Колебания и волны
Содержание
1. Колебания
1.1. Периодическое колебания………………………………………………………1
1.2. Свободные колебания…………………………………………………………...1
1.3. Колебания маятника……………………………………………………………..2
1.4. Гармонические колебания……………………………………………………....3
1.5. Динамика гармонических колебаний…………………………………………..4
1.6. Период колебаний……………………………………………………………….5
1.7. Сдвиг фаз…………………………………………………………………………6
1.8. Вынужденные колебания………………………………………………………..6
2. Волны………………………………………………………………………………….……6
2.1. Поперечные волны ………………………………………………………….…..7
2.2. Продольные волны в столбе воздуха…………………………………………...7
2.3. Звуковые колебания……………………………………………………………...8
2.4. Акустический резонанс………………………………………………………….9
2.5. Шумы ……………………………………………………………………………..9
2.6. Волны на поверхности жидкости…………………………………………...…10
2.7. Скорость распространения волн……………………………………………….11
2.8. Различные локации……………………………………………………………..11
2.9. Отражение волн…………………………………………………………………11
2.10.Передача энергии волнами…………………………………………………….12
Список используемой литературы………………………………………………………….13
.
1. Колебания.
1.1. Периодические колебания.
Часто встречаются повторяющиеся движения среди всевозможных совершающихся вокруг нас механических движений. Любое равномерное вращение является повторяющимся движением: при каждом обороте всякая точка равномерно вращающегося тела проходит те же положения, что и при предыдущем обороте, причем в такой же последовательности и с такой же скоростью.
Не всегда и не при любых условиях повторение совершенно одинаково. В одних случаях каждый новый цикл очень точно повторяет предыдущий, в других случаях различие между следующими друг за другом циклами может быть заметным. Отклонения от совершенно точного повторения очень часто настолько малы, что ими можно пренебречь и считать движение повторяющимся вполне точно, т.е. считать его периодическим, то есть движением, у которого каждый цикл в точности воспроизводит любой другой цикл.
Периодом называется продолжительность одного цикла. Значит период равномерного вращения равен продолжительности одного оборота.
1.2. Свободные колебания.
Колебательные системы играют очень большую роль в природе, и особенно в технике. Это те тела и устройства, которые сами по себе способны совершать периодические движения. “Сами по себе” - это значит не будучи принуждаемы к этому действием периодических внешних сил. Такие колебания называются поэтому свободными колебаниями в отличие от вынужденных, протекающих под действием периодически меняющихся внешних сил.
Колебательные системы имеют ряд общий свойств: у каждой колебательной системы есть состояние устойчивого равновесия; если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение; возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.
1.3. Колебания маятника
Маятником – это любое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса . Груз на веревке, молоток, висящий на гвозде, весы,– все это колебательные системы, подобные маятнику стенных часов.
Любая система, способная совершать свободные колебания, имеет устойчивое положение равновесия. У маятника это положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну сторону, то в другую сторону от положения равновесия. Наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство – зависимость амплитуды от условий в начале движения – характерно не только для свободных колебаний маятника , но и вообще для свободных колебаний очень многих колебательных систем.
Рассмотрим следующий пример: прикрепим к маятнику волосок и будем двигать под этим волоском закопченную стеклянную пластинку. Если двигать пластинку с постоянной скоростью в направлении, перпендикулярном к плоскости колебаний, то волосок прочертит на пластинки волнистую линию. Мы имеем в этом опыте простейший осциллограф – так называются приборы для записи колебаний. Таким образом волнистая линия представляет собой осциллограмму колебаний маятника.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Отрезком AB на этой осциллограмме изображается амплитуда колебаний, период изображается отрезком CD, равным расстоянию, на которое передвигается пластинка за период маятника.
Движение закопченной пластинки равномерно, то всякое ее перемещение пропорционально времени, в течени и которого оно совершалось. Мы можем сказать поэтому, что вдоль оси x в определенном масштабе отложено время. С другой стороны, в направлении, перпендикулярном к x волосок отмечает на пластинке расстояние конца маятника от его положения равновесия, т.е. путь пройденный концом маятника от этого положения.
Так как наклон линии на таком графике изображает скорость движения, то через положение равновесия маятник проходит с наибольшей скоростью. Соответственно этому и наклон волнистой линии наибольший в тех точках, где она пересекает ось x . Наоборот, в моменты наибольших отклонений скорость маятника равна нулю. Соответственно этому и волнистая линия в тех точках, где она наиболее удалена от оси x , имеет касательную параллельную x , т.е. наклон равен нулю
1.4. Гармонические колебания.
Гармоническим (или простым) колебанием. называется колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую .Г армоническое колебание является специальным, частным видом периодического колебания. Этот специальный вид колебания очень важен, так как он чрезвычайно часто встречается в самых различных колебательных системах. Колебание груза на пружине, камертона, маятника, зажатой металлической пластинки как раз и является по своей форме гармоническим. Следует заметить, что при больших амплитудах колебания указанных систем имеет несколько более сложную форму, но они тем ближе к гармоническому , чем меньше амплитуда колебаний.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Если отложить центральный угол на горизонтальной оси, а на вертикальной - перпендикуляр ВВ’, опущенный из конца вращающегося радиуса ОВ на неподвижный диаметр АА ’( угол … отсчитывается от неподвижного радиуса ОА), то получится кривая ,называемая синусоидой. Для каждой абсциссы a ордината этой кривой BB’ пропорциональна синусу угла a , так как число циклов гармонического колебания, совершаемых за 1с, называется частотой этого колебания. Единицу частоты называют герцем.
Обозначая продолжительность периода за, выраженную в секундах, через T, а частоту, выраженную в герцах, через v , будем иметь
1.5. Динамика гармонических колебаний.
Для рассмотрения динамики свободных колебаний в идеальных колебательных системах без трения отведем шар пружинного маятника от положения равновесия. В этом случае на шар действует возвращающая сила, направленная в сторону положения равновесия.
Ее проекция имеет знак, противоположный знаку смещения x
Аналогично и с математическим маятником. Отведем маятник от положения равновесия. В этом случае равнодействующая силы тяжести и силы упругости нити направлена в сторону положения равновесия. Эту силу можно выразить так:
Если рассматривать колебания с маленькими углами отклонения, то
так как . Величина постоянна. Обозначим ее через k . Тогда
Направлена сила в сторону противоположную смещению.
Превращения энергии при свободных колебаниях.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Чтобы сообщить маятнику потенциальную энергию отведем маятник на небольшой угол a от положения равновесия.
Где Hmax – максимальная высота подъема маятника.
Отпустим маятник. Под действием силы тяжести и силы реакции маятника будет двигаться к положению равновесия. При этом его потенциальная энергия превращается в кинетическую . В положении равновесия вся сообщенная маятнику потенциальная энергия превратится в кинетическую :
Гд е- максимальное значение скорости движения тела, подвешенного к нити.
При отсутствие сил трения по закону сохранения энергии максимальное значение потенциальной энергии равно максимальному значению кинетической энергии:
Итак, при колебаниях маятника происходит периодическое превращении потенциальной энергии в кинетическую и обратно:
В произвольный момент полная механическая энергия колеблющегося тела по закону превращения и сохранения энергии равна сумме его потенциальной и кинетической энергии:
1.6. Период колебаний.
Период колебаний маятника, близкого по своим свойствам к математическому маятнику, не зависит от массы маятника.
Опишем маятником коническую поверхность. В этом случае шарик маятника двигается по окружности. Определив период обращения маятника, обнаружим, что он равен периоду колебаний этого маятника:
Период обращения конического маятника же равен длине описываемой окружности, деленной на линейную скорость:
На шарик действует центростремительная сила, так как он двигается по окружности.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Итак, период математического маятника зависит только от длины маятник l и от ускорения свободного падения g .
1.7. Сдвиг фаз.
Возьмем два одинаковых маятника и отклоним их в одну и ту же сторону на один и тот же угол от вертикали. Если теперь их отпустить, то мы два гармонических колебания с одинаковыми амплитудами и частотами. Казалось бы, никакого различия между ними быть не может.
Однако стоит нам отпустить маятники не одновременно, и мы сразу увидим разницу: колебания будут сдвинуты по времени.
Про колебания одинаковой частоты, но смещенные по времени, говорят, что они сдвинуты по фазе. Смещение по времени выражается в долях периода, а сдвиг или разность фаз – в угловых единицах.
Если второе колебание запаздывает по сравнению с первым на 1/8 периода, то это значит, что оно отстает по фазе на 360*1/8=45, или сдвинуто по фазе на –45. Если второе колебание опережает первое на 1/8 периода, то говорят, что оно опережает его по фазе на 45, или сдвинуто по фазе +45.
Если колебания происходят без запаздывания, то их называют синфазными, или говорят, что они совершаются в фазе. При запаздывание одного на полпериода говорят, что колебания происходят в противофазе.
1.8. Вынужденные колебания.
Уже рассматривались случаяи , когда периодическое движение тела происходит не свободно, а в результате действия периодически меняющейся силы. Подобные повторяющиеся силы вызывают периодическое движение даже таких тел, которые сами не являются колебательными системами.
Но как будет обстоять дело в том случае, если периодическая система действует на колебательную систему. В колебательной системе, на которую действует периодически меняющиеся сила, устанавливается периодическое движение. Период вынужденных колебаний равен периоду действующей силы.
2. Волны.
Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости, возникающими вследствие деформации среды при ее колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечет за собой последовательное возникновение колебаний в других местах, все более и более удаленных от первичного , и возникает так называемая волна.
2.1. Поперечные волны
Подвесим за один конец длинный шнур или резиновую трубку. Если нижний конец шнура быстро отвести в сторону и вернуть обратно, то изгиб “побежит” по шнуру вверх, дойдя до точки подвеса, отразится и вернется вниз. Если двигать нижний конец непрерывно, заставляя его совершать гармоническое колебание, то по шнуру “побежит” синусоидальная волна.
Надо заметить, что распространение волны означает запаздывающую передачу колебательных движений от одной точки среды к другой и никакого переноса вместе с волной самого вещества тела, в котором волна распространяется, не происходит.
Каждая точка шнура колеблется перпендикулярно к направлению распространения волны, т.е. поперек направления распространения. Поэтому и волна такого вида называется поперечной.
Смещение нижнего конца шнура в сторону вызывает деформацию шнура в этом месте. Появляются силы упругости, стремящиеся уничтожить деформацию, т.е. появляются силы натяжения, которые тянут вслед за участком шнура, смещенный рукой, непосредственно прилегающий к нему участок. Смещение этого второго участка вызывает деформацию и натяжение следующего, и т.д. Участки шнура обладают массой, и поэтому вследствие инерции набирают или теряют скорость под действием сил не мгновенно. Когда мы довели конец шнура до наибольшего отклонения вправо и начали вести его в влево, смежный участок еще будет продолжать двигаться вправо и лишь с некоторым запозданием остановится и тоже пойдет влево. Таким образом, запаздывающий переход колебания от одной точки шнура к другой обусловлен наличием у материала шнура упругости и массы.
Свойства поперечных волн зависят от многих обстоятельств: от вида связи между смежными участками среды, от размеров среды, от формы тела и т.п.
Когда мы говорим, что волна “бежит вдоль по шнуру”, то это лишь краткое описание следующего явления: каждая точка шнура совершает такое же колебание, какое мы заставили совершать один из концов шнура, но колебание каждой точки тем больше запаздывает (отстает по фазе), чем эта точка дальше от конца шнура. Это запаздывание зависит также от длины волны – расстояния между двумя соседними горбами синусоиды и равна скорости распространения волны на период. Примером поперечных волн в шнуре является струна рояля.
2.2. Продольные волны в столбе воздуха
Возьмем тело удлиненной формы, а именно столб воздуха, заключенный в трубе. Вдоль трубу может двигаться поршень. Заставим этот поршень совершать гармоническое колебание.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Каждый участок тела (слой воздуха) обладает массой, а всякое сжатие воздуха создает избыток давления. Следовательно, в столбе воздуха образуется упругая волна, которая будет бежать от поршня. Однако теперь частицы воздуха колеблется в том же направлении что и поршень, т.е. вдоль направления распространения волны. Такие волны называются продольными.
Для продольных волн остается в силе определение длинны волны .
Если там можно сказать, что длинна волны равна расстоянию между двумя соседними горбами синусоиды, то здесь она равна расстоянию между серединами двух соседних уплотнений (или разряжений). Скорость распространения продольной находится по той же формуле, что и для поперечной волны. Это, конечно, не значит, что скорость распространения в среде обоих видов волн в теле одинакова. Наоборот, во всякой среде скорость продольных волн больше, чем поперечных волн и, следовательно, при одном и том же периоде длина продольной волны больше чем поперечной.
Говоря “во всякой среде”, надо сделать оговорку: во всякой твердой среде. Дело в том, что упругие поперечные волны могут распространяться только в твердых телах, в то время как продольные волны могут распространяться и в жидкостях, и в газах. Таким образом, сравнивать скорость распространения обоих видов волн можно только в твердых телах.
Это объясняется тем, что в поперечной волне происходит сдвиг слоев друг относительно друга. Но упругие силы при сдвиге возникают только в твердых телах. В жидкостях и газах слои свободно скользят друг по другу, без появления противодействующих упругих сил, а раз нет упругих сил, то и образование упругих волн невозможно.
Благодаря этому свойству было определенно, что центр Земли жидкий т.к. он не проводит поперечных волн.
Известным примером продольных волн являются звуковые волны.
2.3. Звуковые колебания
Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 16 Гц до 20 кГц и которые способно воспринимать человеческое ухо.
Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.
Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука.
Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
2.4. Акустический резонанс
Резонансом называется резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний к частоте свободных колебаний. Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте.
Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками. Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.
Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.
Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертона 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.
2.5. Шумы
Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое. Например, такого рода звук издает струна рояля. Если одновременно ударить несколько клавиш, т.е. заставить звучать несколько нот, то ощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот. Оказывается, что консонируют те ноты, периоды которых находятся отношениях небольших чисел. Например, консонанс получается при отношении периодов 2:3(квинта), при 3:4(кванта), 4:5(большая терция) и т.д. Если же периоды относятся как большие числа, например 19:23, то получается диссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем от периодичности колебаний, если одновременно ударим по многим клавишам. Звук получится уже шумоподобным .
Для шумов характерна сильная непериодичность формы колебаний: либо это – длительное колебание, но очень сложное по форме (шипение, скрип), либо отдельные выбросы (щелчки, стуки). С этой точки зрения шумам следует отнести и звуки, выражаемые согласными (шипящими, губными и т.д.).
Во всех случаях шумовые колебания состоят из огромного количества гармонических колебаний с разными частотами.
Таким образом, у гармонического колебания спектр состоит из одной-единственной частоты. У периодического колебания спектр состоит из набора частот – основной и кратных ей. У консонирующих созвучий мы имеем спектр, состоящий из нескольких таких наборов частот, причем основные относятся как небольшие целые числа. У диссонирующих созвучий основные частоты уже не находятся в таких простых отношениях. Чем больше в спектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеют спектры, в которых присутствуют чрезвычайно много частот.
2.6. Волны на поверхности жидкости
Описанные прежде волны обусловленные силами упругости, но существуют так же волны, образование которых обусловлено силой тяжести. Волны, распространяющиеся по поверхности жидкости, не являются ни продольными, ни поперечными: движение частиц жидкости здесь более сложное.
Если в какой-либо точки поверхности жидкости опустилась (например, в результате прикосновения твердым предмет), то под действием силы тяжести жидкость начнет сбегать вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем края кольца частицы всегда “выныривают” наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т.д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.
В образовании поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения, которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точки поверхности жидкости происходит деформация этой поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде тем больше, чем больше искривлена поверхность, т.е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (низких частот) на первый план выступает сила поверхностного натяжения. Граница между “длинными” и “короткими” волнами, конечно, не является резкой и зависит от плотности жидкости и соответственного ей поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около 1 см, т.е. для более коротких волн (называемых капиллярными волнами) преобладают силы поверхностного натяжения, а для более длинных - сила тяжести.
Несмотря на сложный “продольно-поперечный” характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса.
Ударяя концом проволоки по поверхности воды, мы заставим бежать по воде систему кольцевых гребней и впадин, Расстояние между соседними гребнями и впадинами , т.е. длина
волны, связано с периодом ударов Т уже известной формулой .
--------------------------------------------------------------------------------
Если ударять ребром линейки, параллельным поверхности воды, то можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейных гребней и впадин. В этом случае перед частью линейки мы имеем одно-единственное направление распространения.
Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев.
2.7. Скорость распространения волн
Распространение волн происходит не мгновенно: постепенно и равномерно расширяются круги на воде и бегут морские волны.
Можно увидеть, что распространение колебаний из одного места в другое занимает определенное время. Но и для звуковых волн, которые в обычных условиях не видимы, легко обнаруживается тоже самое . Если в дали происходит выстрел, гроза, взрыв, свисток паровоза и т.д., то мы сначала видим эти явления и лишь спустя известное время слышим звук. Чем дальше от нас источник звука, тем больше запоздание. Промежуток времени между вспышкой молнии и ударом грома может доходить иногда до нескольких десятков секунд. Зная расстояние от источника звука, и измерив запаздывание звука, можно определить скорость его распространения. Вспышку, произведенную на расстоянии 3 км, мы видим с запаздыванием всего на 10 мкс, в то время как звук тратит на пробег этого расстояния около 9 с. В сухом воздухе при температуре 10 ’C эта скорость оказалась равной 337,5 м/ с .
Скорость звуковых волн различна для разных сред и, кроме того, зависит от температуры. Современные методы позволяют произвести точные измерения скорости звука, пользуясь малыми количествами исследуемого вещества.
2.8. Различные локации.
Если скорость распространения волн известна, то измерение их запаздывания позволяет решить обратную задачу: найти пройденное ими расстояние. Задачу измерения расстояния в ряде случаев можно решать, однако на скорость распространения сигнала влияют целый ряд обстоятельств: ветер, неоднородность температуры среды и т.п. что приводит к уменьшению точности расчетов.
На принципе измерения времени запаздывания основана гидроакустическая локация и эхолотирование . Гидролокаторы позволяют, например, обнаруживать с надводных кораблей подводные лодки и, наоборот, с подводных лодок надводные корабли. При помощи эхолотов измеряется глубина морского дна.
Проводя измерения разности между временами прихода какого-либо звука (взрыва, выстрела) в три различных пункта наблюдения, можно определить местонахождение источника этого звука. Такой способ называется звукометрией, применяется в военном деле для засечки артиллерийских батарей противника.
2.9. Отражение волн
--------------------------------------------------------------------------------
Поставим на пути волн в водяной ванне плоскую пластинку, длина которой велика по сравнению длиной волны . Мы увидим следующие. Позади пластинки получается область, в которой поверхность воды остается почти в покое. Другими словами, пластинка создает тень – пространство, куда волны не проникают. Перед пластинкой отчетливо видно, как волны отражаются от нее, т.е. волны, падающие на пластинку, создают волны, идущие от пластинки.
Прежних волн эти отражения волны не имеют. Перед пластинкой возникает своеобразная сетка из первичных волн, падающих на пластинку, и отраженных, идущих от нее навстречу падающим.
Для рассмотрения отражения плоских волн обозначим угол, образуемый перпендикуляром к плоскости нашей пластинки и направлением распространения падающей волны, через , а угол, образуемый тем же перпендикуляром и направлением распространения отраженной волны, - через . Опыт показывает, что при всяком положении пластинки , т.е. угол отражения волны от отражающей плоскости равен углу падения.
Этот закон является общим волновым законом, т.е. он справедлив для любых волн, в том числе и для звуковых и световых. Закон остается в силе и для сферических (или кольцевых) волн. Здесь угол отражения в разных точках отражающей плоскости различен, но в каждой точке равен углу падения
Очень распространенные явления отражение волн от препятствий к числу. Хорошо всем известное эхо обусловлено отражением звуковых волн от зданий, холмов, леса и т.п. Если до нас доходят звуковые волны, последовательно отразившиеся от ряда препятствий, то получается многократное эхо. Методы локации основаны на отражении электромагнитных волн и упругих волн от препятствий. Особенно часто мы наблюдаем явление отражения на световых волнах.
Отраженная волна всегда в той или иной степени ослаблена по сравнению с падающей. Часть энергии падающей волны поглощается тем телом, от поверхности которого происходит отражение.
2.10. Передача энергии волнами
Распространение механической волны, представляющее собой последовательную передачу движения от участка среды к другому , означает тем самым передачу энергии. Распространение волны создает в среде поток энергии, расходящийся от источника.
При встрече волны с различного рода телами переносимая энергия может произвести работу или превратится в другие виды энергии. Пример переноса энергии без переноса вещества дают нам взрывные волны. На расстояниях во много десятков метров от места взрыва, куда не долетают ни осколки, ни поток горячего воздуха, взрывная волна выбивает стекла, ломает стены и т.п., т.е. производит большую механическую работу. Но энергия переносится, конечно, и самыми слабыми волнами; например, летящий комар излучает звуковую волну, мощность которой, т.е. энергия, излучаемая в 1 с, составляет 10-10 Вт.
Энергия, которая излучается точечным источником, равномерно распространяется по всей поверхности волновой среды. Нетрудно видеть, что энергия, приходящиеся на единицу поверхности этой сферы, будет тем меньше, чем больше радиус сферы. Площадь сферы или любого вырезанного в ней конусом участка растет пропорционально квадрату радиуса, т.е. при увеличении расстояния от источника вдвое площадь увеличивается вчетверо, и на каждую единицу поверхности сферы приходится вчетверо меньшая энергия волны. Энергию, переносимую волной через сечение, площадь которого равна 1 м 2 , за время, равное 1 с, т.е. мощность, переносимую через единичное сечение, называют интенсивностью волны. Таким образом, интенсивность сферической волны убывает обратно пропорционально квадрату расстояния от источника.
Список используемой литературы
1. Элементарный учебник физики под редакцией Г.С. Ландсберга том III. Колебания и волны. Оптика. Атомная и ядерная физика – Репринт 10 изд перпраб , 1995
2. Физика Дж. Орир том 1, Москва 1981
3. Учебник по физике для 9 класса средней школы Н.М. Шахмаева , С.Н. Шахмаева , Д.Ш. Шодиева , 1992
referat.store
Школа №1124 г. Москва
РЕФЕРАТ:
ПО ФИЗИКЕ
НА ТЕМУ:
“Колебания и волны”
Выполнил:
Ученик 9 “б” школы №1124
Захаров Дмитрий
Москва, 1999
Колебания.
Периодическое движение.
Среди всевозможных совершающихся вокруг нас механических движений часто встречаются повторяющиеся движения. Любое равномерное вращение является повторяющимся движением: при каждом обороте всякая точка равномерно вращающегося тела проходит те же положения, что и при предыдущем обороте, причем в такой же последовательности и с такой же скоростью.
В действительности не всегда и не при всяких условиях повторение совершенно одинаково. В одних случаях каждый новый цикл очень точно повторяет предыдущий, в других случаях различие между следующими друг за другом циклами может быть заметным. Отклонения от совершенно точного повторения очень часто настолько малы , что ими можно пренебречь и считать движение повторяющимся вполне точно, т.е. считать его периодическим.
Периодическим называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл.
Продолжительность одного цикла называется периодом. Очевидно, период равномерного вращения равен продолжительности одного оборота.
Свободные колебания.
В природе, и особенно в технике, чрезвычайно большую роль играют колебательные системы, т.е. те тела и устройства, которые сами по себе способны совершать периодические движения. “Сами по себе” - это значит не будучи принуждаемы к этому действием периодических внешних сил. Такие колебания называются поэтому свободными колебаниями в отличие от вынужденных, протекающих под действием периодически меняющихся внешних сил.
Всем колебательным системам присущ ряд общих свойств:
У каждой колебательной системы есть состояние устойчивого равновесия.
Если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение.
Возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.
Маятник; кинематика его колебаний.
Маятником является всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Молоток, висящий на гвозде, весы, груз на веревке – все это колебательные системы, подобные маятнику стенных часов.
У всякой системы, способной совершать свободные колебания, имеется устойчивое положение равновесия. У маятника это положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну сторону, то в другую сторону от положения равновесия. Наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство – зависимость амплитуды от условий в начале движения – характерно не только для свободных колебаний маятника , но и вообще для свободных колебаний очень многих колебательных систем.
Прикрепим к маятнику волосок и будем двигать под этим волоском закопченную стеклянную пластинку. Если двигать пластинку с постоянной скоростью в направлении, перпендикулярном к плоскости колебаний, то волосок прочертит на пластинки волнистую линию. Мы имеем в этом опыте простейший осциллограф – так называются приборы для записи колебаний. Таким образом волнистая линия представляет собой осциллограмму колебаний маятника.
C D
B
A
Амплитуда колебаний изображается на этой осциллограмме отрезком AB, период изображается отрезком CD, равным расстоянию, на которое передвигается пластинка за период маятника.
Так как мы двигаем закопченную пластинку равномерно, то всякое ее перемещение пропорционально времени, в течении которого оно совершалось. Мы можем сказать поэтому, что вдоль оси x в определенном масштабе отложено время. С другой стороны, в направлении, перпендикулярном к x волосок отмечает на пластинке расстояние конца маятника от его положения равновесия, т.е. путь пройденный концом маятника от этого положения.
Как мы знаем, наклон линии на таком графике изображает скорость движения. Через положение равновесия маятник проходит с наибольшей скоростью. Соответственно этому и наклон волнистой линии наибольший в тех точках, где она пересекает ось x. Наоборот, в моменты наибольших отклонений скорость маятника равна нулю. Соответственно этому и волнистая линия в тех точках, где она наиболее удалена от оси x, имеет касательную параллельную x, т.е. наклон равен нулю
Гармоническое колебание. Частота.
Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием.
Гармоническое колебание является специальным, частным видом периодического колебания. Этот специальный вид колебания очень важен, так как он чрезвычайно часто встречается в самых различных колебательных системах. Колебание груза на пружине, камертона, маятника, зажатой металлической пластинки как раз и является по своей форме гармоническим. Следует заметить, что при больших амплитудах колебания указанных систем имеет несколько более сложную форму, но они тем ближе к гармоническому, чем меньше амплитуда колебаний.
A’ 0 B’
B
A
Если на горизонтальной оси откладывать центральный угол
, а на вертикальной - перпендикуляр ВВ’, опущенный из конца вращающегося радиуса ОВ на неподвижный диаметр АА’( угол … отсчитывается от неподвижного радиуса ОА), то получится кривая ,называемая синусоидой. Для каждой абсциссы a ордината этой кривой BB’ пропорциональна синусу угла a, так как
Число циклов гармонического колебания, совершаемых за 1с, называется частотой этого колебания. Единицу частоты называют герцем.
Вообще обозначая продолжительность периода за, выраженную в секундах, через T, а частоту, выраженную в герцах, через v, будем иметь
Динамика гармонических колебаний.
Рассмотрим динамику свободных колебаний в идеальных колебательных системах без трения.
Отведем шар пружинного маятника от положения равновесия. В этом случае на шар действует возвращающая сила, направленная в сторону положения равновесия.
Ее проекция имеет знак, противоположный знаку смещения x
Аналогично обстоит дело в случае математического маятника. Отведем маятник от положения равновесия. В этом случае равнодействующая силы тяжести и силы упругости нити направлена в сторону положения равновесия. Эту силу можно выразить так:
Но если рассматривать колебания с маленькими углами отклонения, то
так как . Величинапостоянна. Обозначим ее черезk. Тогда
Направлена сила в сторону противоположную смещению.
Превращения энергии при свободных колебаниях.
a
Wp
Hmax
Wk
Отведем маятник на небольшой угол a от положения равновесия. Этим мы сообщим маятнику потенциальную энергию:
Где Hmax – максимальная высота подъема маятника.
Отпустим маятник. Под действием силы тяжести и силы реакции маятника будет двигаться к положению равновесия. При этом его потенциальная энергия превращается в кинетическую. В положении равновесия вся сообщенная маятнику потенциальная энергия превратится в кинетическую:
Где- максимальное значение скорости движения тела, подвешенного к нити.
При отсутствие сил трения по закону сохранения энергии максимальное значение потенциальной энергии равно максимальному значению кинетической энергии:
Итак, при колебаниях маятника происходит периодическое превращении потенциальной энергии в кинетическую и обратно:
В произвольный момент полная механическая энергия колеблющегося тела по закону превращения и сохранения энергии равна сумме его потенциальной и кинетической энергии:
Период.
Период колебаний маятника, близкого по своим свойствам к математическому маятнику, не зависит от массы маятника.
Заставим маятник описывать коническую поверхность. В этом случае шарик маятника двигается по окружности. Определив период обращения маятника, обнаружим, что он равен периоду колебаний этого маятника:
Период обращения конического маятника же равен длине описываемой окружности, деленной на линейную скорость:
На шарик действует центростремительная сила, так как он двигается по окружности.
Итак период математического маятника зависит только от длины маятник l и от ускорения свободного падения g.
C
l
E
R B
O
D
Сдвиг фаз.
Возьмем два одинаковых маятника и отклоним их в одну и ту же сторону на один и тот же угол от вертикали. Если теперь их отпустить, то мы два гармонических колебания с одинаковыми амплитудами и частотами. Казалось бы, никакого различия между ними быть не может.
Однако стоит нам отпустить маятники не одновременно, и мы сразу увидим разницу: колебания будут сдвинуты по времени.
Про колебания одинаковой частоты, но смещенные по времени, говорят, что они сдвинуты по фазе. Смещение по времени выражается в долях периода, а сдвиг или разность фаз – в угловых единицах.
Если второе колебание запаздывает по сравнению с первым на 1/8 периода, то это значит, что оно отстает по фазе на 360*1/8=45, или сдвинуто по фазе на –45. Если второе колебание опережает первое на 1/8 периода, то говорят, что оно опережает его по фазе на 45, или сдвинуто по фазе +45.
Если колебания происходят без запаздывания, то их называют синфазными, или говорят, что они совершаются в фазе. При запаздывание одного на полпериода говорят, что колебания происходят в противофазе.
Вынужденные колебания.
Мы уже упоминали о таких случаях, когда периодическое движение тела происходит не свободно, а в результате действия периодически меняющейся силы.
Подобные повторяющиеся силы вызывают периодическое движение даже таких тел, которые сами не являются колебательными системами.
Но как будет обстоять дело в том случае, если периодическая система действует на колебательную систему.
В колебательной системе, на которую действует периодически меняющиеся сила, устанавливается периодическое движение.
Период вынужденных колебаний равен периоду действующей силы.
Волны.
Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости, возникающими вследствие деформации среды при ее колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечет за собой последовательное возникновение колебаний в других местах, все более и более удаленных от первичного, и возникает так называемая волна.
Поперечные волны в шнуре
Подвесим за один конец длинный шнур или резиновую трубку. Если нижний конец шнура быстро отвести в сторону и вернуть обратно, то изгиб “побежит” по шнуру вверх, дойдя до точки подвеса, отразится и вернется вниз. Если двигать нижний конец непрерывно, заставляя его совершать гармоническое колебание, то по шнуру “побежит” синусоидальная волна.
Надо заметить, что распространение волны означает запаздывающую передачу колебательных движений от одной точки среды к другой и никакого переноса вместе с волной самого вещества тела, в котором волна распространяется, не происходит.
Каждая точка шнура колеблется перпендикулярно к направлению распространения волны, т.е. поперек направления распространения. Поэтому и волна такого вида называется поперечной.
Смещение нижнего конца шнура в сторону вызывает деформацию шнура в этом месте. Появляются силы упругости, стремящиеся уничтожить деформацию, т.е. появляются силы натяжения, которые тянут вслед за участком шнура, смещенный рукой, непосредственно прилегающий к нему участок. Смещение этого второго участка вызывает деформацию и натяжение следующего, и т.д. Участки шнура обладают массой, и поэтому вследствие инерции набирают или теряют скорость под действием сил не мгновенно. Когда мы довели конец шнура до наибольшего отклонения вправо и начали вести его в влево, смежный участок еще будет продолжать двигаться вправо и лишь с некоторым запозданием остановится и тоже пойдет влево. Таким образом, запаздывающий переход колебания от одной точки шнура к другой обусловлен наличием у материала шнура упругости и массы.
Свойства поперечных волн зависят от многих обстоятельств: от вида связи между смежными участками среды, от размеров среды, от формы тела и т.п.
Когда мы говорим, что волна “бежит вдоль по шнуру”, то это лишь краткое описание следующего явления: каждая точка шнура совершает такое же колебание, какое мы заставили совершать один из концов шнура, но колебание каждой точки тем больше запаздывает (отстает по фазе), чем эта точка дальше от конца шнура. Это запаздывание зависит также от длины волны – расстояния между двумя соседними горбами синусоиды и равна скорости распространения волны на период
Примером поперечных волн в шнуре является струна рояля.
Поперечная волна
Продольные волны в столбе воздуха
Возьмем тело удлиненной формы, а именно столб воздуха, заключенный в трубе. Вдоль трубу может двигаться поршень. Заставим этот поршень совершать гармоническое колебание.
Каждый участок тела (слой воздуха) обладает массой, а всякое сжатие воздуха создает избыток давления. Следовательно, в столбе воздуха образуется упругая волна, которая будет бежать от поршня. Однако теперь частицы воздуха колеблется в том же направлении что и поршень, т.е. вдоль направления распространения волны. Такие волны называются продольными.
Для продольных волн остается в силе определение длинны волны .
Если там можно сказать, что длинна волны равна расстоянию между двумя соседними горбами синусоиды, то здесь она равна расстоянию между серединами двух соседних уплотнений (или разряжений). Скорость распространения продольной находится по той же формуле, что и для поперечной волны. Это, конечно, не значит, что скорость распространения в среде обоих видов волн в теле одинакова. Наоборот, во всякой среде скорость продольных волн больше, чем поперечных волн и, следовательно, при одном и том же периоде длина продольной волны больше чем поперечной.
Говоря “во всякой среде”, надо сделать оговорку: во всякой твердой среде. Дело в том, что упругие поперечные волны могут распространяться только в твердых телах, в то время как продольные волны могут распространяться и в жидкостях, и в газах. Таким образом, сравнивать скорость распространения обоих видов волн можно только в твердых телах.
Чем это объясняется?
В поперечной волне происходит сдвиг слоев друг относительно друга. Но упругие силы при сдвиге возникают только в твердых телах. В жидкостях и газах слои свободно скользят друг по другу, без появления противодействующих упругих сил, а раз нет упругих сил, то и образование упругих волн невозможно.
Благодаря этому свойству было определенно, что центр Земли жидкий т.к. он не проводит поперечных волн.
Известным примером продольных волн являются звуковые волны.
Продольная волна
Звуковые колебания
Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 16 Гц до 20 кГц и которые способно воспринимать человеческое ухо.
Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.
Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.
Музыкальный тон. Громкость и высота тона
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется
амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука.
Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по
размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
Акустический резонанс
Резонансом называется резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний к частоте свободных колебаний.
Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте.
Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками.
Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.
Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.
Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертона 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.
studfiles.net
РЕФЕРАТ:
ПО ФИЗИКЕ
НА ТЕМУ:
«Колебания и волны»
Выполнил:
Ученик 9 «б» школы №1124
Захаров Дмитрий
Москва, 1999
Колебания.
Периодическое движение.
Среди всевозможных совершающихся вокруг нас механических движений частовстречаются повторяющиеся движения. Любое равномерное вращение являетсяповторяющимся движением: при каждом обороте всякая точка равномерновращающегося тела проходит те же положения, что и при предыдущемобороте, причем в такой же последовательности и с такой же скоростью.
В действительности не всегда и не при всяких условиях повторениесовершенно одинаково. В одних случаях каждый новый цикл очень точноповторяет предыдущий, в других случаях различие между следующими другза другом циклами может быть заметным. Отклонения от совершенно точногоповторения очень часто настолько малы , что ими можно пренебречь исчитать движение повторяющимся вполне точно, т.е. считать егопериодическим.
Периодическим называется повторяющееся движение, у которого каждый циклв точности воспроизводит любой другой цикл.
Продолжительность одного цикла называется периодом. Очевидно, периодравномерного вращения равен продолжительности одного оборота.
Свободные колебания.
В природе, и особенно в технике, чрезвычайно большую роль играютколебательные системы, т.е. те тела и устройства, которые сами по себеспособны совершать периодические движения. «Сами по себе» - это значитне будучи принуждаемы к этому действием периодических внешних сил. Такиеколебания называются поэтому свободными колебаниями в отличие отвынужденных, протекающих под действием периодически меняющихся внешнихсил.
Всем колебательным системам присущ ряд общих свойств:
У каждой колебательной системы есть состояние устойчивого равновесия.
Если колебательную систему вывести из состояния устойчивого равновесия,то появляется сила, возвращающая систему в устойчивое положение.
Возвратившись в устойчивое состояние, колеблющееся тело не может сразуостановиться.
Маятник; кинематика его колебаний.
Маятником является всякое тело, подвешенное так, что его центр тяжестинаходится ниже точки подвеса. Молоток, висящий на гвозде, весы, груз наверевке – все это колебательные системы, подобные маятнику стенныхчасов.
У всякой системы, способной совершать свободные колебания, имеетсяустойчивое положение равновесия. У маятника это положение, при которомцентр тяжести находится на вертикали под точкой подвеса. Если мы выведеммаятник из этого положения или толкнем его, то он начнет колебаться,отклоняясь то в одну сторону, то в другую сторону от положенияравновесия. Наибольшее отклонение от положения равновесия, до которогодоходит маятник, называется амплитудой колебаний. Амплитуда определяетсятем первоначальным отклонением или толчком, которым маятник был приведенв движение. Это свойство – зависимость амплитуды от условий в началедвижения – характерно не только для свободных колебаний маятника , но ивообще для свободных колебаний очень многих колебательных систем.
Прикрепим к маятнику волосок и будем двигать под этим волоскомзакопченную стеклянную пластинку. Если двигать пластинку с постояннойскоростью в направлении, перпендикулярном к плоскости колебаний, товолосок прочертит на пластинки волнистую линию. Мы имеем в этом опытепростейший осциллограф – так называются приборы для записи колебаний.Таким образом волнистая линия представляет собой осциллограмму колебаниймаятника.
Амплитуда колебаний изображается на этой осциллограмме отрезком AB,период изображается отрезком CD, равным расстоянию, на котороепередвигается пластинка за период маятника.
Так как мы двигаем закопченную пластинку равномерно, то всякое ееперемещение пропорционально времени, в течении которого оно совершалось.Мы можем сказать поэтому, что вдоль оси x в определенном масштабеотложено время. С другой стороны, в направлении, перпендикулярном к xволосок отмечает на пластинке расстояние конца маятника от его положенияравновесия, т.е. путь пройденный концом маятника от этого положения.
Как мы знаем, наклон линии на таком графике изображает скоростьдвижения. Через положение равновесия маятник проходит с наибольшейскоростью. Соответственно этому и наклон волнистой линии наибольший втех точках, где она пересекает ось x. Наоборот, в моменты наибольшихотклонений скорость маятника равна нулю. Соответственно этому иволнистая линия в тех точках, где она наиболее удалена от оси x, имееткасательную параллельную x, т.е. наклон равен нулю
Гармоническое колебание. Частота.
Колебание, какое совершает при равномерном движении точки по окружностипроекция этой точки на какую-либо прямую, называется гармоническим (илипростым) колебанием.
Гармоническое колебание является специальным, частным видомпериодического колебания. Этот специальный вид колебания очень важен,так как он чрезвычайно часто встречается в самых различных колебательныхсистемах. Колебание груза на пружине, камертона, маятника, зажатойметаллической пластинки как раз и является по своей формегармоническим. Следует заметить, что при больших амплитудах колебанияуказанных систем имеет несколько более сложную форму, но они тем ближе кгармоническому, чем меньше амплитуда колебаний.
, а на вертикальной - перпендикуляр ВВ’, опущенный из конца вращающегосярадиуса ОВ на неподвижный диаметр АА’( угол … отсчитывается отнеподвижного радиуса ОА), то получится кривая ,называемая синусоидой.Для каждой абсциссы a ордината этой кривой BB’ пропорциональна синусуугла a, так как
Число циклов гармонического колебания, совершаемых за 1с, называетсячастотой этого колебания. Единицу частоты называют герцем.
Вообще обозначая продолжительность периода за, выраженную в секундах,через T, а частоту, выраженную в герцах, через v, будем иметь
Динамика гармонических колебаний.
Рассмотрим динамику свободных колебаний в идеальных колебательныхсистемах без трения.
Отведем шар пружинного маятника от положения равновесия. В этом случаена шар действует возвращающая сила, направленная в сторону положенияравновесия.
Ее проекция имеет знак, противоположный знаку смещения x
Аналогично обстоит дело в случае математического маятника. Отведеммаятник от положения равновесия. В этом случае равнодействующая силытяжести и силы упругости нити направлена в сторону положения равновесия.Эту силу можно выразить так:
Но если рассматривать колебания с маленькими углами отклонения, то
постоянна. Обозначим ее через k. Тогда
Направлена сила в сторону противоположную смещению.
Превращения энергии при свободных колебаниях.
Отведем маятник на небольшой угол a от положения равновесия. Этим мысообщим маятнику потенциальную энергию:
Где Hmax – максимальная высота подъема маятника.
Отпустим маятник. Под действием силы тяжести и силы реакции маятникабудет двигаться к положению равновесия. При этом его потенциальнаяэнергия превращается в кинетическую. В положении равновесия всясообщенная маятнику потенциальная энергия превратится в кинетическую:
- максимальное значение скорости движения тела, подвешенного к нити.
При отсутствие сил трения по закону сохранения энергии максимальноезначение потенциальной энергии равно максимальному значению кинетическойэнергии:
Итак, при колебаниях маятника происходит периодическое превращениипотенциальной энергии в кинетическую и обратно:
В произвольный момент полная механическая энергия колеблющегося тела позакону превращения и сохранения энергии равна сумме его потенциальной икинетической энергии:
Период.
Период колебаний маятника, близкого по своим свойствам к математическомумаятнику, не зависит от массы маятника.
Заставим маятник описывать коническую поверхность. В этом случае шарикмаятника двигается по окружности. Определив период обращения маятника,обнаружим, что он равен периоду колебаний этого маятника:
Период обращения конического маятника же равен длине описываемойокружности, деленной на линейную скорость:
На шарик действует центростремительная сила, так как он двигается поокружности.
Итак период математического маятника зависит только от длины маятник l иот ускорения свободного падения g.
Сдвиг фаз.
Возьмем два одинаковых маятника и отклоним их в одну и ту же сторону наодин и тот же угол от вертикали. Если теперь их отпустить, то мы двагармонических колебания с одинаковыми амплитудами и частотами. Казалосьбы, никакого различия между ними быть не может.
Однако стоит нам отпустить маятники не одновременно, и мы сразу увидимразницу: колебания будут сдвинуты по времени.
Про колебания одинаковой частоты, но смещенные по времени, говорят, чтоони сдвинуты по фазе. Смещение по времени выражается в долях периода, асдвиг или разность фаз – в угловых единицах.
Если второе колебание запаздывает по сравнению с первым на 1/8 периода,то это значит, что оно отстает по фазе на 360*1/8=45, или сдвинуто пофазе на –45. Если второе колебание опережает первое на 1/8 периода, тоговорят, что оно опережает его по фазе на 45, или сдвинуто по фазе +45.
Если колебания происходят без запаздывания, то их называют синфазными,или говорят, что они совершаются в фазе. При запаздывание одного наполпериода говорят, что колебания происходят в противофазе.
Вынужденные колебания.
Мы уже упоминали о таких случаях, когда периодическое движение телапроисходит не свободно, а в результате действия периодически меняющейсясилы.
Подобные повторяющиеся силы вызывают периодическое движение даже такихтел, которые сами не являются колебательными системами.
Но как будет обстоять дело в том случае, если периодическая системадействует на колебательную систему.
В колебательной системе, на которую действует периодически меняющиесясила, устанавливается периодическое движение.
Период вынужденных колебаний равен периоду действующей силы.
Волны.
Если речь идет о механических колебаниях, т.е. о колебательных движенияхкакой-либо твердой, жидкой или газообразной среды, то распространениеколебаний означает передачу колебаний от одних частиц среды к другим.Передача колебаний обусловлена тем, что смежные участки среды связаннымежду собой. Эта связь может осуществляться различно. Она может бытьобусловлена, в частности, силами упругости, возникающими вследствиедеформации среды при ее колебаниях. В результате колебание, вызванноекаким-либо образом в одном месте, влечет за собой последовательноевозникновение колебаний в других местах, все более и более удаленных отпервичного, и возникает так называемая волна.
Поперечные волны в шнуре
Подвесим за один конец длинный шнур или резиновую трубку. Если нижнийконец шнура быстро отвести в сторону и вернуть обратно, то изгиб«побежит» по шнуру вверх, дойдя до точки подвеса, отразится и вернетсявниз. Если двигать нижний конец непрерывно, заставляя его совершатьгармоническое колебание, то по шнуру «побежит» синусоидальная волна.
Надо заметить, что распространение волны означает запаздывающую передачуколебательных движений от одной точки среды к другой и никакого переносавместе с волной самого вещества тела, в котором волна распространяется,не происходит.
Каждая точка шнура колеблется перпендикулярно к направлениюраспространения волны, т.е. поперек направления распространения. Поэтомуи волна такого вида называется поперечной.
Смещение нижнего конца шнура в сторону вызывает деформацию шнура в этомместе. Появляются силы упругости, стремящиеся уничтожить деформацию,т.е. появляются силы натяжения, которые тянут вслед за участком шнура,смещенный рукой, непосредственно прилегающий к нему участок. Смещениеэтого второго участка вызывает деформацию и натяжение следующего, и т.д.Участки шнура обладают массой, и поэтому вследствие инерции набирают илитеряют скорость под действием сил не мгновенно. Когда мы довели конецшнура до наибольшего отклонения вправо и начали вести его в влево,смежный участок еще будет продолжать двигаться вправо и лишь с некоторымзапозданием остановится и тоже пойдет влево. Таким образом,запаздывающий переход колебания от одной точки шнура к другой обусловленналичием у материала шнура упругости и массы.
Свойства поперечных волн зависят от многих обстоятельств: от вида связимежду смежными участками среды, от размеров среды, от формы тела и т.п.
Когда мы говорим, что волна «бежит вдоль по шнуру», то это лишь краткоеописание следующего явления: каждая точка шнура совершает такое жеколебание, какое мы заставили совершать один из концов шнура, ноколебание каждой точки тем больше запаздывает (отстает по фазе), чемэта точка дальше от конца шнура. Это запаздывание зависит также отдлины волны – расстояния между двумя соседними горбами синусоиды иравна скорости распространения волны на период
Примером поперечных волн в шнуре является струна рояля.
Продольные волны в столбе воздуха
Возьмем тело удлиненной формы, а именно столб воздуха, заключенный втрубе. Вдоль трубу может двигаться поршень. Заставим этот поршеньсовершать гармоническое колебание.
Каждый участок тела (слой воздуха) обладает массой, а всякое сжатиевоздуха создает избыток давления. Следовательно, в столбе воздухаобразуется упругая волна, которая будет бежать от поршня. Однако теперьчастицы воздуха колеблется в том же направлении что и поршень, т.е.вдоль направления распространения волны. Такие волны называютсяпродольными.
.
Если там можно сказать, что длинна волны равна расстоянию между двумясоседними горбами синусоиды, то здесь она равна расстоянию междусерединами двух соседних уплотнений (или разряжений). Скоростьраспространения продольной находится по той же формуле, что и дляпоперечной волны. Это, конечно, не значит, что скорость распространенияв среде обоих видов волн в теле одинакова. Наоборот, во всякой средескорость продольных волн больше, чем поперечных волн и, следовательно,при одном и том же периоде длина продольной волны больше чем поперечной.
Говоря «во всякой среде», надо сделать оговорку: во всякой твердойсреде. Дело в том, что упругие поперечные волны могут распространятьсятолько в твердых телах, в то время как продольные волны могутраспространяться и в жидкостях, и в газах. Таким образом, сравниватьскорость распространения обоих видов волн можно только в твердых телах.
Чем это объясняется?
В поперечной волне происходит сдвиг слоев друг относительно друга. Ноупругие силы при сдвиге возникают только в твердых телах. В жидкостях игазах слои свободно скользят друг по другу, без появленияпротиводействующих упругих сил, а раз нет упругих сил, то и образованиеупругих волн невозможно.
Благодаря этому свойству было определенно, что центр Земли жидкий т.к.он не проводит поперечных волн.
Известным примером продольных волн являются звуковые волны.
Звуковые колебания
Звук обуславливается механическими колебаниями в упругих средах и телах,частоты которых лежат в диапазоне от 16 Гц до 20 кГц и которые способновоспринимать человеческое ухо.
Соответственно этому механическому колебанию с указанными частотаминазываются звуковыми и акустическими. Неслышимые механические колебанияс частотами ниже звукового диапазона называются инфразвуковыми, а счастотами выше звукового диапазона называются ультразвуковыми.
Если звучащее тело, например электрический звонок, поставить под колоколвоздушного насоса, то по мере откачивания воздуха звук будет делатьсявсе слабее и слабее и, наконец, совсем прекратится. Передача колебанийот звучащего тела осуществляется через воздух. Отметим, что при своихколебаниях звучащее тело при своих колебаниях попеременно то сжимаетвоздух, прилегающий к поверхности тела, то, наоборот, создает разрежениев этом слое. Таким образом, распространение звука в воздухе начинается сколебаний плотности воздуха у поверхности колеблющегося тела.
Музыкальный тон. Громкость и высота тона
Звук, который мы слышим тогда, когда источник его совершаетгармоническое колебание, называется музыкальным тоном или, коротко,тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества:громкость и высоту.
Простейшие наблюдения убеждают нас в том, что тона какой-либо даннойвысоты определяется
амплитудой колебаний. Звук камертона после удара по нему постепеннозатихает. Это происходит вместе с затуханием колебаний, т.е. соспадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниямбольшую амплитуду, мы услышим более громкий звук, чем при слабом ударе.То же можно наблюдать и со струной и вообще со всяким источником звука.
Если мы возьмем несколько камертонов разного размера, то не представиттруда расположить их на слух в порядке возрастания высоты звука. Темсамым они окажутся расположенными и по
размеру: самый большой камертон дает наиболее низкий звук, самыймаленький – наиболее высокий звук. Таким образом, высота тонаопределяется частотой колебаний. Чем выше частота и, следовательно, чемкороче период колебаний, тем более высокий звук мы слышим.
Акустический резонанс
Резонансом называется резкое увеличение амплитуды вынужденных колебанийпри приближении частоты вынуждающих колебаний к частоте свободныхколебаний.
Резонансные явления можно наблюдать на механических колебаниях любойчастоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте.
Поставим рядом два одинаковых камертона, обратив отверстия ящиков, накоторых они укреплены, друг к другу. Ящики нужны потому, что ониусиливают звук камертонов. Это происходит вследствие резонанса междукамертоном и столбов воздуха, заключенного в ящике; поэтому ящикиназываются резонаторами или резонансными ящиками.
Ударим один из камертонов и затем приглушим его пальцами. Мы услышим,как звучит второй камертон.
Возьмем два разных камертона, т.е. с различной высотой тона, и повторимопыт. Теперь каждый из камертонов уже не будет откликаться на звукдругого камертона.
Нетрудно объяснить этот результат. Колебания одного камертона действуетчерез воздух с некоторой силой на второй камертон, заставляя егосовершать его вынужденные колебания. Так как камертона 1 совершаетгармоническое колебания, то и сила, действующая на камертон 2, будетменяться по закону гармонического колебания с частотой камертона 1. Есличастота силы иная то вынужденные колебания будут настолько слабы, что мыих не услышим.
Шумы
Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое.Например, такого рода звук издает струна рояля. Если одновременноударить несколько клавиш, т.е. заставить звучать несколько нот, тоощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот.Оказывается, что консонируют те ноты, периоды которых находятсяотношениях небольших чисел. Например, консонанс получается при отношениипериодов 2:3(квинта), при 3:4(кванта), 4:5(большая терция) и т.д. Еслиже периоды относятся как большие числа, например 19:23, то получаетсядиссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем отпериодичности колебаний, если одновременно ударим по многим клавишам.Звук получится уже шумоподобным.
Для шумов характерна сильная непериодичность формы колебаний: либо это –длительное колебание, но очень сложное по форме (шипение, скрип), либоотдельные выбросы (щелчки, стуки). С этой точки зрения шумам следуетотнести и звуки, выражаемые согласными (шипящими, губными и т.д.).
Во всех случаях шумовые колебания состоят из огромного количествагармонических колебаний с разными частотами.
Таким образом, у гармонического колебания спектр состоит изодной-единственной частоты. У периодического колебания спектр состоит изнабора частот – основной и кратных ей. У консонирующих созвучий мы имеемспектр, состоящий из нескольких таких наборов частот, причем основныеотносятся как небольшие целые числа. У диссонирующих созвучий основныечастоты уже не находятся в таких простых отношениях. Чем больше вспектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеютспектры, в которых присутствуют чрезвычайно много частот.
Волны на поверхности жидкости
Описанные прежде волны обусловленные силами упругости, но существуют также волны, образование которых обусловлено силой тяжести. Волны,распространяющиеся по поверхности жидкости, не являются ни продольными,ни поперечными: движение частиц жидкости здесь более сложное.
Если в какой-либо точки поверхности жидкости опустилась (например, врезультате
прикосновения твердым предмет), то под действием силы тяжести жидкостьначнет сбегать
вниз, заполняя центральную ямку и образуя вокруг нее кольцевоеуглубление. На внешнем крае этого углубления все время продолжаетсясбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннемкрая кольца частицы всегда «выныривают» наверх, так что образуетсякольцевой гребень. Позади него опять получается впадина, и т.д. Приопускании вниз частицы жидкости движутся, кроме того, назад, а приподъеме наверх они движутся вперед. Таким образом, каждая частица непросто колеблется в поперечном (вертикальном) или продольном(горизонтальном) направлении, а, как оказывается, описывает окружность.
Следует заметить, что в образования поверхностных волн играет роль нетолько сила тяжести, но и сила поверхностного натяжения, которая, как исила тяжести, стремится выровнять поверхность жидкости. При прохожденииволны в каждой точки поверхности жидкости происходит деформация этойповерхности и, следовательно, энергия поверхностного натяжения. Нетруднопонять, что роль поверхностного натяжения будет при данной амплитуде тембольше, чем больше искривлена поверхность, т.е. чем короче длина волны.Поэтому для длинных волн (низких частот) основной является сила тяжести,но для достаточно коротких волн (низких частот) на первый план выступаетсила поверхностного натяжения. Граница между «длинными» и «короткими»волнами, конечно, не является резкой и зависит от плотности жидкости исоответственного ей поверхностного натяжения. У воды эта границасоответствует волнам, длина которых около 1 см, т.е. для более короткихволн (называемых капиллярными волнами) преобладают силы поверхностногонатяжения, а для более длинных - сила тяжести.
Несмотря на сложный «продольно-поперечный» характер поверхностных волн,они подчиняются закономерностям, общим для всякого волнового процесса.
, т.е. длина
.
Если ударять ребром линейки, параллельным поверхности воды, то можносоздать волну, имеющую форму не концентрических колец, а параллельныхдруг другу прямолинейных
гребней и впадин. В этом случае перед частью линейки мы имеемодно-единственное направление распространения.
Кольцевые и прямолинейные волны на поверхности дают представление осферических и плоских волнах в пространстве. Небольшой источник звука,излучающий равномерно во все стороны, создает вокруг себя сферическуюволну, в которой сжатия и разрежения воздуха расположены в видеконцентрических шаровых слоев.
Скорость распространения волн
В том, что распространение волн происходит не мгновенно, нас убеждаютпростейшие наблюдения. Постепенно и равномерно расширяются круги на водеи бегут морские волны.
Здесь мы непосредственно видим, что распространение колебаний из одногоместа в другое занимает определенное время. Но и для звуковых волн,которые в обычных условиях не видимы, легко обнаруживается тоже самое.Если в дали происходит выстрел, гроза, взрыв, свисток паровоза и т.д.,то мы сначала видим эти явления и лишь спустя известное время слышимзвук. Чем дальше от нас источник звука, тем больше запоздание.Промежуток времени между вспышкой молнии и ударом грома может доходитьиногда до нескольких десятков секунд. Зная расстояние от источниказвука, и измерив запаздывание звука, можно определить скорость егораспространения. Вспышку, произведенную на расстоянии 3 км, мы видим сзапаздыванием всего на 10 мкс, в то время как звук тратит на пробегэтого расстояния около 9 с. В сухом воздухе при температуре 10 ’C этаскорость оказалась равной 337,5 м/с.
Скорость звуковых волн весьма различна для разных сред и, кроме того,зависит от температуры. Современные методы позволяют произвести точныеизмерения скорости звука, пользуясь малыми количествами исследуемоговещества.
Радиолокация, гидроакустическая локация и звукометрия
Если скорость распространения волн известна, то измерение ихзапаздывания позволяет решить обратную задачу: найти пройденное имирасстояние. Задачу измерения расстояния в ряде случаев можно решать,однако на скорость распространения сигнала влияют целый рядобстоятельств: ветер, неоднородность температуры среды и т.п. чтоприводит к уменьшению точности расчетов.
На принципе измерения времени запаздывания основана гидроакустическаялокация и эхолотирование. Гидролокаторы позволяют, например,обнаруживать с надводных кораблей подводные лодки и, наоборот, сподводных лодок надводные корабли. При помощи эхолотов измеряетсяглубина морского дна.
Измеряя разности между временами прихода какого-либо звука (взрыва,выстрела) в три различных пункта наблюдения, можно определитьместонахождение источника этого звука. Такой способ называетсязвукометрией, применяется в военном деле для засечки артиллерийскихбатарей противника.
Отражение волн
. Мы увидим следующие. Позади пластинки получается область, в которойповерхность воды остается почти в покое. Другими словами, пластинкасоздает тень –
пространство, куда волны не проникают. Перед пластинкой отчетливо видно,как волны отражаются от нее, т.е. волны, падающие на пластинку, создаютволны, идущие от пластинки.
Эти отражения волны имеют прежних волн. Перед пластинкой возникаетсвоеобразная сетка из
первичных волн, падающих на пластинку, и отраженных, идущих от неенавстречу падающим.
Отражение плоских волн.
, т.е. угол отражения волны от отражающей плоскости равен углу падения.
.
Отражение волн от препятствий к числу очень распространенных явлений.Хорошо всем известное эхо обусловлено отражением звуковых волн отзданий, холмов, леса и т.п. Если до нас доходят звуковые волны,последовательно отразившиеся от ряда препятствий, то получаетсямногократное эхо. Методы локации основаны на отражении электромагнитныхволн и упругих волн от препятствий. Особенно часто мы наблюдаем явлениеотражения на световых волнах.
Отраженная волн всегда в той или иной степени ослаблена по сравнению спадающей. Часть энергии падающей волны поглощается тем телом, отповерхности которого происходит отражение.
Перенос энергии волнами
Распространение механической волны, представляющее собойпоследовательную передачу движения от участка среды к другому, означаеттем самым передачу энергии. Распространение волны создает в среде потокэнергии, расходящийся от источника.
При встрече волны с различного рода телами переносимая энергия можетпроизвести работу или превратится в другие виды энергии.
Яркий пример такого переноса энергии без переноса вещества дают намвзрывные волны. На расстояниях во много десятков метров от места взрыва,куда не долетают ни осколки, ни поток горячего воздуха, взрывная волнавыбивает стекла, ломает стены и т.п., т.е. производит большуюмеханическую работу. Но энергия переносится, конечно, и самыми слабымиволнами; например, летящий комар излучает звуковую волну, мощностькоторой, т.е. энергия, излучаемая в 1 с, составляет 10-10 Вт.
Энергия, излучаемая точечным источником, равномерно распространяется повсей поверхности волновой среды. Нетрудно видеть, что энергия,приходящиеся на единицу поверхности этой сферы, будет тем меньше, чембольше радиус сферы. Площадь сферы или любого вырезанного в ней конусомучастка растет пропорционально квадрату радиуса, т.е. при увеличениирасстояния от источника вдвое площадь увеличивается вчетверо, и накаждую единицу поверхности сферы приходится вчетверо меньшая энергияволны.
Энергию, переносимую волной через сечение, площадь которого равна 1м2, за время, равное 1 с, т.е. мощность, переносимую через единичноесечение, называют интенсивностью волны. Таким образом, интенсивностьсферической волны убывает обратно пропорционально квадрату расстояния отисточника.
Список используемой литературы
Элементарный учебник физики под редакцией Г.С. Ландсберга том III.Колебания и волны. Оптика. Атомная и ядерная физика – Репринт 10 издперпраб, 1995
Физика Дж. Орир том 1, Москва 1981
Учебник по физике для 9 класса средней школы Н.М. Шахмаева, С.Н.Шахмаева, Д.Ш. Шодиева, 1992
1
4
1
Продольная волна
C D
2
Прямолинейная
волна
Поперечная волна
Кольцевые
волны
B
A
A’ 0 B’
B
A
Hmax
a
Wk
Wp
C
l
E
R B
O
geum.ru
Школа №283 г. Москва
РЕФЕРАТ:
НА ТЕМУ:
«Колебания и волны»
Выполнил:
Ученик 9 «б» школы №283
Введение. 3
Колебания. 4
Периодическое движение 4
Свободные колебания 4
Маятник. Кинематика его колебаний 4
Гармоническое колебание. Частота 5
Динамика гармонических колебаний 6
Превращение энергии при свободных колебаниях 6
Период 7
Сдвиг фаз 8
Вынужденные колебания 8
Резонанс 8
Волны. 9
Поперечные волны в шнуре 9
Продольные волны в столбе воздуха 10
Звуковые колебания 11
Музыкальный тон. Громкость и высота тона 11
Акустический резонанс 12
Шумы 12
Волны на поверхности жидкости 13
Скорость распространения волн 14
Отражение волн 15
Перенос энергии волнами 16
Применение 17
Акустический динамик и микрофон 17
Эхолот 17
Ультразвуковая диагностика 18
Примеры задач по физике 18
Заключение 21
Список используемой литературы 22
Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости. Таким свойством повторяемости обладают, например, качания маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника и т. п.
В зависимости от физической природы повторяющегося процесса, различают колебания: механические, электромагнитные, электромеханические и т. д. В данном реферате рассматриваются механические колебания.
Этот раздел физики является ключевым в вопросе «Почему рушатся мосты?» (см. стр. 8)
Вместе с тем колебательные процессы лежат в самой основе различных отраслей техники.
Так, например, на колебательных процессах основана вся радиотехника, и в частности акустический динамик (см. стр. 17)
В первой части реферата («Колебания» стр.4-9) подробно описано, о том, что такое механические колебания, какие бывают виды механических колебаний, величины, характеризующие колебания, а так же, что такое резонанс.
Во второй части реферата («Волны» стр. 9-16) рассказывается о том, что такое волны, как они возникают, какие бывают волны, что такое звук, его характеристики, с какой скоростью распространяются волны, как отражаются и как волнами переносится энергия.
В третьей части реферата («Применение» стр. 17-18) рассказано о том, для чего нам все это нужно знать, и о том, где в технике и в повседневной жизни применяются механические колебания и волны.
В четвертой части реферата (стр. 18-20) приводится несколько примеров задач по физике на данную тему.
Заканчивается реферат катким обобщением всего сказанного («Заключение» стр. 21) и списком использованной литературы (стр. 22)
Среди всевозможных совершающихся вокруг нас механических движений часто встречаются повторяющиеся движения. Любое равномерное вращение является повторяющимся движением: при каждом обороте всякая точка равномерно вращающегося тела проходит те же положения, что и при предыдущем обороте, причем в такой же последовательности и с такой же скоростью.
В действительности не всегда и не при всяких условиях повторение совершенно одинаково. В одних случаях каждый новый цикл очень точно повторяет предыдущий, в других случаях различие между следующими друг за другом циклами может быть заметным. Отклонения от совершенно точного повторения очень часто настолько малы , что ими можно пренебречь и считать движение повторяющимся вполне точно, т.е. считать его периодическим.
Периодическим называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл.
Продолжительность одного цикла называется периодом. Очевидно, период равномерного вращения равен продолжительности одного оборота.
В природе, и особенно в технике, чрезвычайно большую роль играют колебательные системы, т.е. те тела и устройства, которые сами по себе способны совершать периодические движения. «Сами по себе» - это значит не будучи принуждаемы к этому действием периодических внешних сил. Такие колебания называются поэтому свободными колебаниями в отличие от вынужденных, протекающих под действием периодически меняющихся внешних сил.
Всем колебательным системам присущ ряд общих свойств:
У каждой колебательной системы есть состояние устойчивого равновесия.
Если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение.
Возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.
Маятником является всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Молоток, висящий на гвозде, весы, груз на веревке – все это колебательные системы, подобные маятнику стенных часов.
У всякой системы, способной совершать свободные колебания, имеется устойчивое положение равновесия. У маятника это положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну сторону, то в другую сторону от положения равновесия. Наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство – зависимость амплитуды от условий в начале движения – характерно не только для свободных колебаний маятника , но и вообще для свободных колебаний очень многих колебательных систем.
Прикрепим к маятнику волосок и будем двигать под этим волоском закопченную стеклянную пластинку. Если двигать пластинку с постоянной скоростью в направлении, перпендикулярном к плоскости колебаний, то волосок прочертит на пластинки волнистую линию. Мы имеем в этом опыте простейший осциллограф – так называются приборы для записи колебаний. Таким образом волнистая линия представляет собой осциллограмму колебаний маятника.
C D
B
A
Амплитуда колебаний изображается на этой осциллограмме отрезком AB, период изображается отрезком CD, равным расстоянию, на которое передвигается пластинка за период маятника.
Так как мы двигаем закопченную пластинку равномерно, то всякое ее перемещение пропорционально времени, в течении которого оно совершалось. Мы можем сказать поэтому, что вдоль оси x в определенном масштабе отложено время. С другой стороны, в направлении, перпендикулярном к x волосок отмечает на пластинке расстояние конца маятника от его положения равновесия, т.е. путь пройденный концом маятника от этого положения.
Как мы знаем, наклон линии на таком графике изображает скорость движения. Через положение равновесия маятник проходит с наибольшей скоростью. Соответственно этому и наклон волнистой линии наибольший в тех точках, где она пересекает ось x. Наоборот, в моменты наибольших отклонений скорость маятника равна нулю. Соответственно этому и волнистая линия в тех точках, где она наиболее удалена от оси x, имеет касательную параллельную x, т.е. наклон равен нулю
Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием.
Гармоническое колебание является специальным, частным видом периодического колебания. Этот специальный вид колебания очень важен, так как он чрезвычайно часто встречается в самых различных колебательных системах. Колебание груза на пружине, камертона, маятника, зажатой металлической пластинки как раз и является по своей форме гармоническим. Следует заметить, что при больших амплитудах колебания указанных систем имеет несколько более сложную форму, но они тем ближе к гармоническому, чем меньше амплитуда колебаний.
A’ 0 B’
B
A
Если на горизонтальной оси откладывать центральный угол, а на вертикальной - перпендикуляр ВВ’, опущенный из конца вращающегося радиуса ОВ на неподвижный диаметр АА’( угол … отсчитывается от неподвижного радиуса ОА), то получится кривая ,называемая синусоидой. Для каждой абсциссы a ордината этой кривой BB’ пропорциональна синусу угла a, так как
Число циклов гармонического колебания, совершаемых за 1с, называется частотой этого колебания. Единицу частоты называют герцем. (Гц)
Вообще обозначая продолжительность периода , выраженную в секундах, через T, а частоту, выраженную в герцах, через v, будем иметь
Рассмотрим динамику свободных колебаний в идеальных колебательных системах без трения.
Отведем шар пружинного маятника от положения равновесия. В этом случае на шар действует возвращающая сила, направленная в сторону положения равновесия.
Ее проекция имеет знак, противоположный знаку смещения x
Аналогично обстоит дело в случае математического маятника. Отведем маятник от положения равновесия. В этом случае равнодействующая силы тяжести и силы упругости нити направлена в сторону положения равновесия. Эту силу можно выразить так:
Но если рассматривать колебания с маленькими углами отклонения, то
так как . Величина постоянна. Обозначим ее через k. Тогда
Направлена сила в сторону противоположную смещению.
a
Ep
Hmax
Ek
Отведем маятник на небольшой угол a от положения равновесия. Этим мы сообщим маятнику потенциальную энергию:
Где Hmax – максимальная высота подъема маятника.
Отпустим маятник. Под действием силы тяжести и силы реакции маятника будет двигаться к положению равновесия. При этом его потенциальная энергия превращается в кинетическую. В положении равновесия вся сообщенная маятнику потенциальная энергия превратится в кинетическую:
Где- максимальное значение скорости движения тела, подвешенного к нити.
При отсутствии сил трения по закону сохранения энергии максимальное значение потенциальной энергии равно максимальному значению кинетической энергии:
Итак, при колебаниях маятника происходит периодическое превращении потенциальной энергии в кинетическую и обратно:
В произвольный момент полная механическая энергия колеблющегося тела по закону превращения и сохранения энергии равна сумме его потенциальной и кинетической энергии:
Период колебаний маятника, близкого по своим свойствам к математическому маятнику, не зависит от массы маятника.
Заставим маятник описывать коническую поверхность. В этом случае шарик маятника двигается по окружности. Определив период обращения маятника, обнаружим, что он равен периоду колебаний этого маятника:
Период обращения конического маятника же равен длине описываемой окружности, деленной на линейную скорость:
На шарик действует центростремительная сила, так как он двигается по окружности.
Итак период математического маятника зависит только от длины маятник l и от ускорения свободного падения g.
C
l
E
R B
O
D
Возьмем два одинаковых маятника и отклоним их в одну и ту же сторону на один и тот же угол от вертикали. Если теперь их отпустить, то мы два гармонических колебания с одинаковыми амплитудами и частотами. Казалось бы, никакого различия между ними быть не может.
Однако стоит нам отпустить маятники не одновременно, и мы сразу увидим разницу: колебания будут сдвинуты по времени.
Про колебания одинаковой частоты, но смещенные по времени, говорят, что они сдвинуты по фазе. Смещение по времени выражается в долях периода, а сдвиг или разность фаз – в угловых единицах.
Если второе колебание запаздывает по сравнению с первым на 1/8 периода, то это значит, что оно отстает по фазе на 360*1/8=45, или сдвинуто по фазе на –45. Если второе колебание опережает первое на 1/8 периода, то говорят, что оно опережает его по фазе на 45, или сдвинуто по фазе +45.
Если колебания происходят без запаздывания, то их называют синфазными, или говорят, что они совершаются в фазе. При запаздывание одного на полпериода говорят, что колебания происходят в противофазе.
Мы уже упоминали о таких случаях, когда периодическое движение тела происходит не свободно, а в результате действия периодически меняющейся силы.
Подобные повторяющиеся силы вызывают периодическое движение даже таких тел, которые сами не являются колебательными системами.
Но как будет обстоять дело в том случае, если периодическая система действует на колебательную систему.
В колебательной системе, на которую действует периодически меняющиеся сила, устанавливается периодическое движение.
Частота вынужденных колебаний равна частоте действующей силы.
Если постепенно увеличивать частоту вынуждающей силы то рано или поздно мы увидим, что когда частота вынуждающей силы приблизится к собственной частоте колебательной системы, то амплитуда колебаний резко возрастает. Амплитуда колебаний максимальна, когда частота вынуждающей силы равна собственной частоте колебательной системы. При дальнейшем росте частоты вынуждающей силы амплитуда колебаний уменьшается. Явление резкого возрастания амплитуды вынужденных колебаний при равенстве частот вынуждающей силы и собственной частоты колебательной системы называется резонансом.
В чем причина явления резонанса, почему растет амплитуда колебаний, когда частота вынуждающей силы приближается к собственной частоте.
Совпадение частот означает, что сила упругости действует «в такт» с вынуждающей силой. Если сила упругости и вынуждающая сила в какие-то моменты действуют в одном направлении, то они складываются и их действие усиливается. И даже если вынуждающая сила мала, она все равно приведет к росту амплитуды. Ведь эта малая сила будет добавляться к силе упругости каждый период.
Явление резонанса может быть полезным, поскольку оно позволяет получить даже с помощью малой силы большое увеличение амплитуды колебаний. С другой стороны, резонанс может оказаться вредным и даже опасным. Если, например, на фундаменте установлена машина, в которой какие-нибудь части совершают периодические движения, то колебания передаются фундаменту и он будет совершать вынужденные колебания. Фундамент – это тоже колебательная система со своей собственной частотой. И если частота периодических движений совпадает с собственной частотой фундамента, то амплитуда его колебаний может возрасти настолько, что это приведет к его разрушению. Известно несколько исторических примеров, например, в XIX в. обрушился Египетский мост в Петербурге. По мосту шел в ногу отряд кавалергардов. Ритм их строевого шага случайно совпал с собственной частотой сооружения, амплитуда вынужденных колебаний стала резко возрастать, смещения превысили расчетную критическую величину – и мост не выдержал.
Именно поэтому с опасными результатами резонанса нужно бороться, т. е. его не допускать. Для этого заранее рассчитывают частоты колебаний машин, фундаментов, средств транспорта и т.д., с тем, чтобы при обычных условиях их эксплуатации резонанс не мог наступить.
С явлением резонанса мы встречаемся и в повседневной жизни. Если в комнате задребезжали оконные стекла при проезде по улице тяжелого грузовика, то это значит, что собственные частоты колебаний стекла совпали с частотой колебаний машины. С явлением резонанса мы еще столкнемся в этом реферате.
Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости, возникающими вследствие деформации среды при ее колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечет за собой последовательное возникновение колебаний в других местах, все более и более удаленных от первичного, и возникает так называемая волна.
Подвесим за один конец длинный шнур или резиновую трубку. Если нижний конец шнура быстро отвести в сторону и вернуть обратно, то изгиб «побежит» по шнуру вверх, дойдя до точки подвеса, отразится и вернется вниз. Если двигать нижний конец непрерывно, заставляя его совершать гармоническое колебание, то по шнуру «побежит» синусоидальная волна.
Надо заметить, что распространение волны означает запаздывающую передачу колебательных движений от одной точки среды к другой и никакого переноса вместе с волной самого вещества тела, в котором волна распространяется, не происходит.
Каждая точка шнура колеблется перпендикулярно к направлению распространения волны, т.е. поперек направления распространения. Поэтому и волна такого вида называется поперечной.
Смещение нижнего конца шнура в сторону вызывает деформацию шнура в этом месте. Появляются силы упругости, стремящиеся уничтожить деформацию, т.е. появляются силы натяжения, которые тянут вслед за участком шнура, смещенный рукой, непосредственно прилегающий к нему участок. Смещение этого второго участка вызывает деформацию и натяжение следующего, и т.д. Участки шнура обладают массой, и поэтому вследствие инерции набирают или теряют скорость под действием сил не мгновенно. Когда мы довели конец шнура до наибольшего отклонения вправо и начали вести его в влево, смежный участок еще будет продолжать двигаться вправо и лишь с некоторым запозданием остановится и тоже пойдет влево. Таким образом, запаздывающий переход колебания от одной точки шнура к другой обусловлен наличием у материала шнура упругости и массы.
Свойства поперечных волн зависят от многих обстоятельств: от вида связи между смежными участками среды, от размеров среды, от формы тела и т.п.
Когда мы говорим, что волна «бежит вдоль по шнуру», то это лишь краткое описание следующего явления: каждая точка шнура совершает такое же колебание, какое мы заставили совершать один из концов шнура, но колебание каждой точки тем больше запаздывает (отстает по фазе), чем эта точка дальше от конца шнура. Это запаздывание зависит также от длины волны – расстояния между двумя соседними горбами синусоиды и равна скорости распространения волны на период
Примером поперечных волн в шнуре является струна рояля.
Поперечная волна
Возьмем тело удлиненной формы, а именно столб воздуха, заключенный в трубе. Вдоль трубу может двигаться поршень. Заставим этот поршень совершать гармоническое колебание.
Каждый участок тела (слой воздуха) обладает массой, а всякое сжатие воздуха создает избыток давления. Следовательно, в столбе воздуха образуется упругая волна, которая будет бежать от поршня. Однако теперь частицы воздуха колеблется в том же направлении что и поршень, т.е. вдоль направления распространения волны. Такие волны называются продольными.
Для продольных волн остается в силе определение длинны волны .
Если там можно сказать, что длинна волны равна расстоянию между двумя соседними горбами синусоиды, то здесь она равна расстоянию между серединами двух соседних уплотнений (или разряжений). Скорость распространения продольной находится по той же формуле, что и для поперечной волны. Это, конечно, не значит, что скорость распространения в среде обоих видов волн в теле одинакова. Наоборот, во всякой среде скорость продольных волн больше, чем поперечных волн и, следовательно, при одном и том же периоде длина продольной волны больше чем поперечной.
Говоря «во всякой среде», надо сделать оговорку: во всякой твердой среде. Дело в том, что упругие поперечные волны могут распространяться только в твердых телах, в то время как продольные волны могут распространяться и в жидкостях, и в газах. Таким образом, сравнивать скорость распространения обоих видов волн можно только в твердых телах.
Чем это объясняется?
В поперечной волне происходит сдвиг слоев друг относительно друга. Но упругие силы при сдвиге возникают только в твердых телах. В жидкостях и газах слои свободно скользят друг по другу, без появления противодействующих упругих сил, а раз нет упругих сил, то и образование упругих волн невозможно.
Благодаря этому свойству было определенно, что центр Земли жидкий т.к. он не проводит поперечных волн.
Известным примером продольных волн являются звуковые волны.
Продольная волна
Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц и которые способно воспринимать человеческое ухо.
Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.
Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется
амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука.
Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по
размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
С явлением резонанса мы уже сталкивались в данном реферате. Напомню, что резонансом называется резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний к частоте свободных колебаний.
Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте.
Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками.
Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.
Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.
Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертона 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.
Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое. Например, такого рода звук издает струна рояля. Если одновременно ударить несколько клавиш, т.е. заставить звучать несколько нот, то ощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот. Оказывается, что консонируют те ноты, периоды которых находятся отношениях небольших чисел. Например, консонанс получается при отношении периодов 2:3(квинта), при 3:4(кванта), 4:5(большая терция) и т.д. Если же периоды относятся как большие числа, например 19:23, то получается диссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем от периодичности колебаний, если одновременно ударим по многим клавишам. Звук получится уже шумоподобным.
Для шумов характерна сильная непериодичность формы колебаний: либо это – длительное колебание, но очень сложное по форме (шипение, скрип), либо отдельные выбросы (щелчки, стуки). С этой точки зрения шумам следует отнести и звуки, выражаемые согласными (шипящими, губными и т.д.).
Во всех случаях шумовые колебания состоят из огромного количества гармонических колебаний с разными частотами.
Таким образом, у гармонического колебания спектр состоит из одной-единственной частоты. У периодического колебания спектр состоит из набора частот – основной и кратных ей. У консонирующих созвучий мы имеем спектр, состоящий из нескольких таких наборов частот, причем основные относятся как небольшие целые числа. У диссонирующих созвучий основные частоты уже не находятся в таких простых отношениях. Чем больше в спектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеют спектры, в которых присутствуют чрезвычайно много частот.
Описанные прежде волны обусловленные силами упругости, но существуют так же волны, образование которых обусловлено силой тяжести. Волны, распространяющиеся по поверхности жидкости, не являются ни продольными, ни поперечными: движение частиц жидкости здесь более сложное.
Если в какой-либо точки поверхности жидкость опустилась (например, в результате
прикосновения твердым предмет), то под действием силы тяжести жидкость начнет сбегать
вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем края кольца частицы всегда «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т.д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.
Следует заметить, что в образования поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения, которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точки поверхности жидкости происходит деформация этой поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде тем больше, чем больше искривлена поверхность, т.е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (низких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности жидкости и соответственного ей поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около 1 см, т.е. для более коротких волн (называемых капиллярными волнами) преобладают силы поверхностного натяжения, а для более длинных - сила тяжести.
Несмотря на сложный «продольно-поперечный» характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса.
Кольцевые
волны
Ударяя концом проволоки по поверхности воды, мы заставим бежать по воде систему кольцевых гребней и впадин, Расстояние между соседними гребнями и впадинами , т.е. длина
волны, связано с периодом ударов Т уже известной формулой .
Если ударять ребром линейки, параллельным поверхности воды, то можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейных
Прямолинейная
волна
гребней и впадин. В этом случае перед частью линейки мы имеем одно-единственное направление распространения.
Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев.
В том, что распространение волн происходит не мгновенно, нас убеждают простейшие наблюдения. Постепенно и равномерно расширяются круги на воде и бегут морские волны.
Здесь мы непосредственно видим, что распространение колебаний из одного места в другое занимает определенное время. Но и для звуковых волн, которые в обычных условиях не видимы, легко обнаруживается тоже самое. Если в дали происходит выстрел, гроза, взрыв, свисток паровоза и т.д., то мы сначала видим эти явления и лишь спустя известное время
слышим звук. Чем дальше от нас источник звука, тем больше запоздание. Промежуток времени между вспышкой молнии и ударом грома может доходить иногда до нескольких десятков секунд. Зная расстояние от источника звука, и измерив запаздывание звука, можно определить скорость его распространения. Вспышку, произведенную на расстоянии 3 км, мы видим с запаздыванием всего на 10 мкс, в то время как звук тратит на пробег этого расстояния около 9 с. В сухом воздухе при температуре 10 ’C эта скорость оказалась равной 337,5 м/с.(1215 км/ч)
Скорость звуковых волн весьма различна для разных сред и, кроме того, зависит от температуры. Современные методы позволяют произвести точные измерения скорости звука, пользуясь малыми количествами исследуемого вещества.
Поставим на пути волн в водяной ванне плоскую пластинку, длина которой велика по сравнению с длиной волны . Мы увидим следующие. Позади пластинки получается область, в которой поверхность воды остается почти в покое. Другими словами, пластинка создает тень –
пространство, куда волны не проникают. Перед пластинкой отчетливо видно, как волны отражаются от нее, т.е. волны, падающие на пластинку, создают волны, идущие от пластинки.
Эти отражения волны имеют прежних волн. Перед пластинкой возникает своеобразная сетка из
первичных волн, падающих на пластинку, и отраженных, идущих от нее навстречу падающим.
Отражение плоских волн.
Обозначим угол, образуемый перпендикуляром к плоскости нашей пластинки и направлением распространения падающей волны, через , а угол, образуемый тем же перпендикуляром и направлением распространения отраженной волны, - через . Опыт показывает, что при всяком положении пластинки , т.е. угол отражения волны от отражающей плоскости равен углу падения.
Этот закон является общим волновым законом, т.е. он справедлив для любых волн, в том числе и для звуковых и световых. Закон остается в силе и для сферических (или кольцевых) волн. Здесь угол отражения в разных точках отражающей плоскости различен, но в каждой точке равен углу падения .
Отражение волн от препятствий относятся к числу очень распространенных явлений. Хорошо всем известное эхо обусловлено отражением звуковых волн от зданий, холмов, леса и т.п. Если до нас доходят звуковые волны, последовательно отразившиеся от ряда препятствий, то получается многократное эхо. Методы локации основаны на отражении электромагнитных волн и упругих волн от препятствий. Особенно часто мы наблюдаем явление отражения на световых волнах.
Отраженная волн всегда в той или иной степени ослаблена по сравнению с падающей. Часть энергии падающей волны поглощается тем телом, от поверхности которого происходит отражение.
Распространение механической волны, представляющее собой последовательную передачу движения от одного участка среды к другому, означает тем самым передачу энергии. Распространение волны создает в среде поток энергии, расходящийся от источника.
При встрече волны с различного рода телами переносимая энергия может произвести работу или превратится в другие виды энергии.
Яркий пример такого переноса энергии без переноса вещества дают нам взрывные волны. На расстояниях во много десятков метров от места взрыва, куда не долетают ни осколки, ни поток горячего воздуха, взрывная волна выбивает стекла, ломает стены и т.п., т.е. производит большую механическую работу. Но энергия переносится, конечно, и самыми слабыми волнами; например, летящий комар излучает звуковую волну, мощность которой, т.е. энергия, излучаемая в 1 с, составляет 10-10 Вт.
Энергия, излучаемая точечным источником, равномерно распространяется по всей поверхности волновой среды. Нетрудно видеть, что энергия, приходящиеся на единицу поверхности этой сферы, будет тем меньше, чем больше радиус сферы. Площадь сферы или любого вырезанного в ней конусом участка растет пропорционально квадрату радиуса, т.е. при увеличении расстояния от источника вдвое площадь увеличивается вчетверо, и на каждую единицу поверхности сферы приходится вчетверо меньшая энергия волны.
Энергию, переносимую волной через сечение, площадь которого равна 1 м2, за время, равное 1 с, т.е. мощность, переносимую через единичное сечение, называют интенсивностью волны. Таким образом, интенсивность сферической волны убывает обратно пропорционально квадрату расстояния от источника.
2
1
4
1
Областью применения колебаний и волн служат многие изобретения человека: от музыкальных инструментов и акустических динамиков до эхолотов и ультразвуковых диагностических аппаратов . С тремя последними мы и познакомимся.
Принцип преобразования электрических сигналов в звуковые волны, лежит в основе акустического динамика. Рассмотрим такой динамик поподробнее.
Электрические сигналы поступают на обмотку, которая создает магнитное поле. Магнитное поле попеременно то притягивает обмотку к магниту, то отталкивает. Переменные колебания обмотки вызывают соответствующие колебания конуса динамика. Если колебания находятся в интервале от 20 Гц до 20000 Гц, то мы будем слышать звук.
На том же принципе, только в обратном порядке, лежит принцип микрофона: звуковые волны определенной частоты создают колебания мембраны с той же частотой, а потом посредством магнита, колебания мембраны превращаются в электрические сигналы.
Если скорость распространения волн известна, то измерение их запаздывания позволяет решить обратную задачу: найти пройденное ими расстояние, то есть расстояние до источника этой волны. Так, например, с помощью ультразвука (с ним мы познакомимся ниже) можно сканировать морское дно, то есть измерять глубину морского дна, исследовать дно на наличие затонувших кораблей, и, искать косяки рыб. Причем все эти три функции может выполнять один прибор. Такой прибор называется эхолотом.
Эхолот испускает ультразвук, этот звук отражается от поверхности какого-либо тела (дна, например), и возвращается к своему источнику (эхолоту). Поскольку звук прошел двойное расстояние (до морского дна и обратно), то, чтобы найти это расстояние, надо скорость распространения волны в данной среде умножить на время запаздывания. Половина полученной величины и будет искомым расстоянием до объекта.
На принципе измерения времени запаздывания основана гидроакустическая локация. Гидролокаторы позволяют, например, обнаруживать с надводных кораблей подводные лодки и, наоборот, с подводных лодок надводные корабли
Измеряя разности между временами прихода какого-либо звука (взрыва, выстрела) в три различных пункта наблюдения, можно определить местонахождение источника этого звука. Такой способ называется звукометрией, применяется в военном деле для засечки артиллерийских батарей.
Ультразвук – это механические колебания высокой частоты (более 20 000 Гц). Такие колебания человеческий слух не воспринимает. В ультразвуковой диагностике обычно применяют частоты от 2 до 20 МГц. Датчик состоит из одного или нескольких пьезоэлектрических элементов, которые превращают акустические и механические колебания в электрические и обратно. Его прикладывают к поверхности кожи, на которую нанесен слой геля, обеспечивающего хороший акустический контакт. Электрический сигнал, подаваемый на датчик, преобразуется им в механические колебания, они и распространяются вглубь тканей. На границах тканями волны преломляются и отражаются, создавая эхо сигнал, возвращающийся к датчику. Там он вновь превращается в электрический и после обработки формирует изображение внутренних органов пациента на экране монитора.
Ультразвуковой аппарат, соединенный с компьютером, - это уже ультразвуковой томограф. Во многих случаях он может успешно заменить рентгеновский томограф и, в отличие от последнего, не оказывают вредного воздействия на организм.
Как изменится точность хода маятниковых часов за сутки, если их с экватора перенести на полюс?
Вначале следует уточнить, как изменится ход часов. Так как на полюсе притяжение слабее, то часы уйдут вперед. Тогда
- разность хода часов за время
Тогда
и будет ответом задачи. Теперь найдем
и ответом будет, как несложно убедится t = 3 мин 45 с.
На веревке висит ведро с водой и раскачивается. В дне ведра находится отверстие, через которое вода постепенно сливается. Будет ли изменяться период колебаний, если принять систему за математический маятник?
С первого взгляда может показаться, что период не изменится, но
Где L – не длинна нити, а расстояние от точки подвеса до центра тяжести, а центр тяжести будет смещаться по мере вытекания воды, а, следовательно, и будет изменяться и период колебания этой системы.
За одно и то же время один математический маятник делает 50, а второй – 30 колебаний. Найти их длины, если один из них на 32 см короче другого.
Прежде всего, определим, какой из маятников длиннее. Очевидно, это тот,
который делает меньшее число колебаний, то есть второй маятник. Тогда
Из условия t1= t2
Учитывая, что
нетрудно получить
По определению, длинна волны
Смещение любой точки найдем из уравнения волны
Подведем итоги всего выше сказанного.
Колебанием называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл. Продолжительность одного цикла называется периодом.
Частотой называется количество циклов, совершаемые колеблющимся телом за единицу времени.
У каждой колебательной системы есть состояние устойчивого равновесия. Если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение. Возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.
Свободными колебаниями называются колебания тела, на которое не действует периодически изменяющаяся сила, и наоборот, если на колеблющееся тело действует периодически изменяющаяся сила, то это вынужденные колебания.
Если частота вынуждающей силы совпадает с собственной частотой колебательной системы, то происходит резонанс.
Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при равенстве частот вынуждающей силы и собственной частоты колебательной системы.
Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием.
Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой.
Волны бывают двух видов: поперечные и продольные.
В поперечной волне каждая точка тела колеблется перпендикулярно к направлению распространения волн.
Поперечные волны могут распространяться только в твердых телах.
Примером поперечной волны может быть колеблющаяся струна рояля или вообще любой музыкальный инструмент.
А в продольной волне каждая точка материи колеблется вдоль направления распространения волн
Поэтому продольные волны могут распространяться в жидкой и газообразной среде.
Примером продольных волн являются звуковые волны.
Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц , то есть, которые способно воспринимать человеческое ухо.
Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется
амплитудой колебаний.
Высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
Волны не распространяются мгновенно. Скорость распространения волн зависит от среды, где распространяются волны а так же от температуры . Так ,например в воздухе при температуре 20`С эта скорость составляет 343 м/с , а в стальном рельсе при температуре 15`С эта скорость составляет 5000 м/с.
Если бы в современной физике не было таких понятий как, механические колебания и волны, то мы не знали бы, почему мы слышим друг друга, Томас Эдисон не изобрел бы телефон и фонограф, и их бы не было в нашей повседневной жизни.
Элементарный учебник физики под редакцией Г.С. Ландсберга том III. Колебания и волны. Оптика. Атомная и ядерная физика – Репринт 10 изд перераб, 1995
«Физика» Дж. Орир том 1, Москва 1981
Учебник по физике для 9 класса средней школы Н.М. Шахмаева, С.Н. Шахмаева, Д.Ш. Шодиева, 1992
«Физика» Кикоин И. К., Кикоин А. К. Учебник для 9 кл. – 4-е издание ,1997
Энциклопедия для детей Аванта+ Т.16 «Физика» Ч.2 Электричество и магнетизм. Термодинамика и квантовая механика. Физика ядра и элементарных частиц , 2000
Энциклопедия для детей Аванта+ Т.14 «Техника» История техники. Мир современной техники, 1999
Энциклопедия «Наука» Аннабел Крейг и Клифф Росни изд. «Росмен»,1997
И.А. Галаванов «Подходы к решению задач по физике» ,1997
В. П . Лившевский «Физика вокруг нас» , Москва ,1974
И. В. Савельев «Курс общей физики» Книга 1 «Механика» ,2000
www.referatmix.ru
Школа №283 г. Москва
РЕФЕРАТ:
ПО ФИЗИКЕ
НА ТЕМУ:
«Колебания и волны»
Выполнил:
Ученик 9 «б» школы №283
Содержание
Введение. 3
1. Колебания. 4
· Периодическое движение 4
· Свободные колебания 4
· Маятник. Кинематика его колебаний 4
· Гармоническое колебание. Частота 5
· Динамика гармонических колебаний 6
· Превращение энергии при свободных колебаниях 6
· Период 7
· Сдвиг фаз 8
· Вынужденные колебания 8
· Резонанс 8
2. Волны. 9
· Поперечные волны в шнуре 9
· Продольные волны в столбе воздуха 10
· Звуковые колебания 11
· Музыкальный тон. Громкость и высота тона 11
· Акустический резонанс 12
· Шумы 12
· Волны на поверхности жидкости 13
· Скорость распространения волн 14
· Отражение волн 15
· Перенос энергии волнами 16
3. Применение 17
· Акустический динамик и микрофон 17
· Эхолот 17
· Ультразвуковая диагностика 18
4. Примеры задач по физике 18
5. Заключение 21
6. Список используемой литературы 22
Введение
О теме
Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости. Таким свойством повторяемости обладают, например, качания маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника и т. п.
В зависимости от физической природы повторяющегося процесса, различают колебания: механические, электромагнитные, электромеханические и т. д. В данном реферате рассматриваются механические колебания.
Этот раздел физики является ключевым в вопросе «Почему рушатся мосты?» (см. стр. 8)
Вместе с тем колебательные процессы лежат в самой основе различных отраслей техники.
Так, например, на колебательных процессах основана вся радиотехника, и в частности акустический динамик (см. стр. 17)
О реферате
В первой части реферата («Колебания» стр.4-9) подробно описано, о том, что такое механические колебания, какие бывают виды механических колебаний, величины, характеризующие колебания, а так же, что такое резонанс.
Во второй части реферата («Волны» стр. 9-16) рассказывается о том, что такое волны, как они возникают, какие бывают волны, что такое звук, его характеристики, с какой скоростью распространяются волны, как отражаются и как волнами переносится энергия.
В третьей части реферата («Применение» стр. 17-18) рассказано о том, для чего нам все это нужно знать, и о том, где в технике и в повседневной жизни применяются механические колебания и волны.
В четвертой части реферата (стр. 18-20) приводится несколько примеров задач по физике на данную тему.
Заканчивается реферат катким обобщением всего сказанного («Заключение» стр. 21) и списком использованной литературы (стр. 22)
Колебания.
Периодическое движение.
Среди всевозможных совершающихся вокруг нас механических движений часто встречаются повторяющиеся движения. Любое равномерное вращение является повторяющимся движением: при каждом обороте всякая точка равномерно вращающегося тела проходит те же положения, что и при предыдущем обороте, причем в такой же последовательности и с такой же скоростью.
В действительности не всегда и не при всяких условиях повторение совершенно одинаково. В одних случаях каждый новый цикл очень точно повторяет предыдущий, в других случаях различие между следующими друг за другом циклами может быть заметным. Отклонения от совершенно точного повторения очень часто настолько малы, что ими можно пренебречь и считать движение повторяющимся вполне точно, т.е. считать его периодическим.
Периодическим называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл.
Продолжительность одного цикла называется периодом. Очевидно, период равномерного вращения равен продолжительности одного оборота.
Свободные колебания.
В природе, и особенно в технике, чрезвычайно большую роль играют колебательные системы, т.е. те тела и устройства, которые сами по себе способны совершать периодические движения. «Сами по себе» — это значит не будучи принуждаемы к этому действием периодических внешних сил. Такие колебания называются поэтому свободными колебаниями в отличие от вынужденных, протекающих под действием периодически меняющихся внешних сил.
Всем колебательным системам присущ ряд общих свойств:
1. У каждой колебательной системы есть состояние устойчивого равновесия.
2. Если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение.
3. Возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.
Маятник; кинематика его колебаний.
Маятником является всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Молоток, висящий на гвозде, весы, груз на веревке – все это колебательные системы, подобные маятнику стенных часов.
У всякой системы, способной совершать свободные колебания, имеется устойчивое положение равновесия. У маятника это положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну сторону, то в другую сторону от положения равновесия. Наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство – зависимость амплитуды от условий в начале движения – характерно не только для свободных колебаний маятника, но и вообще для свободных колебаний очень многих колебательных систем.
Прикрепим к маятнику волосок и будем двигать под этим волоском закопченную стеклянную пластинку. Если двигать пластинку с постоянной скоростью в направлении, перпендикулярном к плоскости колебаний, то волосок прочертит на пластинки волнистую линию. Мы имеем в этом опыте простейший осциллограф – так называются приборы для записи колебаний. Таким образом волнистая линия представляет собой осциллограмму колебаний маятника.
Амплитуда колебаний изображается на этой осциллограмме отрезком AB, период изображается отрезком CD, равным расстоянию, на которое передвигается пластинка за период маятника.
Так как мы двигаем закопченную пластинку равномерно, то всякое ее перемещение пропорционально времени, в течении которого оно совершалось. Мы можем сказать поэтому, что вдоль оси x в определенном масштабе отложено время. С другой стороны, в направлении, перпендикулярном к x волосок отмечает на пластинке расстояние конца маятника от его положения равновесия, т.е. путь пройденный концом маятника от этого положения.
Как мы знаем, наклон линии на таком графике изображает скорость движения. Через положение равновесия маятник проходит с наибольшей скоростью. Соответственно этому и наклон волнистой линии наибольший в тех точках, где она пересекает ось x. Наоборот, в моменты наибольших отклонений скорость маятника равна нулю. Соответственно этому и волнистая линия в тех точках, где она наиболее удалена от оси x, имеет касательную параллельную x, т.е. наклон равен нулю
Гармоническое колебание. Частота.
Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием.
Гармоническое колебание является специальным, частным видом периодического колебания. Этот специальный вид колебания очень важен, так как он чрезвычайно часто встречается в самых различных колебательных системах. Колебание груза на пружине, камертона, маятника, зажатой металлической пластинки как раз и является по своей форме гармоническим. Следует заметить, что при больших амплитудах колебания указанных систем имеет несколько более сложную форму, но они тем ближе к гармоническому, чем меньше амплитуда колебаний.
Если на горизонтальной оси откладывать центральный угол, а на вертикальной — перпендикуляр ВВ’, опущенный из конца вращающегося радиуса ОВ на неподвижный диаметр АА’( угол … отсчитывается от неподвижного радиуса ОА), то получится кривая, называемая синусоидой. Для каждой абсциссы a ордината этой кривой BB’ пропорциональна синусу угла a, так какЧисло циклов гармонического колебания, совершаемых за 1с, называется частотой этого колебания. Единицу частоты называют герцем. (Гц)
Вообще обозначая продолжительность периода, выраженную в секундах, через T, а частоту, выраженную в герцах, через v, будем иметьДинамика гармонических колебаний.
Рассмотрим динамику свободных колебаний в идеальных колебательных системах без трения.
Отведем шар пружинного маятника от положения равновесия. В этом случае на шар действует возвращающая сила, направленная в сторону положения равновесия.
Ее проекция имеет знак, противоположный знаку смещения x
Аналогично обстоит дело в случае математического маятника. Отведем маятник от положения равновесия. В этом случае равнодействующая силы тяжести и силы упругости нити направлена в сторону положения равновесия. Эту силу можно выразить так: Но если рассматривать колебания с маленькими углами отклонения, тотак как . Величина постоянна. Обозначим ее через k. Тогда
Направлена сила в сторону противоположную смещению.Превращения энергии при свободных колебаниях.
Отведем маятник на небольшой угол a от положения равновесия. Этим мы сообщим маятнику потенциальную энергию:
Где Hmax – максимальная высота подъема маятника. Отпустим маятник. Под действием силы тяжести и силы реакции маятника будет двигаться к положению равновесия. При этом его потенциальная энергия превращается в кинетическую. В положении равновесия вся сообщенная маятнику потенциальная энергия превратится в кинетическую:Где — максимальное значение скорости движения тела, подвешенного к нити.
При отсутствии сил трения по закону сохранения энергии максимальное значение потенциальной энергии равно максимальному значению кинетической энергии: Итак, при колебаниях маятника происходит периодическое превращении потенциальной энергии в кинетическую и обратно: В произвольный момент полная механическая энергия колеблющегося тела по закону превращения и сохранения энергии равна сумме его потенциальной и кинетической энергии:Период.
Период колебаний маятника, близкого по своим свойствам к математическому маятнику, не зависит от массы маятника.
Заставим маятник описывать коническую поверхность. В этом случае шарик маятника двигается по окружности. Определив период обращения маятника, обнаружим, что он равен периоду колебаний этого маятника: Период обращения конического маятника же равен длине описываемой окружности, деленной на линейную скорость: На шарик действует центростремительная сила, так как он двигается по окружности. Итак период математического маятника зависит только от длины маятник l и от ускорения свободного падения g.Сдвиг фаз.
Возьмем два одинаковых маятника и отклоним их в одну и ту же сторону на один и тот же угол от вертикали. Если теперь их отпустить, то мы два гармонических колебания с одинаковыми амплитудами и частотами. Казалось бы, никакого различия между ними быть не может.
Однако стоит нам отпустить маятники не одновременно, и мы сразу увидим разницу: колебания будут сдвинуты по времени.
Про колебания одинаковой частоты, но смещенные по времени, говорят, что они сдвинуты по фазе. Смещение по времени выражается в долях периода, а сдвиг или разность фаз – в угловых единицах.
Если второе колебание запаздывает по сравнению с первым на 1/8 периода, то это значит, что оно отстает по фазе на 360*1/8=45, или сдвинуто по фазе на –45. Если второе колебание опережает первое на 1/8 периода, то говорят, что оно опережает его по фазе на 45, или сдвинуто по фазе +45.
Если колебания происходят без запаздывания, то их называют синфазными, или говорят, что они совершаются в фазе. При запаздывание одного на полпериода говорят, что колебания происходят в противофазе.
Вынужденные колебания.
Мы уже упоминали о таких случаях, когда периодическое движение тела происходит не свободно, а в результате действия периодически меняющейся силы.
Подобные повторяющиеся силы вызывают периодическое движение даже таких тел, которые сами не являются колебательными системами.
Но как будет обстоять дело в том случае, если периодическая система действует на колебательную систему.
1. В колебательной системе, на которую действует периодически меняющиеся сила, устанавливается периодическое движение.
2. Частота вынужденных колебаний равна частоте действующей силы.
Резонанс
Если постепенно увеличивать частоту вынуждающей силы то рано или поздно мы увидим, что когда частота вынуждающей силы приблизится к собственной частоте колебательной системы, то амплитуда колебаний резко возрастает. Амплитуда колебаний максимальна, когда частота вынуждающей силы равна собственной частоте колебательной системы. При дальнейшем росте частоты вынуждающей силы амплитуда колебаний уменьшается. Явление резкого возрастания амплитуды вынужденных колебаний при равенстве частот вынуждающей силы и собственной частоты колебательной системы называется резонансом.
В чем причина явления резонанса, почему растет амплитуда колебаний, когда частота вынуждающей силы приближается к собственной частоте.
Совпадение частот означает, что сила упругости действует «в такт» с вынуждающей силой. Если сила упругости и вынуждающая сила в какие-то моменты действуют в одном направлении, то они складываются и их действие усиливается. И даже если вынуждающая сила мала, она все равно приведет к росту амплитуды. Ведь эта малая сила будет добавляться к силе упругости каждый период.
Явление резонанса может быть полезным, поскольку оно позволяет получить даже с помощью малой силы большое увеличение амплитуды колебаний. С другой стороны, резонанс может оказаться вредным и даже опасным. Если, например, на фундаменте установлена машина, в которой какие-нибудь части совершают периодические движения, то колебания передаются фундаменту и он будет совершать вынужденные колебания. Фундамент – это тоже колебательная система со своей собственной частотой. И если частота периодических движений совпадает с собственной частотой фундамента, то амплитуда его колебаний может возрасти настолько, что это приведет к его разрушению. Известно несколько исторических примеров, например, в XIX в. обрушился Египетский мост в Петербурге. По мосту шел в ногу отряд кавалергардов. Ритм их строевого шага случайно совпал с собственной частотой сооружения, амплитуда вынужденных колебаний стала резко возрастать, смещения превысили расчетную критическую величину – и мост не выдержал.
Именно поэтому с опасными результатами резонанса нужно бороться, т. е. его не допускать. Для этого заранее рассчитывают частоты колебаний машин, фундаментов, средств транспорта и т.д., с тем, чтобы при обычных условиях их эксплуатации резонанс не мог наступить.
С явлением резонанса мы встречаемся и в повседневной жизни. Если в комнате задребезжали оконные стекла при проезде по улице тяжелого грузовика, то это значит, что собственные частоты колебаний стекла совпали с частотой колебаний машины. С явлением резонанса мы еще столкнемся в этом реферате.
Волны.
Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости, возникающими вследствие деформации среды при ее колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечет за собой последовательное возникновение колебаний в других местах, все более и более удаленных от первичного, и возникает так называемая волна.
Поперечные волны в шнуре
Подвесим за один конец длинный шнур или резиновую трубку. Если нижний конец шнура быстро отвести в сторону и вернуть обратно, то изгиб «побежит» по шнуру вверх, дойдя до точки подвеса, отразится и вернется вниз. Если двигать нижний конец непрерывно, заставляя его совершать гармоническое колебание, то по шнуру «побежит» синусоидальная волна.
Надо заметить, что распространение волны означает запаздывающую передачу колебательных движений от одной точки среды к другой и никакого переноса вместе с волной самого вещества тела, в котором волна распространяется, не происходит.
Каждая точка шнура колеблется перпендикулярно к направлению распространения волны, т.е. поперек направления распространения. Поэтому и волна такого вида называется поперечной.
Смещение нижнего конца шнура в сторону вызывает деформацию шнура в этом месте. Появляются силы упругости, стремящиеся уничтожить деформацию, т.е. появляются силы натяжения, которые тянут вслед за участком шнура, смещенный рукой, непосредственно прилегающий к нему участок. Смещение этого второго участка вызывает деформацию и натяжение следующего, и т.д. Участки шнура обладают массой, и поэтому вследствие инерции набирают или теряют скорость под действием сил не мгновенно. Когда мы довели конец шнура до наибольшего отклонения вправо и начали вести его в влево, смежный участок еще будет продолжать двигаться вправо и лишь с некоторым запозданием остановится и тоже пойдет влево. Таким образом, запаздывающий переход колебания от одной точки шнура к другой обусловлен наличием у материала шнура упругости и массы.
Свойства поперечных волн зависят от многих обстоятельств: от вида связи между смежными участками среды, от размеров среды, от формы тела и т.п.
Когда мы говорим, что волна «бежит вдоль по шнуру», то это лишь краткое описание следующего явления: каждая точка шнура совершает такое же колебание, какое мы заставили совершать один из концов шнура, но колебание каждой точки тем больше запаздывает (отстает по фазе), чем эта точка дальше от конца шнура. Это запаздывание зависит также от длины волны – расстояния между двумя соседними горбами синусоиды и равна скорости распространения волны на периодПримером поперечных волн в шнуре является струна рояля.
Продольные волны в столбе воздуха
Возьмем тело удлиненной формы, а именно столб воздуха, заключенный в трубе. Вдоль трубу может двигаться поршень. Заставим этот поршень совершать гармоническое колебание.
Каждый участок тела (слой воздуха) обладает массой, а всякое сжатие воздуха создает избыток давления. Следовательно, в столбе воздуха образуется упругая волна, которая будет бежать от поршня. Однако теперь частицы воздуха колеблется в том же направлении что и поршень, т.е. вдоль направления распространения волны. Такие волны называются продольными.
Для продольных волн остается в силе определение длинны волны .
Если там можно сказать, что длинна волны равна расстоянию между двумя соседними горбами синусоиды, то здесь она равна расстоянию между серединами двух соседних уплотнений (или разряжений). Скорость распространения продольной находится по той же формуле, что и для поперечной волны. Это, конечно, не значит, что скорость распространения в среде обоих видов волн в теле одинакова. Наоборот, во всякой среде скорость продольных волн больше, чем поперечных волн и, следовательно, при одном и том же периоде длина продольной волны больше чем поперечной.
Говоря «во всякой среде», надо сделать оговорку: во всякой твердой среде. Дело в том, что упругие поперечные волны могут распространяться только в твердых телах, в то время как продольные волны могут распространяться и в жидкостях, и в газах. Таким образом, сравнивать скорость распространения обоих видов волн можно только в твердых телах.
Чем это объясняется?
В поперечной волне происходит сдвиг слоев друг относительно друга. Но упругие силы при сдвиге возникают только в твердых телах. В жидкостях и газах слои свободно скользят друг по другу, без появления противодействующих упругих сил, а раз нет упругих сил, то и образование упругих волн невозможно.
Благодаря этому свойству было определенно, что центр Земли жидкий т.к. он не проводит поперечных волн.
Известным примером продольных волн являются звуковые волны.
Звуковые колебания
Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц и которые способно воспринимать человеческое ухо.
Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми .
Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.
Музыкальный тон. Громкость и высота тона
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется
амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука.
Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по
размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
Акустический резонанс
С явлением резонанса мы уже сталкивались в данном реферате. Напомню, что резонансом называется резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний к частоте свободных колебаний .
Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте.
Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками.
Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.
Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.
Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертона 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.
Шумы
Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое. Например, такого рода звук издает струна рояля. Если одновременно ударить несколько клавиш, т.е. заставить звучать несколько нот, то ощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот. Оказывается, что консонируют те ноты, периоды которых находятся отношениях небольших чисел. Например, консонанс получается при отношении периодов 2:3(квинта), при 3:4(кванта), 4:5(большая терция) и т.д. Если же периоды относятся как большие числа, например 19:23, то получается диссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем от периодичности колебаний, если одновременно ударим по многим клавишам. Звук получится уже шумоподобным.
Для шумов характерна сильная непериодичность формы колебаний: либо это – длительное колебание, но очень сложное по форме (шипение, скрип), либо отдельные выбросы (щелчки, стуки). С этой точки зрения шумам следует отнести и звуки, выражаемые согласными (шипящими, губными и т.д.).
Во всех случаях шумовые колебания состоят из огромного количества гармонических колебаний с разными частотами.
Таким образом, у гармонического колебания спектр состоит из одной-единственной частоты. У периодического колебания спектр состоит из набора частот – основной и кратных ей. У консонирующих созвучий мы имеем спектр, состоящий из нескольких таких наборов частот, причем основные относятся как небольшие целые числа. У диссонирующих созвучий основные частоты уже не находятся в таких простых отношениях. Чем больше в спектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеют спектры, в которых присутствуют чрезвычайно много частот.
Волны на поверхности жидкости
Описанные прежде волны обусловленные силами упругости, но существуют так же волны, образование которых обусловлено силой тяжести. Волны, распространяющиеся по поверхности жидкости, не являются ни продольными, ни поперечными: движение частиц жидкости здесь более сложное.
Если в какой-либо точки поверхности жидкость опустилась (например, в результате
прикосновения твердым предмет), то под действием силы тяжести жидкость начнет сбегать
вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем края кольца частицы всегда «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т.д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.
Следует заметить, что в образования поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения, которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точки поверхности жидкости происходит деформация этой поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде тем больше, чем больше искривлена поверхность, т.е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (низких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности жидкости и соответственного ей поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около 1 см, т.е. для более коротких волн (называемых капиллярными волнами) преобладают силы поверхностного натяжения, а для более длинных — сила тяжести.
Несмотря на сложный «продольно-поперечный» характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса.Ударяя концом проволоки по поверхности воды, мы заставим бежать по воде систему кольцевых гребней и впадин, Расстояние между соседними гребнями и впадинами , т.е. длина
волны, связано с периодом ударов Т уже известной формулой .
Если ударять ребром линейки, параллельным поверхности воды, то можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейныхгребней и впадин. В этом случае перед частью линейки мы имеем одно-единственное направление распространения.
Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев.
Скорость распространения волн
В том, что распространение волн происходит не мгновенно, нас убеждают простейшие наблюдения. Постепенно и равномерно расширяются круги на воде и бегут морские волны.
Здесь мы непосредственно видим, что распространение колебаний из одного места в другое занимает определенное время. Но и для звуковых волн, которые в обычных условиях не видимы, легко обнаруживается тоже самое. Если в дали происходит выстрел, гроза, взрыв, свисток паровоза и т.д., то мы сначала видим эти явления и лишь спустя известное время
слышим звук. Чем дальше от нас источник звука, тем больше запоздание. Промежуток времени между вспышкой молнии и ударом грома может доходить иногда до нескольких десятков секунд. Зная расстояние от источника звука, и измерив запаздывание звука, можно определить скорость его распространения. Вспышку, произведенную на расстоянии 3 км, мы видим с запаздыванием всего на 10 мкс, в то время как звук тратит на пробег этого расстояния около 9 с. В сухом воздухе при температуре 10 ’C эта скорость оказалась равной 337,5 м/с.(1215 км/ч)
Скорость звуковых волн весьма различна для разных сред и, кроме того, зависит от температуры. Современные методы позволяют произвести точные измерения скорости звука, пользуясь малыми количествами исследуемого вещества.
Отражение волн
Поставим на пути волн в водяной ванне плоскую пластинку, длина которой велика по сравнению с длиной волны . Мы увидим следующие. Позади пластинки получается область, в которой поверхность воды остается почти в покое. Другими словами, пластинка создает тень –
пространство, куда волны не проникают. Перед пластинкой отчетливо видно, как волны отражаются от нее, т.е. волны, падающие на пластинку, создают волны, идущие от пластинки.
Эти отражения волны имеют прежних волн. Перед пластинкой возникает своеобразная сетка из
первичных волн, падающих на пластинку, и отраженных, идущих от нее навстречу падающим.
Отражение плоских волн.
Обозначим угол, образуемый перпендикуляром к плоскости нашей пластинки и направлением распространения падающей волны, через , а угол, образуемый тем же перпендикуляром и направлением распространения отраженной волны, — через . Опыт показывает, что при всяком положении пластинки , т.е. угол отражения волны от отражающей плоскости равен углу падения.
Этот закон является общим волновым законом, т.е. он справедлив для любых волн, в том числе и для звуковых и световых. Закон остается в силе и для сферических (или кольцевых) волн. Здесь угол отражения в разных точках отражающей плоскости различен, но в каждой точке равен углу падения .
Отражение волн от препятствий относятся к числу очень распространенных явлений. Хорошо всем известное эхо обусловлено отражением звуковых волн от зданий, холмов, леса и т.п. Если до нас доходят звуковые волны, последовательно отразившиеся от ряда препятствий, то получается многократное эхо. Методы локации основаны на отражении электромагнитных волн и упругих волн от препятствий. Особенно часто мы наблюдаем явление отражения на световых волнах.
Отраженная волн всегда в той или иной степени ослаблена по сравнению с падающей. Часть энергии падающей волны поглощается тем телом, от поверхности которого происходит отражение.
Перенос энергии волнами
Распространение механической волны, представляющее собой последовательную передачу движения от одного участка среды к другому, означает тем самым передачу энергии. Распространение волны создает в среде поток энергии, расходящийся от источника.
При встрече волны с различного рода телами переносимая энергия может произвести работу или превратится в другие виды энергии.
Яркий пример такого переноса энергии без переноса вещества дают нам взрывные волны. На расстояниях во много десятков метров от места взрыва, куда не долетают ни осколки, ни поток горячего воздуха, взрывная волна выбивает стекла, ломает стены и т.п., т.е. производит большую механическую работу. Но энергия переносится, конечно, и самыми слабыми волнами; например, летящий комар излучает звуковую волну, мощность которой, т.е. энергия, излучаемая в 1 с, составляет 10-10 Вт.
Энергия, излучаемая точечным источником, равномерно распространяется по всей поверхности волновой среды. Нетрудно видеть, что энергия, приходящиеся на единицу поверхности этой сферы, будет тем меньше, чем больше радиус сферы. Площадь сферы или любого вырезанного в ней конусом участка растет пропорционально квадрату радиуса, т.е. при увеличении расстояния от источника вдвое площадь увеличивается вчетверо, и на каждую единицу поверхности сферы приходится вчетверо меньшая энергия волны.
Энергию, переносимую волной через сечение, площадь которого равна 1 м2, за время, равное 1 с, т.е. мощность, переносимую через единичное сечение, называют интенсивностью волны. Таким образом, интенсивность сферической волны убывает обратно пропорционально квадрату расстояния от источника.
Применение.
Областью применения колебаний и волн служат многие изобретения человека: от музыкальных инструментов и акустических динамиков до эхолотов и ультразвуковых диагностических аппаратов. С тремя последними мы и познакомимся.
Акустический динамик и микрофон
Принцип преобразования электрических сигналов в звуковые волны, лежит в основе акустического динамика. Рассмотрим такой динамик поподробнее.
Электрические сигналы поступают на обмотку, которая создает магнитное поле. Магнитное поле попеременно то притягивает обмотку к магниту, то отталкивает. Переменные колебания обмотки вызывают соответствующие колебания конуса динамика. Если колебания находятся в интервале от 20 Гц до 20000 Гц, то мы будем слышать звук.
На том же принципе, только в обратном порядке, лежит принцип микрофона: звуковые волны определенной частоты создают колебания мембраны с той же частотой, а потом посредством магнита, колебания мембраны превращаются в электрические сигналы.
Эхолот.
Если скорость распространения волн известна, то измерение их запаздывания позволяет решить обратную задачу: найти пройденное ими расстояние, то есть расстояние до источника этой волны. Так, например, с помощью ультразвука (с ним мы познакомимся ниже) можно сканировать морское дно, то есть измерять глубину морского дна, исследовать дно на наличие затонувших кораблей, и, искать косяки рыб. Причем все эти три функции может выполнять один прибор. Такой прибор называется эхолотом.
Эхолот испускает ультразвук, этот звук отражается от поверхности какого-либо тела (дна, например), и возвращается к своему источнику (эхолоту). Поскольку звук прошел двойное расстояние (до морского дна и обратно), то, чтобы найти это расстояние, надо скорость распространения волны в данной среде умножить на время запаздывания. Половина полученной величины и будет искомым расстоянием до объекта.
На принципе измерения времени запаздывания основана гидроакустическая локация. Гидролокаторы позволяют, например, обнаруживать с надводных кораблей подводные лодки и, наоборот, с подводных лодок надводные корабли
Измеряя разности между временами прихода какого-либо звука (взрыва, выстрела) в три различных пункта наблюдения, можно определить местонахождение источника этого звука. Такой способ называется звукометрией, применяется в военном деле для засечки артиллерийских батарей.
Ультразвуковая диагностика.
Ультразвук – это механические колебания высокой частоты (более 20 000 Гц). Такие колебания человеческий слух не воспринимает. В ультразвуковой диагностике обычно применяют частоты от 2 до 20 МГц. Датчик состоит из одного или нескольких пьезоэлектрических элементов, которые превращают акустические и механические колебания в электрические и обратно. Его прикладывают к поверхности кожи, на которую нанесен слой геля, обеспечивающего хороший акустический контакт. Электрический сигнал, подаваемый на датчик, преобразуется им в механические колебания, они и распространяются вглубь тканей. На границах тканями волны преломляются и отражаются, создавая эхо сигнал, возвращающийся к датчику. Там он вновь превращается в электрический и после обработки формирует изображение внутренних органов пациента на экране монитора.
Ультразвуковой аппарат, соединенный с компьютером, — это уже ультразвуковой томограф. Во многих случаях он может успешно заменить рентгеновский томограф и, в отличие от последнего, не оказывают вредного воздействия на организм.
Примеры задач по физике
Как изменится точность хода маятниковых часов за сутки, если их с экватора перенести на полюс?
Вначале следует уточнить, как изменится ход часов. Так как на полюсе притяжение слабее, то часы уйдут вперед. Тогда
— разность хода часов за время
— разность хода часов за одну секунду
Тогда
и будет ответом задачи. Теперь найдем
и ответом будет, как несложно убедится t = 3 мин 45 с.
На веревке висит ведро с водой и раскачивается. В дне ведра находится отверстие, через которое вода постепенно сливается. Будет ли изменяться период колебаний, если принять систему за математический маятник?
С первого взгляда может показаться, что период не изменится, но
Где L – не длинна нити, а расстояние от точки подвеса до центра тяжести, а центр тяжести будет смещаться по мере вытекания воды, а, следовательно, и будет изменяться и период колебания этой системы.
За одно и то же время один математический маятник делает 50, а второй – 30 колебаний. Найти их длины, если один из них на 32 см короче другого.
Прежде всего, определим, какой из маятников длиннее. Очевидно, это тот,
который делает меньшее число колебаний, то есть второй маятник. Тогда
Из условия t1 = t2
Учитывая, что
нетрудно получить
Поперечная волна распространяется вдоль упругого шнура со скоростью 15 м/с. Период колебания точек шнура 1,2 с, амплитуда колебания 2 см.Определить длину волны и смещение точки через 4 с.
По определению, длинна волны
Смещение любой точки найдем из уравнения волны
Смещение равно
Минус означает, что смещение будет направлено в сторону, противоположную условно выбранному положительному направлению.
Заключение
Подведем итоги всего выше сказанного.
Колебанием называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл. Продолжительность одного цикла называется периодом.
Частотой называется количество циклов, совершаемые колеблющимся телом за единицу времени.
У каждой колебательной системы есть состояние устойчивого равновесия. Если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение. Возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.
Свободными колебаниями называются колебания тела, на которое не действует периодически изменяющаяся сила, и наоборот, если на колеблющееся тело действует периодически изменяющаяся сила, то это вынужденные колебания.
Если частота вынуждающей силы совпадает с собственной частотой колебательной системы, то происходит резонанс.
Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при равенстве частот вынуждающей силы и собственной частоты колебательной системы.
Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием.
Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой.
Волны бывают двух видов: поперечные и продольные.
В поперечной волне каждая точка тела колеблется перпендикулярно к направлению распространения волн.
Поперечные волны могут распространяться только в твердых телах.
Примером поперечной волны может быть колеблющаяся струна рояля или вообще любой музыкальный инструмент.
А в продольной волне каждая точка материи колеблется вдоль направления распространения волн
Поэтому продольные волны могут распространяться в жидкой и газообразной среде.
Примером продольных волн являются звуковые волны.
Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц, то есть, которые способно воспринимать человеческое ухо.
Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется
амплитудой колебаний.
Высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
Волны не распространяются мгновенно. Скорость распространения волн зависит от среды, где распространяются волны а так же от температуры. Так, например в воздухе при температуре 20`С эта скорость составляет 343 м/с, а в стальном рельсе при температуре 15`С эта скорость составляет 5000 м/с.
Если бы в современной физике не было таких понятий как, механические колебания и волны, то мы не знали бы, почему мы слышим друг друга, Томас Эдисон не изобрел бы телефон и фонограф, и их бы не было в нашей повседневной жизни.
Список используемой литературы
1. Элементарный учебник физики под редакцией Г.С. Ландсберга том III. Колебания и волны. Оптика. Атомная и ядерная физика – Репринт 10 изд перераб, 1995
2. «Физика» Дж. Орир том 1, Москва 1981
3. Учебник по физике для 9 класса средней школы Н.М. Шахмаева, С.Н. Шахмаева, Д.Ш. Шодиева, 1992
4. «Физика» Кикоин И. К., Кикоин А. К. Учебник для 9 кл. – 4-е издание ,1997
5. Энциклопедия для детей Аванта+ Т.16 «Физика» Ч.2 Электричество и магнетизм. Термодинамика и квантовая механика. Физика ядра и элементарных частиц, 2000
6. Энциклопедия для детей Аванта+ Т.14 «Техника» История техники. Мир современной техники, 1999
7. Энциклопедия «Наука» Аннабел Крейг и Клифф Росни изд. «Росмен»,1997
8. И.А. Галаванов «Подходы к решению задач по физике» ,1997
9. В. П. Лившевский «Физика вокруг нас», Москва ,1974
10. И. В. Савельев «Курс общей физики» Книга 1 «Механика» ,2000
www.ronl.ru
Амплитуда колебаний изображается на этой осциллограмме отрезком AB, период изображается отрезком CD, равным расстоянию, на которое передвигается пластинка за период маятника. Так как мы двигаем закопченную пластинку равномерно, то всякое ее перемещение пропорционально времени, в течении которого оно совершалось. Мы можем сказать поэтому, что вдоль оси x в определенном масштабе отложено время. С другой стороны, в направлении, перпендикулярном к x волосок отмечает на пластинке расстояние конца маятника от его положения равновесия, т.е. путь пройденный концом маятника от этого положения. Как мы знаем, наклон линии на таком графике изображает скорость движения. Через положение равновесия маятник проходит с наибольшей скоростью. Соответственно этому и наклон волнистой линии наибольший в тех точках, где она пересекает ось x. Наоборот, в моменты наибольших отклонений скорость маятника равна нулю. Соответственно этому и волнистая линия в тех точках, где она наиболее удалена от оси x, имеет касательную параллельную x, т.е. наклон равен нулю Гармоническое колебание. Частота. Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием. Гармоническое колебание является специальным, частным видом периодического колебания. Этот специальный вид колебания очень важен, так как он чрезвычайно часто встречается в самых различных колебательных системах. Колебание груза на пружине, камертона, маятника, зажатой металлической пластинки как раз и является по своей форме гармоническим. Следует заметить, что при больших амплитудах колебания указанных систем имеет несколько более сложную форму, но они тем ближе к гармоническому, чем меньше амплитуда колебаний.
Если на горизонтальной оси откладывать центральный угол, а на вертикальной - перпендикуляр ВВ’, опущенный из конца вращающегося радиуса ОВ на неподвижный диаметр АА’( угол … отсчитывается от неподвижного радиуса ОА), то получится кривая,называемая синусоидой. Для каждой абсциссы a ордината этой кривой BB’ пропорциональна синусу угла a, так как Число циклов гармонического колебания, совершаемых за 1с, называется частотой этого колебания. Единицу частоты называют герцем. Вообще обозначая продолжительность периода за, выраженную в секундах, через T, а частоту, выраженную в герцах, через v, будем иметь Динамика гармонических колебаний. Рассмотрим динамику свободных колебаний в идеальных колебательных системах без трения. Отведем шар пружинного маятника от положения равновесия. В этом случае на шар действует возвращающая сила, направленная в сторону положения равновесия.
Ее проекция имеет знак, противоположный знаку смещения x Аналогично обстоит дело в случае математического маятника. Отведем маятник от положения равновесия. В этом случае равнодействующая силы тяжести и силы упругости нити направлена в сторону положения равновесия. Эту силу можно выразить так: Но если рассматривать колебания с маленькими углами отклонения, то так как. Величина постоянна. Обозначим ее через k. Тогда Направлена сила в сторону противоположную смещению. Превращения энергии при свободных колебаниях.
Отведем маятник на небольшой угол a от положения равновесия. Этим мы сообщим маятнику потенциальную энергию: Где Hmax – максимальная высота подъема маятника. Отпустим маятник. Под действием силы тяжести и силы реакции маятника будет двигаться к положению равновесия. При этом его потенциальная энергия превращается в кинетическую. В положении равновесия вся сообщенная маятнику потенциальная энергия превратится в кинетическую: Где- максимальное значение скорости движения тела, подвешенного к нити. При отсутствие сил трения по закону сохранения энергии максимальное значение потенциальной энергии равно максимальному значению кинетической энергии: Итак, при колебаниях маятника происходит периодическое превращении потенциальной энергии в кинетическую и обратно: В произвольный момент полная механическая энергия колеблющегося тела по закону превращения и сохранения энергии равна сумме его потенциальной и кинетической энергии: Период. Период колебаний маятника, близкого по своим свойствам к математическому маятнику, не зависит от массы маятника. Заставим маятник описывать коническую поверхность. В этом случае шарик маятника двигается по окружности. Определив период обращения маятника, обнаружим, что он равен периоду колебаний этого маятника: Период обращения конического маятника же равен длине описываемой окружности, деленной на линейную скорость: На шарик действует центростремительная сила, так как он двигается по окружности.
Итак период математического маятника зависит только от длины маятник l и от ускорения свободного падения g. Сдвиг фаз. Возьмем два одинаковых маятника и отклоним их в одну и ту же сторону на один и тот же угол от вертикали. Если теперь их отпустить, то мы два гармонических колебания с одинаковыми амплитудами и частотами. Казалось бы, никакого различия между ними быть не может. Однако стоит нам отпустить маятники не одновременно, и мы сразу увидим разницу: колебания будут сдвинуты по времени. Про колебания одинаковой частоты, но смещенные по времени, говорят, что они сдвинуты по фазе. Смещение по времени выражается в долях периода, а сдвиг или разность фаз – в угловых единицах. Если второе колебание запаздывает по сравнению с первым на 1/8 периода, то это значит, что оно отстает по фазе на 360*1/8=45, или сдвинуто по фазе на –45. Если второе колебание опережает первое на 1/8 периода, то говорят, что оно опережает его по фазе на 45, или сдвинуто по фазе +45. Если колебания происходят без запаздывания, то их называют синфазными, или говорят, что они совершаются в фазе. При запаздывание одного на полпериода говорят, что колебания происходят в противофазе. Вынужденные колебания. Мы уже упоминали о таких случаях, когда периодическое движение тела происходит не свободно, а в результате действия периодически меняющейся силы. Подобные повторяющиеся силы вызывают периодическое движение даже таких тел, которые сами не являются колебательными системами. Но как будет обстоять дело в том случае, если периодическая система действует на колебательную систему. 1. 1. В колебательной системе, на которую действует периодически меняющиеся сила, устанавливается периодическое движение. 2. 2. Период вынужденных колебаний равен периоду действующей силы. Волны. Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распространение колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости, возникающими вследствие деформации среды при ее колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечет за собой последовательное возникновение колебаний в других местах, все более и более удаленных от первичного, и возникает так называемая волна. Поперечные волны в шнуре Подвесим за один конец длинный шнур или резиновую трубку. Если нижний конец шнура быстро отвести в сторону и вернуть обратно, то изгиб «побежит» по шнуру вверх, дойдя до точки подвеса, отразится и вернется вниз. Если двигать нижний конец непрерывно, заставляя его совершать гармоническое колебание, то по шнуру «побежит» синусоидальная волна. Надо заметить, что распространение волны означает запаздывающую передачу колебательных движений от одной точки среды к другой и никакого переноса вместе с волной самого вещества тела, в котором волна распространяется, не происходит. Каждая точка шнура колеблется перпендикулярно к направлению распространения волны, т.е. поперек направления распространения. Поэтому и волна такого вида называется поперечной. Смещение нижнего конца шнура в сторону вызывает деформацию шнура в этом месте. Появляются силы упругости, стремящиеся уничтожить деформацию, т.е. появляются силы натяжения, которые тянут вслед за участком шнура, смещенный рукой, непосредственно прилегающий к нему участок. Смещение этого второго участка вызывает деформацию и натяжение следующего, и т.д. Участки шнура обладают массой, и поэтому вследствие инерции набирают или теряют скорость под действием сил не мгновенно. Когда мы довели конец шнура до наибольшего отклонения вправо и начали вести его в влево, смежный участок еще будет продолжать двигаться вправо и лишь с некоторым запозданием остановится и тоже пойдет влево. Таким образом, запаздывающий переход колебания от одной точки шнура к другой обусловлен наличием у материала шнура упругости и массы. Свойства поперечных волн зависят от многих обстоятельств: от вида связи между смежными участками среды, от размеров среды, от формы тела и т.п. Когда мы говорим, что волна «бежит вдоль по шнуру», то это лишь краткое описание следующего явления: каждая точка шнура совершает такое же колебание, какое мы заставили совершать один из концов шнура, но колебание каждой точки тем больше запаздывает (отстает по фазе), чем эта точка дальше от конца шнура. Это запаздывание зависит также от длины волны – расстояния между двумя соседними горбами синусоиды и равна скорости распространения волны на период Примером поперечных волн в шнуре является струна рояля.
Продольные волны в столбе воздуха Возьмем тело удлиненной формы, а именно столб воздуха, заключенный в трубе. Вдоль трубу может двигаться поршень. Заставим этот поршень совершать гармоническое колебание.
Каждый участок тела (слой воздуха) обладает массой, а всякое сжатие воздуха создает избыток давления. Следовательно, в столбе воздуха образуется упругая волна, которая будет бежать от поршня. Однако теперь частицы воздуха колеблется в том же направлении что и поршень, т.е. вдоль направления распространения волны. Такие волны называются продольными. Для продольных волн остается в силе определение длинны волны. Если там можно сказать, что длинна волны равна расстоянию между двумя соседними горбами синусоиды, то здесь она равна расстоянию между серединами двух соседних уплотнений (или разряжений). Скорость распространения продольной находится по той же формуле, что и для поперечной волны. Это, конечно, не значит, что скорость распространения в среде обоих видов волн в теле одинакова. Наоборот, во всякой среде скорость продольных волн больше, чем поперечных волн и, следовательно, при одном и том же периоде длина продольной волны больше чем поперечной. Говоря «во всякой среде», надо сделать оговорку: во всякой твердой среде. Дело в том, что упругие поперечные волны могут распространяться только в твердых телах, в то время как продольные волны могут распространяться и в жидкостях, и в газах. Таким образом, сравнивать скорость распространения обоих видов волн можно только в твердых телах. Чем это объясняется? В поперечной волне происходит сдвиг слоев друг относительно друга. Но упругие силы при сдвиге возникают только в твердых телах. В жидкостях и газах слои свободно скользят друг по другу, без появления противодействующих упругих сил, а раз нет упругих сил, то и образование упругих волн невозможно. Благодаря этому свойству было определенно, что центр Земли жидкий т.к. он не проводит поперечных волн. Известным примером продольных волн являются звуковые волны. Звуковые колебания Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 16 Гц до 20 кГц и которые способно воспринимать человеческое ухо. Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми. Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела. Музыкальный тон. Громкость и высота тона Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном. Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту. Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука. Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим. Акустический резонанс Резонансом называется резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний к частоте свободных колебаний. Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте. Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками. Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон. Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона. Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертона 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим. Шумы Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое. Например, такого рода звук издает струна рояля. Если одновременно ударить несколько клавиш, т.е. заставить звучать несколько нот, то ощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот. Оказывается, что консонируют те ноты, периоды которых находятся отношениях небольших чисел. Например, консонанс получается при отношении периодов 2:3(квинта), при 3:4(кванта), 4:5(большая терция) и т.д. Если же периоды относятся как большие числа, например 19:23, то получается диссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем от периодичности колебаний, если одновременно ударим по многим клавишам. Звук получится уже шумоподобным. Для шумов характерна сильная непериодичность формы колебаний: либо это – длительное колебание, но очень сложное по форме (шипение, скрип), либо отдельные выбросы (щелчки, стуки). С этой точки зрения шумам следует отнести и звуки, выражаемые согласными (шипящими, губными и т.д.). Во всех случаях шумовые колебания состоят из огромного количества гармонических колебаний с разными частотами. Таким образом, у гармонического колебания спектр состоит из одной-единственной частоты. У периодического колебания спектр состоит из набора частот – основной и кратных ей. У консонирующих созвучий мы имеем спектр, состоящий из нескольких таких наборов частот, причем основные относятся как небольшие целые числа. У диссонирующих созвучий основные частоты уже не находятся в таких простых отношениях. Чем больше в спектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеют спектры, в которых присутствуют чрезвычайно много частот. Волны на поверхности жидкости Описанные прежде волны обусловленные силами упругости, но существуют так же волны, образование которых обусловлено силой тяжести. Волны, распространяющиеся по поверхности жидкости, не являются ни продольными, ни поперечными: движение частиц жидкости здесь более сложное. Если в какой-либо точки поверхности жидкости опустилась (например, в результате прикосновения твердым предмет), то под действием силы тяжести жидкость начнет сбегать вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем края кольца частицы всегда «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т.д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность. Следует заметить, что в образования поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения, которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точки поверхности жидкости происходит деформация этой поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде тем больше, чем больше искривлена поверхность, т.е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (низких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности жидкости и соответственного ей поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около 1 см, т.е. для более коротких волн (называемых капиллярными волнами) преобладают силы поверхностного натяжения, а для более длинных - сила тяжести. Несмотря на сложный «продольно-поперечный» характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса.
Ударяя концом проволоки по поверхности воды, мы заставим бежать по воде систему кольцевых гребней и впадин, Расстояние между соседними гребнями и впадинами, т.е. длина волны, связано с периодом ударов Т уже известной формулой. Если ударять ребром линейки, параллельным поверхности воды, то можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейных гребней и впадин. В этом случае перед частью линейки мы имеем одно-единственное направление распространения. Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев. Скорость распространения волн В том, что распространение волн происходит не мгновенно, нас убеждают простейшие наблюдения. Постепенно и равномерно расширяются круги на воде и бегут морские волны. Здесь мы непосредственно видим, что распространение колебаний из одного места в другое занимает определенное время. Но и для звуковых волн, которые в обычных условиях не видимы, легко обнаруживается тоже самое. Если в дали происходит выстрел, гроза, взрыв, свисток паровоза и т.д., то мы сначала видим эти явления и лишь спустя известное время слышим звук. Чем дальше от нас источник звука, тем больше запоздание. Промежуток времени между вспышкой молнии и ударом грома может доходить иногда до нескольких десятков секунд. Зная расстояние от источника звука, и измерив запаздывание звука, можно определить скорость его распространения. Вспышку, произведенную на расстоянии 3 км, мы видим с запаздыванием всего на 10 мкс, в то время как звук тратит на пробег этого расстояния около 9 с. В сухом воздухе при температуре 10 ’C эта скорость оказалась равной 337,5 м/с. Скорость звуковых волн весьма различна для разных сред и, кроме того, зависит от температуры. Современные методы позволяют произвести точные измерения скорости звука, пользуясь малыми количествами исследуемого вещества. Радиолокация, гидроакустическая локация и звукометрия Если скорость распространения волн известна, то измерение их запаздывания позволяет решить обратную задачу: найти пройденное ими расстояние. Задачу измерения расстояния в ряде случаев можно решать, однако на скорость распространения сигнала влияют целый ряд обстоятельств: ветер, неоднородность температуры среды и т.п. что приводит к уменьшению точности расчетов. На принципе измерения времени запаздывания основана гидроакустическая локация и эхолотирование. Гидролокаторы позволяют, например, обнаруживать с надводных кораблей подводные лодки и, наоборот, с подводных лодок надводные корабли. При помощи эхолотов измеряется глубина морского дна. Измеряя разности между временами прихода какого-либо звука (взрыва, выстрела) в три различных пункта наблюдения, можно определить местонахождение источника этого звука. Такой способ называется звукометрией, применяется в военном деле для засечки артиллерийских батарей противника. Отражение волн Поставим на пути волн в водяной ванне плоскую пластинку, длина которой велика по сравнению длиной волны. Мы увидим следующие. Позади пластинки получается область, в которой поверхность воды остается почти в покое. Другими словами, пластинка создает тень – пространство, куда волны не проникают. Перед пластинкой отчетливо видно, как волны отражаются от нее, т.е. волны, падающие на пластинку, создают волны, идущие от пластинки. Эти отражения волны имеют прежних волн. Перед пластинкой возникает своеобразная сетка из первичных волн, падающих на пластинку, и отраженных, идущих от нее навстречу падающим. Отражение плоских волн. Обозначим угол, образуемый перпендикуляром к плоскости нашей пластинки и направлением распространения падающей волны, через, а угол, образуемый тем же перпендикуляром и направлением распространения отраженной волны, - через. Опыт показывает, что при всяком положении пластинки, т.е. угол отражения волны от отражающей плоскости равен углу падения. Этот закон является общим волновым законом, т.е. он справедлив для любых волн, в том числе и для звуковых и световых. Закон остается в силе и для сферических (или кольцевых) волн. Здесь угол отражения в разных точках отражающей плоскости различен, но в каждой точке равен углу падения. Отражение волн от препятствий к числу очень распространенных явлений. Хорошо всем известное эхо обусловлено отражением звуковых волн от зданий, холмов, леса и т.п. Если до нас доходят звуковые волны, последовательно отразившиеся от ряда препятствий, то получается многократное эхо. Методы локации основаны на отражении электромагнитных волн и упругих волн от препятствий. Особенно часто мы наблюдаем явление отражения на световых волнах. Отраженная волн всегда в той или иной степени ослаблена по сравнению с падающей. Часть энергии падающей волны поглощается тем телом, от поверхности которого происходит отражение. Перенос энергии волнами Распространение механической волны, представляющее собой последовательную передачу движения от участка среды к другому, означает тем самым передачу энергии. Распространение волны создает в среде поток энергии, расходящийся от источника. При встрече волны с различного рода телами переносимая энергия может произвести работу или превратится в другие виды энергии. Яркий пример такого переноса энергии без переноса вещества дают нам взрывные волны. На расстояниях во много десятков метров от места взрыва, куда не долетают ни осколки, ни поток горячего воздуха, взрывная волна выбивает стекла, ломает стены и т.п., т.е. производит большую механическую работу. Но энергия переносится, конечно, и самыми слабыми волнами; например, летящий комар излучает звуковую волну, мощность которой, т.е. энергия, излучаемая в 1 с, составляет 10-10 Вт. Энергия, излучаемая точечным источником, равномерно распространяется по всей поверхности волновой среды. Нетрудно видеть, что энергия, приходящиеся на единицу поверхности этой сферы, будет тем меньше, чем больше радиус сферы. Площадь сферы или любого вырезанного в ней конусом участка растет пропорционально квадрату радиуса, т.е. при увеличении расстояния от источника вдвое площадь увеличивается вчетверо, и на каждую единицу поверхности сферы приходится вчетверо меньшая энергия волны. Энергию, переносимую волной через сечение, площадь которого равна 1 м2, за время, равное 1 с, т.е. мощность, переносимую через единичное сечение, называют интенсивностью волны. Таким образом, интенсивность сферической волны убывает обратно пропорционально квадрату расстояния от источника.
Список используемой литературы 1. 1. Элементарный учебник физики под редакцией Г.С. Ландсберга том III. Колебания и волны. Оптика. Атомная и ядерная физика – Репринт 10 изд перпраб, 1995 2. 2. Физика Дж. Орир том 1, Москва 1981 3. 3. Учебник по физике для 9 класса средней школы Н.М. Шахмаева, С.Н. Шахмаева, Д.Ш. Шодиева, 1992
www.ronl.ru
Школа №283 г. Москва
РЕФЕРАТ:
НА ТЕМУ:
«Колебания и волны»
Выполнил:
Ученик 9 «б» школы №283
- В в е д е н и е - . 3
Колебания. 4
Периодическое движение 4
Свободные колебания 4
Маятник. Кинематика его колебаний 4
Гармоническое колебание. Частота 5
Динамика гармонических колебаний 6
Превращение энергии при свободных колебаниях 6
Период 7
Сдвиг фаз 8
Вынужденные колебания 8
Резонанс 8
Волны. 9
Поперечные волны в шнуре 9
Продольные волны в столбе воздуха 10
Звуковые колебания 11
Музыкальный тон. Громкость и высота тона 11
Акустический резонанс 12
Шумы 12
Волны на поверхности жидкости 13
Скорость распростᴘẚʜᴇния волн 14
Отражение волн 15
Перенос энергии волнами 16
Применение 17
Примеры задач по физике 18
Заключение 21
Список используемой литературы 22
Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости. Таким свойством повторяемости обладают, к примеру , качания маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника и т. п.
В зависимости от физической природы повторяющегося процесса, различают колебания: механические, электромагнитные, электромеханические и т. д. В данном реферате рассматриваются механические колебания.
Этот раздел физики является ключевым в вопросе «Почему рушатся мосты?» (см. стр. 8)
Вместе с тем колебательные процессы лежат в самой основе различных отраслей техники.
Так, к примеру , на колебательных процессах основана вся радиотехника, и в частности акустический динамик (см. стр. 17)
В первой части реферата («Колебания» стр.4-9) подробно описано, о том, что такое механические колебания, какие бывают виды механических колебаний, величины, характеризующие колебания, а так же, что такое резонанс.
Во второй части реферата («Волны» стр. 9-16) рассказывается о том, что такое волны, как они появляются , какие бывают волны, что такое звук, его характеристики, с какой скоростью распространяются волны, как отражаются и как волнами переносится энергия.
В третьей части реферата («Применение» стр. 17-18) рассказано о том, для чего нам все это нужно знать, и о том, где в технике и в повседневной жизни применяются механические колебания и волны.
В четвертой части реферата (стр. 18-20) приводится несколько примеров задач по физике на данную тему.
Заканчивается реферат катким обобщением всего сказанного («Заключение» стр. 21) и списком использованной литературы (стр. 22)
Среди всевозможных совершающихся вокруг нас механических движений часто встречаются повторяющиеся движения. Любое равномерное вращение является повторяющимся движением: при каждом обороте всякая точка равномерно вращающегося тела проходит те же положения, что и при предыдущем обороте, причем в такой же последовательности и с такой же скоростью.
В действительности не всегда и не при всяких условиях повторение совершенно одинаково. В одних случаях каждый новый цикл очень точно повторяет предыдущий, в других случаях различие между следующими друг за другом циклами может быть заметным. Отклонения от совершенно точного повторения очень часто настолько малы , что ими можно пренебречь и считать движение повторяющимся вполне точно, т.е. считать его периодическим.
Периодическим называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл.
Продолжительность одного цикла называется периодом. Очевидно, период равномерного вращения равен продолжительности одного оборота.
В природе, и особенно в технике, чрезвычайно большую роль играют колебательные системы, т.е. те тела и устройства, которые сами по себе способны совершать периодические движения. «Сами по себе» - это значит не будучи принуждаемы к этому действием периодических внешних сил. Такие колебания называются поэтому свободными колебаниями в отличие от вынужденных, протекающих под действием периодически меняющихся внешних сил.
Всем колебательным системам присущ ряд общих свойств:
У каждой колебательной системы есть состояние устойчивого равновесия.
Если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение.
Возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.
Маятником является всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Молоток, висящий на гвозде, весы, груз на веревке – все это колебательные системы, подобные маятнику стенных часов.
У всякой системы, способной совершать свободные колебания, имеется устойчивое положение равновесия. У маятника это положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну сторону, то в другую сторону от положения равновесия. Наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство – зависимость амплитуды от условий в начале движения – характерно не только для свободных колебаний маятника , но и вообще для свободных колебаний очень многих колебательных систем.
Прикрепим к маятнику волосок и будем двигать под этим волоском закопченную стеклянную пластинку. Если двигать пластинку с постоянной скоростью в направлении, перпендикулярном к плоскости колебаний, то волосок прочертит на пластинки волʜᴎϲтую линию. Мы имеем в этом опыте простейший осциллограф – так называются приборы для записи колебаний. Таким образом волʜᴎϲтая линия представляет собой осциллограмму колебаний маятника.
C D
B
A
Амплитуда колебаний изображается на этой осциллограмме отрезком AB, период изображается отрезком CD, равным расстоянию, на которое передвигается пластинка за период маятника.
Так как мы двигаем закопченную пластинку равномерно, то всякое её перемещение пропорционально времени, в течении которого оно совершалось. Информация с сайта Бигреферат.ру / bigreferat.ru Мы можем сказать поэтому, что вдоль оси x в определенном масштабе отложено время. С другой стороны, в направлении, перпендикулярном к x волосок отмечает на пластинке расстояние конца маятника от ᴇᴦᴏ положения равновесия, т.е. путь пройденный концом маятника от этого положения.
Как мы знаем, наклон линии на таком графике изображает скорость движения. Через положение равновесия маятник проходит с наибольшей скоростью. Соответственно этому и наклон волʜᴎϲтой линии наибольший в тех точках, где она пересекает ось x. Наоборот, в моменты наибольших отклонений скорость маятника равна нулю. Соответственно этому и волʜᴎϲтая линия в тех точках, где она наиболее удалена от оси x, имеет касательную параллельную x, т.е. наклон равен нулю
Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием.
Гармоническое колебание является специальным, частным видом периодического колебания. Этот специальный вид колебания очень важен, учитывая, что он чрезвычайно часто встречается в самых различных колебательных системах. Колебание груза на пружине, камертона, маятника, зажатой металлической пластинки как раз и является по своей форме гармоническим. Следует заметить, что при больших амплитудах колебания указанных систем имеет несколько более ᴄᴫᴏжную форму, но они тем ближе к гармоническому, чем меньше амплитуда колебаний.
A’ 0 B’
B
A
Если на горизонтальной оси откладывать центральный угол, а на вертикальной - перпендикуляр ВВ’, опущенный из конца вращающегося радиуса ОВ на неподвижный диаметр АА’( угол … отсчитывается от неподвижного радиуса ОА), то получится кривая ,называемая синусоидой. Для каждой абсциссы a ордината этой кривой BB’ пропорциональна синусу угла a, учитывая, что
Число циклов гармонического колебания, совершаемых за 1с, называется частотой этого колебания. Единицу частоты называют герцем. (Гц)
Вообще обозначая продолжительность периода , выраженную в секундах, через T, а частоту, выраженную в герцах, через v, будем иметь
Изучим динамику свободных колебаний в идеальных колебательных системах без трения.
Отведем шар пружинного маятника от положения равновесия. В этом случае на шар действует возвращающая сила, направленная в сторону положения равновесия.
Ее проекция имеет знак, противоположный знаку смещения x
Аналогично обстоит дело в случае математического маятника. Отведем маятник от положения равновесия. В этом случае равнодействующая силы тяжести и силы упругости нити направлена в сторону положения равновесия. Эту силу можно выразить так:
Но если рассматривать колебания с маленькими углами отклонения, то
так как . Величина постоянна. Обозначим её через k. Тогда
Направлена сила в сторону противоположную смещению.
a
Ep
Hmax
Ek
Отведем маятник на небольшой угол a от положения равновесия. Этим мы сообщим маятнику потенциальную энергию:
Где Hmax – максимальная высота подъема маятника.
Отпустим маятник. Под действием силы тяжести и силы реакции маятника будет двигаться к положению равновесия. При этом его потенциальная энергия превращается в кинетическую. В положении равновесия вся сообщенная маятнику потенциальная энергия превратится в кинетическую:
Где- максимальное значение скорости движения тела, подвешенного к нити.
При отсутствии сил трения по закону сохᴘẚʜᴇния энергии максимальное значение потенциальной энергии равно максимальному значению кинетической энергии:
Итак, при колебаниях маятника происходит периодическое превращении потенциальной энергии в кинетическую и обратно:
В произвольный момент полная механическая энергия колеблющегося тела по закону превращения и сохᴘẚʜᴇния энергии равна сумме его потенциальной и кинетической энергии:
Период колебаний маятника, близкого по своим свойствам к математическому маятнику, не зависит от массы маятника.
Заставим маятник описывать коническую поверхность. В этом случае шарик маятника двигается по окружности. Определив период обращения маятника, обнаружим, что он равен периоду колебаний этого маятника:
Период обращения конического маятника же равен длине описываемой окружности, деленной на линейную скорость:
На шарик действует центростремительная сила, учитывая, что он двигается по окружности.
И
C
l
E
R B
O
D
так период математического маятника зависит только от длины маятник l и от ускорения свободного падения g.Возьмем два одинаковых маятника и отклоним их в одну и ту же сторону на один и тот же угол от вертикали. Если теперь их отпустить, то мы два гармонических колебания с одинаковыми амплитудами и частотами. Казалось бы, никакого различия между ними быть не может.
Однако стоит нам отпустить маятники не одновременно, и мы сразу увидим разницу: колебания будут сдвинуты по времени.
Про колебания одинаковой частоты, но смещенные по времени, говорят, что они сдвинуты по фазе. Смещение по времени выражается в долях периода, а сдвиг или разность фаз – в угловых единицах.
Если второе колебание запаздывает по сравнению с первым на 1/8 периода, то это значит, что оно отстает по фазе на 360*1/8=45, или сдвинуто по фазе на –45. Если второе колебание опережает первое на 1/8 периода, то говорят, что оно опережает ᴇᴦᴏ по фазе на 45, или сдвинуто по фазе +45.
Если колебания происходят без запаздывания, то их называют синфазными, или говорят, что они совершаются в фазе. При запаздывание одного на полпериода говорят, что колебания происходят в противофазе.
Мы уже упоминали о таких случаях, когда периодическое движение тела происходит не свободно, а в результате действия периодически меняющейся силы.
Подобные повторяющиеся силы вызывают периодическое движение даже таких тел, которые сами не являются колебательными системами.
Но как будет обстоять дело в том случае, если периодическая система действует на колебательную систему.
В колебательной системе, на которую действует периодически меняющиеся сила, устанавливается периодическое движение.
Частота вынужденных колебаний равна частоте действующей силы.
Если постепенно увеличивать частоту вынуждающей силы то рано или поздно мы увидим, что когда частота вынуждающей силы приблизится к собственной частоте колебательной системы, то амплитуда колебаний резко возрастает. Амплитуда колебаний максимальна, когда частота вынуждающей силы равна собственной частоте колебательной системы. При дальнейшем росте частоты вынуждающей силы амплитуда колебаний уменьшается. Явление резкого возрастания амплитуды вынужденных колебаний при равенстве частот вынуждающей силы и собственной частоты колебательной системы называется резонансом.
В чем причина явления резонанса, почему растет амплитуда колебаний, когда частота вынуждающей силы приближается к собственной частоте.
Совпадение частот означает, что сила упругости действует «в такт» с вынуждающей силой. Если сила упругости и вынуждающая сила в какие-то моменты действуют в одном направлении, то они складываются и их действие усиливается. И даже если вынуждающая сила мала, она все равно приведет к росту амплитуды. Ведь эта малая сила будет добавляться к силе упругости каждый период.
Явление резонанса может быть полезным, поскольку оно предоставляет возможность получить даже с помощью малой силы большое увеличение амплитуды колебаний. С другой стороны, резонанс может оказаться вредным и даже опасным. Если, к примеру , на фундаменте установлена машина, в которой какие-нибудь части совершают периодические движения, то колебания передаются фундаменту и он будет совершать вынужденные колебания. Фундамент – это тоже колебательная система со своей собственной частотой. И если частота периодических движений совпадает с собственной частотой фундамента, то амплитуда его колебаний может возрасти настолько, что это приведет к его разрушению. Известно несколько исторических примеров, к примеру , в XIX в. обрушился Египетский мост в Петербурге. По мосту шел в ногу отряд кавалергардов. Ритм их строевого шага случайно совпал с собственной частотой сооружения, амплитуда вынужденных колебаний стала резко возрастать, смещения превысили расчетную критическую величину – и мост не выдержал.
Именно поэтому с опасными результатами резонанса нужно бороться, т. е. его не допускать. Для этого заᴘẚʜᴇе рассчитывают частоты колебаний машин, фундаменᴛᴏʙ, средств транспорта и т.д., с тем, чтобы при обычных условиях их эксплуатации резонанс не мог наступить.
С явлением резонанса мы встречаемся и в повседневной жизни. Если в комнате задребезжали оконные стекла при проезде по улице тяжелого грузовика, то это значит, что собственные частоты колебаний стекла совпали с частотой колебаний машины. С явлением резонанса мы еще столкнемся в этом реферате.
Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распростᴘẚʜᴇние колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости, возникающими вследствие деформации среды при её колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечет за собой последовательное возникновение колебаний в других местах, все более и более удаленных от первичного, и возникает так называемая волна.
Подвесим за один конец длинный шнур или резиновую трубку. Если нижний конец шнура быстро отвести в сторону и вернуть обратно, то изгиб «побежит» по шнуру вверх, дойдя до точки подвеса, отразится и вернется вниз. Если двигать нижний конец непрерывно, заставляя его совершать гармоническое колебание, то по шнуру «побежит» синусоидальная волна.
Надо заметить, что распростᴘẚʜᴇние волны означает запаздывающую передачу колебательных движений от одной точки среды к другой и никакого переноса вместе с волной самого вещества тела, в котором волна распространяется, не происходит.
Каждая точка шнура колеблется перпендикулярно к направлению распростᴘẚʜᴇния волны, т.е. поперек направления распростᴘẚʜᴇния. Поэтому и волна такого вида называется поперечной.
Смещение нижнего конца шнура в сторону вызывает деформацию шнура в этом месте. Появляются силы упругости, стремящиеся уничтожить деформацию, т.е. появляются силы натяжения, которые тянут вслед за участком шнура, смещенный рукой, непосредственно прилегающий к нему участок. Смещение этого второго участка вызывает деформацию и натяжение следующего, и т.д. Участки шнура обладают массой, и поэтому вследствие инерции набирают или теряют скорость под действием сил не мгновенно. Когда мы довели конец шнура до наибольшего отклонения вправо и начали вести его в влево, смежный участок еще будет продолжать двигаться вправо и лишь с некоторым запозданием остановится и тоже пойдет влево. Таким образом, запаздывающий переход колебания от одной точки шнура к другой обусловлен наличием у материала шнура упругости и массы.
Свойства поперечных волн зависят от многих обстоятельств: от вида связи между смежными участками среды, от размеров среды, от формы тела и т.п.
Когда мы говорим, что волна «бежит вдоль по шнуру», то это лишь краткое описание следующего явления: каждая точка шнура совершает такое же колебание, какое мы заставили совершать один из концов шнура, но колебание каждой точки тем больше запаздывает (отстает по фазе), чем эта точка дальше от конца шнура. Это запаздывание зависит также от длины волны – расстояния между двумя соседними горбами синусоиды и равна скорости распростᴘẚʜᴇния волны на период
Примером поперечных волн в шнуре является струна рояля.
Поперечная волна
Возьмем тело удлиненной формы, а именно столб воздуха, заключенный в трубе. Вдоль трубу может двигаться поршень. Заставим ϶ᴛόᴛпоршень совершать гармоническое колебание.
Каждый участок тела (слой воздуха) обладает массой, а всякое сжатие воздуха создает избыток давления. Следовательно, в столбе воздуха образуется упругая волна, которая будет бежать от поршня. Однако теперь частицы воздуха колеблется в том же направлении что и поршень, т.е. вдоль направления распростᴘẚʜᴇния волны. Такие волны называются продольными.
Для продольных волн остается в силе определение длинны волны .
Если там можно сказать, что длинна волны равна расстоянию между двумя соседними горбами синусоиды, то здесь она равна расстоянию между серединами двух соседних уплотнений (или разряжений). Скорость распростᴘẚʜᴇния продольной находится по той же формуле, что и для поперечной волны. Это, конечно, не значит, что скорость распростᴘẚʜᴇния в среде обоих видов волн в теле одинакова. Наоборот, во всякой среде скорость продольных волн больше, чем поперечных волн и, следовательно, при одном и том же периоде длина продольной волны больше чем поперечной.
Говоря «во всякой среде», надо сделать оговорку: во всякой твердой среде. Дело в том, что упругие поперечные волны могут распространяться только в твердых телах, в то время как продольные волны могут распространяться и в жидкостях, и в газах. Таким образом, сравнивать скорость распростᴘẚʜᴇния обоих видов волн можно только в твердых телах.
Чем это объясняется?
В поперечной волне происходит сдвиг слоев друг относительно друга. Но упругие силы при сдвиге появляются только в твердых телах
. В жидкостях и газах слои свободно скользят друг по другу, без появления противодействующих упругих сил, а раз нет упругих сил, то и образование упругих волн невозможно.
Благодаря этому свойству было определенно, что центр Земли жидкий т.к. он не проводит поперечных волн.
И
Продольная волна
звестным примером продольных волн являются звуковые волны.Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц и которые способно воспринимать человеческое ухо.
Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.
Если звучащее тело, к примеру электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распростᴘẚʜᴇние звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется
амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. Текст с сайта Биг Реферат РУ То же можно наблюдать и со струной и вообще со всяким источником звука.
Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по
размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
С явлением резонанса мы уже сталкивались в данном реферате. Напомню, что резонансом называется резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний к частоте свободных колебаний.
Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте.
Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками.
Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.
Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.
Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертона 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.
Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое. Например, такого рода звук издает струна рояля. Если одновременно ударить несколько клавиш, т.е. заставить звучать несколько нот, то ощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот. Оказывается, что консонируют те ноты, периоды которых находятся отношениях небольших чисел. Например, консонанс получается при отношении периодов 2:3(квинта), при 3:4(кванта), 4:5(большая терция) и т.д. Если же периоды относятся как большие числа, к примеру 19:23, то получается диссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем от периодичности колебаний, если одновременно ударим по многим клавишам. Звук получится уже шумоподобным.
Для шумов характерна сильная непериодичность формы колебаний: либо это – длительное колебание, но очень ᴄᴫᴏжное по форме (шипение, скрип), либо отдельные выбросы (щелчки, стуки). С этой точки зрения шумам следует отнести и звуки, выражаемые согласными (шипящими, губными и т.д.).
Во всех случаях шумовые колебания состоят из огромного количества гармонических колебаний с разными частотами.
Таким образом, у гармонического колебания спектр состоит из одной-единственной частоты. У периодического колебания спектр состоит из набора частот – основной и кратных ей. У консонирующих созвучий мы имеем спектр, состоящий из нескольких таких наборов частот, причем основные относятся как небольшие целые числа. У диссонирующих созвучий основные частоты уже не находятся в таких простых отношениях. Чем больше в спектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеют спектры, в которых присутствуют чрезвычайно много частот.
Описанные прежде волны обусловленные силами упругости, но существуют так же волны, образование которых обусловлено силой тяжести. Волны, распространяющиеся по поверхности жидкости, не являются ни продольными, ни поперечными: движение частиц жидкости здесь более ᴄᴫᴏжное.
Если в какой-либо точки поверхности жидкость опустилась (к примеру , в результате
прикосновения твердым предмет), то под действием силы тяжести жидкость начнет сбегать
вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем края кольца частицы всегда «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т.д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.
Следует заметить, что в образования поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения, которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точки поверхности жидкости происходит деформация этой поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде тем больше, чем больше искривлена поверхность, т.е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (низких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности жидкости и соответственного ей поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около 1 см, т.е. для более коротких волн (называемых капиллярными волнами) преобладают силы поверхностного натяжения, а для более длинных - сила тяжести.
Несмотря на ᴄᴫᴏжный «продольно-поперечный» характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса.
Кольцевые
волны
Ударяя концом проволоки по поверхности воды, мы заставим бежать по воде систему кольцевых гребней и впадин, Расстояние между соседними гребнями и впадинами , т.е. длина
волны, связано с периодом ударов Т уже известной формулой .
Е
Прямолинейная
волна
сли ударять ребром линейки, параллельным поверхности воды, то можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейныхгребней и впадин
. В этом случае перед частью линейки мы имеем одно-единственное направление распростᴘẚʜᴇния.
Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев.
В том, что распростᴘẚʜᴇние волн происходит не мгновенно, нас убеждают простейшие наблюдения. Постепенно и равномерно расширяются круги на воде и бегут морские волны.
Здесь мы непосредственно видим, что распростᴘẚʜᴇние колебаний из одного места в другое занимает определенное время. Но и для звуковых волн, которые в обычных условиях не видимы, легко обнаруживается тоже самое. Если в дали происходит выстрел, гроза, взрыв, свисток паровоза и т.д., то мы сначала видим эти явления и лишь спустя известное время
слышим звук. Чем дальше от нас источник звука, тем больше запоздание. Промежуток времени между вспышкой молнии и ударом грома может доходить иногда до нескольких десятков секунд. Зная расстояние от источника звука, и измерив запаздывание звука, можно определить скорость его распростᴘẚʜᴇния. Вспышку, произведенную на расстоянии 3 км, мы видим с запаздыванием всего на 10 мкс, в то время как звук тратит на пробег этого расстояния около 9 с
. В сухом воздухе при температуре 10 ’C эта скорость оказалась равной 337,5 м/с.(1215 км/ч)
Скорость звуковых волн весьма различна для разных сред и, кроме того, зависит от температуры. Современные методы позволяют произвести точные измерения скорости звука, пользуясь малыми количествами исследуемого вещества.
Поставим на пути волн в водяной ванне плоскую пластинку, длина которой велика по сравнению с длиной волны . Мы увидим следующие. Позади пластинки получается область, в которой поверхность воды остается почти в покое. Другими словами, пластинка создает тень –
пространство, куда волны не проникают. Перед пластинкой отчетливо видно, как волны отражаются от нее, т.е. волны, падающие на пластинку, создают волны, идущие от пластинки.
Эти отражения волны имеют прежних волн. Перед пластинкой возникает своеобразная сетка из
первичных волн, падающих на пластинку, и отраженных, идущих от нее навстречу падающим.
Отражение плоских волн.
Обозначим угол, образуемый перпендикуляром к плоскости нашей пластинки и направлением распростᴘẚʜᴇния падающей волны, через , а угол, образуемый тем же перпендикуляром и направлением распростᴘẚʜᴇния отраженной волны, - через . Опыт показывает, что при всяком положении пластинки , т.е. угол отражения волны от отражающей плоскости равен углу падения.
Этот закон является общим волновым законом, т.е. он справедлив для любых волн, в том числе и для звуковых и свеᴛᴏʙых. Закон остается в силе и для сферических (или кольцевых) волн. Здесь угол отражения в разных точках отражающей плоскости различен, но в каждой точке равен углу падения .
Отражение волн от препятствий относятся к числу очень распростᴘẚʜᴇнных явлений. Хорошо всем известное эхо обусловлено отражением звуковых волн от зданий, холмов, леса и т.п. Если до нас доходят звуковые волны, последовательно отразившиеся от ряда препятствий, то получается многократное эхо. Методы локации основаны на отражении электромагнитных волн и упругих волн от препятствий. Особенно часто мы наблюдаем явление отражения на свеᴛᴏʙых волнах.
Отраженная волн всегда в той или иной степени ослаблена по сравнению с падающей. Часть энергии падающей волны поглощается тем телом, от поверхности которого происходит отражение.
Распростᴘẚʜᴇние механической волны, представляющее собой последовательную передачу движения от одного участка среды к другому, означает тем самым передачу энергии. Распростᴘẚʜᴇние волны создает в среде ᴨᴏᴛок энергии, расходящийся от источника.
При встрече волны с различного рода телами переносимая энергия может произвести работу или превратится в другие виды энергии.
Яркий пример такого переноса энергии без переноса вещества дают нам взрывные волны. На расстояниях во много десятков метров от места взрыва, куда не долетают ни осколки, ни поток горячего воздуха, взрывная волна выбивает стекла, ломает стены и т.п., т.е. производит большую механическую работу. Но энергия переносится, конечно, и самыми слабыми волнами; к примеру , летящий комар излучает звуковую волну, мощность которой, т.е. энергия, излучаемая в 1 с, составляет 10-10 Вт.
Энергия, излучаемая точечным источником, равномерно распространяется по всей поверхности волновой среды. Нетрудно видеть, что энергия, приходящиеся на единицу поверхности этой сферы, будет тем меньше, чем больше радиус сферы. Площадь сферы или любого вырезанного в ней конусом участка растет пропорционально квадрату радиуса, т.е. при увеличении расстояния от источника вдвое площадь увеличивается вчетверо, и на каждую единицу поверхности сферы приходится вчетверо меньшая энергия волны.
Энергию, переносимую волной через сечение, площадь которого равна 1 м2, за время, равное 1 с, т.е. мощность, переносимую через единичное сечение, называют интенсивностью волны. Таким образом, интенсивность сферической волны убывает обратно пропорционально квадрату расстояния от источника.
1
4
1
2
Областью применения колебаний и волн служат многие изобретения человека: от музыкальных инструменᴛᴏʙ и акустических динамиков до эхолоᴛᴏʙ и ультразвуковых диагностических аппараᴛᴏʙ . С тремя последними мы и познакомимся.
Принцип преобразования электрических сигналов в звуковые волны, лежит в основе акустического динамика. Изучим такой динамик поподробнее.
Электрические сигналы поступают на обмотку, которая создает магнитное поле. Магнитное поле попеременно то притягивает обмотку к магниту, то отталкивает. Переменные колебания обмотки вызывают соответствующие колебания конуса динамика. Если колебания находятся в интервале от 20 Гц до 20000 Гц, то мы будем слышать звук.
На том же принципе, только в обратном порядке, лежит принцип микрофона: звуковые волны определенной частоты создают колебания мембраны с той же частотой, а ᴨᴏᴛом посредством магнита, колебания мембраны превращаются в электрические сигналы.
Если скорость распростᴘẚʜᴇния волн известна, то измерение их запаздывания предоставляет возможность решить обратную задачу: найти пройденное ими расстояние, то есть расстояние до источника этой волны. Так, к примеру , с помощью ультразвука (с ним мы познакомимся ниже) можно сканировать морское дно, то есть измерять глубину морского дна, исследовать дно на наличие затонувших кораблей, и, искать косяки рыб. Причем все эти три функции может выполнять один прибор. Такой прибор называется эхолотом.
Эхолот испускает ультразвук, ϶ᴛόᴛзвук отражается от поверхности какого-либо тела (дна, к примеру ), и возвращается к своему источнику (эхолоту). Учитывая, что звук прошел двойное расстояние (до морского дна и обратно), то, чтобы найти это расстояние, надо скорость распростᴘẚʜᴇния волны в данной среде умножить на время запаздывания. Половина полученной величины и будет искомым расстоянием до объекта.
На принципе измерения времени запаздывания основана гидроакустическая локация. Гидролокаторы позволяют, к примеру , обнаруживать с надводных кораблей подводные лодки и, наоборот, с подводных лодок надводные корабли
Измеряя разности между временами прихода какого-либо звука (взрыва, выстрела) в три различных пункта наблюдения, можно определить местонахождение источника этого звука. Такой способ называется звукометрией, применяется в военном деле для засечки артиллерийских батарей.
Ультразвук – это механические колебания высокой частоты (более 20 000 Гц). Такие колебания человеческий слух не воспринимает. В ультразвуковой диагностике обычно применяют частоты от 2 до 20 МГц. Датчик состоит из одного или нескольких пьезоэлектрических элеменᴛᴏʙ, которые превращают акустические и механические колебания в электрические и обратно. Его прикладывают к поверхности кожи, на которую нанесен слой геля, обеспечивающего хороший акустический контакт. Электрический сигнал, подаваемый на датчик, преобразуется им в механические колебания, они и распространяются вглубь тканей. На границах тканями волны преломляются и отражаются, создавая эхо сигнал, возвращающийся к датчику. Там он снова превращается в электрический и после обработки формирует изображение внутренних органов пациента на экᴘẚʜᴇ монитора.
Ультразвуковой аппарат, соединенный с компьютером, - это уже ультразвуковой томограф. Во многих случаях он может успешно заменить рентгеновский томограф и, в отличие от последнего, не оказывают вредного воздействия на организм.
Как изменится точность хода маятниковых часов за сутки, если их с экватора перенести на полюс?
Вначале следует уточнить, как изменится ход часов. Так как на полюсе притяжение слабее, то часы уйдут вперед. Тогда
- разность хода часов за время
Тогда
и будет ответом задачи. Теперь найдем
и ответом будет, как неᴄᴫᴏжно убедится t = 3 мин 45 с.
На веревке висит ведро с водой и раскачивается. В дне ведра находится отверстие, через которое вода постепенно сливается. Будет ли изменяться период колебаний, если принять систему за математический маятник?
С первого взгляда может показаться, что период не изменится, но
Где L – не длинна нити, а расстояние от точки подвеса до центра тяжести, а центр тяжести будет смещаться по мере вытекания воды, а, следовательно, и будет изменяться и период колебания этой системы.
За одно и то же время один математический маятник делает 50, а второй – 30 колебаний. Найти их длины, если один из них на 32 см короче другого.
Прежде всего, определим, какой из маятников длиннее. Очевидно, это тот,
который делает меньшее число колебаний, то есть второй маятник. Тогда
Из условия t1= t2
Учитывая, что
нетрудно получить
По определению, длинна волны
Смещение любой точки найдем из уравнения волны
Подведем итоги всего выше сказанного.
Колебанием называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл. Продолжительность одного цикла называется периодом.
Частотой называется количество циклов, совершаемые колеблющимся телом за единицу времени.
У каждой колебательной системы есть состояние устойчивого равновесия. Если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение. Возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.
Свободными колебаниями называются колебания тела, на которое не действует периодически изменяющаяся сила, и наоборот, если на колеблющееся тело действует периодически изменяющаяся сила, то это вынужденные колебания.
Если частота вынуждающей силы совпадает с собственной частотой колебательной системы, то происходит резонанс.
Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при равенстве частот вынуждающей силы и собственной частоты колебательной системы.
Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием.
Если речь идет о механических колебаниях, т.е. о колебательных движениях какой-либо твердой, жидкой или газообразной среды, то распростᴘẚʜᴇние колебаний означает передачу колебаний от одних частиц среды к другим. Передача колебаний обусловлена тем, что смежные участки среды связанны между собой.
Волны бывают двух видов: поперечные и продольные.
В поперечной волне каждая точка тела колеблется перпендикулярно к направлению распростᴘẚʜᴇния волн.
Поперечные волны могут распространяться только в твердых телах.
Примером поперечной волны может быть колеблющаяся струна рояля или вообще любой музыкальный инструмент.
А в продольной волне каждая точка материи колеблется вдоль направления распростᴘẚʜᴇния волн
Поэтому продольные волны могут распространяться в жидкой и газообразной среде.
Примером продольных волн являются звуковые волны.
Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц , то есть, которые способно воспринимать человеческое ухо.
Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется
амплитудой колебаний.
Высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
Волны не распространяются мгновенно. Скорость распростᴘẚʜᴇния волн зависит от среды, где распространяются волны а так же от температуры . Так ,к примеру в воздухе при температуре 20`С эта скорость составляет 343 м/с , а в стальном рельсе при температуре 15`С эта скорость составляет 5000 м/с.
Если бы в современной физике не было таких понятий как, механические колебания и волны, то мы не знали бы, почему мы слышим друг друга, Томас Эдисон не изобрел бы телефон и фонограф, и их бы не было в нашей повседневной жизни.
Элементарный учебник физики под редакцией Г.С. Ландсберга том III. Колебания и волны. Оптика. Атомная и ядерная физика – Репринт 10 изд перераб, 1995
«Физика» Дж. Орир том 1, Москва 1981
Учебник по физике для 9 класса средней школы Н.М. Шахмаева, С.Н. Шахмаева, Д.Ш. Шодиева, 1992
«Физика» Кикоин И. К., Кикоин А. К. Учебник для 9 кл. – 4-е издание ,1997
Энциклопедия для детей Аванта+ Т.16 «Физика» Ч.2 Электричество и магнетизм. Термодинамика и кванᴛᴏʙая механика. Физика ядра и элементарных частиц , 2000
Энциклопедия для детей Аванта+ Т.14 «Техника» История техники. Мир современной техники, 1999
Энциклопедия «Наука» Аннабел Крейг и Клифф Росни изд. «Росмен»,1997
И.А. Галаванов «Подходы к решению задач по физике» ,1997
В. П . Лившевский «Физика вокруг нас» , Москва ,1974
И. В. Савельев «Курс общей физики» Книга 1 «Механика» ,2000
<P><B>инистерство<B> Р<B>оссийской <B> Ф<B>едерации по<B> <B>связи <P><B>и информатизации <P>Т.Ю. ПИНЕГИНА Т.К.СЕРЕБРЯКОВА <P> ВОЛНЫ <P> <I>Курс физики <P><B>НОВОСИБИРСК <P><B>2000 ВОЛНЫ. <P> Как происходит распространение колебаний? Необходима среда для передачи колебаний или они могут передаваться без нее? Как звук от звучащего камертона доходит до слушателя? Каким образом быстропеременный ток в антенне радиопередатчика вызывает появление тока в антенне приемника? Как свет от далеких звезд достигает нашего глаза? Для рассмотрения подобного рода явлений необходимо ввести новое физическое понятие – <I>...
Эмиграция первой волныДоклад Эмиграция первой волны Выполнил: Попов Алексей, Группа 717 9-дек-01 Россия никогда не была страной массовой эмиграции, в истории Российской империи гораздо большую роль играла внутренняя колонизация, переселение на свободные земли внутри страны. Тем не менее нельзя сказать, что история России совсем не знала эмиграции, Россия участвовала в великих межконтинентальных миграциях конца прошлого - начала нынешнего века. С 1861 по 1915 год из Российской империи выехало 4,3 миллиона человек, в том числе почти 2,6 миллиона - в первые 15 лет ХХ века. Две трети эмигрантов направлялись в США, а из числа выехавших в ХХ веке - около 80% (1). Правда, большая часть эмигрантов выезжала не из России в ее нынешних границах, а из других частей бывшей империи, - Украины, Белоруссии, балтийских губерний....
Начало массовой украинской эмиграции, ее причины и основные волныРеферат по истории Украины На тему: ‘’Начало массовой украинской эмиграции, ее причины и основные волны‘’ Выполнила: Ученицы 11 кл Скрыпник Надежды Проверил: Шамрай В. М. . Содержание Первая волна: эмиграция до 1914 г....
Особенности русской речи эмигрантов четвертой волныЕ. А. Земская Изучение языка зарубежья имеет важное практическое и теоретическое значение. Оно связано с рядом проблем теории языка, социолингвистики, этнолингвистики, психолингвистики, а также проливает свет на такие явления, характерные для сосуществования разных языков, как двуязычие и многоязычие, виды кодовых переключений, интерференция родственных и неродственных языков, на действие факторов, способствующих сохранению языка в окружении других языков, на выявление разной степени устойчивости отдельных сторон языковой системы в условиях иноязычного окружения....
Цивилизация Третьей волныВведение Мир стоит на пороге грандиозных социальных перемен, технических и культурных нововведений. Глубинное и поразительное по своим следствиям развертывание потенциала техники оказывает воздействие на все стороны социальной жизни. Меняется не только содержание труда, в десятки и сотни раз возрастает его производительность. Существенные преобразования происходят во всем строе культуры и современной цивилизации. Микроэлектронная революция увеличивает мощь человеческого интеллекта. Технологические новшества оказывают влияние на социальную структуру общества. По существу, рождается новый цивилизационный уклад, в котором принципиально иной будет сфера труда, управления, досуга. В своих основных работах американский социолог проводит мысль о том, что человечество переходит к новой технологической революции, то есть на смену Первой волне (аграрной цивилизации) и Второй (индустриальной цивилизации) приходит новая, ведущая к созданию сверхиндустриальной цивилизации. Тоффлер предупреждает о новых опасностях, социальных конфликтах и глобальных проблемах, с которыми человечество столкнется на рубеже двух веков. Однако, по мнению Тоффлера, эти исторические сдвиги, захватывая все стороны жизни людей, тем не менее во многом бескровны. Ведь речь идет не о социальной революции, направленной в основном на смену политического режима, а о технологических изменениях, которые вызревают медленно, эволюционно. Однако впоследствии они рождают глубинные потрясения. Чем скорее человечество осознает потребность в переходе к новой волне, тем меньше будет опасность насилия, диктата и других бед. По мнению Тоффлера, развитие науки и техники осуществляется рывками, по его терминологии, - волнами....
bigreferat.ru