа обогащается антителами, которые продуцируются плазматическими клетками мозговых тяжей.

Притекающая лимфа приносит в лимфатический узел чужеродные антигены, что приводит к развитию в лимфатических узлах реакций иммунного ответа. В зависимости от характера антигенов эти реакции развиваются преимущественно в бурса- или тимусзависимых зонах, что приводит к увеличению размеров лимфоидных скоплений этих зон.

Лимфоузел является барьером для распространения как инфекции, так и раковых клеток. В нём образуются лимфоциты – защитные клетки, которые активно участвуют в уничтожении чужеродных веществ и клеток.

Локализация

Группы лимфатических узлов.

Существует несколько групп лимфатических узлов. Располагаются эти группы таким образом, чтобы стать преградой на пути у инфекции и рака. Так, лимфоузлы располагаются в локтевом сгибе, подмышечной впадине, в коленном сгибе, а также паховой области. Лимфоузлы шеи обеспечивают защиту от инфекций и опухолей головы и органов, расположенных в области шеи. Огромное количество лимфатических узлов находится в брюшной и грудной полости. Лимфокапилляры пронизывают органы также как и поверхностные ткани. Лимфоузлы, располагающиеся по ходу кровеносных сосудов, выполняют те же самые функции.

На рисунке изображены следующие группы лимфатических узлов (сверху вниз):

Увеличение лимфатических узлов при инфекционных заболеваниях

Увеличение лимфатических узлов свидетельствует о неблагополучии в зоне, которую «обслуживает» узел. Чаще всего увеличение лимфоузла связано с инфекцией, реже оно является следствием опухолевого поражения.

 Увеличение лимфоузлов при опухолевых заболеваниях

Опухолевое поражение лимфатических узлов может быть следствием как лимфопролиферативных заболеваний, когда первоначально опухоль исходит из лимфоузла, так и следствием метастатического поражения. К лимфопролиферативным заболеваниям относится, прежде всего, лимфогранулематоз и лимфосаркомы. Лимфоузлы при этих заболеваниях увеличиваются до 3-4 см, а иногда и больше, при этом становятся плотными. При ощупывании такие лимфатические узлы безболезненны. При первоначальном увеличении внутригрудных и внутрибрюшных лимфоузлов лимфопролиферативные заболевания могут быть распознаны не сразу.

ЛИМФООБРАЩЕНИЕ СЕРДЦА

В тесной анатомической и физиологической связи с кровеносными сосудами сердца стоит его лимфатическая, сеть, о которой мало кто вспоминает, между тем как она имеет большое танатологическое значение, т. к. часть изменений в миокарде вероятно зависит от нарушения лимфообращения в сердце. Беспрерывность работы сердечной мышцы требует постоянного удаления отбросов ("кенотоксинов" и т.п. веществ), чем и объясняется богатое снабжение ее лимфатическими путями. В лимфатическом аппарате сердца различают три отдела: отводящие лимфу сосуды с включенными в них иногда лимфатическими узлами, субэпикардиальную сеть и, наконец, сеть, расположенную в миокарде и в субэндокардиальном слое. Последняя сеть еще мало изучена. Ranvier (цит. по Тandler' у) считает, что сердце, в отношении снабжения миокарда лимфатическими сосудами, представляет из себя лимфатическую губку. Это не сосуды, а лимфатические щели, выстланные эндотелием. Лимфатическая система выводит свое содержимое в венозную систему и потому все венозные застои из за механических условий вызывают задержку ее течения с всеми последствиями самоотравления миокарда. "Утомление" сердечной мышцы вероятно и является одним из симптомов такой задержки лимфы, которая иногда может довести сердечную мышцу до отека (Проханов). В результате хронической аутоинтоксикации сердечной мышцы и, как заключительная фаза истощения гипертрофированной и уже переутомленной мышцы, развивается большое количество преколлагенной и коллагенной ткани, которая узнается на вскрытии по необычной плотности мышцы (миофиброз). Сердечная систола является фактором, который опорожняет лимфатическую сеть миокардия, и потому все заболевания сердечной мышцы, понижающие ее сократительность, сопровождаются недостаточным опорожнением лимфатической системы сердца с его тяжелыми последствиями. Из вышесказанного вытекает важность гистологического исследования сердечной мышцы и констатирования в ней явления отёка.

 

bukvasha.ru

Реферат: Лимфа

Образование лимфы

Лимфа – жидкость, возвращаемая в кровоток из тканевых пространств по лимфатической системе. Лимфа образуется из тканевой (интерстициальной) жидкости, накапливающейся в межкле­точном пространстве в результате преобладания фильтрации жид­кости над реабсорбцией через стенку кровеносных капилляров. Дви­жение жидкости из капилляров и внутрь их определяется соотношением гидростатического и осмотического давлений, дейст­вующих через эндотелий капилляров. Осмотические силы стремятся удержать плазму внутри кровеносного капилляра для сохранения равновесия с противоположно направленными гидростатическими силами. Вследствие того, что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое количе­ство белковых молекул постоянно просачивается через нее в интерстициальное пространство. Накопление белков в тканевой жид­кости увеличивает ее осмотическое давление и приводит к нару­шению баланса сил, контролирующих обмен жидкости через капиллярную мембрану. В результате концентрация белков в ин­терстициальной ткани повышается, и белки по градиенту концент­рации начинают поступать непосредственно в лимфатические ка­пилляры. Кроме того, движение белков внутрь лимфатических ка­пилляров осуществляется посредством пиноцитоза.

Утечка белков плазмы в тканевую жидкость, а затем в лимфу зависит от органа. Так, в легких она равна 4%, в желудочно-ки­шечном тракте – 4,1%, сердце –4,4%, в печени достигает 6,2%.

Состав лимфы

В состав лимфы входят клеточные элементы, белки, липиды, низкомолекулярные органические соединения (аминокислоты, глю­коза, глицерин), электролиты. Клеточный состав лимфы представлен в основном лимфоцитами. В лимфе грудного протока их число достигает 8*109/л. Эритроциты в лимфе в норме встречаются в ограниченном количестве, их число значительно возрастает при травмах тканей, тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции. Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. В то же время по содержанию и составу белков и липидов лимфа значительно отличается от плазмы крови. В лимфе человека содер­жание белков составляет в среднем 2–3% от объема. Концентрация белков в лимфе зависит от скорости ее образования: увеличение поступления жидкости в организм вызывает рост объема образую­щейся лимфы и уменьшает концентрацию белков в ней. В лимфе в небольшом количестве содержатся все факторы свертывания, ан­титела и различные ферменты, имеющиеся в плазме. Холестерин и фосфолипиды находятся в лимфе в виде липопротеинов. Содер­жание свободных жиров, которые находятся в лимфе в виде хиломикронов, зависит от количества жиров, поступивших в лимфу из кишечника. Тотчас после приема пищи в лимфе грудного протока содержится большое количество липопротеинов и липидов, всосав­шихся в желудочно-кишечном тракте. Между приемами пищи со­держание липидов в грудном протоке минимально.

Движение лимфы

Скорость и объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве оста­ется 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150–180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.

Движение лимфы начинается с момента ее образования в лим­фатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Фак­торами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей по­верхности функционирующих капилляров (при повышении функ­циональной активности органов), увеличение проницаемости капил­ляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первона­чального гидростатического давления, необходимого для перемеще­ния лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.

В лимфатических сосудах основной силой, обеспечивающей пе­ремещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфангионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит пе­ремещение лимфы в следующий центрипетальный лимфангион. За­полнение лимфой проксимального лимфангиона приводит к растя­жению его стенок, возбуждению и сокращению гладких мышц и перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемеще­нию порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан­гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия

Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические со­кращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому по­ступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увели­чивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и ам­плитуду сокращений гладких мышц лимфангионов. Миоциты лимф­ангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.

В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Во время вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы – периодическое сдавление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не толь­ко на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфа­тические сосуды, повышают внутрилимфатическое давление и вы­давливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях –увеличивается. Ритмическое растя­жение и массаж скелетных мышц способствуют не только механи­ческому перемещению лимфы, но и усиливают собственную сокра­тительную активность лимфангионов в этих мышцах.

Функции лимфатической системы

Наиболее важной функцией лимфатической системы является возврат белков, электролитов и воды из интерстициального про­странства в кровь. За сутки в составе лимфы в кровоток возвращается более 100 г белка, профильтровавшегося из кровеносных капилляров в интерстициальное пространство. Нормальная лимфоциркуляция необходима для формирования максимально концентрированной мочи в почке. Через лимфатическую систему переносятся многие продукты, всасывающиеся в желудочно-кишечном тракте, и прежде всего жиры. Некоторые крупномолекулярные ферменты, такие как гистаминаза и липаза, поступают в кровь исключительно по системе лимфатических сосудов. Лимфатическая система действует как транспортная система по удалению эритроцитов, оставшихся в ткани после кровотечения, а также по удалению и обезвреживанию бак­терий, попавших в ткани. Лимфатическая система продуцирует и осуществляет перенос лимфоцитов и других важнейших факторов иммунитета. При возникновении инфекции в каких-либо частях тела региональные лимфатические узлы воспаляются в результате задержки в них бактерий или токсинов. В синусах лимфатических узлов, расположенных в корковом и мозговом слоях, содержится эффективная фильтрационная система, которая позволяет практи­чески стерилизовать поступающую в лимфатические узлы инфици­рованную лимфу.

В клинической лимфологии применяют различные способы вве­дения лекарственных препаратов непосредственно в лимфатическую систему. Эндолимфотерапию применяют при лечении тяжелых вос­палительных процессов, а также раковых заболеваний. В последние годы появился новый способ лечения – лимфотропная терапия. При лимфотропной терапии лекарственные препараты поступают в лимфатическую систему при их внутримышечном или подкожном введении.

Лимфати́ческий у́зел(лимфоузел) – периферический орган лимфатической системы, выполняющий функцию биологического фильтра, через который протекает лимфа, поступающая от органов и частей тела.В теле человека выделяют около 150 групп лимфоузлов, называемых регионарными.

Анатомия и физиология

Структура лимфатического узла и течение лимфы через лимфатические синусы.

Лимфатические узлы представляют собой образования округлой, овальной, бобовидной, реже лентовидной формы размерами от 0,5 до 50 мм и более. Лимфоузлы окрашены в розовато-серый цвет. Лимфатические узлы располагаются по ходу лимфатических сосудов, как правило, гроздьями до десяти штук, возле кровеносных сосудов, чаще – возле крупных вен.

Поверхность лимфатического узла покрыта соединительнотканной капсулой, от которой внутрь узла отходят трабекулы – балки, также образованные соединительной тканью. Они представляют собой опорные структуры. Строма – основа лимфатического узла образована ретикулярной соединительной тканью, отростчатые клетки которой и, образованные ими ретикулярные волокна, формируют трехмерную сеть. В состав стромы входят также фагоцитирующие клетки – макрофаги, представленные в лимфатических узлах несколькими разновидностями.

На разрезе органа выделяются две основные зоны. Ближе к капсуле – корковое вещество, в котором различают поверхностную часть и зону глубокой коры (паракортикальную зону). Внутренняя часть лимфатического узла получила название мозговое вещество.

Внутреннее пространство органа содержит скопления лимфоидной ткани. В области поверхностной коры, ближе к капсуле располагаются лимфатические узелки (фолликулы). На окрашенных препаратах они имеют более светлую центральную часть – герминативный центр, в котором происходит антигензависимая пролиферация и дифференцировка B-лимфоцитов (бурсазависимая зона). Поверхностная, более темная на препаратах часть узелка – лимфоидная корона содержит большое количество мелких, плотно расположенных лимфоцитов.

В зоне глубокой коры (паракортикальной зоне) лимфоциты располагаются плотно, довольно равномерно. В этой области преобладают T-лимфоциты, которые проходят здесь антигензависимую пролиферацию и дифференцировку (тимусзависимая зона).

В мозговом веществе скопления лимфоидной ткани представлены мозговыми тяжами (мякотными шнурами), в которые мигрируют B-лимфоциты из поверхностной коры. B-лимфоциты дифференцируются окончательно в плазматические клетки, продуцирующие иммуноглобулины – антитела.

Лимфа притекает к лимфатическим узлам по приносящим лимфатическим сосудам, подходящим к узлу с выпуклой стороны, и оттекает по выносящему лимфатическому сосуду, отходящему с вогнутой стороны узла в области ворот. Внутри узла лимфа медлено протекает (просачивается) по внутренним пространствам, которые называются лимфатическими синусами. Синусы располагаются между капсулой, трабекулами и скоплениями лимфоидной ткани. Как и сосуды, синусы имеют собственную выстилку, образованную литоральными (береговыми) клетками. Их отростки направлены внутрь синуса, где они контактируют с отросками ретикулярных клеток. Таким образом, в отличие от сосудов синусы не имеют свободной полости, она перегорожена трехмерной сетью, образованой ретикулярными и литоральными клетками, благодаря этому лимфа медлено просачивается по синусам. Это способствует её очищению от инородных частиц благодаря макрофагам, которые располагаются по краю лимфоидных скоплений. Протекая по синусам мозгового вещества лимфа обогащается антителами, которые продуцируются плазматическими клетками мозговых тяжей.

Притекающая лимфа приносит в лимфатический узел чужеродные антигены, что приводит к развитию в лимфатических узлах реакций иммунного ответа. В зависимости от характера антигенов эти реакции развиваются преимущественно в бурса- или тимусзависимых зонах, что приводит к увеличению размеров лимфоидных скоплений этих зон.

Лимфоузел является барьером для распространения как инфекции, так и раковых клеток. В нём образуются лимфоциты – защитные клетки, которые активно участвуют в уничтожении чужеродных веществ и клеток.

Локализация

Группы лимфатических узлов.

Существует несколько групп лимфатических узлов. Располагаются эти группы таким образом, чтобы стать преградой на пути у инфекции и рака. Так, лимфоузлы располагаются в локтевом сгибе, подмышечной впадине, в коленном сгибе, а также паховой области. Лимфоузлы шеи обеспечивают защиту от инфекций и опухолей головы и органов, расположенных в области шеи. Огромное количество лимфатических узлов находится в брюшной и грудной полости. Лимфокапилляры пронизывают органы также как и поверхностные ткани. Лимфоузлы, располагающиеся по ходу кровеносных сосудов, выполняют те же самые функции.

На рисунке изображены следующие группы лимфатических узлов (сверху вниз):

Увеличение лимфатических узлов при инфекционных заболеваниях

Увеличение лимфатических узлов свидетельствует о неблагополучии в зоне, которую «обслуживает» узел. Чаще всего увеличение лимфоузла связано с инфекцией, реже оно является следствием опухолевого поражения.

Увеличение лимфоузлов при опухолевых заболеваниях

Опухолевое поражение лимфатических узлов может быть следствием как лимфопролиферативных заболеваний, когда первоначально опухоль исходит из лимфоузла, так и следствием метастатического поражения. К лимфопролиферативным заболеваниям относится, прежде всего, лимфогранулематоз и лимфосаркомы. Лимфоузлы при этих заболеваниях увеличиваются до 3-4 см, а иногда и больше, при этом становятся плотными. При ощупывании такие лимфатические узлы безболезненны. При первоначальном увеличении внутригрудных и внутрибрюшных лимфоузлов лимфопролиферативные заболевания могут быть распознаны не сразу.

ЛИМФООБРАЩЕНИЕ СЕРДЦА

В тесной анатомической и физиологической связи с кровеносными сосудами сердца стоит его лимфатическая, сеть, о которой мало кто вспоминает, между тем как она имеет большое танатологическое значение, т. к. часть изменений в миокарде вероятно зависит от нарушения лимфообращения в сердце. Беспрерывность работы сердечной мышцы требует постоянного удаления отбросов ("кенотоксинов" и т.п. веществ), чем и объясняется богатое снабжение ее лимфатическими путями. В лимфатическом аппарате сердца различают три отдела: отводящие лимфу сосуды с включенными в них иногда лимфатическими узлами, субэпикардиальную сеть и, наконец, сеть, расположенную в миокарде и в субэндокардиальном слое. Последняя сеть еще мало изучена. Ranvier (цит. по Тandler' у) считает, что сердце, в отношении снабжения миокарда лимфатическими сосудами, представляет из себя лимфатическую губку. Это не сосуды, а лимфатические щели, выстланные эндотелием. Лимфатическая система выводит свое содержимое в венозную систему и потому все венозные застои из за механических условий вызывают задержку ее течения с всеми последствиями самоотравления миокарда. "Утомление" сердечной мышцы вероятно и является одним из симптомов такой задержки лимфы, которая иногда может довести сердечную мышцу до отека (Проханов). В результате хронической аутоинтоксикации сердечной мышцы и, как заключительная фаза истощения гипертрофированной и уже переутомленной мышцы, развивается большое количество преколлагенной и коллагенной ткани, которая узнается на вскрытии по необычной плотности мышцы (миофиброз). Сердечная систола является фактором, который опорожняет лимфатическую сеть миокардия, и потому все заболевания сердечной мышцы, понижающие ее сократительность, сопровождаются недостаточным опорожнением лимфатической системы сердца с его тяжелыми последствиями. Из вышесказанного вытекает важность гистологического исследования сердечной мышцы и констатирования в ней явления отёка.

superbotanik.net

Лимфа — реферат

Лимфа – жидкость, возвращаемая в кровоток из тканевых пространств по лимфатической системе. Лимфа образуется из тканевой (интерстициальной) жидкости, накапливающейся в межклеточном пространстве в результате преобладания фильтрации жидкости над реабсорбцией через стенку кровеносных капилляров. Движение жидкости из капилляров и внутрь их определяется соотношением гидростатического и осмотического давлений, действующих через эндотелий капилляров. Осмотические силы стремятся удержать плазму внутри кровеносного капилляра для сохранения равновесия с противоположно направленными гидростатическими силами. Вследствие того, что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое количество белковых молекул постоянно просачивается через нее в интерстициальное пространство. Накопление белков в тканевой жидкости увеличивает ее осмотическое давление и приводит к нарушению баланса сил, контролирующих обмен жидкости через капиллярную мембрану. В результате концентрация белков в интерстициальной ткани повышается, и белки по градиенту концентрации начинают поступать непосредственно в лимфатические капилляры. Кроме того, движение белков внутрь лимфатических капилляров осуществляется посредством пиноцитоза.  

Утечка белков плазмы в тканевую жидкость, а затем в лимфу зависит от органа. Так, в легких она равна 4%, в желудочно-кишечном тракте – 4,1%, сердце –4,4%, в печени достигает 6,2%.

В состав лимфы  входят клеточные элементы, белки, липиды, низкомолекулярные органические соединения (аминокислоты, глюкоза, глицерин), электролиты. Клеточный состав лимфы представлен в основном лимфоцитами. В лимфе грудного протока их число достигает 8*109/л. Эритроциты в лимфе в норме встречаются в ограниченном количестве, их число значительно возрастает при травмах тканей, тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции. Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. В то же время по содержанию и составу белков и липидов лимфа значительно отличается от плазмы крови. В лимфе человека содержание белков составляет в среднем 2–3% от объема. Концентрация белков в лимфе зависит от скорости ее образования: увеличение поступления жидкости в организм вызывает рост объема образующейся лимфы и уменьшает концентрацию белков в ней. В лимфе в небольшом количестве содержатся все факторы свертывания, антитела и различные ферменты, имеющиеся в плазме. Холестерин и фосфолипиды находятся в лимфе в виде липопротеинов. Содержание свободных жиров, которые находятся в лимфе в виде хиломикронов, зависит от количества жиров, поступивших в лимфу из кишечника. Тотчас после приема пищи в лимфе грудного протока содержится большое количество липопротеинов и липидов, всосавшихся в желудочно-кишечном тракте. Между приемами пищи содержание липидов в грудном протоке минимально.

Скорость и  объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве остается 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150–180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.   

Движение лимфы  начинается с момента ее образования  в лимфатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Факторами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей поверхности функционирующих капилляров (при повышении функциональной активности органов), увеличение проницаемости капилляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первоначального гидростатического давления, необходимого для перемещения лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.  

В лимфатических  сосудах основной силой, обеспечивающей перемещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфангионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит перемещение лимфы в следующий центрипетальный лимфангион. Заполнение лимфой проксимального лимфангиона приводит к растяжению его стенок, возбуждению и сокращению гладких мышц и перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемещению порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфангиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия   

Стенка лимфангионов имеет развитую иннервацию, которая  в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические сокращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому поступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увеличивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и амплитуду сокращений гладких мышц лимфангионов. Миоциты лимфангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.   

В организме, помимо основного механизма, транспорту лимфы  по сосудам способствует ряд второстепенных факторов. Во время вдоха усиливается  отток лимфы из грудного протока  в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы – периодическое сдавление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не только на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфатические сосуды, повышают внутрилимфатическое давление и выдавливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях –увеличивается. Ритмическое растяжение и массаж скелетных мышц способствуют не только механическому перемещению лимфы, но и усиливают собственную сократительную активность лимфангионов в этих мышцах.

Наиболее важной функцией лимфатической системы  является возврат белков, электролитов и воды из интерстициального пространства в кровь. За сутки в составе лимфы в кровоток возвращается более 100 г белка, профильтровавшегося из кровеносных капилляров в интерстициальное пространство. Нормальная лимфоциркуляция необходима для формирования максимально концентрированной мочи в почке. Через лимфатическую систему переносятся многие продукты, всасывающиеся в желудочно-кишечном тракте, и прежде всего жиры. Некоторые крупномолекулярные ферменты, такие как гистаминаза и липаза, поступают в кровь исключительно по системе лимфатических сосудов. Лимфатическая система действует как транспортная система по удалению эритроцитов, оставшихся в ткани после кровотечения, а также по удалению и обезвреживанию бактерий, попавших в ткани. Лимфатическая система продуцирует и осуществляет перенос лимфоцитов и других важнейших факторов иммунитета. При возникновении инфекции в каких-либо частях тела региональные лимфатические узлы воспаляются в результате задержки в них бактерий или токсинов. В синусах лимфатических узлов, расположенных в корковом и мозговом слоях, содержится эффективная фильтрационная система, которая позволяет практически стерилизовать поступающую в лимфатические узлы инфицированную лимфу.  

В клинической  лимфологии применяют различные способы введения лекарственных препаратов непосредственно в лимфатическую систему. Эндолимфотерапию применяют при лечении тяжелых воспалительных процессов, а также раковых заболеваний. В последние годы появился новый способ лечения – лимфотропная терапия. При лимфотропной терапии лекарственные препараты поступают в лимфатическую систему при их внутримышечном или подкожном введении.

Лимфати́ческий  у́зел (лимфоузел) – периферический орган лимфатической системы, выполняющий функцию биологического фильтра, через который протекает лимфа, поступающая от органов и частей тела. В теле человека выделяют около 150 групп лимфоузлов, называемых регионарными.

Анатомия и физиология

Структура лимфатического узла и течение лимфы через лимфатические синусы.

Лимфатические узлы представляют собой образования  округлой, овальной, бобовидной, реже лентовидной  формы размерами от 0,5 до 50 мм и более. Лимфоузлы окрашены в розовато-серый цвет. Лимфатические узлы располагаются по ходу лимфатических сосудов, как правило, гроздьями до десяти штук, возле кровеносных сосудов, чаще – возле крупных вен.

Поверхность лимфатического узла покрыта соединительнотканной капсулой, от которой внутрь узла отходят трабекулы – балки, также образованные соединительной тканью. Они представляют собой опорные структуры. Строма – основа лимфатического узла образована ретикулярной соединительной тканью, отростчатые клетки которой и, образованные ими ретикулярные волокна, формируют трехмерную сеть. В состав стромы входят также фагоцитирующие клетки – макрофаги, представленные в лимфатических узлах несколькими разновидностями.

На разрезе  органа выделяются две основные зоны. Ближе к капсуле – корковое вещество, в котором различают поверхностную часть и зону глубокой коры (паракортикальную зону). Внутренняя часть лимфатического узла получила название мозговое вещество.

Внутреннее пространство органа содержит скопления лимфоидной ткани. В области поверхностной коры, ближе к капсуле располагаются лимфатические узелки (фолликулы). На окрашенных препаратах они имеют более светлую центральную часть – герминативный центр, в котором происходит антигензависимая пролиферация и дифференцировка B-лимфоцитов (бурсазависимая зона). Поверхностная, более темная на препаратах часть узелка – лимфоидная корона содержит большое количество мелких, плотно расположенных лимфоцитов.

В зоне глубокой коры (паракортикальной зоне) лимфоциты  располагаются плотно, довольно равномерно. В этой области преобладают T-лимфоциты, которые проходят здесь антигензависимую пролиферацию и дифференцировку (тимусзависимая зона).

В мозговом веществе скопления лимфоидной ткани представлены мозговыми тяжами (мякотными шнурами), в которые мигрируют B-лимфоциты из поверхностной коры. B-лимфоциты дифференцируются окончательно в плазматические клетки, продуцирующие иммуноглобулины – антитела.

Лимфа притекает  к лимфатическим узлам по приносящим лимфатическим сосудам, подходящим к узлу с выпуклой стороны, и оттекает по выносящему лимфатическому сосуду, отходящему с вогнутой стороны узла в области ворот. Внутри узла лимфа медлено протекает (просачивается) по внутренним пространствам, которые называются лимфатическими синусами. Синусы располагаются между капсулой, трабекулами и скоплениями лимфоидной ткани. Как и сосуды, синусы имеют собственную выстилку, образованную литоральными (береговыми) клетками. Их отростки направлены внутрь синуса, где они контактируют с отросками ретикулярных клеток. Таким образом, в отличие от сосудов синусы не имеют свободной полости, она перегорожена трехмерной сетью, образованой ретикулярными и литоральными клетками, благодаря этому лимфа медлено просачивается по синусам. Это способствует её очищению от инородных частиц благодаря макрофагам, которые располагаются по краю лимфоидных скоплений. Протекая по синусам мозгового вещества лимфа обогащается антителами, которые продуцируются плазматическими клетками мозговых тяжей.

Притекающая лимфа  приносит в лимфатический узел чужеродные антигены, что приводит к развитию в лимфатических узлах реакций иммунного ответа. В зависимости от характера антигенов эти реакции развиваются преимущественно в бурса- или тимусзависимых зонах, что приводит к увеличению размеров лимфоидных скоплений этих зон.

turboreferat.ru

Лимфа - Реферат | Litsoch.ru

Образование лимфы

Лимфа – жидкость, возвращаемая в кровоток из тканевых пространств по лимфатической системе. Лимфа образуется из тканевой (интерстициальной) жидкости, накапливающейся в межкле­точном пространстве в результате преобладания фильтрации жид­кости над реабсорбцией через стенку кровеносных капилляров. Дви­жение жидкости из капилляров и внутрь их определяется соотношением гидростатического и осмотического давлений, дейст­вующих через эндотелий капилляров. Осмотические силы стремятся удержать плазму внутри кровеносного капилляра для сохранения равновесия с противоположно направленными гидростатическими силами. Вследствие того, что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое количе­ство белковых молекул постоянно просачивается через нее в интерстициальное пространство. Накопление белков в тканевой жид­кости увеличивает ее осмотическое давление и приводит к нару­шению баланса сил, контролирующих обмен жидкости через капиллярную мембрану. В результате концентрация белков в ин­терстициальной ткани повышается, и белки по градиенту концент­рации начинают поступать непосредственно в лимфатические ка­пилляры. Кроме того, движение белков внутрь лимфатических ка­пилляров осуществляется посредством пиноцитоза.

Утечка белков плазмы в тканевую жидкость, а затем в лимфу зависит от органа. Так, в легких она равна 4%, в желудочно-ки­шечном тракте – 4,1%, сердце –4,4%, в печени достигает 6,2%.

Состав лимфы

В состав лимфы входят клеточные элементы, белки, липиды, низкомолекулярные органические соединения (аминокислоты, глю­коза, глицерин), электролиты. Клеточный состав лимфы представлен в основном лимфоцитами. В лимфе грудного протока их число достигает 8*109/л. Эритроциты в лимфе в норме встречаются в ограниченном количестве, их число значительно возрастает при травмах тканей, тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции. Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. В то же время по содержанию и составу белков и липидов лимфа значительно отличается от плазмы крови. В лимфе человека содер­жание белков составляет в среднем 2–3% от объема. Концентрация белков в лимфе зависит от скорости ее образования: увеличение поступления жидкости в организм вызывает рост объема образую­щейся лимфы и уменьшает концентрацию белков в ней. В лимфе в небольшом количестве содержатся все факторы свертывания, ан­титела и различные ферменты, имеющиеся в плазме. Холестерин и фосфолипиды находятся в лимфе в виде липопротеинов. Содер­жание свободных жиров, которые находятся в лимфе в виде хиломикронов, зависит от количества жиров, поступивших в лимфу из кишечника. Тотчас после приема пищи в лимфе грудного протока содержится большое количество липопротеинов и липидов, всосав­шихся в желудочно-кишечном тракте. Между приемами пищи со­держание липидов в грудном протоке минимально.

Движение лимфы

Скорость и объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве оста­ется 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150–180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.

Движение лимфы начинается с момента ее образования в лим­фатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Фак­торами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей по­верхности функционирующих капилляров (при повышении функ­циональной активности органов), увеличение проницаемости капил­ляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первона­чального гидростатического давления, необходимого для перемеще­ния лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.

В лимфатических сосудах основной силой, обеспечивающей пе­ремещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфангионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит пе­ремещение лимфы в следующий центрипетальный лимфангион. За­полнение лимфой проксимального лимфангиона приводит к растя­жению его стенок, возбуждению и сокращению гладких мышц и перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемеще­нию порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан­гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия

Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические со­кращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому по­ступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увели­чивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и ам­плитуду сокращений гладких мышц лимфангионов. Миоциты лимф­ангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.

В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Во время вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы – периодическое сдавление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не толь­ко на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфа­тические сосуды, повышают внутрилимфатическое давление и вы­давливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях –увеличивается. Ритмическое растя­жение и массаж скелетных мышц способствуют не только механи­ческому перемещению лимфы, но и усиливают собственную сокра­тительную активность лимфангионов в этих мышцах.

Функции лимфатической системы

Наиболее важной функцией лимфатической системы является возврат белков, электролитов и воды из интерстициального про­странства в кровь. За сутки в составе лимфы в кровоток возвращается более 100 г белка, профильтровавшегося из кровеносных капилляров в интерстициальное пространство. Нормальная лимфоциркуляция необходима для формирования максимально концентрированной мочи в почке. Через лимфатическую систему переносятся многие продукты, всасывающиеся в желудочно-кишечном тракте, и прежде всего жиры. Некоторые крупномолекулярные ферменты, такие как гистаминаза и липаза, поступают в кровь исключительно по системе лимфатических сосудов. Лимфатическая система действует как транспортная система по удалению эритроцитов, оставшихся в ткани после кровотечения, а также по удалению и обезвреживанию бак­терий, попавших в ткани. Лимфатическая система продуцирует и осуществляет перенос лимфоцитов и других важнейших факторов иммунитета. При возникновении инфекции в каких-либо частях тела региональные лимфатические узлы воспаляются в результате задержки в них бактерий или токсинов. В синусах лимфатических узлов, расположенных в корковом и мозговом слоях, содержится эффективная фильтрационная система, которая позволяет практи­чески стерилизовать поступающую в лимфатические узлы инфици­рованную лимфу.

В клинической лимфологии применяют различные способы вве­дения лекарственных препаратов непосредственно в лимфатическую систему. Эндолимфотерапию применяют при лечении тяжелых вос­палительных процессов, а также раковых заболеваний. В последние годы появился новый способ лечения – лимфотропная терапия. При лимфотропной терапии лекарственные препараты поступают в лимфатическую систему при их внутримышечном или подкожном введении.

Лимфати́ческий у́зел (лимфоузел ) – периферический орган лимфатической системы, выполняющий функцию биологического фильтра, через который протекает лимфа, поступающая от органов и частей тела. В теле человека выделяют около 150 групп лимфоузлов, называемых регионарными.

Анатомия и физиология

Структура лимфатического узла и течение лимфы через лимфатиче

ские синусы.

Лимфатические узлы представляют собой образования округлой, овальной, бобовидной, реже лентовидной формы размерами от 0,5 до 50 мм и более. Лимфоузлы окрашены в розовато-серый цвет. Лимфатические узлы располагаются по ходу лимфатических сосудов, как правило, гроздьями до десяти штук, возле кровеносных сосудов, чаще – возле крупных вен.

Поверхность лимфатического узла покрыта соединительнотканной капсулой, от которой внутрь узла отходят трабекулы – балки, также образованные соединительной тканью. Они представляют собой опорные структуры. Строма – основа лимфатического узла образована ретикулярной соединительной тканью, отростчатые клетки которой и, образованные ими ретикулярные волокна, формируют трехмерную сеть. В состав стромы входят также фагоцитирующие клетки – макрофаги, представленные в лимфатических узлах несколькими разновидностями.

На разрезе органа выделяются две основные зоны. Ближе к капсуле – корковое вещество, в котором различают поверхностную часть и зону глубокой коры (паракортикальную зону). Внутренняя часть лимфатического узла получила название мозговое вещество.

Внутреннее пространство органа содержит скопления лимфоидной ткани. В области поверхностной коры, ближе к капсуле располагаются лимфатические узелки (фолликулы). На окрашенных препаратах они имеют более светлую центральную часть – герминативный центр, в котором происходит антигензависимая пролиферация и дифференцировка B-лимфоцитов (бурсазависимая зона). Поверхностная, более темная на препаратах часть узелка – лимфоидная корона содержит большое количество мелких, плотно расположенных лимфоцитов.

В зоне глубокой коры (паракортикальной зоне) лимфоциты располагаются плотно, довольно равномерно. В этой области преобладают T-лимфоциты, которые проходят здесь антигензависимую пролиферацию и дифференцировку (тимусзависимая зона).

В мозговом веществе скопления лимфоидной ткани представлены мозговыми тяжами (мякотными шнурами), в которые мигрируют B-лимфоциты из поверхностной коры. B-лимфоциты дифференцируются окончательно в плазматические клетки, продуцирующие иммуноглобулины – антитела.

Лимфа притекает к лимфатическим узлам по приносящим лимфатическим сосудам, подходящим к узлу с выпуклой стороны, и оттекает по выносящему лимфатическому сосуду, отходящему с вогнутой стороны узла в области ворот. Внутри узла лимфа медлено протекает (просачивается) по внутренним пространствам, которые называются лимфатическими синусами. Синусы располагаются между капсулой, трабекулами и скоплениями лимфоидной ткани. Как и сосуды, синусы имеют собственную выстилку, образованную литоральными (береговыми) клетками. Их отростки направлены внутрь синуса, где они контактируют с отросками ретикулярных клеток. Таким образом, в отличие от сосудов синусы не имеют свободной полости, она перегорожена трехмерной сетью, образованой ретикулярными и литоральными клетками, благодаря этому лимфа медлено просачивается по синусам. Это способствует её очищению от инородных частиц благодаря макрофагам, которые располагаются по краю лимфоидных скоплений. Протекая по синусам мозгового вещества лимфа обогащается антителами, которые продуцируются плазматическими клетками мозговых тяжей.

Притекающая лимфа приносит в лимфатический узел чужеродные антигены, что приводит к развитию в лимфатических узлах реакций иммунного ответа. В зависимости от характера антигенов эти реакции развиваются преимущественно в бурса- или тимусзависимых зонах, что приводит к увеличению размеров лимфоидных скоплений этих зон.

Лимфоузел является барьером для распространения как инфекции, так и раковых клеток. В нём образуются лимфоциты – защитные клетки, которые активно участвуют в уничтожении чужеродных веществ и клеток.

Локализация

Группы лимфатических узлов.

Существует несколько групп лимфатических узлов. Располагаются эти группы таким образом, чтобы стать преградой на пути у инфекции и рака. Так, лимфоузлы располагаются в локтевом сгибе, подмышечной впадине, в коленном сгибе, а также паховой области. Лимфоузлы шеи обеспечивают защиту от инфекций и опухолей головы и органов, расположенных в области шеи. Огромное количество лимфатических узлов находится в брюшной и грудной полости. Лимфокапилляры пронизывают органы также как и поверхностные ткани. Лимфоузлы, располагающиеся по ходу кровеносных сосудов, выполняют те же самые функции.

На рисунке изображены следующие группы лимфатических узлов (сверху вниз):

кольцо Вальдейера (Waldeyer ring) (глотка), шейные лимфатические узлы (Cervical), надключичные (supraclavicular), затылочные (occipital), передние ушные (preauricular), подключичные (Infraclavicular), подмышечные (Axillary), грудные (pectoral), внутригрудные, медиастинальные (Mediastinal), бронхопульмональные (Hilar), локтевые (Epitrochlear and brachial), селезёночные (Spleen), парааортальные (Paraaortic), брыжеечные (Mesenteric) (брыжейка) подвздошные (Iliac: общие, внутренние и внешние) паховые (Inguinal: глубокие и поверхностные), бедренные (femoral), подколенные (Popliteal).

Увеличение лимфатических узлов при инфекционных заболеваниях

Увеличение лимфатических узлов свидетельствует о неблагополучии в зоне, которую «обслуживает» узел. Чаще всего увеличение лимфоузла связано с инфекцией, реже оно является следствием опухолевого поражения.

При гнойных процессах, как правило, возникает острый лимфаденит – воспаление лимфатического узла. Возникает воспалительный процесс вследствие попадания микробов из ран, расположенных в «зоне обслуживания» лимфоузла. Основным проявлением является увеличение лимфоузла, появление болезненности при его ощупывании. При возникновении гнойного процесса над лимфатическим узлом может краснеть кожа. Если в этот момент не вскрыть образовавшуюся полость, оболочка лимфоузла разрывается и гной проникает в окружающие ткани. Возникает тяжелое осложнение лимфаденита – флегмона. У детей увеличение лимфатических узлов при туберкулезе является одним из характерных проявлений инфекции. Чаще всего увеличиваются лимфоузлы грудной полости. Реже отмечается увеличение лимфоузлов шеи (в народе называют «золотухой»). Нередкой причиной увеличения лимфоузла у детей является болезнь кошачьей царапины. Возбудителем этой инфекции является микроб, называемый Бартонелла. Переносчиками бактерии являются кошки. Из царапины микробы распространяются по лимфатическим сосудам и попадают в лимфоузлы, которые увеличиваются и становятся болезненными. Незаживающая гнойная рана и увеличенный близлежащий лимфатический узел всегда должны наводить на мысль о болезни кошачьей царапины, как о причине такого состояния. При острых респираторных вирусных инфекциях (ОРВИ) у детей может отмечаться увеличение нескольких групп лимфоузлов. Является это следствием избыточного ответа иммунной системы на вторжение в организм вирусов. Как правило, лимфоузлы в таких случаях увеличиваются незначительно и при ощупывании болезненны. При венерических заболеваниях, в частности при сифилисе, увеличению лимфатического узла, как правило, в паховой области, предшествует возникновение язвы на половых органах – твердого шанкра. В отличие от других инфекционных заболеваний при сифилисе увеличенный лимфоузел может быть безболезненным. Длительно существующее увеличение нескольких групп лимфатических узлов может свидетельствовать о таких заболеваниях, как бруцеллез, листериоз, мононуклеоз, а также ВИЧ-инфекция.

Увеличение лимфоузлов при опухолевых заболеваниях

Опухолевое поражение лимфатических узлов может быть следствием как лимфопролиферативных заболеваний, когда первоначально опухоль исходит из лимфоузла, так и следствием метастатического поражения. К лимфопролиферативным заболеваниям относится, прежде всего, лимфогранулематоз и лимфосаркомы. Лимфоузлы при этих заболеваниях увеличиваются до 3-4 см, а иногда и больше, при этом становятся плотными. При ощупывании такие лимфатические узлы безболезненны. При первоначальном увеличении внутригрудных и внутрибрюшных лимфоузлов лимфопролиферативные заболевания могут быть распознаны не сразу.

ЛИМФООБРАЩЕНИЕ СЕРДЦА

В тесной анатомической и физиологической связи с кровеносными сосудами сердца стоит его лимфатическая, сеть, о которой мало кто вспоминает, между тем как она имеет большое танатологическое значение, т. к. часть изменений в миокарде вероятно зависит от нарушения лимфообращения в сердце. Беспрерывность работы сердечной мышцы требует постоянного удаления отбросов ("кенотоксинов" и т.п. веществ), чем и объясняется богатое снабжение ее лимфатическими путями. В лимфатическом аппарате сердца различают три отдела: отводящие лимфу сосуды с включенными в них иногда лимфатическими узлами, субэпикардиальную сеть и, наконец, сеть, расположенную в миокарде и в субэндокардиальном слое. Последняя сеть еще мало изучена. Ranvier (цит. по Тandler' у) считает, что сердце, в отношении снабжения миокарда лимфатическими сосудами, представляет из себя лимфатическую губку. Это не сосуды, а лимфатические щели, выстланные эндотелием. Лимфатическая система выводит свое содержимое в венозную систему и потому все венозные застои из за механических условий вызывают задержку ее течения с всеми последствиями самоотравления миокарда. "Утомление" сердечной мышцы вероятно и является одним из симптомов такой задержки лимфы, которая иногда может довести сердечную мышцу до отека (Проханов). В результате хронической аутоинтоксикации сердечной мышцы и, как заключительная фаза истощения гипертрофированной и уже переутомленной мышцы, развивается большое количество преколлагенной и коллагенной ткани, которая узнается на вскрытии по необычной плотности мышцы (миофиброз). Сердечная систола является фактором, который опорожняет лимфатическую сеть миокардия, и потому все заболевания сердечной мышцы, понижающие ее сократительность, сопровождаются недостаточным опорожнением лимфатической системы сердца с его тяжелыми последствиями. Из вышесказанного вытекает важность гистологического исследования сердечной мышцы и констатирования в ней явления отёка.

www.litsoch.ru

Реферат: Лимфа

Образование лимфы

Лимфа – жидкость, возвращаемая в кровоток из тканевых пространств по лимфатической системе. Лимфа образуется из тканевой (интерстициальной) жидкости, накапливающейся в межкле­точном пространстве в результате преобладания фильтрации жид­кости над реабсорбцией через стенку кровеносных капилляров. Дви­жение жидкости из капилляров и внутрь их определяется соотношением гидростатического и осмотического давлений, дейст­вующих через эндотелий капилляров. Осмотические силы стремятся удержать плазму внутри кровеносного капилляра для сохранения равновесия с противоположно направленными гидростатическими силами. Вследствие того, что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое количе­ство белковых молекул постоянно просачивается через нее в интерстициальное пространство. Накопление белков в тканевой жид­кости увеличивает ее осмотическое давление и приводит к нару­шению баланса сил, контролирующих обмен жидкости через капиллярную мембрану. В результате концентрация белков в ин­терстициальной ткани повышается, и белки по градиенту концент­рации начинают поступать непосредственно в лимфатические ка­пилляры. Кроме того, движение белков внутрь лимфатических ка­пилляров осуществляется посредством пиноцитоза.

Утечка белков плазмы в тканевую жидкость, а затем в лимфу зависит от органа. Так, в легких она равна 4%, в желудочно-ки­шечном тракте – 4,1%, сердце –4,4%, в печени достигает 6,2%.

Состав лимфы

В состав лимфы входят клеточные элементы, белки, липиды, низкомолекулярные органические соединения (аминокислоты, глю­коза, глицерин), электролиты. Клеточный состав лимфы представлен в основном лимфоцитами. В лимфе грудного протока их число достигает 8*109/л. Эритроциты в лимфе в норме встречаются в ограниченном количестве, их число значительно возрастает при травмах тканей, тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции. Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. В то же время по содержанию и составу белков и липидов лимфа значительно отличается от плазмы крови. В лимфе человека содер­жание белков составляет в среднем 2–3% от объема. Концентрация белков в лимфе зависит от скорости ее образования: увеличение поступления жидкости в организм вызывает рост объема образую­щейся лимфы и уменьшает концентрацию белков в ней. В лимфе в небольшом количестве содержатся все факторы свертывания, ан­титела и различные ферменты, имеющиеся в плазме. Холестерин и фосфолипиды находятся в лимфе в виде липопротеинов. Содер­жание свободных жиров, которые находятся в лимфе в виде хиломикронов, зависит от количества жиров, поступивших в лимфу из кишечника. Тотчас после приема пищи в лимфе грудного протока содержится большое количество липопротеинов и липидов, всосав­шихся в желудочно-кишечном тракте. Между приемами пищи со­держание липидов в грудном протоке минимально.

Возможно вы искали - Реферат: Корь 2

Движение лимфы

Скорость и объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве оста­ется 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150–180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.

Движение лимфы начинается с момента ее образования в лим­фатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Фак­торами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей по­верхности функционирующих капилляров (при повышении функ­циональной активности органов), увеличение проницаемости капил­ляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первона­чального гидростатического давления, необходимого для перемеще­ния лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.

В лимфатических сосудах основной силой, обеспечивающей пе­ремещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфангионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит пе­ремещение лимфы в следующий центрипетальный лимфангион. За­полнение лимфой проксимального лимфангиона приводит к растя­жению его стенок, возбуждению и сокращению гладких мышц и перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемеще­нию порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан­гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия

Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические со­кращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому по­ступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увели­чивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и ам­плитуду сокращений гладких мышц лимфангионов. Миоциты лимф­ангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.

Похожий материал - Реферат: Культура Древнего Египта 23

В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Во время вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы – периодическое сдавление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не толь­ко на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфа­тические сосуды, повышают внутрилимфатическое давление и вы­давливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях –увеличивается. Ритмическое растя­жение и массаж скелетных мышц способствуют не только механи­ческому перемещению лимфы, но и усиливают собственную сокра­тительную активность лимфангионов в этих мышцах.

Функции лимфатической системы

Наиболее важной функцией лимфатической системы является возврат белков, электролитов и воды из интерстициального про­странства в кровь. За сутки в составе лимфы в кровоток возвращается более 100 г белка, профильтровавшегося из кровеносных капилляров в интерстициальное пространство. Нормальная лимфоциркуляция необходима для формирования максимально концентрированной мочи в почке. Через лимфатическую систему переносятся многие продукты, всасывающиеся в желудочно-кишечном тракте, и прежде всего жиры. Некоторые крупномолекулярные ферменты, такие как гистаминаза и липаза, поступают в кровь исключительно по системе лимфатических сосудов. Лимфатическая система действует как транспортная система по удалению эритроцитов, оставшихся в ткани после кровотечения, а также по удалению и обезвреживанию бак­терий, попавших в ткани. Лимфатическая система продуцирует и осуществляет перенос лимфоцитов и других важнейших факторов иммунитета. При возникновении инфекции в каких-либо частях тела региональные лимфатические узлы воспаляются в результате задержки в них бактерий или токсинов. В синусах лимфатических узлов, расположенных в корковом и мозговом слоях, содержится эффективная фильтрационная система, которая позволяет практи­чески стерилизовать поступающую в лимфатические узлы инфици­рованную лимфу.

В клинической лимфологии применяют различные способы вве­дения лекарственных препаратов непосредственно в лимфатическую систему. Эндолимфотерапию применяют при лечении тяжелых вос­палительных процессов, а также раковых заболеваний. В последние годы появился новый способ лечения – лимфотропная терапия. При лимфотропной терапии лекарственные препараты поступают в лимфатическую систему при их внутримышечном или подкожном введении.

Лимфати́ческий у́зел (лимфоузел ) – периферический орган лимфатической системы, выполняющий функцию биологического фильтра, через который протекает лимфа, поступающая от органов и частей тела.В теле человека выделяют около 150 групп лимфоузлов, называемых регионарными.

Очень интересно - Реферат: Social Class Differences Essay Research Paper Social

Анатомия и физиология

Структура лимфатического узла и течение лимфы через лимфатические синусы.

Лимфатические узлы представляют собой образования округлой, овальной, бобовидной, реже лентовидной формы размерами от 0,5 до 50 мм и более. Лимфоузлы окрашены в розовато-серый цвет. Лимфатические узлы располагаются по ходу лимфатических сосудов, как правило, гроздьями до десяти штук, возле кровеносных сосудов, чаще – возле крупных вен.

Вам будет интересно - Реферат: Class State And Crime Social Conflict Perspective

Поверхность лимфатического узла покрыта соединительнотканной капсулой, от которой внутрь узла отходят трабекулы – балки, также образованные соединительной тканью. Они представляют собой опорные структуры. Строма – основа лимфатического узла образована ретикулярной соединительной тканью, отростчатые клетки которой и, образованные ими ретикулярные волокна, формируют трехмерную сеть. В состав стромы входят также фагоцитирующие клетки – макрофаги, представленные в лимфатических узлах несколькими разновидностями.

На разрезе органа выделяются две основные зоны. Ближе к капсуле – корковое вещество, в котором различают поверхностную часть и зону глубокой коры (паракортикальную зону). Внутренняя часть лимфатического узла получила название мозговое вещество.

Внутреннее пространство органа содержит скопления лимфоидной ткани. В области поверхностной коры, ближе к капсуле располагаются лимфатические узелки (фолликулы). На окрашенных препаратах они имеют более светлую центральную часть – герминативный центр, в котором происходит антигензависимая пролиферация и дифференцировка B-лимфоцитов (бурсазависимая зона). Поверхностная, более темная на препаратах часть узелка – лимфоидная корона содержит большое количество мелких, плотно расположенных лимфоцитов.

В зоне глубокой коры (паракортикальной зоне) лимфоциты располагаются плотно, довольно равномерно. В этой области преобладают T-лимфоциты, которые проходят здесь антигензависимую пролиферацию и дифференцировку (тимусзависимая зона).

В мозговом веществе скопления лимфоидной ткани представлены мозговыми тяжами (мякотными шнурами), в которые мигрируют B-лимфоциты из поверхностной коры. B-лимфоциты дифференцируются окончательно в плазматические клетки, продуцирующие иммуноглобулины – антитела.

Похожий материал - Реферат: Effects Of Social Class Essay Research Paper

Лимфа притекает к лимфатическим узлам по приносящим лимфатическим сосудам, подходящим к узлу с выпуклой стороны, и оттекает по выносящему лимфатическому сосуду, отходящему с вогнутой стороны узла в области ворот. Внутри узла лимфа медлено протекает (просачивается) по внутренним пространствам, которые называются лимфатическими синусами. Синусы располагаются между капсулой, трабекулами и скоплениями лимфоидной ткани. Как и сосуды, синусы имеют собственную выстилку, образованную литоральными (береговыми) клетками. Их отростки направлены внутрь синуса, где они контактируют с отросками ретикулярных клеток. Таким образом, в отличие от сосудов синусы не имеют свободной полости, она перегорожена трехмерной сетью, образованой ретикулярными и литоральными клетками, благодаря этому лимфа медлено просачивается по синусам. Это способствует её очищению от инородных частиц благодаря макрофагам, которые располагаются по краю лимфоидных скоплений. Протекая по синусам мозгового вещества лимфа обогащается антителами, которые продуцируются плазматическими клетками мозговых тяжей.

Притекающая лимфа приносит в лимфатический узел чужеродные антигены, что приводит к развитию в лимфатических узлах реакций иммунного ответа. В зависимости от характера антигенов эти реакции развиваются преимущественно в бурса- или тимусзависимых зонах, что приводит к увеличению размеров лимфоидных скоплений этих зон.

Лимфоузел является барьером для распространения как инфекции, так и раковых клеток. В нём образуются лимфоциты – защитные клетки, которые активно участвуют в уничтожении чужеродных веществ и клеток.

Локализация

cwetochki.ru

Реферат - Лимфатическая система - Медицина

Лимфатическая система, сеть сосудов, тканей и органов, которая служит источником клеток, обеспечивающих иммунитет, фильтрующим комплексом, переносчиком жиров и других веществ, а также дренажной системой, способствующей возвращению избытка тканевой жидкости в кровь. Прозрачная бесцветная жидкость, заполняющая лимфатическую систему и протекающая через нее, называется лимфой. (Лимфа, оттекающая от кишечника, содержит капельки жира, которые придают ей молочно-белый цвет.)

Самые мелкие сосуды лимфатической системы – лимфатические капилляры – располагаются почти во всех органах тела. Капилляры объединяются в лимфатические сосуды, которые следуют обычно по ходу вен, направляясь к сердцу. Лимфатические сосуды впадают в два главных лимфатических ствола, расположенных в области грудной клетки, – правый лимфатический проток и грудной проток. Последние впадают в вены вблизи ключицы, объединяя, таким образом, лимфатическую и кровеносную системы.

Дренирование жидкости. Кровяное давление, поддерживаемое сердцем, обеспечивает просачивание жидкости (в основе своей – плазмы крови) из кровеносных капилляров в ткани. В нормальных условиях избыток тканевой жидкости попадает в лимфатические капилляры и таким образом удаляется. Жидкость (теперь она называется лимфой), попав в лимфатическую систему, продвигается в ней в основном за счет сокращений скелетных мышц и мышц внутренних органов, а также колебаний давления в грудной полости при дыхании. Клапаны в лимфатических сосудах, пропускающие лимфоток лишь в одну сторону, обеспечивают его нужное направление.

Накопление тканевой жидкости проявляется в виде отеков; пример тому – отеки лодыжек у женщин при беременности, когда крупный плод в матке препятствует нормальному оттоку лимфы от ног. Другой пример – распространенная в тропиках т.н. слоновая болезнь: вызывающий ее паразитический червь (нематода Wucheria bancrofti) внедряется в тело и поселяется в лимфатических узлах паховой области или подмышечных ямок, создавая препятствие для тока лимфы; в результате такой блокады пораженные конечности могут распухать до огромных размеров.

Иммунитет и фильтрация. Лимфоциты, относящиеся к белым клеткам крови, циркулируют в лимфе и крови и составляют преобладающий тип клеток лимфоидных органов. В их функцию входит формирование иммунного ответа на внедрившиеся в организм бактерии и вирусы. Кроме того, они предохраняют от развития раковых заболеваний, уничтожая аномальные клетки по мере их возникновения в организме.

Лимфоциты образуются в костном мозге из стволовых клеток (клеток-предшественников). Будучи незрелыми, они выходят из костного мозга и попадают в первичные лимфоидные органы, где завершают развитие. К первичным лимфоидным органам относят тимус (вилочковую железу), костный мозг (некоторые лимфоциты остаются в костном мозге и созревают в нем), пейеровы бляшки в кишечнике и т.н. фабрициеву сумку у птиц. Находясь в этих органах, лимфоциты подвергаются определенному отбору, и созревают только те из них, которые реагируют на чужеродные вещества (антигены), а не на нормальные ткани организма.

Лимфоциты, созревающие в тимусе, называют Т-клетками, а созревающие в костном мозге, пейеровых бляшках или фабрициевой сумке – B-клетками. (О функциях этих клеток )

B- и Т-клетки, становясь зрелыми, мигрируют из первичных во вторичные лимфоидные органы, которые включают лимфатические узлы, селезенку, лимфоидные ткани кишечника, а также скопления лимфоцитов, разбросанные во многих органах и тканях. Каждый вторичный лимфоидный орган содержит как B-, так и Т-клетки.

Лимфатические узлы расположены по ходу лимфатических сосудов и фильтруют протекающую лимфу. У человека их насчитывается свыше 400. Любые частицы, попавшие в лимфу, задерживаются в узлах и сталкиваются с лимфоцитами.

Селезенка – большой лимфоидный орган, расположенный в брюшной полости. Она делится на две области: красную пульпу – депо крови и белую пульпу, состоящую из лимфоидной ткани. Белая пульпа – главное место продукции антител; следовательно, она реагирует на чужеродные вещества, циркулирующие в крови.

Другие важные лимфоидные ткани включают костный мозг и лимфоидные ткани на поверхностях тела, такие, как пейеровы бляшки и миндалины. Одни пейеровы бляшки являются первичными лимфоидными органами, другие – вторичными; функция последних – улавливание инородных веществ, попадающих в организм через кишечник. Аналогичные скопления лимфоидной ткани встречаются на задней стенке гортани (миндалины) и выстилают бронхи, несущие воздух к легким.

B-клетки, попадая во вторичные лимфоидные органы, больше не мигрируют и остаются в них. Т-клетки, напротив, циркулируют в организме постоянно, они выходят из лимфатических узлов и вместе с лимфой поступают в кровоток. Спустя некоторое время, оказавшись в кровеносных капиллярах лимфатических узлов, они проходят через стенку капилляров и снова попадают в лимфатический узел. Таким образом, Т-клетки непрерывно циркулируют между кровью и лимфой.

Лимфатические системы животных. Лимфатическая система млекопитающих существенно отличается от таковой у других позвоночных. У рыб, например, нет полых костей, а потому не может быть и костного мозга. Функциональным аналогом костного мозга и лимфатических узлов у них служит часть почки (предпочки или пронефроса), которая утрачивает выделительную функцию и развивается в лимфоидную ткань, содержащую лимфоциты и другие клетки. Тимуса или селезенки нет у круглоротых (миног), но они появляются у высших рыб и других позвоночных. Некоторым рыбам, земноводным, пресмыкающимся и птицам свойственны т.н. лимфатические сердца – мышечные уплотнения, проталкивающие лимфу в вены. Однопроходные (яйцекладущие) млекопитающие, такие, как утконос и ехидна, имеют необычные лимфатические узлы, состоящие из нескольких маленьких лимфоидных узелков, которые локализуются в лимфатическом сплетении.

Заболевания. Когда бактерии или вирусы из лимфы попадают в лимфатические узлы, миндалины или селезенку, там возникает интенсивная ответная реакция лимфоцитов; в результате эти органы опухают и воспаляются. Такое состояние, лимфаденит, развивается при ангине, инфекционном мононуклеозе и других инфекционных болезнях, сопровождающихся увеличением лимфоузлов («желез»).

Лимфоциты могут становиться злокачественными, при этом значительно возрастает их количество в крови и опухают лимфоузлы. Лимфомы – опухоли лимфатических узлов – также приводят к их увеличению.

СПИД обусловлен тем, что вирус иммунодефицита человека (ВИЧ) инфицирует определенную группу Т-клеток. Гибель этих клеток приводит к нарушениям в иммунной системе, и организм постепенно утрачивает способность сопротивляться различным инфекциям.

www.ronl.ru

Лимфатическая система — реферат

Лимфатические узлы располагаются около крупных кровеносных сосудов, чаще венозных, обычно группами от нескольких узлов до десяти и более. В организме человека выделяют около 150 групп лимфатических узлов. У различных видов животных количество узлов варьирует: 190 у свиньи, до 8000 у лошади

Группы лимфатических узлов залегают поверхностно – под кожным слоем (паховые, подмышечные, шейные узлы и др.) и во внутренностных полостях организма – в брюшной, грудной, тазовой полостях, около мышц.

Лимфатический узел имеет розовато-серый цвет, округлую форму. Размеры лимфоузла от 0,5 мм до 22 мм в длину. Масса всех лимфоузлов у взрослого человека – 500-1000 г. Снаружи лимфатический узел покрыт капсулой. Внутри его содержится лимфоидная ткань и система сообщающихся друг с другом каналов – лимфоидных синусов, по которым лимфа течет через лимфатический узел.

К лимфатическому сосуду подходят 2-4 лимфатических сосуда, а выходит из него 1-2 сосуда. На своем пути от каждого органа лимфа проходит не менее, чем через один лимфатический узел. Лимфатические сосуды имеют кровоснабжение через мелкие кровеносные сосуды, к лимфоузлам подходят и проникают в них нервные окончания.

Роль лимфатических узлов. Каждый лимфатический узел контролирует определенный участок лимфатической системы. При попадании в организм микробов или трансплантации чужеродной ткани ближайший к этому месту лимфатический узел уже через несколько часов начинает увеличиваться в размерах, лимфоидные клетки его интенсивно делятся и образуют огромное количество малых лимфоцитов. Функция малых лимфоцитов -  организация специфической самозащиты организма (иммунной реакции) от чужеродных агентов - антигенов. Малые лимфоциты образуются из стволовых клеток костного мозга. В лимфатических узлах различают долгоживущие тимусзависимые (Т-лимфоциты), которые прошли стадии развития в тимусе, и недолговечные В-лимфоциты, которые не были в тимусе, а прямо из костного мозга попали в лимфатические узлы.

Макрофаги первыми атакуют попавшие в организм антигены. Т-лимфоциты вырабатывают особое вещество (гуморальный фактор), которое уменьшает подвижность макрофагов, благодаря чему антигены концентрируются в лимфатических узлах. Там на них обрушивается вся мощь иммунной защиты. Один тип Т-лимфоцитов (клетки-убийцы) непосредственно уничтожает антигены, другой тип Т-лимфодитов (клетки памяти) после первого внедрения чужеродного агента сохраняет память о нем на всю жизнь и обеспечивают более активную реакцию на вторичное вторжение. Т-лимфоциты вместе с макрофагами «преподносят» антиген в таком виде, что это стимулирует В-лимфоциты к превращению сначала в большие лимфоциты, а затем в плазматические клетки, производящие антитела против данного антигена.

Таким образом, лимфатические узлы играют важную роль как в инфекционном, так и трансплантационном иммунитете.

Лимфатические стволы и протоки

Пройдя через лимфатические узлы, лимфа собирается в крупные лимфатические сосуды – лимфатические стволы и лимфатические протоки. В теле человека выделяют 6-7 таких лимфатических протоков и стволов.

Грудной проток – по нему лимфа оттекает от нижних конечностей, стенок и органов таза, брюшной полости и левой половины грудной полости.

Правый подключичный ствол собирает лимфу из правой верхней конечности.

Правый яремный ствол собирает лимфу от правой половины головы и шеи.

Правый бронхосредостенный ствол собирает лимфу от органов правой половины грудной полости.

Правый лимфатический проток – лимфатический крупный сосуд длиной 10-12 мм (в 18,8% случаев собирает лимфу из правых подключичного, яремного и бронхосредостенного стволов). В 81,2% случаев — правый лимфатический проток отсутствует.

Левый подключичный ствол собирает лимфу от левой верхней конечности.

Левый яремный ствол собирает лимфу от левой половины головы и шеи.

Левый бронхосредостенный ствол собирает лимфу от органов левой половины грудной полости.

Лимфатические стволы, собирающие лимфу из левых отделов человеческого тела впадают, в левый венозный угол (место слияния левой внутренней яремной вены и левой подключичной вены). Лимфатические стволы, собирающие лимфу из правых отделов тела, впадают в венозную систему через правый венозный угол (место слияния правой яремной вены и правой подключичной вены).

Движение лимфы у млекопитающих

У млекопитающих движению лимфы способствует присасывающее действие грудной полости при вдохе. В соответствии с низким давлением лимфы все лимфатические сосуды очень тонкостенны. Лимфа продвигается благодаря ритмичным сокращениям гладкомышечных клеток. Обратному току лимфы препятствуют клапаны. В лимфатических капиллярах и лимфатических сосудах скелетных мышц ток лимфы обеспечивается деятельностью так называемого лимфатического насоса , т.е. мышечными сокращениями. При этом, как и кровь в венах, лимфа передвигается по лимфатическим сосудам вследствие того, что временное повышение давления в окружающих тканях сдавливает эти сосуды. Объемная скорость тока лимфы при мышечной работе может возрастать в 10 - 15 раз по сравнению с покоем.

У млекопитающих вход лимфы в кровеносную систему сконцентрирован впереди: парные грудные протоки идут от хилусной цистерны (млечного синуса), где собирается лимфа от кишечника и задней половины тела, получают сосуды от остальной части туловища и впадают в верхние полые вены. У человека сохраняется лишь левый, расположенный асимметрично грудной проток, идущий от хилусной цистерны и вливающийся в левый венозный угол – соединение левых подключичной и внутренней яремной вен. Лимфа от правой части верхней половины тела попадает в кровеносную систему через особый правый лимфатический проток.

Строение лимфатической системы и движение лимфы у различных классов животных

У рыб, земноводных и пресмыкающихся лимфатические сосуды образуют тонкостенные расширения – лимфатические синусы (например, подкожные синусы лягушки). У амниот имеются толстостенные расширения – лимфатические цистерны, а также лимфатические узлы, в которых сосуды теряют собственные стенки и переходят в синусы узлов. Движение лимфы осуществляется периодическим надавливанием на сосуды скелетных мышц и внутренних органов, пульсацией самих сосудов и давлением жидкости, непрерывно поступающей внутрь капилляров. У рыб, земноводных, пресмыкающихся и птиц лимфу активно перекачивают лимфатические сердца. У птиц и млекопитающих в сосудах имеются карманообразные клапаны, позволяющие лимфе течь только в одном определённом направлении. Лимфатическая система в процессе эволюции обособилась из венозной системы. У круглоротых, а также у акуловых рыб она несёт и лимфу, и кровь, будучи широко соединённой с венозной системой, и называется гемолимфатической, в отличие от истинной лимфатической системы более высокоорганизованных позвоночных. Поверхностные боковые вены туловища акуловых рыб превратились у др. рыб в поверхностные лимфатические сосуды, идущие вдоль боков тела, в хвосте и плавниках. У рыб имеются также глубокие протоки, сопровождающие гл. кровеносные стволы и изливающиеся спереди в передние кардинальные, а сзади в хвостовую вену, где у некоторых рыб развивается лимфатическое сердце. Лимфатическая система земноводных ещё близка к таковой у рыб, но развитие лимфатических сердец (от 2 пар у бесхвостых до 20 у хвостатых и 100 у безногих) делает циркуляцию лимфы более активной. Сильно развитые подкожные сосуды и синусы обеспечивают защиту от возможного высушивания. У пресмыкающихся лимфа из кишечных сосудов и задних конечностей собирается в лимфатической цистерне, от которой идут парные грудные протоки, впадающие вместе с сосудами от др. частей тела в яремные вены. Лимфатические сердца сохраняются лишь в основании хвоста. Лимфатических узлов (кроме одного в брыжейке крокодилов) ещё нет. Мало узлов и у птиц; у некоторых из них сохраняется также лимфатическое сердце в основании хвоста, накачивающее лимфу в вены почек. Парные грудные протоки открываются в передние полые вены. У птиц впервые появляются клапаны в сосудах.

Физиология лимфатической системы

Лимфатическая система наряду с венозной выполняет дренажную функцию тканей путем образования лимфы. Кроме того, лимфатическая система выполняет специфическую функцию – играет роль барьера для микробов и других вредных частиц, в т. ч. и опухолевых клеток, которые задерживаются в лимфатических узлах.

Лимфатическая система играет большую роль в иммунной функции – в лимфатических узлах образуются защитные клетки (плазматические клетки), которые вырабатывают антитела к болезнетворным частицам (микробы). В лимфатических узлах также находятся В- и Т- лимфоциты, ответственные за иммунитет.

Дренажная функция лимфатической системы осуществляется посредством всасывания из тканей организма воды и растворенных в ней белков, продуктов распада клеток, бактерий и т.д. Объем образующейся лимфы зависит от количества воды, находящейся в межклеточных промежутках тканей организма, и от количества растворенных в этой воде химических веществ и белка.

Общее количество белка, поступающего с лимфой в кровь приблизительно равно 100 г в сутки. Лимфа, образовавшаяся путем всасывания жидкости из тканей через лимфатические капилляры, поступает в лимфатические сосуды. Далее, пройдя через лимфатические узлы, где она фильтруется, лимфатическая жидкость через лимфатические протоки и стволы (крупные лимфатические сосуды) поступает в венозную систему.

Скорость движения лимфы по лимфатическим сосудам зависит от силы сокращения стенок этих сосудов, пульсации кровеносных сосудов, движения тела и сокращения мышц, дыхательных движений грудной клетки. Под воздействием нервной системы лимфатические сосуды могут сокращаться, что также влияет на скорость лимфотока.

Общее количество лимфы, проходящее по лимфатическим сосудам за сутки, приблизительно равно 4 л. По данным Русняка, Фельди, Сабо (1957 г.) количество лимфы в лимфатической системе достигает 1-2 литров. Лимфатическая система участвует в восполнении количества циркулирующей крови.

Регуляция образования лимфы и объема лимфообращения

Регуляция образования лимфы и объема лимфообращения осуществляется с рецепторов, которые воспринимают изменения концентрации веществ в результате деятельности тканей, органов. При повышении функциональной активности органов информация с рецепторов поступает в сосудистый нервный центр, где формируется программа, которая по симпатическим нервным волокнам и через гормоны адреналин, норадреналин, серотонин, ренин вызывает небольшое учащение сокращений сердца, сужение сосудов и повышение давления крови, расширение капилляров, усиление фильтрации. Все это приводит к образованию лимфы, сокращению лимфатических сосудов, увеличению тока лимфы

При уменьшении активности органов формируется программа, вызывающая противоположные действия.

В сложной системе регуляции лимфообрагцения и лимфообразования большую роль играют циркадные ритмы активности гипоталамо-гипофизарно-надпочечниковой системы, определяющие уровень циркулирующих биогенных аминов. Этот фактор рассматривают как регулятор метаболизма белков, липидов и углеводов, ответственных за транспорт всех биологических жидкостей. Движение лимфы осуществляется за счет работы лимфангиомов, представляющих собой цепочки лимфатических сосудов и подчиненных адренергическому возбуждающему влиянию.

Лимфатическая система в фило- и онтогенезе

Лимфатическая система впервые появляется у костистых рыб в виде кишечно-брыжеечных лимфатических сосудов и их расширений -лимфатических синусов между внутренними органами, между перикардом и жаберными мешками, возле плавников.

У амфибий и рептилий развиваются сократительные органы лимфатические сердца, соединяющиеся с одной стороны с лимфатическими синусами и сосудами, а с другой-с венами.

У птиц лимфатические сердца имеются только в эмбриональном периоде; у водоплавающих птиц впервые появляются лимфатические узлы (поясничные и шейные). Количество лимфатических узлов возрастает у млекопитающих, у них появляются клапаны в лимфатических сосудах.

Заключение

Таким образом, основная функция лимфатической системы заключается в удалении из интерстициального пространства тех белков и других веществ, которые не реабсорбируются в кровеносных капиллярах. Препятствуя накоплению жидкости в тканевом пространстве при повышенной фильтрации в капиллярах выполняет еще одну важную функцию – дренажную. После перевязки (в результате хирургического вмешательства) или закупорки (вследствие воспаления или других причин) лимфатических сосудов в тканях, расположенных дистальнее области нарушенного тока лимфы, развивается выраженный местный отек (так называемый лимфатический отек).

Лимфатические сосуды – это дополнительная дренажная  система, по которой тканевая жидкость оттекает в кровеносное русло.

 

Список литературы

Лысов В. Ф., Максимов В. И. Основы физиологии и этологии животных, М.: КолоС, 2004

Жданов Д. А. Функциональная анатомия лимфатической системы, Горький, 1940

Чебышев Н. В. Биология. Новейший справочник, М.: «Махаон», 2007

- 19 -

 

turboreferat.ru


Смотрите также