Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Реферат по Биологии Тема: "Клетка". Клетка реферат


Реферат Клетка

скачать

Реферат на тему:

План:

    Введение
  • 1 Строение клеток
    • 1.1 Прокариотическая клетка
    • 1.2 Эукариотическая клетка
      • 1.2.1 Строение эукариотической клетки
        • 1.2.1.1 Поверхностный комплекс животной клетки
        • 1.2.1.2 Структура цитоплазмы
        • 1.2.1.3 Эндоплазматический ретикулум
        • 1.2.1.4 Аппарат Гольджи
        • 1.2.1.5 Ядро
        • 1.2.1.6 Лизосомы
        • 1.2.1.7 Цитоскелет
        • 1.2.1.8 Центриоли
        • 1.2.1.9 Митохондрии
    • 1.3 Сопоставление про- и эукариотической клеток
    • 1.4 Анаплазия
  • 2 История открытия клеток
  • 3 Химический состав клетки

Введение

Кле́тка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии (англ. Cell biology).

На фотографиях зелёный флуоресцентный белок показывает расположение различных частей клетки

1. Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток:

  •  прокариоты (доядерные) — более простые по строению, по-видимому, они возникли в процессе эволюции раньше;
  • эукариоты (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Содержимое клетки отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

1.1. Прокариотическая клетка

Строение типичной клетки прокариот: капсула, клеточная стенка, плазмалемма, цитоплазма, рибосомы, плазмида, пили, жгутик, нуклеоид.

Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.

1.2. Эукариотическая клетка

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

1.2.1. Строение эукариотической клетки

Схематическое изображение животной клетки. (При нажатии на какое-либо из названий составных частей клетки, будет осуществлён переход на соответствующую статью.)

1.2.1.1. Поверхностный комплекс животной клетки

Состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира — гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет собой «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в неё молекулами белков, в частности, поверхностных антигенов и рецепторов. В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образом актиновые микрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий. При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

1.2.1.2. Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

1.2.1.3. Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному) ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

1.2.1.4. Аппарат Гольджи

Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен — цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

1.2.1.5. Ядро

Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Компартмент для ядра — кариотека — образован за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов ядерной оболочки. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жесткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

1.2.1.6. Лизосомы

Лизосома — небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. В ней находятся литические ферменты, способные расщепить все биополимеры. Основная функция — автолиз — то есть расщепление отдельных органоидов, участков цитоплазмы клетки.

1.2.1.7. Цитоскелет

К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.

1.2.1.8. Центриоли

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей.

Центриоли, по-видимому, гомологичны базальным телам жгутиков и ресничек.

1.2.1.9. Митохондрии

Митохондрии — особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счёт энзиматических систем митохондрий.

Внутренний просвет митохондрий, называемый матриксом отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии.

Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что безусловно указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответствующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов. Самое большое число митохондриальных генов (97) из изученных организмов имеет простейшее Reclinomonas americana.

1.3. Сопоставление про- и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970—1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот — обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот — например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5—5 мкм, размеры эукариотических — в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток — это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

1.4. Анаплазия

Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии.

2. История открытия клеток

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1665 году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В 1675 году итальянский врач М. Мальпиги, а в 1682 году — английский ботаник Н. Грю подтвердили клеточное строение растений. О клетке стали говорить как о «пузырьке, наполненном питательным соком». В 1674 году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, 1632—1723) с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы (инфузории, амёбы, бактерии). Также Левенгук впервые наблюдал животные клетки — эритроциты и сперматозоиды. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. В 1802—1808 годах французский исследователь Шарль-Франсуа Мирбель установил, что все растения состоят из тканей, образованных клетками. Ж. Б. Ламарк в 1809 году распространил идею Мирбеля о клеточном строении и на животные организмы. В 1825 году чешский учёный Я. Пуркине открыл ядро яйцеклетки птиц, а в 1839 ввёл термин «протоплазма». В 1831 году английский ботаник Р. Броун впервые описал ядро растительной клетки, а в 1833 году установил, что ядро является обязательным органоидом клетки растения. С тех пор главным в организации клеток считается не мембрана, а содержимое.Клеточная теория строения организмов была сформирована в 1839 году немецким зоологом Т. Шванном и М. Шлейденом и включала в себя три положения. В 1858 году Рудольф Вирхов дополнил её ещё одним положением, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э. Страсбургер — у растительных.

3. Химический состав клетки

1 группа (до 98 %) (макроэлементы)

  • Углерод
  • Водород
  • Кислород
  • Азот

2 группа (1,5—2 %)

  • Калий
  • Натрий
  • Кальций
  • Магний
  • Сера
  • Фосфор
  • Хлор
  • Железо

3 группа (>0,01 %) (микроэлементы)

  • Цинк
  • Медь
  • Фтор
  • Йод
  • Кобальт
  • Молибден

4 группа (>0,00001 %) (ультра микроэлементы)

  • Уран
  • Радий
  • Золото

wreferat.baza-referat.ru

Реферат - Строение и функции клетки

План:

I.     Цитология.

II.    Строение клетки:

1. мембрана;

2. ядро;

3. цитоплазма:

              а) органоиды:

1.эндоплазматическаясеть;

2.рибосомы;

3.комплексГольджи;

4.лизосомы;

5.клеточныйцентр;

6.энергетическиеорганоиды.

б)клеточные включения:

1. углеводы;

2. жиры;

3. белки.

III.   Функции клеток:

1. деление клетки;

2. обмен веществ:

а)пластический обмен;

б)энергетический обмен.

3. раздражимость;

4. роль органических веществ в осуществлении функцийклетки:

а)белки;

б)углеводы;

в)жиры;

г)нуклеиновые кислоты:

1. ДНК;

2. РНК;

     д) АТФ.

IV.  Новые открытия в области клетки.

V.   Хабаровские цитологи.

VI.  Заключение

Цитология.

Цитология (греч. «цитос»- клетка, «логос» — наука) – наука о клетках. Цитология изучает строение ихимический состав клеток, функции клеток в организме животных и растений, размножениеи развитие клеток, приспособление клеток к условиям окружающей среды.

Современная цитология – наука комплексная. Она имеетсамые тесные связи с другими биологическими науками, например, с ботаникой,зоологией, физиологией, учением об эволюции органического мира, а также смолекулярной биологией, химией, физикой, математикой.

Цитология – одна из молодых биологических наук, еёвозраст около 100 лет. Возраст же термина «клетка» насчитывает около 300 лет. 

Исследуя клетку как важнейшую единицу живого,цитология занимает центральное положение в ряду биологических дисциплин.Изучение клеточного строения организмов было начато микроскопами XVIIвека, в XIX веке была создана единая для всего органического мираклеточная теория (Т. Шванн, 1839). В ХХ веке быстрому прогрессу цитологииспособствовали новые методы: электронная микроскопия, изотопные индикаторы,культивирование клеток и др.

Название «клетка» предложил англичанин Р. Гук ещё в1665 г., но только в XIX веке началось её систематическое изучение. Несмотряна то, что клетки могут входить в состав различных организмов и органов(бактерий, икринок, эритроцитов, нервов и т.д.) и даже существовать каксамостоятельные (простейшие) организмы, в их строении и функциях обнаруженомного общего. Хотя отдельная клетка представляет собой наиболее простую формужизни, строение её достаточно сложно…

Строение клетки.

Клетки находятся в межклеточном веществе,обеспечивающем их механическую прочность, питание и дыхание. Основные частилюбой клетки – цитоплазма и ядро.

Клетка покрыта мембраной, состоящей из несколькихслоёв молекул, обеспечивающей избирательную проницаемость веществ. В цитоплазмерасположены мельчайшие структуры – органоиды. К органоидам клетки относятся:эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи,клеточный центр.

Мембрана.

Если рассматривать в микроскоп клетку какого-нибудьрастения, например, корешка лука, то видно, что она окружена сравнительнотолстой оболочкой. Оболочка совсем другой природы  хорошо видна у гигантскогоаксона кальмара. Но не оболочка выбирает, какие вещества пускать и какие непускать в аксон. Оболочка клетки служит как бы дополнительным «земляным валом»,который окружает и защищает главную крепостную стену – клеточную мембрану с еёавтоматическими воротами, насосами, специальными «наблюдателями», ловушками идругими удивительными приспособлениями.

«Мембрана – крепостная стена клетки», но только в томсмысле, что она ограждает и защищает внутреннее содержимое клетки. Растительнуюклетку можно отделить от наружной оболочки. Можно разрушить оболочку убактерий. Тогда может показаться, что они вообще ничем не отделены отокружающего раствора – это просто кусочки студня с внутренними включениями.

Новые физические методы, прежде всего электронная микроскопия,не только позволили с несомненностью установить наличие мембраны, но ирассмотреть некоторые её детали.

Внутреннее содержимое клетки и её мембрана состоят восновном из одних и тех же атомов. Эти атомы – углерод, кислород, водород, азот– расположены в начале таблицы Менделеева. На электронной фотографии тонкогосреза клетки мембраны видны в виде двух тёмных линий. Общая толщина мембраныможет быть точно измерена с этих снимков. Она равно всего 70-80 А (1А = 10-8см), т.е. в 10 тыс. раз меньше толщины человеческого волоса.

Итак, клеточная мембрана – очень мелкое молекулярноесито. Однако мембрана – весьма своеобразное сито. Её поры скорее напоминаютдлинные узкие проходы в крепостной стене средневекового города. Высота и ширинаэтих проходов в 10 раз меньше длины. Кроме того, в этом сите отверстиявстречаются очень редко – поры занимают у некоторых клеток только однумиллионную часть площади мембраны. Это соответствует всего одному отверстию наплощади обычного волосяного сита для просеивания муки, т.е. с обычной точкизрения мембрана вовсе не сито.

Ядро.

Ядро  — самый заметный и самый большой органоидклетки, который первым привлёк внимание исследователей. Клеточное ядро (лат. nucleus,греч. карион) открыто в 1831 году шотландским учёным Робертом Брауном. Егоможно сравнить с кибернетической системой, где имеет место хранение,переработка и передача в цитоплазму огромной информации, заключённой в оченьмалом объёме. Ядро играет главную роль в наследственности. Ядро выполняет такжефункцию восстановления целостности клеточного тела (регенерация), являетсярегулятором всех жизненных отправлений клетки. Форма ядра чаще всегошарообразная или яйцевидная. Важнейшей составной частью ядра является хроматин(от греч. хрома – цвет, окраска) – вещество, хорошо окрашивающееся ядернымикрасками.

Ядро отделено от цитоплазмы двойной мембраной, котораянепосредственно связана с эндоплазматической сетью и комплексом Гольджи. Наядерной мембране обнаружены поры, через которые (как и через наружнуюцитоплазматическую мембрану) одни вещества проходят легче, чем другие, т.е.поры обеспечивают избирательную проницаемость мембраны.

Внутреннее содержимое ядра составляет ядерный сок,заполняющий пространство между структурами ядра. В ядре всегда присутствуетодно или несколько ядрышек. В ядрышке образуются рибосомы. Поэтому междуактивностью клетки и размером ядрышек существует прямая связь: чем активнеепротекают процессы биосинтеза белка, тем крупнее ядрышки и, наоборот, вклетках, где синтез белка ограничен, ядрышки или очень невелики, или совсемотсутствуют.

В ядре расположены нитевидные образования – хромосомы.В ядре клетки тела человека (кроме половых) содержится по 46 хромосом.Хромосомы являются носителями наследственных задатков организма, передающихсяот родителей потомству.

Большинство клеток содержит одно ядро, но существуют имногоядерные клетки (в печени, в мышцах и др.). Удаление ядра делает клеткунежизнеспособной.

Цитоплазма.

 

Цитоплазма – полужидкая слизистая бесцветная масса,содержащая 75-85% воды, 10-12% белков и аминокислот, 4-6% углеводов, 2-3%жирови липидов, 1% неорганических и других веществ. Цитоплазматическое содержимоеклетки способно двигаться, что способствует оптимальному размещению органоидов,лучшему протеканию биохимических реакций, выделению продуктов обмена и т.д.Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностныевыросты

Цитоплазма пронизана сложной сетчатой системой,связанной с наружной плазматической мембраной и состоящей из сообщающихся междусобой канальцев, пузырьков, уплощённых мешочков. Такая сетчатая система названавакуолярной системой.

Органоиды.

Цитоплазма содержит ряд мельчайших структур клетки –органоидов, которые выполняют различные функции. Органоиды обеспечиваютжизнедеятельность клетки.

Эндоплазматическая сеть.

Название этого органоида отражает место расположенияего в центральной части цитоплазмы (греч. «эндон» — внутри). ЭПС представляетсобой очень разветвлённую систему канальцев, трубочек, пузырьков, цистернразной величины и формы, отграниченных мембранами от цитоплазмы клетки.

ЭПС бывает двух видов: гранулярная, состоящая изканальцев и цистерн, поверхность которых усеяна зёрнышками (гранулами) иагранулярная, т.е. гладкая (без гран). Граны в эндоплазматической сети ни чтоиное, как рибосомы. Интересно, что в клетках зародышей животных наблюдается восновном гранулярная ЭПС, а у взрослых форм – агранулярная. Зная, что рибосомыв цитоплазме служат местом синтеза белка, можно предположить, что гранулярнаяЭПС преобладает в клетках, активно синтезирующих белок. Считают, чтоагранулярная сеть в большей степени предоставлена в тех клетках, где идётактивный синтез липидов (жиров и жироподобных веществ).

Оба вида эндоплазматической сети не только участвуют всинтезе органических веществ, но и накапливают и транспортируют их к местамназначения, регулируют обмен веществ между клеткой и окружающей её средой.

Рибосомы.

Рибосомы – не мембранные клеточные органоиды,состоящие из рибонуклеиновой кислоты и белка. Их внутреннее строение во многомещё остаётся загадкой. В электронном микроскопе они имеют вид округлых илигрибовидных гранул.

Каждая рибосомы разделена желобком на большую ималенькую части (субъединицы). Часто несколько рибосом объединяются нитьюспециальной рибонуклеиновой кислоты (РНК), называемой информационной (и-РНК).Рибосомы осуществляют уникальную функцию синтеза белковых молекул изаминокислот.

Комплекс Гольджи.

Продукты биосинтеза поступают в просветы полостей иканальцев ЭПС, где они концентрируются в специальный аппарат – комплекс Гольджи,расположенный вблизи ядра. Комплекс Гольджи участвует в транспорте продуктовбиосинтеза к поверхности клетки и в выведении их из клетки, в формированиилизосом и т.д.

Комплекс Гольджи был открыт итальянским цитологомКамилио Гольджи (1844 – 1926) и в 1898 году был назван «комплексом (аппаратом)Гольджи». Белки, выработанные в рибосомах, поступают в комплекс Гольджи, акогда они требуются другому органоиду, то часть комплекса Гольджи отделяется, ибелок доставляется в требуемое место.

Лизосомы.

Лизосомы (от греч. «лизео» – растворяю и «сома» — тело) — это органоиды клетки овальной формы, окружённые однослойной мембраной.В них находится набор ферментов, которые разрушают белки, углеводы, липиды. Вслучае повреждения лизосомной мембраны ферменты начинают расщеплять и разрушатьвнутреннее содержимое клетки, и она погибает.

Клеточный центр.

Клеточный центр можно наблюдать в клетках, способныхделиться. Он состоит из двух палочковидных телец – центриолей. Находясь околоядра и комплекса Гольджи, клеточный центр участвует в процессе деления клетки,в образовании веретена деления.

Энергетические органоиды.

Митохондрии (греч. «митос» — нить, «хондрион» — гранула) называютэнергетическими станциями клетки. Такое название обуславливается тем, чтоименно в митохондриях происходит извлечение энергии, заключённой в питательныхвеществах. Форма митохондрий изменчива, но чаще всего они имеют вид нитей илигранул. Размеры и число их также непостоянны и зависят от функциональнойактивности клетки.

На электронных микрофотографияхвидно, что митохондрии состоят из двух мембран: наружной и внутренней.Внутренняя мембрана образует выросты, называемые кристами, которые сплошьустланы ферментами. Наличие крист увеличивает общую поверхность митохондрий,что важно для активной деятельности ферментов.

В митохонлриях обнаружены свои специфические ДНК ирибосомы. В связи с этим они самостоятельно размножаются при делении клетки.

Хлоропласты – по форме напоминают диск или шар с двойной оболочкой– наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы иособые мембранные структуры – граны, связанные между собой и внутреннеймембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаряхлорофиллу в хлоропластах происходит превращение энергии солнечного света вхимическую энергию АТФ (аденозинтрифосфат). Энергия АТФ используется вхлоропластах для синтеза углеводов из углекислого газа и воды.

Клеточные включения.

К клеточным включениям относятся углеводы, жиры ибелки.

Углеводы. Углеводы состоят из углерода, водорода и кислорода. Куглеводам относятся глюкоза, гликоген (животный крахмал). Многие углеводыхорошо растворимы в воде и являются основными источниками энергии дляосуществления всех жизненных процессов. При распаде одного грамма углеводовосвобождается    17,2 кДж энергии.

Жиры. Жиры образованы теми же химическими элементами, что и углеводы. Жирынерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служатзапасным источником энергии в организме. При полном расщеплении одного граммажира освобождается 39, 1 кДж энергии.

Белки. Белки являются основными веществами клетки. Белки состоят из углерода,водорода, кислорода, азота, серы. Часто в состав белка входит фосфор. Белкислужат главным строительным материалом. Они участвуют в формировании мембранклетки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль ферментов(ускорителей течения химических реакций). В одной клетке насчитывается до 1000разных белков. При распаде белков в организме освобождается примерно такое жеколичество энергии, как и при расщеплении углеводов.

Все эти вещества накапливаются в цитоплазме клетки ввидекапель и зёрен различной величины и формы. Они периодическисинтезируются в клетке и используются в процессе обмена веществ.

Функции клеток.

Клетка обладает различными функциями: деление клетки,обмен веществ и раздражимость.

Деление клетки.

Деление – это вид размножения клеток. Во время деленияклетки хорошо заметны хромосомы. Набор хромосом в клетках тела, характерный дляданного вида растений и животных, называется кариотипом.

В любом многоклеточном организме существует два видаклеток – соматические (клетки тела) и половые клетки или гаметы. В половыхклетках число хромосом в два раза меньше, чем в соматических. В соматическихклетках все хромосомы представлены парами – такой набор называется диплоидным иобозначается 2n. Парные хромосомы (одинаковые по величине, форме,строению) называются гомологичными.

В половых клетках каждая из хромосом в одинарномчисле. Такой набор называется гаплоидным и обозначается n.

Наиболее распространённым способом делениясоматических клеток является митоз. Во время митоза клетка проходит рядпоследовательных стадий или фаз, в результате которых каждая дочерняя клеткаполучает такой же набор хромосом, какой был у материнской клетки.

Во время подготовки клетки к делению – в периодинтерфазы (период между двумя актами деления) число хромосом удваивается. Вдолькаждой исходной хромосомы из имеющихся в клетке химических соединенийсинтезируется её точная копия. Удвоенная хромосома состоит из двух половинок –хроматид. Каждая из хроматид содержит одну молекулу ДНК. В период интерфазы вклетке происходит процесс биосинтеза белка, удваиваются также все важнейшиеструктуры клетки. Продолжительность интерфазы в среднем 10-20 часов. Затемнаступает процесс деления клетки – митоз.

Во время митоза клетка проходит следующие четыре фазы:профаза, метафаза, анафаза и телофаза.

В профазе хорошо видны центриоли – органоиды, играющиеопределённую роль в делении дочерних хромосом. Центриоли делятся и расходятся кразным полюсам. От них протягиваются нити, образующие веретено деления, котороерегулирует расхождение хромосом к полюсам делящейся клетки. В конце профазыядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются.

Метафаза характеризуется наличием хорошо видимыххромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосомасостоит из двух хроматид и имеет перетяжку – центромеру, к которойприкрепляются нити веретена деления. После деления центромеры каждая хроматидастановится самостоятельной дочерней хромосомой.

 В анафазе дочерние хромосомы расходятся к разнымполюсам клетки.

В последней стадии – телофазе – хромосомы вновьраскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникаетядерная оболочка, в ядре формируется ядрышко.

В процессе деления цитоплазмы все её органоидыравномерно распределяются между дочерними клетками. Весь процесс митозапродолжается обычно 1-2 часа.

В результате митоза все дочерние клетки содержат одинаковыйнабор хромосом и одни и те же гены. Следовательно, митоз – это способ деленияклетки, заключающийся в точном распределении генетического материала междудочерними клетками, обе дочерние клетки получают диплоидный набор хромосом.

Биологическое значение митоза огромно.Функционирование органов и тканей многоклеточного организма было бы невозможно без сохранения одинакового генетического материала в бесчисленных клеточныхпоколениях. Митоз обеспечивает такие важные процессы жизнедеятельности, как эмбриональноеразвитие, рост, поддержание структурной целостности тканей при постояннойутрате клеток в процессе их функционирования (замещение погибших эритроцитов,эпителия кишечника и пр.), восстановление органов и тканей после повреждения.

Обмен веществ.

Основная функция клетки – обмен веществ. Измежклеточного вещества в клетки постоянно поступают питательные вещества икислород и выделяются продукты распада. Так, клетки человека поглощаюткислород, воду, глюкозу, аминокислоты, минеральные соли, витамины, а выводятуглекислый газ, воду, мочевину, мочевую кислоту и т.д.

Набор  веществ, свойственный клеткам человека, присущи многим другим клеткам живых организмов: всем животным клеткам, некоторыммикроорганизмам. У клеток зелёных растений характер веществ существенно иной:пищевые вещества у них составляют углекислый газ и вода, а выделяется кислород.У некоторых бактерий, обитающих на корнях бобовых растений (вика, горох,клевер, соя), пищевым веществом служит азот атмосферы, а выводятся соли азотнойкислоты. У микроорганизма, селящегося в выгребных ямах и на болотах, пищевымвеществом служит сероводород, а выделяется сера, покрывая поверхность воды ипочвы жёлтым налётом серы.

Таким образом, у клеток разных организмов характерпищевых и выделяемых веществ различается, но общий закон действителен для всех:пока клетка жива, происходит непрерывное движение веществ – из внешней среды вклетку и из клетки во внешнюю среду.

Обмен веществ выполняет две функции. Первая функция –обеспечение клетки строительным материалом. Из веществ, поступающих в клетку, — аминокислот, глюкозы, органических кислот, нуклеотидов – в клетке непрерывнопроисходит биосинтез белков, углеводов, липидов, нуклеиновых кислот. Биосинтез– это образование белков, жиров, углеводов и их соединений из более простыхвеществ. В процессе биосинтеза образуются вещества, свойственные определённымклеткам организма. Например, в клетках мышц синтезируются белки, обеспечивающиеих сокращение. Из белков, углеводов, липидов, нуклеиновых кислот формируетсятело клетки, её мембраны, органоиды. Реакции биосинтеза особенно активно идут вмолодых, растущих клетках. Однако биосинтез веществ постоянно происходит вклетках, закончивших рост и развитие, так как химический состав клетки втечение её жизни многократно обновляется. Обнаружено, что «продолжительностьжизни» молекул белков клетки колеблется от 2-3 часов до нескольких дней. Послеэтого срока они разрушаются и заменяются вновь синтезированными. Таким образом,клетка сохраняет функции и химический состав.

Совокупность реакций, способствующих построению клеткии обновлению её состава, носит название пластического обмена (греч.«пластикос» — лепной, скульптурный).

Вторая функция обмена веществ – обеспечение клеткиэнергией. Любое проявление жизнедеятельности (движение, биосинтез веществ,генерация тепла и др.) нуждаются в затрате энергии. Для энергообеспеченияклетки используется энергия химических реакций, которая освобождается врезультате расщепления поступающих веществ. Эта энергия преобразуется в другиевиды энергии. Совокупность реакций, обеспечивающих клетки энергией, называют энергетическимобменом.

Пластический и энергетический обмены неразрывносвязаны между собой. С одной стороны, все реакции пластического обменануждаются в затрате энергии. С другой стороны, для осуществления реакцииэнергетического обмена необходим постоянный синтез ферментов, так как«продолжительность жизни» молекул ферментов невелика.

Через пластический и энергетический обменыосуществляется  связь клетки с внешней средой. Эти процессы являются основнымусловием поддержания жизни клетки, источником её роста, развития ифункционирования.

Живая клетка представляет собой открытую систему,поскольку между клеткой и окружающей средой постоянно происходит обмен веществи энергии.

Раздражимость.

Живые клетки способны реагировать на физические ихимические изменения окружающей их среды. Это свойство клеток называетсяраздражимостью или возбудимостью. При этом из состояния покоя клетка переходитв рабочее состояние – возбуждение. При возбуждении в клетках меняется скоростьбиосинтеза и распада веществ, потребление кислорода, температура. Ввозбуждённом состоянии разные клетки выполняют свойственные им функции.Железистые клетки образуют и выделяют вещества, мышечные клетки сокращаются, внервных клетках возникает слабый электрический сигнал – нервный импульс,который может распространяться по клеточным мембранам.

Роль органических соединений в осуществлениифункций клетки.

Главная роль в осуществлении функций клеткипринадлежит органическим соединениям. Среди них наибольшее значение имеютбелки, жиры, углеводы и нуклеиновые кислоты.

Белки.

Белки представляют собой большие молекулы, состоящиеиз сотен и тысяч элементарных звеньев – аминокислот. Всего в живой клеткеизвестно 20 видов аминокислот. Название аминокислоты получили из-за содержанияв своём составе аминной группы Nh3.

Белки в обмене веществ занимают особое место. Ф.Энгельс так оценил эту роль белков: «Жизнь – это способ существования белковыхтел, существенным моментом которого является постоянный обмен веществ сокружающей их внешней природой, причём с прекращением этого обмена веществпрекращается и жизнь, что приводит к разложению белка». И на самом деле, везде,где есть жизнь, находят белки.

Белки входят в состав цитоплазмы, гемоглобина, плазмыкрови, многих гормонов, иммунных  тел, поддерживают постоянство водно-солевойсреды организма. Без белков нет роста. Ферменты, обязательно участвующие вовсех этапах обмена веществ, имеют белковую природу.

Углеводы.

Углеводы поступают в организм в виде крахмала.Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровьи усваиваются клетками.

Углеводы – главный источник энергии, особенно приусиленной мышечной работе. Больше половины энергии организм взрослых людейполучает за счёт углеводов. Конечные продукты обмена углеводов – углекислый гази вода.

В крови количество глюкозы поддерживается наотносительно постоянном уровне (около 0,11%). Уменьшение содержания глюкозывызывает понижение температуры тела, расстройство деятельности нервной системы,утомление. Повышение количества глюкозы вызывает её отложение в печени в видезапасного животного крахмала – гликогена. Значение глюкозы для организма неисчерпывается её ролью как источника энергии. Глюкоза входит в составцитоплазмы и, следовательно, необходима при образовании новых клеток, особеннов период роста.

Углеводы имеют важное значение и в обмене веществцентральной нервной системы. При резком снижении количества сахара в кровиотмечаются расстройства деятельности нервной системы. Наступают судороги, бред,потеря сознания, изменение деятельности сердца.

Жиры.

Поступивший с пищей жир в пищеварительном трактерасщепляется на глицерин и жирные кислоты, которые всасываются в основном влимфу и лишь частично в кровь.

Жир используется организмом как богатый источникэнергии. При распаде одного грамма жира в организме освобождается энергии в двараза больше, чем при распаде такого же количества белков и углеводов. Жирывходят и в состав клеток (цитоплазма, ядро, клеточные мембраны), где ихколичество устойчиво и постоянно.

Скопления жира могут выполнять и другие функции.Например, подкожный жир препятствует усиленной отдаче тепла, околопочечный жирпредохраняет почку от ушибов и т.д.

Недостаток жиров в пище нарушает деятельностьцентральной нервной системы и органов размножения, снижает выносливость кразличным заболеваниям.

С жирами в организм поступают растворимые в нихвитамины (витамины A, D, E и др.), имеющие для человека жизненно важноезначение.

Нуклеиновые кислоты.

Нуклеиновые кислоты образуются в клеточном ядре.Отсюда и произошло название (лат. «нуклеус» — ядро). Входя в состав хромосом,нуклеиновые кислоты участвуют в хранении и передаче наследственных свойствклетки. Нуклеиновые кислоты обеспечивают образование белков.

ДНК.

Молекула ДНК – дезоксирибонуклеиновая кислота – былаоткрыта в клеточных ядрах ещё в 1868 году швейцарским врачом И.Ф. Мишером.Позднее узнали, что ДНК находится в хромосомах ядра.

Основная функция ДНК – информационная: порядок расположенияеё четырёх нуклеотидов (нуклеотид -  мономер; мономер – вещество, состоящее изповторяющихся элементарных звеньев) несёт важную информацию – определяетпорядок расположения аминокислот в линейных молекулах белков, т.е. их первичнуюструктуру. Набор белков (ферментов, гормонов) определяет свойства клетки иорганизма. Молекулы ДНК хранят сведения об этих свойствах и передают их впоколения потомков, т.е. ДНК является носителем наследственной информации.

РНК.

РНК – рибонуклеиновая кислота – очень похожа на ДНК итоже построена из мономерных нуклеотидов четырёх типов. Главное отличие РНК отДНК – одинарная, а не двойная цепочка молекулы.

Различают несколько видов РНК, все они принимаютучастие в реализации наследственной информации, хранящейся в молекулах ДНК,через синтез белка.

АТФ.

Очень важную роль в биоэнергетике клетки играетадениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты.Такое вещество называют аденозинтрифосфорной кислотой (АТФ). АТФ –универсальный биологический аккумулятор энергии: световая энергия Солнца иэнергия, заключённая в потребляемой пище, запасается в молекулах АТФ.

Энергию АТФ (Е) все клетки используют для процессовбиосинтеза, движения нервных импульсов, свечений и других процессовжизнедеятельности.

Новые открытия в области клетки.

Раковые клетки.

Два британца и американец разделят Нобелевскуюпремию за 2001 г. по медицине. Их открытия в области развития клеток, возможно,позволят разработать новые методы борьбы с раком. Как сообщил представитель Нобелевского комитета, ученые-медики разделят премиюв $943 000. 61-летний американец Лиланд Хартвел работает в Исследовательскомраковом центре Фреда Хатчисона в Сиэтле. Британцы 58-летний Тимоти Хунт и52-летний Пол Нурс — сотрудники отделений Королевского фонда исследований ракав Хертфордшире и Лондоне. 

Научные открытия, совершенные лауреатами касаютсяжизненного цикла раковых клеток. В частности, они обнаружили ключевыерегуляторы деления клеток — нарушение этого процесса ведет к возникновениюраковых клеток. Результаты исследований могут быть использованы при диагностикеболезни и имеют важное значение для перспективы создания новых методов лечениярака. Трое победителей были определены утром 08.10.01 в результате голосования членовкомитета, которое прошло в Каролинском институте Стокгольма.

Клонирование.

/>Клонированнаяовца Долли явила миру технологию получения из взрослой клетки точной копииживотного. А значит, принципиально возможным стало получить точную копиючеловека.

И теперь человечество всталоперед вопросом: что будет, если кто-нибудь эту возможность реализует?..

Если вспомнить протрансплантацию органов, которая позволяет заменить одну или несколько«запчастей», то клонирование теоретически позволяет обеспечить полнуюзамену «агрегата» под названием человеческий организм.

Да это же решение проблемыличного бессмертия! Ведь благодаря клонированию из собственных планов на жизньможно исключить болезнь, инвалидность и даже смерть!

Звучит славно, не правда ли?Особенно, если учесть, что копии должны быть живыми и находиться при этом втаких условиях, чтобы как минимум не портились. Представляете себе эти«склады» живых человеческих «запчастей»?

А есть ведь еще и«польза» вторая — использование клонирования не только для полученияорганов, но и для проведения исследований и экспериментов на живом«материале».

Далее перед дерзающими маячитманящая идея воспроизводства Эйнштейнов, Пушкиных, Лобачевских, Ньютонов.Налепили гениев и рванули вперед по пути прогресса.

Однако буквально все — отученых до простой публики — сознают, что выращивание человека на«запчасти» порождает немало вопросов этического плана. Уже сейчасмировое сообщество располагает документами, согласно которым подобное не должнобыть позволено. Конвенция о правах человека устанавливает принцип:«Интересы и благо человеческого существа должны иметь приоритет надодносторонне рассматриваемыми интересами общества и развития науки».

Российское законодательствотакже устанавливает весьма жесткие ограничения на использование человеческого материала.Так, в предлагаемой медиками поправке к проекту «Закона о репродуктивныхправах граждан и гарантиях их осуществления» содержится такай пункт:«Человеческий эмбрион не может быть целенаправленно получен или клонированв научных, фармакологических или лечебных целях».

Вообще, дискуссии по этомуповоду в мире идут достаточно бурные. Если американские эксперты из федеральнойкомиссии по биотехнологиям еще только начинают изучать правовые и />этические аспекты этого открытия и представлять его на суд законодателей,то Ватикан остался верен своей прежней позиции, заявив о неприемлемостивмешательства человека в процессы репродукции и вообще — в генетическийматериал человека и животного. Исламские теологи выражают озабоченность тем,что клонирование людей нарушит и без того разрываемый противоречиями институтбрака. Индуисты и буддисты мучительно размышляют над тем, как соотнестиклонирование с проблемами кармы и дхармы.

Всемирная организация здравоохранения /ВОЗ/ такженегативно относится к клонированию собственно человека. Генеральный директорВОЗ Хироси Накадзима считает, что «использование клонирования дляпроизводства человека неприемлемо с этической точки зрения». СпециалистыВОЗ исходят из того, что применение метода клонирования к людям нарушило бытакие фундаментальные принципы медицинской науки и права, как уважениечеловеческого достоинства и безопасность человеческого генетическогопотенциала.

Вместе с тем ВОЗ не против исследований в областиклонирования клеток, поскольку это могло бы принести пользу, в частности, длядиагностики и изучения рака. Не возражают медики и против клонированияживотных, которое может содействовать изучению болезней, поражающих людей. Приэтом ВОЗ считает, что хотя клонирование животных способно принести существенныевыгоды медицине, нужно быть все время начеку, помня о возможных негативныхпоследствиях — таких, например, как перенос заразных болезней от животныхчеловеку.

Опасения, высказываемые по поводу клонирования всовременных культурах Запада и Востока, вполне объяснимы. Как бы суммируя их,известный французский цитобиолог Пьер Шамбон предлагает ввести 50-летниймораторий на вторжение в хромосомы человека, если это не направлено наустранение генетических дефектов и заболеваний.

А вот еще вопрос не из маловажных: клонируется лидуша? Можно ли вообще считать искусственного человека личностью, наделенной ею?

Точка зрения церкви на этот счет абсолютно однозначна.«Даже если такой искусственный человек будет создан руками ученых, у негоне будет души, а значит, это не человек, а зомби», — считает священникХрама Вознесения Христова отец Олег.

Но и в возможность создания клонированного человекапредставитель церкви не верит, так как убежден, что только Бог может сотворитьчеловека. «Чтобы в клетке ДНК, помимо чисто биологических и механическихсоединений начался процесс роста живого человеческого существа, наделенногодушой, в этом должен участвовать святой дух, а такого при искусственномзарождении жизни нет».

Хабаровские цитологи.

Вопросами цитологии и гистологии в Хабаровском краезанимались сотрудники Медицинского института (ныне ДальневосточныйГосударственный Медицинский Университет – ДВГМУ).

У истоков стоял Алов Иосиф Александрович, заведующийкафедрой гистологии в 1952 – 1961 гг. С 1962 по 1982 гг. заведовал лабораториейгистологии в Институте Морфологии Человека АМН СССР в г. Москва.

Ныне кафедру гистологии возглавляет Рыжавский БорисЯковлевич (с 1979 года), защитивший докторскую диссертацию в 1985 году.

Основными направлениями работы кафедры гистологииявляются следующие:

-     овариоэктология (удаление яичника)и её влияние на формирование нормальной морфологии коры больших полушарий употомства (определяют особые количественные показатели, например, ростовыеиндексы и т.п.)

-     влияние алкоголя и ноотропныхпрепаратов на потомство

-     исследование плаценты и еёпатологий в ходе эмбриогенеза и влияние этих отклонений на дальнейшийонтогенез.

Используются главным образом классическиегистологические методики для решения этих задач.

Также вопросами, связанными с клеткой и тканями,занимается Центральная научно-исследовательская лаборатория (ЦНИЛ) при ДВГМУ,возглавляемая профессором Сергеем Серафимовичем Тимошиным, под руководством которого защищены 3 докторских и 18 кандидатских диссертаций. По его инициативеи непосредственном участии в Хабаровском крае была создана первая радиоиммунологическая лаборатория. Внедрена в практику здравоохранения методикаопределения гормонов и биологически-активных веществ радио иммунным ииммуноферментным методами, что позволяет осуществлять раннюю диагностику рядазаболеваний, в том числе онкологических.

Заключение.

Клетка – это самостоятельное живое существо. Онапитается, двигается в поисках пищи, выбирает, куда идти и чем питаться,защищается и не пускает внутрь из окружающей среды неподходящие вещества исущества. Всеми этими способностями обладают одноклеточные организмы, например,амёбы. Клетки, входящие в состав организма, специализированы и не обладаютнекоторыми возможностями свободных клеток.

Клетка – самая мелкая единица живого, лежащая в основестроения и развития растительных и животных организмов нашей планеты. Онапредставляет собой элементарную живую систему, способную к самообновлению,саморегуляции, самовоспроизведению. Клетка является основным «кирпичикомжизни». Вне клетки жизни нет.

Живая клетка является основой всех форм жизни на Земле– животной и растительной. Исключения – а, как известно, исключения лишний разподтверждают правила – составляют лишь вирусы, однако и они не могутфункционировать вне клеток, которые представляют собой «дом», где «живут» этисвоеобразные биологические образования.

Список используемой литературы:

1. Батуева А.С.«Биология. Человек», учебник для 9 класса.

2. Вернандский В.И.«Проблемы биогеохимии».

3. Воронцов Н.Н.,Сухорукова Л.Н. «Эволюция органического мира».

4. Дубинин Н.,Губарев В. «Нить жизни».

5. Затула Д.Г.,Мамедова С.А. «Вирус – друг или враг?».

6. Карузина И.П.«Учебное пособие по основам генетики».

7. Либерман Е.А.«Живая клетка».

8. Полянский Ю.И.«Общая биология», учебник для 10-11 классов.

9. Прохоров А.М.«Советский энциклопедический словарь».

10.   Скулачёв В. «Рассказы обиоэнергетике».

11.   Хрипкова А.Г., Колесов Д.В., МироновВ.С., Шепило И.Н. «Физиология человека».

12.   Цузмер А.М., Петришина О.Л.«Биология, человек и его здоровье».

13.   Чухрай Е.С. «Молекула, жизнь,организм».

14.   Штрбанова С. «Кто мы? Книга о жизни,клетках и учёных».

www.ronl.ru

Реферат по Биологии Тема: "Клетка" - Реферат

Реферат по

Биологии

Тема: ”Клетка”

Исполнил:

Лежнин Пётр

818 гр.

-2001-

ВВЕДЕНИЕ

Цитология – наука о клетках – элементарных единицах строения, функционирования и воспроизведения живой материи. Объектами цитологических исследований являются клетки многоклеточных организмов, бактериальные клетки, клетки простейших. У многоклеточных форм клетки входят в состав тканей, их жизнедеятельность подчинена координирующему влиянию целостного организма. У бактерий и простейших понятия "клетка" и "организм" совпадают; мы вправе говорить о клетках-организмах, ведущих самостоятельное существование.

Подавляющее большинство клеток не видимы невооруженным глазом; поэтому изучение клеток тесно связано с развитием техники микроскопирования. Первые микроскопы были сконструированы в начале XVIIв.

Впервые клетки в срезах пробки описаны в 1665г. английским естествоиспытателем Робертом Гуком, применившим для их наблюдения построенную им усовершенствованную модель микроскопа. Он видел, что все вещество пробки состоит из большого числа маленьких отделений, разграниченных тонкими диафрагмами, или полостей, наполненных воздухом. Эти полости, или ячейки, он назвал "клетками" (от греч. kytos – полость). Термин "клетка" утвердился в биологии, несмотря на то что Роберт Гук наблюдал, собственно, не клетки, а лишь целлюлозные оболочки растительных клеток и что клетки в действительности не полости.

В дальнейшем клеточное строение многих частей растений видели и описали М. Мальпиги и Н. Грю, а также А Левенгук.

В целом уровень знаний о клетке, достигнутый в XVII веке, почти не изменился до начала XIX века. К этому времени явилось общепризнанным существование только одной из частей клеток, а именно целлюлозной оболочки растительных клеток, которая составляла клетку Гука или пузырек Грю и Мальпиги. Внутреннее содержимое этих полостей продолжало ускользать от наблюдения большинства исследователей.

В 1831 г. Р. Браун в "клеточном соке" орхидных открыл ядро, которое является одним из важнейших постоянных компонентов клетки. Представления о клеточном строении растений в окончательном виде были сформулированы М. Шлейденом (1838).

В 1839 г. Т. Шванн распространил представление о клеточном строении на животных, постулировав, что клетки являются элементарной структурой всех тканей животных. Он установил также, что клетки животных и растений гомологичны по развитию и аналогичны по функциональному значению, и сделал вывод, что "клетки представляют собой организмы, а животные, как и растения, - это сумма этих организмов, расположенных согласно определенным законам". Т. Шванн впервые применил термин клеточная теория, а его данные послужили убедительным ее обоснованием. Он подчеркнул также не только морфологическое, но и физиологическое значение клеток и ввел понятие о клеточном метаболизме.

Клеточная теория быстро распространилась и на простейших, которых стали рассматривать как животных, состоящих из одной клетки, и к середине XIX века клеточное учение стало охватывать не только анатомию и физиологию, но и патологию человека, животных и растений.

В момент возникновения клеточной теории вопрос о том, как образуются клетки в организме, не был окончательно выяснен. М. Шлейден и Т. Шванн считали, что клетки в организме возникают путем новообразования из первичного неклеточного вещества. Это представление было опровергнуто к середине XIXв., что нашло отражение в знаменитом афоризме Р. Вирхова: "omnis cellula a cellula" (всякая клетка происходит только от клетки). Дальнейшее развитие цитологии полностью подтвердило, что и клетки животных, и клетки растений возникают только в результате деления предшествующих клеток и никогда не возникают de novo – из "неживого" или "живого" вещества.

Во второй половине XIX и в начале XXвв. Были выяснены основные детали тонкого строения клетки, что стало возможным благодаря крупным усовершенствованиям микроскопа и техники микроскопирования биологических объектов.

Параллельно с усовершенствованием микроскопа были разработаны оптимальные приемы подготовки биологических объектов для микроскопического исследования. Вместо наблюдений за живыми тканями или тканями, находящимися на начальных этапах предсмертных изменений, исследования стали проводиться почти исключительно на фиксированном материале. В употребление были введены такие широко известные в настоящее время фиксаторы, как хромовая кислота (1850),пикриновая кислота (1865), формалин и т. д., а также сложные фиксаторы, состоящие из двух и более ингредиентов.

Для получения достаточно тонких срезов были разработаны методы уплотнения биологических объектов путем заливки их в парафин, желатин, целлоидин и т. д. и созданы микротомы, позволяющие получать срезы точно заданной толщины.

Коренное улучшение всей техники микроскопирования позволило исследователям к началу XX столетия обнаружить основные клеточные органоиды, выяснить строение ядра и закономерности клеточного деления, расшифровать механизмы оплодотворения и созревания половых клеток. В 1876г. был открыт клеточный центр, в 1894г. – митохондрии, в 1898г. – аппарат Гольджи.

Крупный вклад в развитие учения о клетке второй половины XIX – начала XXвв. Внесли отечественные цитологи И. Д. Чистяков (описание фаз митотического деления), И. Н. Горожанкин (изучение цитологических основ оплодотворения у растений) и особенно С. Т. Навашин, открывший в 1898г. явление двойного оплодотворения у растений.

Успехи в изучении клетки приводили к тому, что внимание биологов все больше концентрировалось на клетке как основной структурной единице живых организмов. Становилось все более очевидным, что в особенностях строения и функций клетки лежит ключ к решению многих фундаментальных проблем биологии. Вместе с тем изучение клетки породило собственные проблемы, как методические, так и теоретические. Все это и привело в конце XIXв. к выделению цитологии в самостоятельный раздел биологии.

Широкое использование новейших методов физики и химии обусловило прогресс, достигнутый в последнее десятилетие в развитии основных направлений цитологических исследований – в изучении строения, функционирования и воспроизведения клетки. Например, изучение морфологии клетки в настоящее время почти целиком базируется на использовании электронной микроскопии, при помощи которой были открыты такие важнейшие клеточные органоиды, как эндоплазматическая сеть, рибосомы, лизосомы.

Применение методов молекулярной биологии привело к открытию роли ДНК как носителя наследственной информации в клетке и к расшифровке генетического кода. Благодаря молекулярно-генетическим и биохимическим методам анализа выяснены основные этапы синтеза белка в клетке.

Лишь один постулат клеточной теории оказался опровергнутым. Открытие вирусов показало, что утверждение "вне клеток нет жизни" ошибочно. Хотя вирусы, как и клетки, состоят из двух основных компонентов – нуклеиновой кислоты и белка, структура вирусов и клеток резко различна, что не позволяет считать вирусы клеточной формой организации материи. Вирусы не способны самостоятельно синтезировать компоненты собственной структуры – нуклеиновые кислоты и белки, - и их размножение возможно только при использовании ферментативных систем клеток. Поэтому вирус не является элементарной единицей живой материи.

Значение клетки как элементарной структуры и функции живого, как центра основных биохимических реакций, протекающих в организме, как носителя материальных основ наследственности делает цитологию важнейшей общебиологической дисциплиной.

КЛЕТОЧНАЯ ТЕОРИЯ

Наука о клетке – цитология, изучает строение и химический состав клеток, функции внутриклеточных структур, размножение и развитие клеток, приспособления к условиям окружающей среды. Это комплексная наука, связанная с химией, физикой, математикой, другими биологическими науками. Клетка - самая мелкая единица живого, лежащая в основе строения и развития растительных и животных организмов нашей планеты. Она представляет собой элементарную живую систему, способную к самообновлению, саморегуляции, самовоспроизведению. Но в природе не существует некой универсальной клетки: клетка мозга столь же сильно отличается от клетки мышц, как и от любого одноклеточного организма. Отличие выходит за рамки архитектуры - различно не только строение клеток, но и их функции.

И все же можно говорить о клетках в собирательном понятии. В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838). Он обобщил имевшиеся знания о клетке и показал, что клетка представляет собой основную единицу строения всех живых организмов, что клетки растений и животных сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единства всего органического мира. Т. Шванн внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.

Клеточная теория – одно из выдающихся обобщений биологии прошлого столетия, давшее основу для материалистического подхода к пониманию жизни, к раскрытию эволюционных связей между организмами.

Клеточная теория получила дальнейшее развитие в трудах ученых второй половины XIX столетия. Было открыто деление клеток и сформулировано положение о том, что каждая новая клетка происходит от такой же исходной клетки путем ее деления (Рудольф Вирхов, 1858). Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки, и этой клеткой является зигота. Это открытие показало, что клетка – не только единица строения, но и единица развития всех живых организмов.

Клеточная теория сохранила свое значение и в настоящее время. Она была неоднократно проверена и дополнена многочисленными материалами о строении, функциях, химическом составе, размножении и развитии клеток разнообразных организмов.

Современная клеточная теория включает следующие положения:

  • Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого;

  • Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

  • Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки;

  • В сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

Общие черты и позволяют нам говорить о клетке вообще, подразумевая некую среднюю типичную клетку. Все ее атрибуты - объекты абсолютно реальные, легко видимые в электронный микроскоп. Правда, эти атрибуты менялись - вместе с силой микроскопов. На схеме клетки, созданной в 1922 году с помощью светового микроскопа, всего четыре внутренние структуры; с 1965 года, основываясь на данных электронной микроскопии, мы рисуем уже, по меньшей мере, семь структур. Причем, если схема 1922 года более походила на картину абстракциониста, то современная схема сделала бы честь художнику-реалисту.

Давайте подойдем поближе к этой картине, чтобы лучше рассмотреть отдельные ее детали.

СТРОЕНИЕ КЛЕТКИ

Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро. Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции.

Цитоплазма

Лизосома

Ядро

Ядрышко

Ядерная оболочка

Ядерный сок

Центриоли

Эндоплазматическая сеть

Клеточная мембрана

Митохондрии

Оболочка. Она осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах). Оболочка - таможня клетки. Она зорко следит за тем, чтобы в клетку не проникли ненужные в данный момент вещества; наоборот, вещества, в которых клетка нуждается, могут рассчитывать на ее максимальное содействие.

Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство. Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети.

Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр. В некоторых ядрах, например ядрах яйцеклеток, пор очень много и они с правильными интервалами расположены на поверхности ядра. Количество пор в ядерной оболочке варьирует в различных типах клеток. Поры расположены на равном расстоянии друг от друга. Так как диаметр поры может изменяться, и в ряде случаев ее стенки обладают довольно сложной структурой, создается впечатление, что поры сокращаются, или замыкаются, или, наоборот, расширяются. Благодаря порам кариоплазма входит в непосредственный контакт с цитоплазмой. Через поры легко проходят довольно крупные молекулы нуклеозидов, нуклеотидов, аминокислот и белков, и таким образом осуществляется активный обмен между цитоплазмой и ядром.

Цитоплазма. Основное вещество цитоплазмы, называемое также гиалоплазмой или матриксом, - это полужидкая среда клетки, в которой располагается ядро и все органоиды клетки. Под электронным микроскопом вся гиалоплазма, располагающаяся между органоидами клетки, имеет мелкозернистую структуру. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты. Последние играют важную роль в движении и соединении клеток между собой в ткани.

В состав цитоплазмы входят вещества белковой природы. Во многих клетках, например у амеб, в клетках различных эпителиев, гиалоплазма содержит тончайшие нити, которые могут переплетаться и образовывать структуры, напоминающие войлок. Эти нитевидные (фибриллярные) структуры связаны с выполнением механической функции: они образуют нечто подобное внутреннему скелету клетки. Фибриллы цитоплазмы не принадлежат к числу постоянных структур: они могут появляться и исчезать при различных физиологических состояниях клетки.

Важнейшая роль гиалоплазмы заключается в том, что эта полужидкая среда объединяет все клеточные структуры и обеспечивает их химическое взаимодействие друг с другом. Именно через цитоплазму происходит диффузия различных веществ, растворенных в воде, которые постоянно поступают в клетку и выводятся из нее. В цитоплазму поступают также твердые частички, попадающие в клетку путем фагоцитоза, поступают и пиноцитозные вакуоли. Все эти вещества передвигаются в ней и повергаются дальнейшей переработке.

Эндоплазматическая сеть (ЭПС). Эндоплазматическая сеть принадлежит к числу органоидов клетки, открытых совсем недавно (1945 – 1946). Расположение сетчатых структур во внутренней части цитоплазмы – эндоплазме (греч. "эндон" – внутри) – и послужило основанием для того, чтобы вновь открытому органоиду дать название эндоплазматической сети или эндоплазматического ретикулума.

Дальнейшее электронномикроскопическое изучение ультратонких срезов разнообразных клеток показало, что сетчатые структуры состоят из сложной системы канальцев, вакуолей и цистерн, ограниченных мембранами. Мембраны ЭПС имеют типичную трехслойную структуру, такую же, как и та, что свойственна и наружной мембране клетки. Каналы, вакуоли и цистерны образуют ветвящуюся сеть, которая пронизывает всю цитоплазму клетки.

Форма каналов, вакуолей и цистерн эндоплазматической сети непостоянна и широко варьирует как в одной и той же клетке в разные периоды ее функциональной деятельности, так и в клетках различных органов и тканей. Для каждого типа клеток характерна определенная структура ЭПС. Наибольшее развитие ЭПС характерно для секреторных клеток с интенсивным уровнем белкового обмена. Слабо развита ЭПС в клетках коры надпочечников, сперматоцитах. В значительной мере степень развития эндоплазматической сети находится в зависимости от уровня дифференцировки клеток. Например, в молодых клетках сальных желез, претерпевающих интенсивное деление, ЭПС развита слабо, но в более зрелых клетках этих желез она выражена очень отчетливо, т. е. по мере дифференцировки клеток происходит и развитие ЭПС.

Типы эндоплазматической сети. Детальное изучение мембран, ограничивающих каналы, вакуоли и цистерны ЭПС, позволило установить, что во многих клетках на наружной поверхности этих мембран располагаются многочисленные округлые плотные гранулы. Эти гранулы носят название рибосом. Рибосомы часто образуют скопления на поверхности мембран, ограничивающих цистерны и каналы. Однако есть участки ЭПС, где рибосом нет. Поэтому в клетках различаются два типа эндоплазматической сети: гранулярная, или шероховатая, т. е. несущая рибосомы, и гладкая. Интересно, что в клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм – гладкая. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная сеть в большей степени представлена в тех клетках, где идет активный синтез липидов. Оба вида ЭПС не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей ее средой.

ЭПС была обнаружена во всех клетках многоклеточных животных и растений, подвергавшихся электронномикроскопическому исследованию. Клетки простейших также имеют этот органоид. Отсутствует ЭПС только в цитоплазме зрелых эритроцитов, в клетках сине-зеленых водорослей, и до сих пор не решен вопрос о наличии этого органоида в клетках бактерий.

Функции ЭПС. Столь широкое распространение в клетках всех типов у огромного большинства организмов позволяет рассматривать ЭПС как один из универсальных клеточных органоидов, выполняющих важные и разносторонние функции

Совершенно определенно установлено, что гранулярная ЭПС принимает активное участие в синтезе белка. Доказательством этого может служить наиболее сильное развитие гранулярного типа данного органоида в клетках, вырабатывающих белковые продукты, например в клетках белковых желез и во всех других клетках, интенсивно синтезирующих белки.

Гранулярная ЭПС также принимает участие в секреторных процессах. Например, было установлено, что при интенсивной выработке секрета в клетках поджелудочной железы происходит изменение структуры вакуолей и цистерн, а внутри цистерн появляются уплотненные гранулы.

Несколько меньше известно о функциональном значении гладкой формы ЭПС. Имеются убедительные данные о том, что на ее мембранах осуществляется синтез гликогена и липидов. Об этом свидетельствует, прежде всего, то, что гладкая эндоплазматическая сеть сильно развита именно в клетках, синтезирующих гликоген и липиды, например в клетках сальных желез и коры надпочечника, где осуществляется интенсивный синтез липидов, и в клетках печени, где происходит усиленный синтез гликогена. В клетках, утративших способность к синтезу жира или гликогена (например, в хрящевых), гладкая ЭПС почти не развита.

Обе формы ЭПС способны накапливать в каналах, вакуолях и цистернах продукты синтеза: белковые вещества (гранулярная ЭПС) и жиры или гликоген (гладкая ЭПС). Все эти вещества, накапливающиеся в просвете каналов и цистерн, в дальнейшем транспортируются к различным органоидам клетки.

Транспортная роль ЭПС не ограничивается только передвижением и распределением синтезированных на ее мембранах веществ к разным органоидам клетки, т. е. к местам, где они либо потребляются, либо накапливаются. ЭПС представляет циркуляторную систему клетки, через которую происходит транспорт разнообразных веществ из окружающей среды в цитоплазму. Кроме того, ЭПС, соединяясь со многими органоидами клетки, обеспечивает связь между отдельными внутриклеточными структурами.

После рассмотрения особенностей строения и функций эндоплазматической сети естественно возникает вопрос о том, как и из какого материала в клетке она образуется. До сих пор вполне определенного ответа на этот вопрос еще нет. Но ответ на поставленный вопрос до некоторой степени дают наблюдения о связи этого органоида с другими компонентами клетки, имеющими мембранные структуры. ЭПС теснейшим образом связана с наружной цитоплазматической мембраной, за счет разрастаний которой и частично за счет пиноцитозных пузырьков, сливающихся в конечном итоге с каналами и цистернами, может происходить пополнение мембран.

Рибосомы. Так же как и эндоплазматическая сеть, рибосомы были открыты только с помощью электронного микроскопа. Рибосомы - самые маленькие из клеточных органелл.

Рибосомы либо располагаются на поверхности мембраны гранулярной ЭПС в один ряд, либо образуют розетки и спирали. В тех клетках, где хорошо развита гранулярная ЭПС, например в полностью дифференцированных клетках печени и поджелудочной железы, большинство рибосом связано с ее мембранами. В клетках же, где гранулярная ЭПС развита слабо, рибосомы преимущественно свободно располагаются в основном веществе цитоплазмы. К клеткам такого типа относятся плазмоциты лимфатических узлов и селезенки, овоциты человека и ряд других. Помимо цитоплазмы, рибосомы обнаружены и в клеточном ядре, где они имеют такую же округлую форму, строение и размеры, как и рибосомы цитоплазмы. Часть ядерных рибосом свободно располагается в кариоплазме, а часть их находится в связи с нитевидными структурами, из которых состоят остаточные хромосомы, обнаруживаемые обычно при электронномикроскопическом исследовании интерфазного ядра. В последнее время рибосомы обнаружены в митохондриях и пластидах клеток растений.

Биохимический анализ рибосом, полученных путем дифференциального центрифугирования клеточных гомогенатов, показал, что в состав их входит высокополимерная, так называемая рибосомальная РНК и белок. Соотношение этих двух компонентов в рибосомах почти одинаково.

Белок рибосом самых разнообразных клеток и разных организмов в общем одинаков по составу аминокислот, причем в нем часто преобладают основные аминокислоты, а следовательно, белки рибосом имеют …? свойства. Рибосомы содержат также Mg2+.

Функции рибосом. Исследование ультраструктуры клеток многочисленных видов многоклеточных растений и животных, бактерий и простейших показало, что рибосомы – обязательный органоид каждой клетки. Наличие этого органоида во всех клетках, однородность его строения и химического состава свидетельствуют о важной роли рибосом в жизнедеятельности клеток. Было выяснено, что на рибосомах происходит синтез белков.

refdb.ru

Реферат - Реферат по Биологии Тема: Клетка

Реферат по Биологии

Тема: ”Клетка”

Исполнил:

Лежнин Пётр

818 гр.

-2001-ВВЕДЕНИЕ

Цитология – наука о клетках – элементарных единицах строения, функционирования и воспроизведения живой материи. Объектами цитологических исследований являются клетки многоклеточных организмов, бактериальные клетки, клетки простейших. У многоклеточных форм клетки входят в состав тканей, их жизнедеятельность подчинена координирующему влиянию целостного организма. У бактерий и простейших понятия "клетка" и "организм" совпадают; мы вправе говорить о клетках-организмах, ведущих самостоятельное существование.

Подавляющее большинство клеток не видимы невооруженным глазом; поэтому изучение клеток тесно связано с развитием техники микроскопирования. Первые микроскопы были сконструированы в начале XVIIв.

Впервые клетки в срезах пробки описаны в 1665г. английским естествоиспытателем Робертом Гуком, применившим для их наблюдения построенную им усовершенствованную модель микроскопа. Он видел, что все вещество пробки состоит из большого числа маленьких отделений, разграниченных тонкими диафрагмами, или полостей, наполненных воздухом. Эти полости, или ячейки, он назвал "клетками" (от греч. kytos – полость). Термин "клетка" утвердился в биологии, несмотря на то что Роберт Гук наблюдал, собственно, не клетки, а лишь целлюлозные оболочки растительных клеток и что клетки в действительности не полости.

В дальнейшем клеточное строение многих частей растений видели и описали М. Мальпиги и Н. Грю, а также А Левенгук.

В целом уровень знаний о клетке, достигнутый в XVII веке, почти не изменился до начала XIX века. К этому времени явилось общепризнанным существование только одной из частей клеток, а именно целлюлозной оболочки растительных клеток, которая составляла клетку Гука или пузырек Грю и Мальпиги. Внутреннее содержимое этих полостей продолжало ускользать от наблюдения большинства исследователей.

В 1831 г. Р. Браун в "клеточном соке" орхидных открыл ядро, которое является одним из важнейших постоянных компонентов клетки. Представления о клеточном строении растений в окончательном виде были сформулированы М. Шлейденом (1838).

В 1839 г. Т. Шванн распространил представление о клеточном строении на животных, постулировав, что клетки являются элементарной структурой всех тканей животных. Он установил также, что клетки животных и растений гомологичны по развитию и аналогичны по функциональному значению, и сделал вывод, что "клетки представляют собой организмы, а животные, как и растения, - это сумма этих организмов, расположенных согласно определенным законам". Т. Шванн впервые применил термин клеточная теория, а его данные послужили убедительным ее обоснованием. Он подчеркнул также не только морфологическое, но и физиологическое значение клеток и ввел понятие о клеточном метаболизме.

Клеточная теория быстро распространилась и на простейших, которых стали рассматривать как животных, состоящих из одной клетки, и к середине XIX века клеточное учение стало охватывать не только анатомию и физиологию, но и патологию человека, животных и растений.

В момент возникновения клеточной теории вопрос о том, как образуются клетки в организме, не был окончательно выяснен. М. Шлейден и Т. Шванн считали, что клетки в организме возникают путем новообразования из первичного неклеточного вещества. Это представление было опровергнуто к середине XIXв., что нашло отражение в знаменитом афоризме Р. Вирхова: "omnis cellula a cellula" (всякая клетка происходит только от клетки). Дальнейшее развитие цитологии полностью подтвердило, что и клетки животных, и клетки растений возникают только в результате деления предшествующих клеток и никогда не возникают de novo – из "неживого" или "живого" вещества.

Во второй половине XIX и в начале XXвв. Были выяснены основные детали тонкого строения клетки, что стало возможным благодаря крупным усовершенствованиям микроскопа и техники микроскопирования биологических объектов.

Параллельно с усовершенствованием микроскопа были разработаны оптимальные приемы подготовки биологических объектов для микроскопического исследования. Вместо наблюдений за живыми тканями или тканями, находящимися на начальных этапах предсмертных изменений, исследования стали проводиться почти исключительно на фиксированном материале. В употребление были введены такие широко известные в настоящее время фиксаторы, как хромовая кислота (1850),пикриновая кислота (1865), формалин и т. д., а также сложные фиксаторы, состоящие из двух и более ингредиентов.

Для получения достаточно тонких срезов были разработаны методы уплотнения биологических объектов путем заливки их в парафин, желатин, целлоидин и т. д. и созданы микротомы, позволяющие получать срезы точно заданной толщины.

Коренное улучшение всей техники микроскопирования позволило исследователям к началу XX столетия обнаружить основные клеточные органоиды, выяснить строение ядра и закономерности клеточного деления, расшифровать механизмы оплодотворения и созревания половых клеток. В 1876г. был открыт клеточный центр, в 1894г. – митохондрии, в 1898г. – аппарат Гольджи.

Крупный вклад в развитие учения о клетке второй половины XIX – начала XXвв. Внесли отечественные цитологи И. Д. Чистяков (описание фаз митотического деления), И. Н. Горожанкин (изучение цитологических основ оплодотворения у растений) и особенно С. Т. Навашин, открывший в 1898г. явление двойного оплодотворения у растений.

Успехи в изучении клетки приводили к тому, что внимание биологов все больше концентрировалось на клетке как основной структурной единице живых организмов. Становилось все более очевидным, что в особенностях строения и функций клетки лежит ключ к решению многих фундаментальных проблем биологии. Вместе с тем изучение клетки породило собственные проблемы, как методические, так и теоретические. Все это и привело в конце XIXв. к выделению цитологии в самостоятельный раздел биологии.

Широкое использование новейших методов физики и химии обусловило прогресс, достигнутый в последнее десятилетие в развитии основных направлений цитологических исследований – в изучении строения, функционирования и воспроизведения клетки. Например, изучение морфологии клетки в настоящее время почти целиком базируется на использовании электронной микроскопии, при помощи которой были открыты такие важнейшие клеточные органоиды, как эндоплазматическая сеть, рибосомы, лизосомы.

Применение методов молекулярной биологии привело к открытию роли ДНК как носителя наследственной информации в клетке и к расшифровке генетического кода. Благодаря молекулярно-генетическим и биохимическим методам анализа выяснены основные этапы синтеза белка в клетке.

Лишь один постулат клеточной теории оказался опровергнутым. Открытие вирусов показало, что утверждение "вне клеток нет жизни" ошибочно. Хотя вирусы, как и клетки, состоят из двух основных компонентов – нуклеиновой кислоты и белка, структура вирусов и клеток резко различна, что не позволяет считать вирусы клеточной формой организации материи. Вирусы не способны самостоятельно синтезировать компоненты собственной структуры – нуклеиновые кислоты и белки, - и их размножение возможно только при использовании ферментативных систем клеток. Поэтому вирус не является элементарной единицей живой материи.

Значение клетки как элементарной структуры и функции живого, как центра основных биохимических реакций, протекающих в организме, как носителя материальных основ наследственности делает цитологию важнейшей общебиологической дисциплиной.

^ КЛЕТОЧНАЯ ТЕОРИЯ

Наука о клетке – цитология, изучает строение и химический состав клеток, функции внутриклеточных структур, размножение и развитие клеток, приспособления к условиям окружающей среды. Это комплексная наука, связанная с химией, физикой, математикой, другими биологическими науками. Клетка - самая мелкая единица живого, лежащая в основе строения и развития растительных и животных организмов нашей планеты. Она представляет собой элементарную живую систему, способную к самообновлению, саморегуляции, самовоспроизведению. Но в природе не существует некой универсальной клетки: клетка мозга столь же сильно отличается от клетки мышц, как и от любого одноклеточного организма. Отличие выходит за рамки архитектуры - различно не только строение клеток, но и их функции.

И все же можно говорить о клетках в собирательном понятии. В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838). Он обобщил имевшиеся знания о клетке и показал, что клетка представляет собой основную единицу строения всех живых организмов, что клетки растений и животных сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единства всего органического мира. Т. Шванн внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.

Клеточная теория – одно из выдающихся обобщений биологии прошлого столетия, давшее основу для материалистического подхода к пониманию жизни, к раскрытию эволюционных связей между организмами.

Клеточная теория получила дальнейшее развитие в трудах ученых второй половины XIX столетия. Было открыто деление клеток и сформулировано положение о том, что каждая новая клетка происходит от такой же исходной клетки путем ее деления (Рудольф Вирхов, 1858). Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки, и этой клеткой является зигота. Это открытие показало, что клетка – не только единица строения, но и единица развития всех живых организмов.

Клеточная теория сохранила свое значение и в настоящее время. Она была неоднократно проверена и дополнена многочисленными материалами о строении, функциях, химическом составе, размножении и развитии клеток разнообразных организмов.

Современная клеточная теория включает следующие положения:

Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого;

Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки;

В сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

Общие черты и позволяют нам говорить о клетке вообще, подразумевая некую среднюю типичную клетку. Все ее атрибуты - объекты абсолютно реальные, легко видимые в электронный микроскоп. Правда, эти атрибуты менялись - вместе с силой микроскопов. На схеме клетки, созданной в 1922 году с помощью светового микроскопа, всего четыре внутренние структуры; с 1965 года, основываясь на данных электронной микроскопии, мы рисуем уже, по меньшей мере, семь структур. Причем, если схема 1922 года более походила на картину абстракциониста, то современная схема сделала бы честь художнику-реалисту.

Давайте подойдем поближе к этой картине, чтобы лучше рассмотреть отдельные ее детали.^ СТРОЕНИЕ КЛЕТКИ

Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро. Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции.

Цитоплазма

Лизосома

Ядро

Ядрышко

Ядерная оболочка

Ядерный сок

Центриоли

Эндоплазматическая сеть

Клеточная мембрана

Митохондрии

Оболочка. Она осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах). Оболочка - таможня клетки. Она зорко следит за тем, чтобы в клетку не проникли ненужные в данный момент вещества; наоборот, вещества, в которых клетка нуждается, могут рассчитывать на ее максимальное содействие.

Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство. Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети.

Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр. В некоторых ядрах, например ядрах яйцеклеток, пор очень много и они с правильными интервалами расположены на поверхности ядра. Количество пор в ядерной оболочке варьирует в различных типах клеток. Поры расположены на равном расстоянии друг от друга. Так как диаметр поры может изменяться, и в ряде случаев ее стенки обладают довольно сложной структурой, создается впечатление, что поры сокращаются, или замыкаются, или, наоборот, расширяются. Благодаря порам кариоплазма входит в непосредственный контакт с цитоплазмой. Через поры легко проходят довольно крупные молекулы нуклеозидов, нуклеотидов, аминокислот и белков, и таким образом осуществляется активный обмен между цитоплазмой и ядром.

Цитоплазма. Основное вещество цитоплазмы, называемое также гиалоплазмой или матриксом, - это полужидкая среда клетки, в которой располагается ядро и все органоиды клетки. Под электронным микроскопом вся гиалоплазма, располагающаяся между органоидами клетки, имеет мелкозернистую структуру. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты. Последние играют важную роль в движении и соединении клеток между собой в ткани.

В состав цитоплазмы входят вещества белковой природы. Во многих клетках, например у амеб, в клетках различных эпителиев, гиалоплазма содержит тончайшие нити, которые могут переплетаться и образовывать структуры, напоминающие войлок. Эти нитевидные (фибриллярные) структуры связаны с выполнением механической функции: они образуют нечто подобное внутреннему скелету клетки. Фибриллы цитоплазмы не принадлежат к числу постоянных структур: они могут появляться и исчезать при различных физиологических состояниях клетки.

Важнейшая роль гиалоплазмы заключается в том, что эта полужидкая среда объединяет все клеточные структуры и обеспечивает их химическое взаимодействие друг с другом. Именно через цитоплазму происходит диффузия различных веществ, растворенных в воде, которые постоянно поступают в клетку и выводятся из нее. В цитоплазму поступают также твердые частички, попадающие в клетку путем фагоцитоза, поступают и пиноцитозные вакуоли. Все эти вещества передвигаются в ней и повергаются дальнейшей переработке.

^ Эндоплазматическая сеть (ЭПС). Эндоплазматическая сеть принадлежит к числу органоидов клетки, открытых совсем недавно (1945 – 1946). Расположение сетчатых структур во внутренней части цитоплазмы – эндоплазме (греч. "эндон" – внутри) – и послужило основанием для того, чтобы вновь открытому органоиду дать название эндоплазматической сети или эндоплазматического ретикулума.

Дальнейшее электронномикроскопическое изучение ультратонких срезов разнообразных клеток показало, что сетчатые структуры состоят из сложной системы канальцев, вакуолей и цистерн, ограниченных мембранами. Мембраны ЭПС имеют типичную трехслойную структуру, такую же, как и та, что свойственна и наружной мембране клетки. Каналы, вакуоли и цистерны образуют ветвящуюся сеть, которая пронизывает всю цитоплазму клетки.

Форма каналов, вакуолей и цистерн эндоплазматической сети непостоянна и широко варьирует как в одной и той же клетке в разные периоды ее функциональной деятельности, так и в клетках различных органов и тканей. Для каждого типа клеток характерна определенная структура ЭПС. Наибольшее развитие ЭПС характерно для секреторных клеток с интенсивным уровнем белкового обмена. Слабо развита ЭПС в клетках коры надпочечников, сперматоцитах. В значительной мере степень развития эндоплазматической сети находится в зависимости от уровня дифференцировки клеток. Например, в молодых клетках сальных желез, претерпевающих интенсивное деление, ЭПС развита слабо, но в более зрелых клетках этих желез она выражена очень отчетливо, т. е. по мере дифференцировки клеток происходит и развитие ЭПС.

^ Типы эндоплазматической сети. Детальное изучение мембран, ограничивающих каналы, вакуоли и цистерны ЭПС, позволило установить, что во многих клетках на наружной поверхности этих мембран располагаются многочисленные округлые плотные гранулы. Эти гранулы носят название рибосом. Рибосомы часто образуют скопления на поверхности мембран, ограничивающих цистерны и каналы. Однако есть участки ЭПС, где рибосом нет. Поэтому в клетках различаются два типа эндоплазматической сети: гранулярная, или шероховатая, т. е. несущая рибосомы, и гладкая. Интересно, что в клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм – гладкая. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная сеть в большей степени представлена в тех клетках, где идет активный синтез липидов. Оба вида ЭПС не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей ее средой.

ЭПС была обнаружена во всех клетках многоклеточных животных и растений, подвергавшихся электронномикроскопическому исследованию. Клетки простейших также имеют этот органоид. Отсутствует ЭПС только в цитоплазме зрелых эритроцитов, в клетках сине-зеленых водорослей, и до сих пор не решен вопрос о наличии этого органоида в клетках бактерий.

^ Функции ЭПС. Столь широкое распространение в клетках всех типов у огромного большинства организмов позволяет рассматривать ЭПС как один из универсальных клеточных органоидов, выполняющих важные и разносторонние функции

Совершенно определенно установлено, что гранулярная ЭПС принимает активное участие в синтезе белка. Доказательством этого может служить наиболее сильное развитие гранулярного типа данного органоида в клетках, вырабатывающих белковые продукты, например в клетках белковых желез и во всех других клетках, интенсивно синтезирующих белки.

Гранулярная ЭПС также принимает участие в секреторных процессах. Например, было установлено, что при интенсивной выработке секрета в клетках поджелудочной железы происходит изменение структуры вакуолей и цистерн, а внутри цистерн появляются уплотненные гранулы.

Несколько меньше известно о функциональном значении гладкой формы ЭПС. Имеются убедительные данные о том, что на ее мембранах осуществляется синтез гликогена и липидов. Об этом свидетельствует, прежде всего, то, что гладкая эндоплазматическая сеть сильно развита именно в клетках, синтезирующих гликоген и липиды, например в клетках сальных желез и коры надпочечника, где осуществляется интенсивный синтез липидов, и в клетках печени, где происходит усиленный синтез гликогена. В клетках, утративших способность к синтезу жира или гликогена (например, в хрящевых), гладкая ЭПС почти не развита.

Обе формы ЭПС способны накапливать в каналах, вакуолях и цистернах продукты синтеза: белковые вещества (гранулярная ЭПС) и жиры или гликоген (гладкая ЭПС). Все эти вещества, накапливающиеся в просвете каналов и цистерн, в дальнейшем транспортируются к различным органоидам клетки.

Транспортная роль ЭПС не ограничивается только передвижением и распределением синтезированных на ее мембранах веществ к разным органоидам клетки, т. е. к местам, где они либо потребляются, либо накапливаются. ЭПС представляет циркуляторную систему клетки, через которую происходит транспорт разнообразных веществ из окружающей среды в цитоплазму. Кроме того, ЭПС, соединяясь со многими органоидами клетки, обеспечивает связь между отдельными внутриклеточными структурами.

После рассмотрения особенностей строения и функций эндоплазматической сети естественно возникает вопрос о том, как и из какого материала в клетке она образуется. До сих пор вполне определенного ответа на этот вопрос еще нет. Но ответ на поставленный вопрос до некоторой степени дают наблюдения о связи этого органоида с другими компонентами клетки, имеющими мембранные структуры. ЭПС теснейшим образом связана с наружной цитоплазматической мембраной, за счет разрастаний которой и частично за счет пиноцитозных пузырьков, сливающихся в конечном итоге с каналами и цистернами, может происходить пополнение мембран.

Рибосомы. Так же как и эндоплазматическая сеть, рибосомы были открыты только с помощью электронного микроскопа. Рибосомы - самые маленькие из клеточных органелл.

Рибосомы либо располагаются на поверхности мембраны гранулярной ЭПС в один ряд, либо образуют розетки и спирали. В тех клетках, где хорошо развита гранулярная ЭПС, например в полностью дифференцированных клетках печени и поджелудочной железы, большинство рибосом связано с ее мембранами. В клетках же, где гранулярная ЭПС развита слабо, рибосомы преимущественно свободно располагаются в основном веществе цитоплазмы. К клеткам такого типа относятся плазмоциты лимфатических узлов и селезенки, овоциты человека и ряд других. Помимо цитоплазмы, рибосомы обнаружены и в клеточном ядре, где они имеют такую же округлую форму, строение и размеры, как и рибосомы цитоплазмы. Часть ядерных рибосом свободно располагается в кариоплазме, а часть их находится в связи с нитевидными структурами, из которых состоят остаточные хромосомы, обнаруживаемые обычно при электронномикроскопическом исследовании интерфазного ядра. В последнее время рибосомы обнаружены в митохондриях и пластидах клеток растений.

Биохимический анализ рибосом, полученных путем дифференциального центрифугирования клеточных гомогенатов, показал, что в состав их входит высокополимерная, так называемая рибосомальная РНК и белок. Соотношение этих двух компонентов в рибосомах почти одинаково.

Белок рибосом самых разнообразных клеток и разных организмов в общем одинаков по составу аминокислот, причем в нем часто преобладают основные аминокислоты, а следовательно, белки рибосом имеют …? свойства. Рибосомы содержат также Mg2+.

^ Функции рибосом. Исследование ультраструктуры клеток многочисленных видов многоклеточных растений и животных, бактерий и простейших показало, что рибосомы – обязательный органоид каждой клетки. Наличие этого органоида во всех клетках, однородность его строения и химического состава свидетельствуют о важной роли рибосом в жизнедеятельности клеток. Было выяснено, что на рибосомах происходит синтез белков.

В процессах биосинтеза белка роль рибосом заключается в том, что к ним из основного вещества цитоплазмы непрерывно подносятся с помощью т-РНК аминокислоты, и происходит укладка этих аминокислот в полипептидные цепи в строгом соответствии с той генетической информацией, которая передается из ядра в цитоплазму через и-РНК, постоянно поступающую к рибосомам. На основании такой функции рибосом в белковом синтезе можно назвать их своего рода "сборочными конвейерами", на которых в клетках образуются белковые молекулы.

В процессе синтеза белка, таким образом, активное участие принимают т-РНК и и-РНК, а роль рибосомальной РНК еще не выяснена. По имеющимся в настоящее время данным, рибосомальная РНК не принимает участия в синтезе белковых молекул. В комплексе с белком рибосом она образует строму этого органоида.

При осуществлении процессов синтеза белка в клетках активную роль выполняют не все рибосомы. Специальные биохимические исследования позволили установить. Что наиболее активная роль в синтезе клеточных белков принадлежит рибосомам, связанным с мембранами ЭПС. Можно предполагать, что эти два органоида, теснейшим образом связанные друг с другом, представляют собой единый аппарат синтеза (рибосомы) и транспорта (эндоплазматическая сеть) основной массы белка, вырабатываемого в клетке.

В рибосомах. Находящихся в ядре, происходит синтез ядерных белков. Рибосомы митохондрий и пластид выполняют функцию синтеза части белков, содержащихся в этих органоидах.

Вопрос о том, где в клетке образуются рибосомы, до сих пор не решен, но сейчас уже довольно убедительно показано, что основным местом формирования рибосом служит ядрышко и образованные в нем рибосомы поступают из ядра в цитоплазму.

Митохондрии. Митохондрии (греч. "митос" – нить, "хондрион" – гранула) – это обязательный органоид каждой клетки всех многоклеточных и одноклеточных организмов. В разных клетках размеры и форма митохондрий чрезвычайно сильно варьируют. По форме митохондрии могут быть округлыми, овальными, палочковидными, нитевидными или сильно разветвленными тельцами, которые обычно хорошо видны в световой микроскоп. Форма митохондрий может варьировать не только в клетках разных организмов, разных органов и тканей одного и того же организма, но и в одной и той же клетке в разные моменты ее жизнедеятельности. Митохондрии меняют свою форму и при разнообразных воздействиях на клетку. Размеры митохондрий в большинстве исследованных клеток так же варьируют, как и их форма. Число митохондрий находится в соответствии с функциональной активностью клетки. Установлено, например, что в клетках грудной мышцы хорошо летающих птиц митохондрий значительно больше, чем в клетках этой же мышцы у птиц нелетающих.

Варьирует и расположение митохондрий в разных клетках. Во многих клетках митохондрии распределены довольно равномерно по всей цитоплазме, что свойственно нервным клеткам, некоторым эпителиальным клеткам, многим простейшим и т. д. Однако в ряде клеток митохондрии локализуются в каком-либо определенном участке, обычно связанном с наиболее активной деятельностью.

Тонкое строение митохондрий было выявлено только с помощью электронного микроскопа. Митохондрия ограничена внешней мембраной, которая имеет такое же строение, как и наружная цитоплазматическая мембрана клетки. Под наружной мембраной располагается внутренняя мембрана, которая также имеет типичное трехслойное строение. Между внешней и внутренней мембранами находится узкое щелевидное пространство. Внешняя и внутренняя мембраны составляют оболочку митохондрии. От внутренней мембраны отходят выросты, направленные во внутреннее пространство митохондрии, - гребни, или кристы. Кристы располагаются параллельно друг другу и ориентированы в поперечном направлении по отношению к продольной оси митохондрии.

Внутреннее пространство митохондрии, в котором располагаются кристы, также заполнено гомогенным веществом, носящим название матрикса. Вещество матрикса более плотной консистенции, чем окружающая митохондрию цитоплазма. В последнее время в матриксе митохондрий были обнаружены рибосомы. Число крист неодинаково в митохондриях различных клеток. Так, в клетке сердечной мышцы, скелетной мышцы, эпителия почки количество крист обычно большое, и они плотно располагаются по отношению друг к другу. Детали строения митохондрий, и особенно число, форма и расположение крист, могут варьировать, но основной план их строения остается одинаковым в разнообразных клетках тканей и органов самых различных организмов.

^ Функции митохондрий. Функции митохондрий были детально изучены лишь в последнее время благодаря применению биохимических и других методов. Митохондрии часто называют основной "энергетической станцией" клетки благодаря тому, что они содержат ферменты, окисляющие углеводы, некоторые аминокислоты, а также жирные кислоты. В результате этих реакций освобождается энергия, которая непосредственно клеткой не используется, но накапливается в АТФ, которая синтезируется в митохондриях. Реакции освобождения энергии связаны с элементарными частицами, расположенными на поверхности наружной и внутренней мембран митохондрий. Эти частицы выполняют, по-видимому, различные функции: 1) осуществляют окислительные реакции, в результате которых освобождаются электроны; 2) переносят электроны вдоль цепи соединений, участвующих в синтезе АТФ; 3) катализируют реакции синтеза, получающие энергию от АТФ.

Митохондрия – это органоид клетки, в котором вырабатывается основная масса энергии клетки, сконцентрированная в АТФ и используемая затем в разнообразных процессах синтеза и во всех видах клеточной деятельности (движение, дыхание, рост, продукция секретов и т. д.).

В последние годы были получены убедительные данные о том, что в митохондриях происходит синтез белка, который осуществляется в рибосомах, располагающихся в матриксе митохондрий. Есть также указания на синтез жирных кислот и некоторых других веществ в митохондриях. Из этого следует, что митохондрии представляют не только энергетические центры, но и важное место биосинтетических процессов в клетке наряду с ядром и рибосомами цитоплазмы.

Пластиды. Пластиды – особые органоиды растительных клеток, в которых осуществляется синтез различных веществ, и в первую очередь фотосинтез.

В цитоплазме клеток высших растений имеется три основных типа пластид: 1) зеленые пластиды – хлоропласты; 2) окрашенные в красный, оранжевый и другие цвета хромопласты; 3) бесцветные пластиды – лейкопласты. Все эти типы пластид могут переходить один в другой. У низших растений, например у водорослей, известен один тип пластид – хроматофоры. Процесс фотосинтеза у высших растений протекает в хлоропластах, которые, как правило, развиваются только на свету.

Снаружи хлоропласты ограничены двумя мембранами: наружной и внутренней. В состав хлоропластов высших растений, по данным электронной микроскопии, входит большое количество гран, расположенных группами. Каждая грана состоит из многочисленных круглых пластин, имеющих форму плоских мешочков, образованных двойной мембраной и сложенных друг с другом наподобие столбика монет. Граны соединяются между собой посредством особых пластин или трубочек, расположенных в строме хлоропласта и образующих единую систему. Зеленый пигмент хлоропластов содержат только граны; строма их бесцветна.

Хлоропласты одних растений содержат лишь несколько гран, других – до пятидесяти и больше.

У зеленых водорослей процессы фотосинтеза осуществляются в хроматофорах, которые не содержат гран, и продукты первичного синтеза – различные углеводы – часто откладываются вокруг особых клеточных структур, называемых пиреноидами.

Окраска хлоропластов зависит не только от хлорофилла, в них могут содержаться и другие пигменты, например каротин и каротиноиды, окрашенные в разные цвета – от желтого до красного и коричневого, а также фикобилины. К последним относится фикоцианин и фикоэритрин красных и сине-зеленых водорослей.

Хромопласты обычно окрашены в желтый, оранжевый, красный или бурый цвета. Сочетание хромопластов, содержащих разные пигменты, создает большое разнообразие окрасок цветков и плодов растений.

Следующий тип пластид – лейкопласты. Они бесцветны. Местом их локализации служат неокрашенные части растений. Примером лейкопластов могут служить так называемые амилопласты клубней картофеля и многих других растений. В амилопластах происходит вторичный синтез вторичного крахмала из моно- и дисахаридов. Следовательно, основная функция пластид – это синтез моно-, ди- и полисахаридов, но теперь они известны и как органоиды, в которых синтезируются белки.

Пластиды развиваются из особых клеточных структур, носящих название пропластид. Пропластиды – это бесцветные образования, внешне похожие на митохондрии, но отличающиеся от них более крупными размерами и тем, что всегда имеют удлиненную форму. Снаружи пластиды ограничены двойной мембраной, небольшое количество мембран находится также в их внутренней части.

Пластиды размножаются путем деления, и контроль над этим процессом осуществляется, по-видимому, ДНК, содержащейся в них же. При делении происходит перетяжка пластиды, но разделение пластид может происходить и путем образования перегородки. Способность пластид к делению обеспечивает их непрерывность в ряду клеточных поколений. При половом и бесполом размножении растений происходит передача пластид дочерним организмам, причем у большинства растений пластиды передаются по материнской линии.

^ Комплекс Гольджи. Комплекс Гольджи – это органоид клетки, получивший свое название по имени ученого К. Гольджи, который впервые увидел его в цитоплазме нейронов и назвал сетчатым аппаратом (1898). Во многих клетках этот органоид действительно имеет форму сложной сети, расположенной вокруг ядра. Иногда же его сетевидная структура приобретает вид шапочки, расположенной над ядром, или тяжа, опоясывающего ядро. В клетках многих беспозвоночных животных и растений комплекс Гольджи представлен в виде отдельных элементов, обладающих формой округлых, серповидных или палочковидных телец, носящих название диктиосом. Такая рассеянная форма аппарата Гольджи свойственна и некоторым клеткам позвоночных животных.

Исследование многочисленных клеток животных и растений с помощью электронного микроскопа показало, что, несмотря на многообразие формы и строения комплекса Гольджи, структура его элементов однотипна в разных клетках. По данным электронномикроскопического исследования, ультраструктура комплекса Гольджи включает три основных компонента.

Система плоских цистерн, ограниченных гладкими мембранами. Цистерны расположены пачками, по 5 – 8; причем они плотно прилегают друг к другу. Количество цистерн, их величина и расстояние между ними варьируют в разных клетках.

Система трубочек, которые отходят от цистерн. Трубочки анастомозируют друг с другом и образуют довольно сложную сеть, окружающую цистерны.

Крупные и мелкие пузырьки, замыкающие концевые отделы трубочек.

Все три компонента аппарата Гольджи взаимосвязаны друг с другом и могут возникать друг из друга.

Согласно электронномикроскопическим данным, мембранам всех трех компонентов свойственно такое же трехслойное строение, как и наружной цитоплазматической мембране и мембранам эндоплазматической сети.

В состав мембран аппарата Гольджи входят липиды, или, точнее, фосфолипиды и белки. Следовательно, в мембранах его содержится тот же белково-липидный комплекс, что и в мембранах других клеточных органоидов. В элементах комплекса Гольджи обнаружены ферменты и среди них ферменты, связанные с синтезом полисахаридов и липидов.

Структуры аппарата Гольджи накапливают либо уже готовые, либо почти готовые продукты деятельности клеток.

Формирование и накапливание секреторных гранул – это основная, очень важная, но не единственная функция аппарата Гольджи.

При делении клеток часть аппарата Гольджи из материнской клетки передается в дочернюю. Этот клеточный органоид представляет поэтому преемственную структуру, и при делении обычно материал его распределяется поровну между материнской и дочерней клетками. Возможность образования аппарата Гольджи заново не доказана.

Лизосомы. Лизосомы были открыты в 1955 году при исследовании клеток печени крысы биохимическими методами. Открытие лизосом связано с работами Де-Дюва.

Лизосомы представляют собой небольшие округлые частицы, располагающиеся в цитоплазме. Каждая лизосома ограничена плотной мембраной, внутри которой заключено свыше 12 гидролитических ферментов, имеющих наибольшую активность в кислой среде. Мембрана лизосомы имеет типичное трехслойное строение. Ферменты, содержащиеся в лизосомах, способны расщеплять важные в биологи

www.ronl.ru

Доклад - Строение и деление клетки

Содержание:

Клетка………………………………………………………………1

Строение клеток……………………………………………………2

Цитология…………………………………………………………..3

Микроскоп и клетка………………………………………………..4

Схема строения клетки…………………………………………….6

Деление клетки……………………………………………………10

Схема митотического деления клетки…………………………...12

Клетка

Клетка — элементарная часть организма, способная к самостоятельному существованию, самовоспроизводству и развитию. Клетка — основа строения и жизнедеятельности всех живых организмов и растений. Клетки могут существовать как самостоятельные организмы, так и в составе многоклеточных организмов ( клетки ткани ). Термин «Клетка» предложен английским микроскопистом Р. Гуком (1665). Клетка — предмет изучения особого раздела биологии — цитологии. Более систематическое изучение клеток началось в девятнадцатом веке. Одним из крупнейших научных теорий того времени была Клеточная теория, утверждавшая единство строения всей живой природы. Изучение любой жизни на клеточном уровне лежит в основе современных биологических исследований.

В строении и функциях каждой клетки обнаруживаются признаки, общие для всех клеток, что отражает единство их происхождения из первичных органических веществ. Частные особенности различных клеток — результат их специализации в процессе эволюции. Так, все клетки одинаково регулируют обмен веществ, удваивают и используют свой наследственный материал, получают и утилизируют энергию. В то же время разные одноклеточные организмы (амёбы, туфельки, инфузории и т.д.) довольно сильно различаются размерами, формой, поведением. Не менее резко различаются клетки многоклеточных организмов. Так, у человека имеются лимфоидные клетки — небольшие (диаметром около 10 мкм) округлые клетки, участвующие в иммунологических реакциях, и нервные клетки, часть которых имеет отростки длиной более метра; эти клетки осуществляют основные регуляторные функции в организме.

Первым цитологическим методом исследования была микроскопия живых клеток. Современные варианты прижизненной световой микроскопии — фазово-контрастная, люминесцентная, интерференционная и др. — позволяют изучать форму клеток и общее строение некоторых её структур, движение клеток и их деление. Детали строения клетки обнаруживаются лишь после специального контрастирования, что достигается окраской убитой клетки. Новый этап изучения структуры клетки — электронная микроскопия, имеющая значительно большее разрешение структуры клетки по сравнению со световой микроскопией. Химический состав клеток изучается цито — и гистохимическими методами, позволяющими выяснить локализацию и концентрацию вещества в клеточных структурах, интенсивность синтеза веществ и их перемещение в клетках. Цитофизиологические методы позволяют изучать функции клеток.

Строение клеток

Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро. Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции.

Оболочка. Она осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Оболочка — таможня клетки. Она зорко следит за тем, чтобы в клетку не проникли ненужные в данный момент вещества; наоборот, вещества, в которых клетка нуждается, могут рассчитывать на ее максимальное содействие.

Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство. Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети.

Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр. В некоторых ядрах, например ядрах яйцеклеток, пор очень много и они с правильными интервалами расположены на поверхности ядра. Количество пор в ядерной оболочке варьирует в различных типах клеток. Поры расположены на равном расстоянии друг от друга. Так как диаметр поры может изменяться, и в ряде случаев ее стенки обладают довольно сложной структурой, создается впечатление, что поры сокращаются, или замыкаются, или, наоборот, расширяются. Благодаря порам кариоплазма входит в непосредственный контакт с цитоплазмой. Через поры легко проходят довольно крупные молекулы нуклеозидов, нуклеотидов, аминокислот и белков, и таким образом осуществляется активный обмен между цитоплазмой и ядром.

Цитология

Наука, изучающая строение и отправление клеток, называется цитологией.

За последнее десятилетие она достигла больших успехов, что в значительной мере связано с разработкой новых методов исследования клетки.

Основным «орудием» цитологии служит микроскоп, позволяющий изучать строение клетки при увеличении в 2400—2500 раз. Клетки изучают в живом виде, а также после специальной обработки. Последняя сводится к двум основным этапам.

Сначала клетки фиксируют, т. е. убивают их быстродействующими ядовитыми для клеток веществами, не разрушающими их структуры. Вторым этапом является окраска препарата. Она основана на том, что разные части клетки с разной степенью интенсивности воспринимают некоторые красители. Благодаря этому удается отчетливо выявить различные структурные компоненты клетки, которые без окраски благодаря сходному коэффициенту преломления не видны. Очень часто применяют метод изготовления срезов. Для этого ткани или отдельные клетки после специальной обработки заключают в твердую среду (парафин, целлоидин), после чего при помощи особого прибора — микротома, снабженного острой бритвой, раскладывают на тонкие срезы толщиной от 3 микрон (микрон = 0,001 мм).

1. Не все организмы имеют клеточное строение.

Клеточная организация явилась результатом длительной эволюции, которой предшествовали неклеточные (доклеточные) формы жизни. Фиксированные и окрашенные препараты перед изучением заключают в среду с высоким коэффициентом преломления (глицерин, канадский бальзам и др.). Благодаря этому они становятся прозрачными, что облегчает исследование препарата.

В современной цитологии разработан ряд новых методов и приемов, применение которых чрезвычайно углубило знания о строении и физиологии клетки.

Очень большое значение для изучения клетки имеет применение биохимических и цитохимических методов. В настоящее время мы можем не только изучать строение клетки, но и определять ее химический состав и изменения его в процессе жизнедеятельности клетки. Многие из этих методов основаны на применении цветных реакций, позволяющих различать определенные химические вещества или группы веществ. Изучение распределения разных по своему химическому составу веществ в клетке путем цветных реакций представляет собой цитохимический метод. Он имеет большое значение для исследования обмена веществ и других сторон физиологии клетки.

Микроскоп и клетка

В современной цитологии широко применяют ультрафиолетовую микроскопию. Ультрафиолетовые лучи невидимы для человеческого глаза, но воспринимаются фотографической пластинкой. Некоторые играющие особо важную роль в жизни клетки органические вещества (нуклеиновые кислоты) избирательно поглощают ультрафиолетовые лучи. Поэтому по снимкам, изготовленным в ультрафиолетовых лучах, можно судить о распределении нуклеиновых веществ в клетке.

Разработан ряд тонких методов, позволяющих изучать проникновение разных веществ в клетку из окружающей среды.

Для этого, в частности, применяют прижизненные (витальные) красители. Это такие красящие вещества (например, нейтральный красный), которые проникают в клетку, не убивая ее. Наблюдая за живой витально окрашенной клеткой, можно судить о путях проникновения и накопления веществ в клетке.

Особенно большую роль в развитии цитологии, а также в изучении тонкого строения простейших сыграла электронная микроскопия.

Электронный микроскоп основан на ином принципе, чем световой оптический микроскоп. Объект изучают в пучке быстро летящих электронов. Длина волны электронных лучей во много тысяч раз меньше длины волны световых лучей. Это позволяет получить значительно большую разрешающую способность, т. е. гораздо большее увеличение, чем в световом микроскопе. Пучок электронов проходит сквозь изучаемый объект и затем падает на флуоресцирующий экран, на котором и проецируется изображение объекта. Чтобы объект был проницаемым для электронного пучка, он должен быть очень тонким. Обычные микротомные срезы толщиной в 3—5 мк для этого совершенно непригодны. Они полностью поглотят пучок электронов. Были созданы особые приборы — ультрамикротомы, которые позволяют получать срезы ничтожной толщины, порядка 100—300 ангстрем (ангстрем — единица длины, равная одной десятитысячной микрона). Различия в поглощении электронов разными частями клетки настолько малы, что без специальной обработки на экране электронного микроскопа они не могут быть обнаружены. Поэтому изучаемые объекты предварительно обрабатываются веществами, непроницаемыми или труднопроницаемыми для электронов. Таким веществом является четырехокись осмия (Os04). Она в различной степени поглощается разными частями клетки, которые благодаря этому по-разному задерживают электроны.

Применяя электронный микроскоп, можно получить увеличения порядка 100000.

Электронная микроскопия открывает новые перспективы в изучении организации клетки.

Схема строения клетки

На рис. 15 и рис. 16 сопоставлена схема строения клетки, как она представлялась в двадцатых годах этого столетия и как она представляется в настоящее время.

Снаружи клетка отграничена от окружающей среды тонкой клеточной мембраной, которая играет важную роль в регуляции поступления веществ в цитоплазму. Основное вещество цитоплазмы имеет сложный химический состав.

Основу его составляют белки, которые находятся в состоянии коллоидного раствора. Белки — это сложные органические вещества, обладающие крупными молекулами (молекулярный вес их очень высок, измеряется десятками тысяч по отношению к атому водорода) и большой химической подвижностью. Кроме белков, в цитоплазме присутствуют и многие другие органические соединения (углеводы, жиры), среди которых особенно большое значение в жизни клетки играют сложные органические вещества — нуклеиновые кислоты. Из неорганических составных частей цитоплазмы следует прежде всего назвать воду, которая по весу составляет значительно больше половины всех веществ, входящих в состав клетки. Вода важна как растворитель, так как реакции обмена веществ протекают в жидкой среде. Кроме того, в клетке присутствуют ионы солей (Са2+, К+, Na+, Fe2+, Fe3+ и др.).

В основном веществе цитоплазмы располагаются органоиды — постоянно присутствующие структуры, выполняющие определенные функции в жизни клетки. Среди них важную роль в обмене веществ играют митохондрии. В световом микроскопе они видны в форме небольших палочек, нитей, иногда гранул.

Электронный микроскоп показал, что структура митохондрий очень сложна. Каждая митохондрия имеет оболочку, состоящую из трех слоев, и внутреннюю полость.

От оболочки в эту полость, заполненную жидким содержимым, вдаются многочисленные перегородки, не доходящие до противоположной стенки, называемые к р иста м и. Цитофизиологические исследования показали, что митохондрии являются органоидами, с которыми связаны дыхательные процессы клетки (окислительные). Во внутренней полости, на оболочке и кристах локализуются дыхательные ферменты (органические катализаторы), обеспечивающие сложные химические превращения, из которых слагается процесс дыхания.

В цитоплазме, кроме митохондрий, имеется сложная система мембран, образующая в совокупности эндоплазматическую сеть (рис. 16).

Как показали электронномикроскопические исследования, мембраны эндоплазматической сети двойные. Со стороны, обращенной к основному веществу цитоплазмы, на каждой мембране расположены многочисленные гранулы (называемые «тельцами Паллада» по имени открывшего их ученого). В состав этих гранул входят нуклеиновые кислоты (а именно рибонуклеиновая кислота), благодаря чему их называют также рибосомами. На эндоплазматической сети при участии рибосом осуществляется один из основных процессов жизнедеятельности клетки — синтез белков.

Часть цитоплазматических мембран лишена рибосом и образует особую систему, называемую аппаратом Гольджи.

Это образование обнаружено в клетках уже довольно давно, ибо его удается выявить особыми методами при исследовании в световом микроскопе. Однако тонкая структура аппарата Гольджи стала известна лишь в результате электронномикроскопических исследований. Функциональное значение этого органоида сводится к тому, что в области аппарата концентрируются различные синтезируемые в клетке вещества, например зерна секрета в железистых клетках и т. п. Мембраны аппарата Гольджи находятся в связи с эндоплазматической сетью. Возможно, что на мембранах аппарата Гольджи протекает ряд синтетических процессов.

Эндоплазматическая сеть связана с наружной оболочкой ядра. Эта связь играет, по-видимому, существенную роль во взаимодействии ядра и цитоплазмы. Эндоплазматическая сеть имеет также связь с наружной мембраной клетки и местами непосредственно переходит в нее.

При помощи электронного микроскопа в клетках был обнаружен еще один тип органоидов — лизосомы (рис. 16).

По размерам и форме они напоминают митохондрии, но легко отличаются от них по отсутствию тонкой внутренней структуры, столь характерной и типичной для митохондрий. По представлениям большинства современных цитологов, в лизосомах содержатся переваривающие ферменты, связанные с расщеплением крупных молекул органических веществ, поступающих в клетку. Это как бы резервуары ферментов, постепенно используемых в процессе жизнедеятельности клетки.

В цитоплазме животных клеток обычно по соседству с ядром располагается центросома. Этот органоид имеет постоянную структуру. Он слагается из девяти ультрамикроскопических палочковидных образований, заключенных в особо дифференцированную уплотненную цитоплазму. Центросома — органоид, связанный с делением клетки .

Рис. 16. Схема строения клетки, по современным данным, с учетом электронномикроскопических исследований:

1 — цитоплазма; 2 — аппарат Гольджи, з— центросома; 4 — митохондрии; 5 — эндоплазматическая сеть; 6 — ядро; 7 — ядрышко; 8 — лизосомы.

К роме перечисленных цитоплазматических органоидов клетки, в ней могут присутствовать различные специальные структуры и включения, связанные с обменом веществ и выполнением различных специальных, свойственных данной клетке функций. В животных клетках обычно присутствует гликоген, или животный крахмал. Это резервное вещество, потребляемое в процессе обмена веществ как основной материал для окислительных процессов. Часто имеются жировые включения в форме мелких капель.

В специализированных клетках, таких, как мышечные клетки, имеются особые сократимые волоконца, связанные с сократительной функцией этих клеток. Ряд специальных органоидов и включений имеется в растительных клетках. В зеленых частях растений всегда присутствуют хлоропласты — белковые тела, содержащие зеленый пигмент хлорофилл, при участии которого осуществляется фотосинтез — процесс воздушного питания растения. В качестве резервного вещества здесь обычно находятся крахмальные зерна, отсутствующие у животных. В отличие от животных, растительные клетки обладают, кроме наружной мембраны, прочными о б о57 лочками из клетчатк и, что обусловливает особую прочность растительных тканей.

Деление клетки

В основе способности клеток к самовоспроизведению лежат уникальное свойство ДНК самокопироваться и строго равноценное деление репродуцированных хромосом в процессе Митоза. В результате деления образуются две клетки, идентичные исходной по генетическим свойствам и с обновленным составом ядра и цитоплазмы. Процессы самовоспроизведения хромосом, их деления, образования двух ядер и деления цитоплазмы разделены во времени, составляя в совокупности Митотический цикл клетки. В случае, если после деления клетка начинает готовиться к следующему делению, митотический цикл совпадает с жизненным циклом клетки. Однако во многих случаях после деления (а иногда и перед ним) клетки выходят из митотического цикла, дифференцируются и выполняют в организме ту или иную специальную функцию. Состав таких клеток может обновляться за счёт делений малодифференцированных клеток. В некоторых тканях и дифференцированные клетки способны повторно входить в митотический цикл. В нервной ткани дифференцированные клетки не делятся; многие из них живут так же долго, как организм в целом, то есть у человека — несколько десятков лет. При этом ядра нервных клеток не утрачивают способности к делению: будучи пересажены в цитоплазму раковых клеток, ядра нейронов синтезируют ДНК и делятся. Опыты с клетками-гибридами показывают влияние цитоплазмы на проявление ядерных функций. Неполноценная подготовка к делению предотвращает митоз или искажает его течение. Так, в некоторых случаях не происходит деления цитоплазмы и образуется двуядерная клетка. Многократное деление ядер в неделящейся клетке приводит к появлению многоядерных клеток или сложных надклеточных структур (симпластов), например в поперечнополосатых мышцах. Иногда репродукция клетки ограничивается воспроизведением хромосом, и образуется полиплоидная клетка, имеющая удвоенный (сравнительно с исходной клеткой) набор хромосом. Полиплоидизация приводит к усилению синтетической активности, увеличению размеров и массы клетки.

Одним из основных биологических процессов, обеспечивающих преемственность форм жизни и лежащих в основе всех форм размножения, является процесс деления клетки. Этот процесс, известный под названием кариокинеза, или митоза, с удивительным постоянством, лишь с некоторыми вариациями в деталях, осуществляется в клетках всех растений и животных, в том числе и простейших. При митозе происходит равномерное распределение хромосом, претерпевающих удвоение между дочерними клетками. От любого участка каждой хромосомы дочерние клетки получают половину. Не вдаваясь в детальное описание митоза, отметим лишь его основные моменты (рис.).

В первой стадии митоза, называемой профазой, в ядре становятся отчетливо видимыми хромосомы в форме нитей.

Рис. Схема митотического деления клетки:

1 — неделящееся ядро;

2—6 — последовательные этапы изменения ядра в профазе;

7—9 — метафаза;

10 — анафаза;

11—13 — телофаза. разной длины.

В неделящемся ядре, как мы видели, хромосомы имеют вид тонких, неправильно расположенных нитей, переплетающихся друг с другом. В профазе происходит их укорачивание и утолщение. Вместе с тем каждая хромосома оказывается двойной. По длине ее проходит щель, разделяющая хромосому на две рядом лежащие и совершенно подобные друг другу половины.

На следующей стадии митоза — метафазе — оболочка ядра разрушается, ядрышки растворяются и хромосомы оказываются лежащими в цитоплазме. Все хромосомы располагаются при этом в один ряд, образуя так называемую экваториальную пластинку. Существенные изменения претерпевает центросома. Она делится на две части, которые расходятся, и между ними образуются нити, формирующие а х р о м атиновое веретено. Экваториальная пластинка хромосом располагается по экватору этого веретена.

На стадии анафазы происходит процесс расхождения к противоположным полюсам дочерних хромосом, образовавшихся, как мы видели, в результате продольного расщепления материнских хромосом. Расходящиеся в анафазе хромосомы скользят по нитям ахроматинового веретена и в конце концов собираются двумя группами в области центросом.

Во время последней стадии митоза — телофазы — происходит восстановление структуры неделящегося ядра. Вокруг каждой группы хромосом образуется ядерная оболочка. Хромосомы вытягиваются и утончаются, превращаясь в длинные, беспорядочно расположенные тонкие нити. Выделяется ядерный сок, в котором появляется ядрышко.

Одновременно со стадиями анафазы и телофазы происходит разделение на две половины цитоплазмы клетки, которое осуществляется обычно путем простой перетяжки.

Как видно из нашего краткого описания, процесс митоза сводится в первую очередь к правильному распределению хромосом между дочерними ядрами. Хромосомы состоят из пучков нитевидных молекул ДНК, расположенных по продольной оси хромосомы. Видимому началу митоза предшествует, как это теперь установлено точными количественными измерениями, удвоение ДНК, молекулярный механизм которого мы уже рассмотрели выше.

Таким образом, митоз и расщепление хромосом во время него является лишь видимым выражением процессов удвоения (ауторепродукции) молекул ДНК, осуществляемого на уровне молекул. ДНК определяет через посредство РНК белковый синтез. Качественные особенности белков «закодированы» в структуре ДНК. Поэтому очевидно, что точное разделение хромосом в митозе, базирующееся на редупликации (ауторепродукции) молекул ДНК, лежит в основе «наследственной информации» в ряде следующих друг за другом поколений клеток и организмов.

Число хромосом, так же как их форма, размеры и т. п., является характерным признаком каждого вида организмов. У человека, например, имеется 46 хромосом, у окуня — 28, у мягких пшениц — 42 и т. п.

www.ronl.ru

РефератКлетка как элементарная живая система - Реферат - Клетка как элементарная живая система

Реферат - Клетка как элементарная живая система (708 kb.)Доступные файлы (1):
1.doc708kb.16.11.2011 14:52
содержание

1.doc

Реферат

Клетка как элементарная живая система

2010

Содержание

Введение 3

1. Клеточная теория 4

2. Типы клеточной организации 7

3. Строение клетки 9

3.1. Клеточные мембраны 10

3.2. Цитоплазма и ее органеллы 13

3.2.1. Строение и функции основных органелл клетки 13

Заключение 21

Литература 22

Введение

Онтогенетический уровень живого представлен отдельными организмами (особями). Клетки как элементарные структуры действуют как самостоятельные организмы (бактерии, простейшие), а так же, как клетки многоклеточных организмов. Особенность клеточного подуровня в том, что именно с него и начинается жизнь.

Клетка — элементарная живая система и основная форма организации живой материи: она усваивает пищу, способна существовать и расти, может разделиться на две, каждая из которых содержит генетический материал, идентичный исходной клетке. Клетка — это один из основных структурных, функциональных и воспроизводящих элементов живого.

Между клетками растений и животных нет принципиальной разницы по строению и функциям, некоторые отличия лишь в строении мембран и некоторых органелл. За 3 млрд. лет существования на Земле живое вещество развилось до нескольких миллионов видов, но все они — от бактерий до высших животных — состоят из клеток. Специфичность клеточного подуровня заключается в специализации клеток. В человеческом организме до 1015 клеток. Половые клетки служат для размножения, соматические (от греч. soma — тело) имеют разное строение и функции (нервные, мышечные, костные). Клетки отличаются своими размерами, формой, количеством поглощенного красителя. Среди живого есть одно- и многоклеточные организмы. Вирусы — неклеточные организмы, они размножаются в чужих клетках. Некоторые водоросли потеряли свое клеточное строение. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности во времени и пространстве, что связано с приуроченностью функций к различным субклеточным структурам.

^

Основу современной биологии составляет клеточная теория, создание которой стало возможным после изобретения в 1590г. микроскопа. Родоначальником ее считается английский ученый Роберт Гук, который ввел термин «клетка», или «ячейка» в работе «Микрография» (1665). Изучая под микроскопом срез, приготовленный из пробки и сердцевины бузины, он заметил в этом составе множество мелких образований, похожих по форме на ячейки пчелиных сот. По существу, Р. Гук наблюдал не сами клетки, а лишь оболочки клеток, и ошибочно полагал, что это и есть живое существо.

Несмотря на то, что вопрос о клеточном строении всего живого был поставлен еще в XVII в., тем не менее, лишь во второй половине прошлого века строение клеток, их функции в эволюции живого стали более ясными за счет использования сверхточных приборов исследования живого.

Клеточная теория, или цитология (от греч. kytos... — сосуд, клетка), сложилась в течение XIX в., когда появились более совершенные микроскопы (в последнее время ее чаще называют биологией клетки). Английский ботаник Р. Броун открыл ядро (1833), описав его как характерное тельце растительных клеток. Его открытие послужило толчком к другим открытиям. У клеток выделяют два уровня организации — прокариоты, не имеющие оформленного ядра, и эукариоты, у которых оно есть. Обобщил наблюдения Броуна и установил клеточную природу растительной ткани немецкий ботаник М. Шлейден. Вместе со своим другом Т. Шванном он впервые сформулировал основные положения о клеточном строении всех организмов и образовании клеток (1839).

Основные принципы клеточной теории были сформулированы в работе Теодора Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений». Все организмы состоят из одинаковых частей — клеток. Клетки образуются, растут по одним и тем же законам. Общий принцип развития для всех элементарных частей организма — это образование клеток. Каждая клетка в определенных границах есть индивидуум, но эти индивидуумы действуют совместно, так что возникает гармоничное целое.

Чешский естествоиспытатель Я. Пуркине, открывший ядро яйцеклетки (1825) и проводивший исследования по физиологии зрительного восприятия, ввел понятие протоплазмы для клеточного содержимого (1839), когда понял, что именно оно, а не стенки клетки, является живым веществом. Позже протоплазму клетки стали разделять на цитоплазму и ядро.

«Все клетки образуются в результате деления других клеток» — дополнил немецкий патолог и антрополог Р. Вирхов (1855) клеточную теорию Шлейдена и Шванна. Он считал, что любой организм есть совокупность живых клеток, организованных наподобие небольшого государства. И каждая клетка ведет самостоятельную жизнь. Установили, что хранение и передача наследственных признаков осуществляются с помощью клеточного ядра (Вирхов, Геккель). При большем увеличении микроскопов в клетках открыли постоянные специализированные структуры (органоиды, или органеллы) — пластиды (такие, как хлоропласта, характерные для клеток, способных к фотосинтезу) и митохондрии. В 1898 г. итальянский гистолог К. Гольджи изобрел новый метод изучения клеток через микроскоп, вводя в них соли серебра, и обнаружил в нервных клетках совы и кошки сетчатые структуры, позднее названные аппаратом Гольджи.

Основа клеточной теории: клетка — основная структурная единица теории и единица развития живых организмов; ядро — основная составляющая клетки; клетки размножаются только делением; всем клеткам присуще мембранное строение; клеточное строение — свидетельство единого происхождения растительного и животного мира.

Приведем характеристику клетки как элементарной живой системы, предложенную А. Ленинджером.

1. Живая клетка – это способная к саморегуляции и самовоспроизведению изотермическая система органических молекул, извлекающая энергию и ресурсы из окружающей среды.

2. В клетке протекает большое количество последовательных реакций, регуляция скорости которых осуществляется самой клеткой.

3. Клетка поддерживает себя в стационарном динамическом состоянии, далеком от равновесия с окружающей средой.

4. Клетки функционируют по принципу минимального расхода компонентов и процессов.

5. Клетка способна почти точно самовоспроизводиться.

В начале XX в. многие биологи повторили опыты австрийского естествоиспытателя И.Менделя, открывшего еще в 1865 г. существование индивидуальных наследственных факторов (генов). Все это способствовало развитию цитогенетики.

Современная клеточная теория исходит из единства расчлененности многоклеточного организма на клетки и его целостности, основанной на взаимодействии клеток.

^

Все клетки живых организмов подразделяются на два вида с учетом их строения и функций в живых организмах: прокариоты (лат. pro — перед и греч. karyon — ядро), или предъядерные клетки, и эукариоты (греч. еу — полностью, хорошо и karyon — ядро) (рис.1).

Рис. 1. Схема организации про- и эукариотной клеток.

Простейшие организмы, представленные одной или небольшим числом клеток, состоят из клеток прокариотов. Прокариоты (доядерные) - это мелкие (около 1 мкм) клетки гораздо меньше эукариотных. В клетках прокариотов нет оформленного ядра и ядерной оболочки. Генетический материал ДНК - лежит свободно в цитоплазме. Эта часть клетки носит название «нуклеотид». Прочие функциональные блоки тоже представлены небольшими макромолекулярными комплексами без оболочек. К прокариотам относятся все бактерии и так называемые сине-зеленые водоросли. Клетки бактерий и сине-зеленых водорослей не имеют мембранных органелл, присущих эукариотам (ЭР, комплекса Гольджи, митохондрий, пластид, дисозом). Единственной внутренней мембранной структурой является мезосома, о функциональном значении которой нет единого мнения. Полагают, что она участвует в процессах дыхания.

Большинство клеток прокариотов имеют размер около 1 —5 мкм. Средний размер эукариотической клетки имеет диаметр около 25 мкм (1 мм—103 мкм или 109 нм). Таким образом, в эукариотическую клетку может поместиться более 10 тысяч бактерий.

Эукариоты (с настоящим ядром) - крупные (10-50 и более мкм) клетки, в которых ДНК в форме хромосом заключена в ядре и большинство рабочих структур, ферментов организовано в изолированных органоидах (или органеллах). Все эукариотические клетки имеют одинаковое строение: ядро с оболочкой, цитоплазма с органоидами и оболочка.

Изолирующую роль для ядра и органоидов (органелл) выполняют такие же липидно-белковые мембраны, как и мембрана клеточной поверхности. Эукариотную организацию имеют одноклеточные простейшие (амеба, инфузория и другие) и клетки многоклеточных организмов: грибов, растений, животных, включая человека.

^

Клетки животных и растений (рис.2) различаются, но для них можно выделить три главные общие части:

• цитоплазму, представляющую собой коллоидную систему, содержащую, наряду с органическими ионами, продукты пластического и энергетического обмена, органеллы, а также запасные вещества и различные включения;

• клеточную, или плазматическую, мембрану, отделяющую цитоплазму от окружающей среды,

• клеточное ядро, в котором находится генетический материал клетки.

Рис.2. Строение клетки

^

Клеткам присуще мембранное строение — это одно из положений клеточной теории. Среди мембранных органоидов — наружная цитоплазматическая мембрана (НЦМ), эндоплазматическая сеть (ЭПС), аппарат Гольджи (АГ), лизосомы (Л), митохондрии (М), пластиды (П). В основе всех этих органелл лежит биологическая мембрана, все они имеют единый план строения. Мембранные структуры — арена важнейших жизненных процессов.

Биологическая мембрана (клеточная или плазматическая) — пленка, покрывающая клетку, и настолько тонкая, что ее удалось обнаружить лишь с помощью трансмиссионного электронного микроскопа. Все мембраны построены по одному плану, всегда слоистые. Поперечный разрез показывает, что по обе стороны внутренней, более светлой линии расположены более темные. Мембраны были открыты более века назад, но их роль в механизмах жизнедеятельности клеток до недавнего времени сводили в основном к барьерной функции. Опыты показали, что малые молекулы быстрее усваиваются живой клеткой, чем большие, и вещества, растворимые в воде и нерастворимые в жирах, проникают в клетку медленнее, чем растворимые в жирах. Значит, мембраны содержат жироподобные вещества — липиды и белки, способные связывать воду.

Клеточная мембрана, помимо барьерной функции, обеспечивает обмен между цитоплазмой и внешней средой, из которой в клетку поступают вода, ионы, различные молекулы, а выводятся продукты обмена веществ и синтезированные в клетке вещества.

Мембрана играет важную роль: при ее повреждении клетка сразу гибнет, в то же время без некоторых других структурных элементов жизнь клетки может продолжаться. Изменение проницаемости наружной мембраны — первый признак гибели клетки.

Все биологические мембраны, в том числе и плазма­тическая, имеют общие свойства и структурные особен­ности. Они представляют собой двойной слой липидов, гидрофобные хвосты которых обращены внутрь, а гид­рофильные головки — наружу. В него погружены на различную глубину белки; некоторые из них даже пронизывают мембрану насквозь, контактируя при этом как с наружной, так и с внутренней средой клетки (они на­зываются трансмембранными) (рис.3.).

Мембранные белки могут выполнять различные функции:

♦ транспорт определенных молекул;

♦ катализ реакций, ассоциированных с мембранами;

♦ поддержание структуры мембран;

♦ получение и преобразование сигналов из окружаю­щей среды.

Рис.3. Строение клеточной мембраны

Не следует думать, что мембрана представляет со­бой жесткую структуру — большая часть белков и липидов, входящих в ее состав, способны перемещаться, главным образом в плоскости мембраны. Мембраны асим­метричны, т. е. липидный и белковый состав обоих сло­ев различен. К тому же плазматические мембраны мно­гих животных клеток имеют снаружи так называемый слой гликокаликса, состоящий из полисахаридов, при­крепленных к молекулам белка, и выполняющий, глав­ным образом, сигнальную и рецепторную функции. Он играет важную роль в объединении клеток в ткани.

Наиболее важным свойством мембран является их избирательная проницаемость. Различные вещества обладают различной растворимостью в липидах, поэто­му естественно, что биологические мембраны более проницаемы для незаряженных молекул. Однако скорости прохождения ряда веществ через мембрану не зависят от растворимости их в липидах. Установлено, что суще­ствует ряд механизмов, обеспечивающих проникновение веществ в клетку:

1. Диффузия. Вещество при этом перемещается через мембрану по диффузионному градиенту.

2. ^ или облегченная диффузия. В этом случае молекула-переносчик соединяется с переносимой молекулой или ионом на одной сторо­не мембраны и «перетягивает» его на другую. Пас­сивный транспорт может осуществляться и через формируемые молекулами белков особые каналы, пропускающие вещества только определенного типа. Перенос веществ здесь также осуществляется по гра­диенту концентрации.

^ Этот механизм сопряжен с затратами энергии и служит для переноса молекул против их градиента концентрации. Он осуществ­ляется белками-переносчиками, образующими так называемые насосы, наиболее изученным из кото­рых является Na/ К-насос в клетках животных, активно выкачивающий ионы Na наружу, погло­щая при этом ионы К\ Благодаря этому в клетке поддерживается большая концентрация К и мень­шая Na, чем в окружающей среде. На этот процесс затрачивается энергия АТФ. В растительных клет­ках примером активного транспорта может служить водородная помпа.

4. ^ — поглощение веществ путем окружения их выростами плазматической мембра­ны, формирующими в дальнейшем пузырьки, отшнуровывающиеся от плазмалеммы. При этом различа­ют фагоцитоз (поглощение твердых частиц) и пиноцитоз (поглощение жидкого материала). Экзоци­тоз — выделение веществ из клетки — осуществ­ляется в обратном порядке.

^

Внутреннее содержание клетки представлено цитоплазмой и расположенными в ней органоидами (или органеллами).

Цитоплазма — это живая часть клетки, помимо ее ядра. Снаружи она окружена клеточной мембраной, а внутри — ядерной. Пространство между ядром и внутренней поверхностью плазматической мембраны заполнено нитями клеточного матрикса, который определяет форму клетки и принимает участие в функциях, связанных с движением (деление клетки и ее перемещения, внутриклеточный транспорт везикул и органелл).

Цитоплазма создает условия для осуществления физиологических реакций клетки и протекания биохимических процессов. Такое свойство цитоплазмы, как буферность, позволяет клетке осуществлять свою жизнедеятельность и поддерживать внутреннее постоянство среды при изменении внешней, а постоянное движение – осуществлять связь между органоидами.

^

Органеллы — это рабочие субстанции клетки, выполняющие те или иные функции: производят энергию или приводят клетку в движение, служат для разделения клетки на области (или для выделения внутри нее областей) с разными условиями и содер­жат разные наборы молекул. К органеллам относятся ядро, эндоплазматический ретикулум, рибосомы, лизосомы, митохондрии, жгутики, комплексы Гольджи, хлоропласты.

Ядро содержит полимерные молекулы дезоКсирибонуклеиновой кислоты (ДНК), в которой закодирована вся информация о дан­ном виде, и является хранителем генетической информации. В ря­де одноклеточных организмов, называемых прокариотическими, ядро может отсутствовать. Роль хранителя генетической информа­ции в них играет нуклеотид, не имеющий оболочки и состоящий из одной ДНК размером 1—5 мкм. Клетки, имеющие четко выра­женные ядра, отделенные мембраной от остальной цитоплазмы, называются эукариотическими, их размер — 10—50 мкм. Размеры органелл составляют от 20 нм до 5 мкм (рибосомы —20 нм, ядра, митохондрии, хлоропласты - 1—5 мкм).

Ядро — основная часть клетки. От остальной части цитоплазмы ядро отделено ядерной оболочкой, состоящей из двух слоев плазматической мембраны. Наружная мембрана переходит непосредственно в эндоплазматический ретикулум.

В ядре различают ядрышко, кариоплазму и хроматин. Под электронным микроскопом ядро беспорядочно зернисто, а в одной его части зернистость резко возрастает, образуя ядрышко (иногда их несколько) — скопление рибосомальных белков и частей рибосом (рРНК), в основе которого лежит участок хромосомы, определяющий ее структуру и несущий ген. В растительных и животных клетках ДНК присутствует в виде структур размером около 1 мкм — хромосом (от греч. chroma — цвет, краска), число которых постоянно для каждого вида.

^ – сферическая структура, ее функция – синтез РНК, из которой состоят рибосомы.

Хромосомы представляют собой молекулы ДНК, связанные с белками. Хромосомы — это самостоятельные ядерные структуры, состоящие из двух продольных нитевидных половинок — сестринских хроматид (по внешнему виду их разделяют на равноплечие, неравноплечие и палочковидные). Клеточное ядро окрашено ядерными красителями почти равномерно, в микроскоп видна только его зернистость. Основные красители связываются нуклеиновыми кислотами.

Кариоплазма — жидкая фаза ядра, в которой находятся растворенные продукты жизнедеятельности.

Иногда вместо термина «хромосома» используют термин «хроматин». Оба термина являются синонимами. Выделяют две формы хроматина. Эухроматин представляет собой активно работающую и потому не спирализованную ДНК, невидимую в световой микроскоп. Гетерохроматин – не экспресирующая конденсированная ДНК, видимая в световой микроскоп в виде глыбок, расположенных главным образом по периферии ядра.

Ядру, содержащему хромосомы (с ДНК), принадлежит ведущая роль в явлениях наследственности.

Главными функциями ядра являются:

1. Хранение генетической информации и передача ее дочерним клеткам в процессе деления.

2. Контроль жизнедеятельности клетки путем определения, какие белки и в каких количествах должны синтезироваться.

Эндоплазматический ретикулум (ЭР) — это система внутри­клеточных мембран, формирующих цистерны и каналы, разделяющие цитоплазму клетки на изолированные пространства компартменты. Это нужно для того, чтобы разделить множество параллельно идущих реакций. Мембраны ЭР служат местом протекания биосинтетических процессов. Выделяют шероховатый (ШЭР) и гладкий ЭР. Мембраны ШЭР содержат на своей поверхности рибосомы, на которых синтезируются белки, и представляют собой совокупность уплощенных мешочков. Строение гладкого ЭР ближе к трубчатому и одна из основных функций – синтез липидов. Помимо этого каналы ЭР служат внутриклеточной системой переноса и распределения веществ. В зависимости от функционального состояния клетки мембраны ЭР подвергаются процессам сборки и разборки. Кроме того, эндоплазматическая сеть служит местом образования цистерн для аппарата Гольджи.

Аппарат Голъджи (пластинчатый комплекс) пред­ставляет собой стопку из 5—30 уплощенных канальцев (цистерн), которые связаны друг с другом многочисленными пузырьками, отшнуровывающимися от ЭР. С помощью этих пузырьков, выполняющих транспортные функции, молекулы вещества, предназначенные для удаления из клетки и упакованные в гранулы, выводятся за пределы клетки.

Часто при опи­сании трехмерной структуры аппарата Гольджи говорят, что он напоминает стопку блинов (рис. 4).

Рис.4. Аппарат Гольджи

У него вы­деляют наружную, обращенную к плазмалемме, и внут­реннюю, соединенную с ЭР, поверхности. Функция дан­ного органоида — транспорт и химическая модифика­ция поступающих в него веществ. Кроме того, пластин­чатый комплекс содержит собственные системы синтеза сложных углеводов из простых сахаров. Аппарат Гольд­жи представляет собой динамическую структуру, участву­ющую в потоке клеточных мембран. Он является проме­жуточным звеном между мембранами ЭР и плазмалеммой (наружная часть комплекса расходуется в процессе отшнуровывания пузырьков, а внутренняя постепенно формируется эндоплазматическим ретикулумом).

Стопки АГ обладают прецизионной внутренней структурой из трех отделов, специализирующихся на разных типах модификации белков. Белок, проходя через них, химически модифицируется в соответствии со своим предназначением, белки сортируются и отправляются по нужному адресу.

АГ наиболее ярко выражен в железистых тканях, поэтому посчитали, что он связан с железами внутренней секреции. В пузырьках накапливаются вещества, которые синтезируются и транспортируются по сети. В АГ эти вещества подвергаются химическим превращениям, потом упаковываются в мембранные пузырьки и выбрасываются из клеток в виде секретов.

В структуре АГ образуются лизосомы. В железистых клетках неподалеку от диктосом, на которые может распадаться структура АГ, особенно много митохондрий.

Лизосомы — мембранные пузырьки, содержащие литические ферменты гидролазы — протеазы, липазы, фосфотазы. Ферменты лизосом могут переваривать как поступившие в клетку путем эндоцитоза продукты, так и отдельные составные части клетки (а иногда ее целиком – автолиз). Лизосомы отшнуровывающиеся от аппарата Гольджи, куда поступают ферменты, синтезированные в ЭР, называются первичными лизосомами. Они могут сливаться с пузырьками эндоцитоза или мембранами, окружающими ненужную структуру, образуя вторичные лизосомы, в которых происходит процесс переваривания и лизис содержащихся в них продуктов.

Митохондрии (отгреч. mitos — нить chondrion — зернышко, крупинка) — в большинстве случаев палочко­видной формы органоиды, размером несколько мкм. Митохондрии наблюдали в световой микроскоп как самые крупные клеточные органеллы. Их содержимое — матрикс, окружено двумя мембранами. Внутренняя образует многочисленные гребневидные складки, называемые кристами (рис. 5).

Рис.5. Строение митохондрии

Митохондрии содержат мультиферментные системы, рибосомы и не­большое количество ДНК, чаще всего в виде кольцевых молекул. Они входят в состав любой клетки, по строению похожи на клетки прокариот, имеют округлую форму, а при соединении нескольких рядом могут выглядеть как нити длиной менее 1 мкм. Внутри митохондрий находятся окислительные ферменты, РНК, небольшое количество ДНК, чаще всего в виде кольцевых молекул, и рибосомы, отличающиеся от цитоплазматических.

Митохондрии называют «энергетическими стан­циями» клетки, так как в них образуются молекулы АТФ, аккумулирующие энергию в виде химических свя­зей. Митохондрии способны размножаться путем деле­ния или отшнуровывания мелких фрагментов. Количе­ство их в клетке зависит от функционального состояния и энергетических потребностей.

Жгутики — белковые органеллы, отходя­щие от поверхности клетки в виде вытянутых отростков длиной 1—20 мкм. С помощью жгутика клетка перемещается в жидкой среде. Т.е. это органоиды движения

Рибосома является сложной органеллой, в которой происхо­дит синтез белка из аминокислот. Рибосомы – это мелкие органеллы, представленные глобулярными частицами диаметром порядка 20 нм, состоящими из двух субъединиц неравного размера – большой и маленькой. Состав рибосом состоит из комплекса молекулярных белков и рибонуклеино­вой кислоты (РНК), синтезируемой в ядрышке. Рибосомы могут свободно находиться в цитоплазме, либо прикрепляться к ЭР. На них происходит синтез белковых молекул.

В клетках растений имеются пластиды (хлоропласты, хромопласты и лейкопласты), которые тоже имеют двухмембранное строение, как и митохондрии.

Пластиды – органеллы, окруженные оболочкой, состоящей из двух мембран. Образуются из пропластид – мелких телец, находящихся в меристематических клетках корней и побегов. В пластидах различают более или менее развитую мембранную систему и внутреннее содержимое, представленное гомогенным веществом – строму. По типу содержащихся в них пигментов пластиды делятся на хлоропласты, хромопласты, лейкопласты.

Хлоропласты (от греч. chloros — зеленый plastos — вылепленный, образованный) — особые органеллы в растительных клетках, в которых протекает процесс фотосинтеза (рис.6).

Рис.6. Строение хлоропласта

Пигмент, окрашивающий их в зеленый цвет и поглощающий энергию солнечного света, назван хлорофиллом (от греч. ...phyllon — лист). При его участии хлоропласты синтезируют из воды и двуокиси углерода глюкозу — основное органическое вещество, которым питается все живое. Без процесса фотосинтеза вряд ли была бы возможна жизнь. С помощью электронного микроскопа установлено, что хлоропласт окружен двойной мембранной оболочкой, как и митохондрии. В ней заключено основное вещество — строма (от греч. stroma — подстилка), заполненная множеством пластинчатых структур — ламелл, которые расположены парами, на концах слипаются и окружают каждую цистерну, в хлоропластах сильно утолщены. В строме видны и крупные белые гранулы — крахмальные зерна; значит, здесь продукт фотосинтеза — глюкоза — сразу же переводится в нерастворимый крахмал. Выяснение связи структуры хлоропластов с их функциями важно для осуществления реакции фотосинтеза «в пробирке» и возможности управлять этим процессом, что явится одним из шагов на пути избавления человечества от забот о пропитании.

Как и митохондрии, хлоропласты содержат рибосомы и собственную ДНК и обладают способностью делиться. Помимо основной функции этих пластид (осуществление фотосинтеза) они участвуют в синтезе аминокислот и жирных кислот и служат хранилищем временных запасов крахмала.

Хромопласты – пластиды, содержащие пигменты каратиноиды, придающие им красную, желтую и оранжевую окраску. Могут развиваться из хлоропластов, которые при этом теряют хлорофилл и внутренние мембрановые структуры и накапливают каратиноиды. Эти явления происходят при созревании плодов. В цветах яркая окраска хромопластов может служить для привлечения насекомых.

Лейкопласты – непигментные, и, следовательно, бесцветные пластиды. Некоторые из них синтезируют и накапливают крахмал (аминопласты), другие способны к образованию и запасанию липидов и белков (элайопласты и протеинопласты). На свету лейкопласты могут превращаться в хлоропласты.

Заключение

Клетка является структурной и функци­ональной единицей любого живого организма. Каждая клетка является микроносителем жизни, поскольку в ней заключена та­кая генетическая информация, которая достаточна для воспро­изведения всего организма, причем этот носитель жизни «подчинил свою собственную свободу деятельности организма в це­лом».

Клетке присущи все признаки живого: обмен веществ и энер­гии, реагирование на внешнюю среду (саморегуляция), рост, размножение путем деления (самовоспроизведение), передача наследственных признаков, способность двигаться и в целом са­моорганизация. Клетка обладает как бы полнотой свойств жиз­ни, что позволяет ей как самостоятельной единице живого су­ществовать и отдельно: изолированные клетки многоклеточных организмов могут жить и размножаться в питательной среде.

В природе существуют простейшие одноклеточные организмы, как животного, так и растительного свойства (амеба, инфузория, эвглена, хлорелла и др., некоторые водоросли и грибы) и многоклеточные (большинство животных и растений). Клетки всех живых организмов имеют похожий химический состав и сходное строение. Многоклеточные организмы содержат до несколько тысяч кле­ток и являются организованными совокупностями клеток, различ­ных по форме, структуре и функциям, т.е. дифференцированными и дискретными системами. Однако организация клеток в организ­ме построена по единому структурному признаку.

Итак, клетка является наименьшей, то есть элементарной живой системой, так как ей присущи все свойства живого организма, свойства жизни как явления.

^

1. Анисимов А.П. Концепции современного естествознания. Биология.-Владивосток: ТИДОТ ДВГУ, 2000 г.

2. Горбачев В.В. Концепции современного естествознания: Учеб. пособие для сту­дентов вузов / В. В. Горбачев. — 2-е изд., испр. и доп. — М.: ООО «Изда­тельский дом «ОНИКС 21 век»: 000 «Издательство «Мир и Обра­зование», 2005. —672 с: ил.

3. Дубнищева Т.Я. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. — 6-е изд., испр. и доп. — М.: Издательский центр «Академия», 2006. — 608 с.

4. Карпенков С.Х. Концепции современного естествознания: Учеб. для вузов/С.Х. Карпенков. — 6-е изд., перераб. и доп. — М.: Высш. шк., 2003. — 488 с: ил.

5. Павлов И.Ю., Вахненко Д.В., Москвичев Д.В. Биология: учеб. пособие. - Ростов н/Д: Издательство «Феникс», 2002.- 608с.

www.studmed.ru

Реферат - Эукариотическая клетка - Биология

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Поверхностный комплекс животной клетки Состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира — гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет собой «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в неё молекулами белков, в частности, поверхностных антигенов и рецепторов. В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образом актиновыемикрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий. При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

Структура цитоплазмы

Передвижение органоидов координируется при помощи микротрубочек, служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному) ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

Аппарат Гольджи

Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен — цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

Ядро

Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Компартмент для ядра — кариотека — образован за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов ядерной оболочки. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жесткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

Лизосомы

Лизосома — небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. В ней находятся литические ферменты, способные расщепить все биополимеры. Основная функция — автолиз — то есть расщепление отдельных органоидов, участков цитоплазмы клетки.

Цитоскелет

К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.

Центриоли

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей.

Центриоли, по-видимому, гомологичны базальным телам жгутиков и ресничек.

Митохондрии

Митохондрии — особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счёт энзиматических систем митохондрий.

Внутренний просвет митохондрий, называемый матриксом отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии.

Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что безусловно указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответствующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов. Самое большое число митохондриальных генов (97) из изученных организмов имеет простейшее Reclinomonas americana.

 

16. Клетка – открытая биологическая система

Клетка является элементарной живой системой.На уровне клетки проявляются большинство основных свойств живой материи — обмен веществ и энергии, рост, развитие, раздражение, самовоспроизведение. Мы можем выделить из клетки отдельные ее компоненты или даже молекулы и убедиться, что многие из них обладают специфическими функциональными особенностями. Так, например, выделенные актин-миозиновые фибриллы могут сокращаться в ответ на добавлениеАТФ; вне клетки активно «работают» многие ферменты, участвующие в синтезе или распаде сложных биологически молекул; выделенные рибосомы в присутствии необходимых факторовмогут синтезировать белок; в настоящее время разработаны неклеточные системы ферментативного синтеза нуклеиновых кислот и т. д. Можно ли считать все эти отдельно взятые, внутриклеточные компоненты живыми? Вероятно, нет, потому что они обладают только определенным свойством живого, а не всем комплексом таких характеристик. Только клетка является наименьшей единицей, обладающей всеми, вместе взятыми, свойствами, отвечающими определению «живое».

Клетка является открытой системой, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой.

Клетка не только единица строения, но и единица функционирования. Все ее системы взаимосвязаны и функционируют как единое целое.

Гетеротрофные клетки получают углеводы извне, а автотрофные клетки сами создают их путем фотосинтеза (из СО2 и Н2О, которые поступают из окружающей среды) или хемосинтеза. Большая часть углеводов расщепляется с целью высвобождения энергии. Получаемая энергия связывается в форме АТФ. Энергию АТФ клетка использует на различные жизненные процессы — синтез, выделение веществ, движение и т. д. Глюкоза и другие углеводы используются также для биосинтеза полисахаридов, которые в форме гликолипидов и гликопротеинов включаются в гликокаликс (у животных), в форме гемицеллюлозы и пектиновых веществ — в клеточную стенку растений, в форме хитина — в клеточную стенку грибов. Целлюлоза оболочек растительных клеток синтезируется на плазмалемме или в самой клеточной стенке. Автотрофные зеленые клетки передают большую часть синтезируемых ими углеводов незеленым гетеротрофным клеткам, в основном, в виде сахарозы.

Растительные клетки сами синтезируют большую часть аминокислот, входящих в состав белков. Синтез некоторых аминокислот может осуществляться ими в хлоропластах, в митохондриях и цитоплазме. Животные клетки синтезируют лишь некоторые аминокислоты (заменимые), часть аминокислот (незаменимые), животные клетки получают из окружающей среды; для этого они поглощают белки, в основном путем эндоцитоза и расщепляют их затем с помощью ферментов лизосом до аминокислот.

Белки, в том числе и ферменты, синтезируются на рибосомах с участием иРНК и тРНК. Этот синтез идет, главным образом, в цитоплазме, а также в хлоропластах и митохондриях. Из цитоплазмы белки переходят в клеточное ядро (гистоновые и негистоновые белки хромосом, белки субъединиц рибосом и др.), в митохондрии и хлоропласты.

На рибосомах, связанных с ЭПС, синтезируются резервные и экспортные белки, которые при участии комплекса Гольджи путем экзоцитоза покидают клетку.

Все эти и другие процессы осуществляются путем реализации генетической информации, которая сосредоточена в молекулах ДНК ядра, пластид и митохондрий. В названных органеллах происходит репликация ДНК — необходимая предпосылка их идентичного деления и клетки в целом, а также транскрипция, обеспечивающая появление различных видов РНК. На рибосомах при участии всех типов РНК осуществляется трансляция — конечный этап реализации генетической информации или синтез белков. Посредством белков регулируются синтез и расщепление веществ в клетке, синтез АТФ, клеточный рост, подготовка и осуществление деления клетки, и другие процессы

Таким образом, клетка является открытой биологической системой, наименьшей единицей жизни — единицей строения функционирования, размножения организмов и их взаимосвязи с окружающей средой.

 

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.