Кислородосодержащие органические соединения. Кислородсодержащие органические соединения реферат


Реферат : Кислородосодержащие органические соединения

Реферат по химии

на тему:

«Кислородосодержащие органические соединения».

Выполнила: ученица 11б класса

школы № 34

Горбатовская О.

Проверила: Богданова Л.В.

Таганрог

2001

Содержание:

I. Общая характеристика:

II. Жиры:

III. Синтетические моющие свойства.

IV. Список литературы.

I.

Спирты – гидроксильные производные углеводородов различных типов.

Для гидроксильных производных бензола и его гомологов, содержащих ОН-группу непосредственно у бензольного ядра, употребляют название фенолы.

По химической природе жиры – это сложные эфиры трехатомного спирта глицерина и высших одноосновных кислот.

Для альдегидов характерно присутствие в молекуле кислорода, связанного двойной связью с атомом углерода.

Органические соединения, содержащие в качестве функциональной группы карбоксил, носят название карбоновых кислот. В зависимости от характера радикала, с которым связана карбоксильная группа, различают кислоты предельные, непредельные, ароматические и т.д. По числу имеющихся в молекуле карбоксильных групп их подразделяют на одноосновные, двухосновные и т.д.

II.

Жиры – вещества главным образом животного и растительного происхождения, состоящие в основном из сложных эфиров глицерина и одноосновных высших карбоновых кислот (триглицеридов):

СН2 – ООС – R

CH – OOC – R

Ch3 – OOC – R

Чаще всего в состав жиров входят насыщенные кислоты - пальмитиновая С15Н31СООН, стеариновая С17Н35СООН и ненасыщенная кислота – олеиновая С17Н33СООН. В небольших количествах в природных жирах находятся также и другие предельные одноосновные кислоты от С4 до С24 и непредельные кислоты с несколькими двойными связями. При этом в составе природных жиров встречаются исключительно кислоты с четным числом углеродных атомов. Это связано с характером обмена веществ в животных и растительных организмах.

Исследуя жиры, французский химик М.Э. Шеврель установил, что жиры состоят из глицерина и кислот, получивших название жирных. В дальнейшем это название было распространено вообще на соединения, содержащие нециклический углеводородный радикал. И сегодня еще употребительно для этих соединений название соединения жирного ряда. Синтез жиров из глицерина и жирных кислот был впервые осуществлен в 1854г. М. Бертло.

Вместе с белками и углеводами жиры входят в число важнейших с биохимической точки зрения веществ. Поступающие с пищей жиры в процессе пищеварения расщепляются на глицерин и жирные кислоты; эти вещества всасываются в кишечнике, затем из них вновь синтезируются жиры. Жиры источник энергии в организме; калорийность чистого жира 3770 кДж (900 ккал)/100 г.

Жиры разного происхождения внешне различаются прежде всего по своему физическому состоянию: они бывают твердыми (животные жиры) и жидкими (растительные масла: жирные, растительные жиры, получаемые из семян и плодов растений отжимом или экстрагированием. Различают р.м. твердые и (чаще) жидкие; высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, хлопковое), невысыхающие (касторовое, кокосовое). Многие р.м. – важные пищевые продукты; их используют также для производства маргарина, мыла, олифы, лаков и др.). При химическом исследовании жиров было выяснено, что в твердых жирах преобладают триглицериды предельных кислот (пальмитиновой, стеариновой), в жидких – содержится значительный процент триглицерида непредельной (олеиновой) кислоты. В индивидуальном виде эти триглицериды имеют следующие точки плавления: трипальмитин +65оС, тристеарин +72оС, триолеин – 4оС.

В коровьем масле в отличие от других жиров содержится в некотором количестве также эфир глицерина с низкомолекулярной масляной кислотой – трибутирин. Отсюда масляная кислота и получила свое название. Осуществляя гидрогенизацию жиров (присоединение к ним водорода в присутствии никелевого катализатора), в промышленном масштабе превращают жидкие жиры в твердые, идущие на производство маргарина, а также для других целей.

Старейшее техническое использование жиров – получение мыла. Если жир нагреть со щелочью, то происходит (как у всякого сложного эфира) его гидролиз с образованием глицерина и солей жирных кислот, которые и составляют мыло:

СН2 – ООС – С17Н35 СН2 – ОН

СН – ООС – С17Н35 + 3NаОН СН – ОН + 3С17Н35СООNа

СН2 – ООС – С17Н35 СН2 – ОН

Часто употребляемое для процессов гидролиза второе название – омыление обязано своим происхождением этому старинному процессу.

Технически более удобный способ расщепления жиров основан на использовании кислых катализаторов: серной кислоты, сульфокислот нафтеновых углеводородов (так называемый контакт Петрова), продуктов сульфирования касторового масла (реактив Твитчеля). В последнем случае жирные кислоты выделяются в свободном виде, легко отделяются от глицерина и уже потом перерабатываются действием щелочей (едкий натр, сода) на мыло или используются для других целей.

Моющее действие мыла основано на сложных физико-химических процессах. Являясь солью слабой кислоты и сильного основания, мыло в воде подвергается гидролизу:

С17Н35СООNа + Н2О С17Н35СООН + NаОН

Выделяющаяся при гидролизе щелочь в некоторой степени обусловливает моющее действие мыла, однако главную роль играют процессы эмульгирования, связанные с изменением поверхностного натяжения воды под действием мыла.

Для получения мыла расходуются значительные количества жиров. Сокращение расходов пищевого сырья для технических целей достигается двумя путями. Во-первых, высокомолекулярные жирные кислоты, необходимые для производства мыла, получают не только из жиров, но и окислением парафина – смеси высокомолекулярных углеводородов, выделяемых из нефти. Окисление проводят, продувая воздух через расплавленный парафин при температуре около 100оС. катализаторами служат окислы марганца.

Второй путь уменьшения расхода жиров на технические нужды – замена мыла другими моющими средствами.

III.

Синтетические моющие средства.

Основу синтетических моющих средств составляют поверхностно-активные (обладающие способностью понижать поверхностное натяжение) органические вещества, характерной структурной особенностью которых является наличие длинной углеродной цепи и ионогенной группы. Последняя чаще всего представляет собой соль сульфокислоты. Такие вещества можно получить, например, одновременным действием хлора и сернистого газа (сульфохлорирование) на парафиновые углеводороды с 10-14 углеродными атомами и последующей обработкой полученных сульфохлоридов щелочами:

С10Н22+SО2+Сl2 С10Н21SО2Cl+HCl

C10h31SO2Cl+2NaOH C10h31SO2ONa+NaCl+h3O

В качестве сырья используют также ароматические углеводороды с длинной боковой цепью, подвергая их действию хлорсульфоновой кислоты:

HSO3Cl NaOH

C8h27 – C6H5 C8h27 – C6h5 – SO3H C8h27 – C6h5 – SO3Na

Соли кислых сульфатов высокомолекулярных спиртов также являются поверхностно-активными веществами:

SO3 NaOH

C12h35OH C12h35OSO3H C12h35OSO3Na

Перечисленные типы соединений образуют класс анионоактивных поверхностно-активных веществ, поскольку главную роль в них играет органический анион. В качестве катиона в состав таких поверхностно-активных веществ может входить не только натрий, но и калий, аммоний, органические основания – амины. Анионоактивные соединения – самый распространенный тип поверхностно-активных веществ.

Органический остаток может существовать также и в виде катиона, чаще всего в форме четвертичной аммониевой соли [R4N]+X-. Подобные вещества называют катионоактивными. Третий тип поверхностно-активных веществ содержит в органическом остатке как катионную, так и анионную группу. Такие вещества относятся к числу амфотерных. Наконец, известны и неионогенные поверхностно-активные вещества.

Моющие средства, используемые на практике, помимо того или иного вида поверхностно-активных веществ, содержат различные добавки, способствующие усилению моющего действия, это некоторые неорганические вещества щелочного характера (сода, различные фосфаты и др.). Кроме того, добавляют вещества, способствующие стабилизации пены, оптические отбеливатели (органические соединения, преобразующие поглощенный ими ультрафиолетовый свет в видимый голубой, повышая тем самым белизну ткани).

Современные синтетические моющие вещества не только являются полноценными заменителями мыла, но и превосходят его по некоторым свойствам. Так, обычное мыло теряет свое моющее действие в жесткой или морской воде. Происходит это из-за образования нерастворимых кальциевых солей жирных кислот:

2С17h45COONa+Ca(HCO3)2 (C17h45COO)2Ca+2NaHCO3

Синтетические моющие средства не обладают этим недостатком. Кроме того, из-за своей меньшей щелочности они меньше разрушают ткань. Все это привело к тому, что ныне производство синтетических моющих средств достигло больших размеров.

Отмечено вместе с тем и нежелательное побочное действие синтетических моющих средств: когда вода, содержащая их, в больших количествах попадает в реки, это вызывает сильное образование пены и ухудшает условия существования рыб и других обитателей рек. Поэтому сейчас стремятся выпускать моющие средства сравнительно нестойкие, легко подвергающиеся деструкции в природных условиях, биологическому разрушению. Такими свойствами прежде всего обладают алкилсульфонаты, в меньшей степени – алкилсульфаты. Хуже всего в этом отношении алкилбензолсульфонаты с разветвленной углеводородной цепью.

Список литературы:

topref.ru

Кислородосодержащие органические соединения

Реферат по химии

на тему:«Кислородосодержащие органические соединения».

Выполнила:                                                                  ученица 11б класса

                                                                                     школы № 34

                                                                                     Горбатовская О.

Проверила:                                                                  Богданова Л.В.                                         Таганрог

2001 Содержание:

I. Общая характеристика:

ü спирты;

ü фенолы;

ü жиры – сложные эфиры;

ü альдегиды;

ü карбоновые кислоты.

II. Жиры:

ü структура молекул;

ü химические свойства;

ü распространение в природе;

ü применение.

III. Синтетические моющие свойства.

IV. Список литературы.

I.

         Спирты – гидроксильные производные углеводородов различных типов.

Для гидроксильных производных бензола и его гомологов, содержащих ОН-группу непосредственно у бензольного  ядра, употребляют название фенолы.

По химической природе жиры – это сложные эфиры трехатомного спирта глицерина и высших одноосновных кислот.

Для альдегидов характерно присутствие в молекуле кислорода, связанного двойной связью с атомом углерода.

Органические соединения, содержащие в качестве функциональной группы карбоксил, носят название карбоновых кислот. В зависимости от характера радикала, с которым связана карбоксильная группа, различают кислоты предельные, непредельные, ароматические и т.д. По числу имеющихся в молекуле карбоксильных групп их подразделяют на одноосновные, двухосновные и т.д. II.

Жиры – вещества главным образом животного и растительного происхождения, состоящие в основном из сложных эфиров глицерина и одноосновных высших карбоновых кислот (триглицеридов):

СН2 – ООС – R

CH – OOC – R

Ch3 – OOC – R

         Чаще всего в состав жиров входят насыщенные кислоты -  пальмитиновая С15Н31СООН, стеариновая С17Н35СООН и ненасыщенная кислота – олеиновая С17Н33СООН. В небольших количествах в природных жирах находятся также и другие предельные одноосновные кислоты от С4 до С24 и непредельные кислоты с несколькими двойными связями. При этом в составе природных жиров встречаются исключительно кислоты с четным числом углеродных атомов. Это связано с характером обмена веществ в животных и растительных организмах.

         Исследуя жиры, французский химик М.Э. Шеврель установил,  что жиры состоят из глицерина и кислот, получивших название жирных. В дальнейшем это название было распространено вообще на соединения, содержащие нециклический углеводородный радикал. И сегодня еще употребительно для этих соединений название соединения жирного ряда. Синтез жиров из глицерина и жирных кислот был впервые осуществлен в 1854г. М. Бертло.

         Вместе с белками и углеводами жиры входят в число важнейших с биохимической точки зрения веществ. Поступающие с пищей жиры в процессе пищеварения расщепляются на глицерин и жирные кислоты; эти вещества всасываются в кишечнике, затем из них вновь синтезируются жиры. Жиры источник энергии в организме; калорийность чистого жира 3770 кДж (900 ккал)/100 г.

         Жиры разного происхождения внешне различаются прежде всего по своему физическому состоянию: они бывают твердыми (животные жиры) и жидкими (растительные масла: жирные, растительные жиры, получаемые из семян и плодов растений отжимом или экстрагированием. Различают р.м. твердые и (чаще) жидкие; высыхающие (льняное, конопляное),  полувысыхающие (подсолнечное, хлопковое), невысыхающие (касторовое, кокосовое). Многие р.м. – важные пищевые продукты; их используют также для производства маргарина, мыла, олифы, лаков и др.). При химическом исследовании жиров было выяснено, что в твердых жирах преобладают триглицериды предельных кислот (пальмитиновой, стеариновой), в жидких – содержится значительный процент триглицерида непредельной (олеиновой) кислоты. В индивидуальном виде эти триглицериды имеют следующие точки плавления: трипальмитин +65оС, тристеарин +72оС, триолеин – 4оС.

         В коровьем масле в отличие от других жиров содержится в некотором количестве также эфир глицерина с низкомолекулярной масляной кислотой – трибутирин. Отсюда масляная кислота и получила свое название. Осуществляя гидрогенизацию жиров (присоединение к ним водорода в присутствии никелевого катализатора), в промышленном масштабе превращают жидкие жиры в твердые, идущие на производство маргарина, а также для других целей.

         Старейшее техническое использование жиров – получение мыла. Если жир нагреть со щелочью, то происходит (как у всякого сложного эфира) его гидролиз с образованием глицерина и солей жирных кислот, которые и составляют мыло:СН2 – ООС – С17Н35                        СН2 – ОН

СН – ООС – С17Н35 + 3NаОН                   СН – ОН +  3С17Н35СООNа         

СН2 – ООС – С17Н35                        СН2 – ОН

        

Часто употребляемое для процессов гидролиза второе название – омыление обязано своим происхождением этому старинному процессу.

Технически более удобный способ расщепления жиров основан на использовании кислых катализаторов: серной кислоты, сульфокислот нафтеновых углеводородов (так называемый контакт Петрова), продуктов сульфирования касторового масла (реактив Твитчеля). В последнем случае жирные кислоты выделяются в свободном виде, легко отделяются от глицерина и уже потом перерабатываются действием щелочей (едкий натр, сода) на мыло или используются для других целей.

Моющее действие мыла основано на сложных физико-химических процессах. Являясь солью слабой кислоты и сильного основания, мыло в воде подвергается гидролизу:

С17Н35СООNа + Н2О        С17Н35СООН + NаОН

Выделяющаяся при гидролизе щелочь в некоторой степени обусловливает моющее действие мыла, однако главную роль играют процессы эмульгирования, связанные с изменением поверхностного натяжения воды под действием мыла.

Для получения мыла расходуются значительные количества жиров. Сокращение расходов пищевого сырья для технических целей достигается двумя путями. Во-первых, высокомолекулярные жирные кислоты, необходимые для производства мыла, получают не только из жиров, но и окислением парафина – смеси высокомолекулярных углеводородов, выделяемых из нефти. Окисление проводят, продувая воздух через расплавленный парафин при температуре около 100оС. катализаторами служат окислы марганца.

Второй путь уменьшения расхода жиров на технические нужды – замена мыла другими моющими средствами. III.

         Синтетические моющие средства.

         Основу синтетических моющих средств составляют поверхностно-активные (обладающие способностью понижать поверхностное натяжение) органические вещества, характерной структурной особенностью которых является наличие длинной углеродной цепи и ионогенной группы. Последняя чаще всего представляет собой соль сульфокислоты. Такие вещества можно получить, например, одновременным действием хлора и сернистого газа (сульфохлорирование) на парафиновые углеводороды с 10-14 углеродными атомами и последующей обработкой полученных сульфохлоридов щелочами:

С10Н22+SО2+Сl2     С10Н21SО2Cl+HCl

C10h31SO2Cl+2NaOH      C10h31SO2ONa+NaCl+h3O

         В качестве сырья используют также ароматические углеводороды с длинной боковой цепью, подвергая их действию хлорсульфоновой кислоты:

                     HSO3Cl                                            NaOH

C8h27 – C6H5                 C8h27 – C6h5 – SO3H                      C8h27 – C6h5 – SO3Na         Соли кислых сульфатов высокомолекулярных спиртов также являются поверхностно-активными веществами:

                   SO3                                     NaOH

C12h35OH            C12h35OSO3H               C12h35OSO3Na         Перечисленные типы соединений образуют класс анионоактивных поверхностно-активных веществ, поскольку главную роль в них играет органический анион. В качестве катиона в состав таких поверхностно-активных веществ может входить не только натрий, но и калий, аммоний, органические основания – амины. Анионоактивные соединения – самый распространенный тип поверхностно-активных веществ.

         Органический остаток может существовать также и в виде катиона, чаще всего в форме четвертичной аммониевой соли [R4N]+X-. Подобные вещества называют катионоактивными. Третий тип поверхностно-активных веществ содержит в органическом остатке как катионную, так и анионную группу. Такие вещества относятся к числу амфотерных. Наконец, известны и неионогенные поверхностно-активные вещества.

         Моющие средства, используемые на практике, помимо того или иного вида поверхностно-активных веществ, содержат различные добавки, способствующие усилению моющего действия, это некоторые неорганические вещества щелочного характера (сода, различные фосфаты и др.). Кроме того, добавляют вещества, способствующие стабилизации пены, оптические отбеливатели (органические соединения, преобразующие поглощенный ими ультрафиолетовый свет в видимый голубой, повышая тем самым белизну ткани).

         Современные синтетические моющие вещества не только являются полноценными заменителями мыла, но и превосходят его по некоторым свойствам. Так, обычное мыло теряет свое моющее действие в жесткой или морской воде. Происходит это из-за образования нерастворимых кальциевых солей жирных кислот:

2С17h45COONa+Ca(HCO3)2         (C17h45COO)2Ca+2NaHCO3

         Синтетические моющие средства не обладают этим недостатком. Кроме того, из-за своей меньшей щелочности они меньше разрушают ткань. Все это привело к тому, что ныне производство синтетических моющих средств достигло больших размеров.

         Отмечено вместе с тем и нежелательное побочное действие синтетических моющих средств: когда вода, содержащая их, в больших количествах попадает в реки, это вызывает сильное образование пены и ухудшает условия существования рыб и других обитателей рек. Поэтому сейчас стремятся выпускать моющие средства сравнительно нестойкие, легко подвергающиеся деструкции в природных условиях, биологическому разрушению. Такими свойствами прежде всего обладают алкилсульфонаты, в меньшей степени – алкилсульфаты. Хуже всего в этом отношении алкилбензолсульфонаты с разветвленной углеводородной цепью. Список литературы:

ü В.М. Потапов «Органическая химия», М., «Просвещение»,1983г.

ü «Большая Российская энциклопедия», Научное издательство, М., 1998г.

        

                          

        

www.coolreferat.com

Кислородосодержащие органические соединения Доклад | Открытый класс

Данные об авторе

Автор(ы): 

Салахова Гулина Фаритовна

Место работы, должность: 

Сатламышевская СОШ учителҗ химии и биологии

Регион: 

Республика Татарстан Характеристики урока (занятия)

Уровень образования: 

высшее профессиональное образование

Целевая аудитория: 

Учитель (преподаватель)

Предмет(ы): 

Химия

Цель урока: 

Обобщить и классифицировать кислородсодержащих органических соединений

Краткое описание: 

К кислородосодержащим соединениям относятся: спирты, альдегиды, кетоны, карбоновые кислоты,простые эфиры, сложные эфиры, углеводы.

К кислородосодержащим соединениям относятся: спирты, альдегиды, кетоны, карбоновые кислоты,простые эфиры, сложные эфиры, углеводы.

 

  Спирты – это производные углеводороды содержащие одну или несколько гидроксильных  групп (- ОН).По другому их называют алканолами или старое название – алкоголи. При названии спиртов к соответствующему углеводороду добавляется суффикс – ол.

  Строение спирта можно выразить следующим образом:  R-OH

  Классификация спиртов:

1.По числу гидроксильных групп спирты делятся на: одноатомные, двухатомные, трехатомные, многоатомные.

 

 

Одноатомные

(олы)

Двухатомные

(диолы)

или гликоли

Трехатомные

( триолы)

Многоатомные

(полиолы)

СН3ОН

СН2ОН-СН2ОН

СН2ОН-СН2ОН-СН2ОН

 

 

2. По характеру углеводородного радикала

 

Предельные

Непредельные

(УВ радикал содержит кратные связи)

Ароматические

СН3ОН

СН2=СН-СН2

                  |  

                  ОН

С6Н5ОН

 

3. По характеру атома углерода связанного с функциональной группой-ОН.

 

Первичные

Вторичные

Третичные

СН3-СН2-СН2-ОН

СН2-СН-СН3

          |

         ОН

СН3-СН-СН2-СН3

           |

         ОН

 

 Общая формулаодноатомных предельных спиртов СпН2п+1ОН

 Для предельных одноатомных спиртов характерны следующие виды изомерии:

А) Изомерия положения функциональной группы.

Б) Изомерия углеродного скелета.

В) Межклассовая изомерия

 

  Строение предельных одноатомных спиртов Функциональная группа ОН в спиртах обусловливает  их физические и химические свойства. Структурная формула этанола:

       Н               Н

       ↓     ↓

Н→С→С→О←Н

       ↑     ↑

      Н     Н

  Из этой формулы видно, что атом кислорода в молекуле наиболее электроотрицателен и, следовательно, к нему смещена электронная плотность всех атомов. Это приводит к возникновению частичных зарядов на атомах и поляризации связей, что делает атом водорода гидроксильной группы более реакционноспособным по сравнению с другими атомами. Влияние электроотрицательного кислорода по цепи атомов углерода в радикале уменьшается, в результате более полярны и более активны связи С-Н в группе СН2, чем в СН3

  Тип гибридизацииэлектронов атома углерода – sp3гибридизация

 

 Физические свойства спиртовобъясняются их электронным строением.

С1-С10- при обычных условиях – жидкости с резким запахом.

Высшие спирты- твердые вещества, с приятным запахом .

В спиртах нет газообразных соединений, это объясняется наличием в молекулах спиртов полярной гидроксильной группы, которая приводит к образованию между их молекулами водородных связей, что приводит к образованию к ассоциации молекул, делает их как бы прилипшими друг к другу. Поэтому для спиртов характерны высокие температуры плавления и кипения

                                     Химические свойства спиртов

  IРеакции замещения

1. Замещение атомов Н гидроксильной группы активными металлами

2Na+ R-OH→2 RONa +h3

Связь О-Н полярна, поэтомуможно сказать что спирты проявляют слабые кислотные свойства, т.к. атомы водорода имеют кислотный характер, при этом образуются  – алкоголяты

RONa+h3O→ R-OH + NaОН

 

2. Реакция этерификации

R1-OH+HOOC-R2 →R2-COO-R1+h3O

3. Взаимодействие с галогеноводородами

Связь С→ОНв спиртах также полярна , поэтому возможны реакции с удалением (замещением) гидроксильной группы.

R-OH+HBr→RBr+h3O

  IIРеакции отщепления

1.Дегидратация (межмолекулярная)

                       h3SO4

R-OH+ R-OH→       R-О- R(простой эфир)+ h3O

2.Дегидратация ( внутримолекулярная)

С2Н5ОН   →      С2Н4+ h3O

3.Дегидратация и дегидрирование

2С2Н5ОН      →    СН2=СН-СН=СН2 +2 h3O+Н2

  III. Рекции окисления

  1. Горение

2СН3ОН+3О2→2СО2+4h3O

2. Окисление (мягкое) (окислители  КМпО4,К2Сr2О7 в кислой среде)

Первичных спиртов

R-Ch3-OH→R-C-H+ h3O→ R-CОOH( карбоновая кислота)

Вторичных спиртов

 

Третичные спирты не окисляются, они устойчивы

IV.Реакции дегидрирования

Первичных спиртов

R-Ch3-OH→R-C-H+ h3

     Вторичных спиртов

 

   Третичные спирты не дегидрируются

 

  Качественная реакция на многоатомные спирты

 Взаимодействие с Сu(ОН)2 приводит к образованию ярко- синих комплексных соединений. Одноатомные спирты в эту реакцию не вступают.

 

  Способы получения спиртов

1. Гидролиз галогеноалканов

2. Гидратация алкенов (присоединение протекает по правилу Марковникова

 

3.Гидрирование альдегидов и кетонов (при гидрировании альдегидов образуются  первичные спирты, а при гидрировании кетонов образуются вторичные спирты.

 

4. Окисление алкенов СН2=СН2+(О)+Н2О→НОСН2-СН2ОН

5. Специфические способы получения спиртов

А) получение метанола из синтез –газа СО+Н2  →СН3ОН

Б) брожение глюкозы   С6Н12О6 → 2С2Н5ОН+2СО2

В) гидролиз жиров Способ получения глицерина

Фенолы

  Фенолами называют органические соединения, содержащие гидроксильную группу, непосредственно связанную с бензольным кольцом.

 

  Простейшим из фенолов является одноатомные гидроксильное производное бензола С6Н5ОН, которое и называют обычно фенолом.

Строение фенола

  А)В молекуле фенола гидроксильная группа связана с бензольным кольцом. Пара электронов атома кислорода  вступает во взаимодействие с пи- электронным облаком бензольного кольца. Чтобы компенсировать отток электронной плотности, атом кислорода сильнее притягивает к себе электронную плотность от атома водорода. Поэтому в молекуле фенола химическая связь О-Н становится более полярной, а водородный атом более подвижен и реакционнспособен, чем в спиртах. Поэтому фенол, в отличие от спиртов, реагирует со щелочами, то есть обладает свойствами слабых кислот. Иногда его называют карболовой кислотой.

С6 Н5ОН+NaOH→C6Н5ОNa+Н2О

Б) Влияние гидроксильной группы на бензольное кольцо.

 

 Неподеленная пара электронов атома кислорода притягиваясь к бензольному ядру, повышает в нем электронную плотность, особенно в положениях 2,4,6, что увеличивает реакционную способность бензольного кольца.повышение электронной плотности бензольного ядра приводит к увелечению его реакционной способности в феноле, по сравнению с бензолом, где электронная плотность распределена симметрично.

   Таким образом, электронное строение гидроксильной группы изменилось в зависимости от характера соединенного с ней радикала, и электронное строение самого радикала тоже изменилось под влиянием гидроксильной группы

 

 Химические  свойства фенола

   I.Кислотные свойства фенола: замещение атома водорода гидроксильной группы

1. взаимодействие с активными металлами

 

2. взаимодействие со щелочами ( отличие от спиртов)

3. выделение фенола из раствора фенолята натрия

4. качественная реакция на фенол                        →комплексное соединение интенсивно фиолетового цвета

   II. Реакции бензольного кольца. Замещение атомов водорода бензольного кольца.

  1.бромирование фенола качественная реакция на фенол. Выделяется белый осадок.

 

   2. нитрование фенола

А) разбавленной кислотой

 

Б) концентрированной кислотой

 

 

  3. Реакции присоединения

А) гидрирование фенола

Б) поликонденсация фенола с альдегидами

 

 

Альдегиды и кетоны

  Альдегидами называются органические соединения, молекулы которых содержат функциональную группу СОН (альдегидную группу), соединенную с углеводородным радикалом.

   Кетоны– органические соединения , в молекулах которых карбонильная группа соединена с двумя углеводородными радикалами

 Общая формула альдегидов

 Общая формула кетонов

  Названия альдегидов образуют от названий соответствующих алканов с добавлением суффикса –аль. Кроме того простейшие альдегиды сохранили исторические названия

НСОН- метаналь, муравьиный альдегид, (формальдегид)

СН3-СОН- этаналь, уксусный альдегид ( ацетальдегид)

СН3-СН2-СОН- пропаналь, пропионовый альдегид

СН3-СН2-СН2-СОН- бутаналь, масляной альдегид

Виды изомериидля альдегидов и кетонов

   Для альдегидов характерна:

1. изомерия углеродного скелета

2. межклассовая  изомерия (с кетонами)

  Для кетоновхарактерна:

1.изомерия углеродного скелета

2.Положения ФГ (карбонильной группы)

3.Межклассовая изомерия ( с албдегидами)

Строение функциональной группы

  Атом углерода альдегидной группы находится в состоянии sp2- гибридизации, что обусловливает наличие трех гибридных орбиталей, которые лежат в одной плоскости под углом 120 друг к другу и образуют три сигма связи. Негибридизированная р-орбиталь атома углерода перекрывается с р- орбиталью атома кислорода, образуя пи- связь. Таким образом, углерод и кислород связаны двойной связью, электроны которой принадлежат каждому из атомов не в равной степени.Благодаря их разной электроотрицательности, электронная плотность двойной связи оказывается смещенной от атома углерода к атому кислорода, что приводит к образованию частичного положительного и отрицательного зарядов на этих атомах. Таким образом двойная связь С=О поляризована.

  Химические свойства альдегидов и кетонов

Благодаря наличию активной группы-СОН , являются реакционноспособными.

  I. Реакции восстановления

1. Гидрирование альдегидов (образуется первичный спирт)

 

2.Гидрирование кетонов ( образуется вторичный спирт)

 

  II.Реакция окисления

1. Реакция «серебряного зеркала» (окисление аммиачным раствором оксида серебра)

 

2.Окисление свежеосажденным Cu(ОН)2

 

   Кетоны не окисляются ни кислородом воздуха, ни аммиачным раствором оксида серебра. Окисление кетонов идет значительно труднее, при действии сильных окислителей и нагревании. При этом происходит разрыв углеродной цепи по обе стороны от карбонильной группы с образованием смеси карбоновых кислот.

Способы получения альдегидов и кетонов

1. Окисление или дегидрирование

А) Первичных спиртов

 

Б ) Вторичных спиртов

 

  2. Реакция Кучерова

А) получение ацетальдегида

 

Б ) получение кетонов

 

  3.Термическое разложение Са или Ва солей карбоновых кислот   

 

 

Карбоновые кислоты

  Карбоновые кислоты- производные углеводородов, содержащих одну или несколько карбоксильных групп.

Все карбоновые кислоты имеют функциональную группу.

    Классификация карбоновых кислот  

1.По числу карбоксильных групп кислоты делятся на:

 

 

Одноосновные

 

Двухосновные

 

Многоосновные

 

СН3СООН

Уксусная или этановая кислота

СООН-СООН

Малоновая или пропандиовая кислота

СООН-СН2 C(ОН)(СООН)СН2 -СООН

Лимонная кислота

 

2. По характеру углеводородного радикала

 

Предельные

Непредельные

(УВ радикал содержит кратные связи)

Ароматические

СН3 СООН

Уксусная или этановая кислота

СН2=СН-СООН  

  Акриловая или пропеновая кислота               

С6Н5 СООН

Бензойная кислота

 

 

Общая формула карбоновых кислот

 

 Строение карбоксильной группы

 В атоме углерода карбоксильной группы осуществляется sp2-гибридизация, при этом образуются три сигма связи, лежащие в одной плоскости под углом 120, и одна пи- связь с одним атомов кислорода( анологично альдегидам). В результате смещения электронной плотности двойной связи (особенно пи- связи) к более электроотрицательному кислороду, атом углерода приобретает значительный положительный заряд. Частично этот заряд компенсируется радикалом, но главным образом- кислородом гидроксильной группы за счет неподеленных электронов, расположенных на р-орбитали. Они и смещаются в одну сторону атома углерода карбокусильной группы, понижая его заряд(отличие от альдегидов). Вследствие снижения электронной плотностина кислороде гидроксильной группы к нему сильнее смещаются электроны связи О-Н. это приводит к его большей подвижности, чем в спиртах, и обуславливает более свободное отщепление протона, то есть приводит к появлению у соединения кислотных свойств.

Химические свойства карбоновых кислот

Общие свойства карбоновых кислот аналогичны соответствующим свойствам неорганических кислот:

1. Диссоциация в водных растворах (среда кислая, индикаторы меняют окраску).

 

2. Карбоновые кислоты вступают в реакцию замещения с металлами, стоящими в ряду напряжений до водорода.

 

3. Карбоновые кислоты реагируют с основными оксидами с образованием соли и воды.

 

4. Вступают в реакцию нейтрализации с основаниями (щелочами и нерастворимыми) и амфотерными гидроксидами.

 

5. Взаимодействуют с солями более слабых и летучих кислот, вытесняя их из солей.

 

6. Реакция этерификации – образование сложных эфиров при взаимодействии карбоновых кислот со спиртами.

 

   7. Кислоты могут образовывать ангидриды кислот

 

      Особые свойства кислот, обусловленных наличием в их молекулах радикалов. Реакция с галогенами.

 

      Получение карбоновых кислот

1. Окислением спиртов

 

2. Окислением альдегидов

 

3. Окислением углеводородов

 

 

 

Сложные эфиры

   Сложные эфиры- функциональные производные карбоновых кислот, в которых атом водорода карбоксильной группы замещен на углеводородный радикал.

   Общая формула сложных эфиров

 

 

   Общая формула сложных эфиров образованных предельными карбоновыми одноосновными кислотами и предельными одноосновными спиртами: СпН2пО2

  Название сложного эфира

Название  УВ радикала спирта +название аниона кислоты ,(-ат)

Например этилацетат:

  Химические свойства:

 Гидролиз  под действием щелочей

 

 

 

Углеводы

    Углеводы – (сахара) – органические соединения, имеющие сходное строение и свойства                                     Общая формула Сn(h3O)m

     Классификация углеводов  

     Моносахариды:Глюкоза ( виноградный сахар),Фруктоза, Рибоза С6Н12О6

(не гидролизуются)

    Дисахариды: Сахароза (свекловичный или тростниковый сахар),Лактоза (молочный сахар) С12Н22О11(гидролизуются на 2 молекулы моносахаридов фруктозы и глюкозы)

   Полисахариды:Крахмал ( альфа глюкоза), Целлюлоза, Клетчатка ( бета глюкоза),Гликоген (С6Н10О5)n(гидролизуются на большое количество молекул моносахаридов).

   Качественные реактивы : раствор иода- на крахмал, азотная кислота- нитрование клетчатки.

 

  Глюкоза представляет собой биофункцональное соединение- альдегид многоатомного спирта

 

Циклическая альфа-форма глюкозы

 

 

 

Открытая формаглюкозы

 

 

 

Циклическая бета-форма глюкозы

 

 

Первый атом углерода находится в sp2-гибридном состоянии, а остальные- в состоянии sp3- гибридизации. Каждый образует четыре сигма- связи, вокруг которых возможно свободное вращение и образование различных форм.

 

Химические свойства глюкозы обусловлены наличием в ее молекуле различных функциональных групп: спиртовой и альдегидной.

  1. Как многоатомный спирт глюкоза реагирует с гидроксидом меди (II) с образованием  алкоголята меди (II)

 

 

 

 

  1. Как многоатомный спирт взаимодействует с карбоновыми кислотами с образованием сложных эфиров

 

 

 

  1. Реакция альдегидной группы

Окислителями альдегидной группы глюкозы являются аммиачный раствор оксида серебра (I) и гидроксида меди (II) рои нагревании (анологично альдегидам)

   

 

 

 

 

 

 

  1. Под действием восстановителей глюкоза превращается в шестиатомный спирт- сорбит

 

Специфические свойства

Важным свойством глюкозы является брожение.

Спиртовое брожение:

С6Н12О6→2С2Н5ОН+2СО2

Эту реакцию используют в производстве пива.

 

Молочно кислое брожение:в результате образуется молочная кислота

 

 С6Н12О6→

Это процесс происходит при квашении капусты, огурцов, молока, силосовании кормов.,

 

        Крахмал относится  к сложным углеводам- полисахаридам. Он строится из молекул глюкозы., его состав можно выразить следующим образом (С6Н10О5)п, где п достигает нескольких тысяч. Крахмал состоит из полисахаридов двух типов. Макромолекулы одного из них имеют линейное строение- амилоза, она более растворима. Макромолекулы другого полисахарида имеют разветвленное строение- амилопектин, он менее растворим в воде, чем амилоза.

  Макромолекулы крахмала состоят из остатков циклической альфа- глюкозы. Молекулу крахмала можно представить так:

 

 

 

Крахмал дает синюю окраску с иодом, это окрашивание дает амилоза, образуя с иодом сложный комплекс, который при нагревании разрушается и окраска исчезает.

 Поскольку циклические звенья остатков глюкозы в крахмале не содержит альдегидных групп, то он не дает реакции «серебряного зеркала», не восстанавливает гидроксид меди (II) до оксида меди (I).

     При действии ферментов или при нагревании с кислотами крахмал легко подвергается гидролизу:

   (С6Н10О5)п+пН2О → пС6Н12О6

 

Молекулярная формула целлюлозы-(С6Н10О5)п. значение п у целлюлозы обычно выше , чем у крахмала и достигает 10-12 тысяч и более.

В отличии от крахмала, целлюлоза- линейный полимер, гигантская молекула которой имеет форму нити. Макромолекулы целлюлозы построены из остатков молекул бета- глюкозы. Молекулу целлюлозы можно представить так:

 

 

 

 

  Химические свойства

Одна из основных свойств- способность при нагревании в присутствии кислот подвергатся гидролизу

(С6Н10О5)п+пН2О → пС6Н12О6

Кислотный гидролиз целлюлозы иначе называют осахариванием. Он позволяет из древесных опилок и стружек получить техническую глюкозу, брожение которой приводит к образованию этилового спирта

С6Н12О6→2С2Н5ОН+2СО2

2. Взаимодействие с азотной кислотой .При этом образуются азотнокислые эфиры целлюлозы. Общее свойство нитратов целлюлозы- их чрезвычайная горючесть

 

 

 

3.Взаимодействие с уксусным ангидридом или уксусной кислотой при нагревании. При этом получаются уксуснокислые эфиры целлюлозы, например триацетилцеллюлоза которые используются для изготовления лаков, негорючей пленки, а также ацетатного волокна

 

 

 

 

 

 

 

 

 

  

Прикрепленный файлSize
доклад кислородсодержащие оранические соединения.doc92.5 KB

www.openclass.ru

Реферат - Кислородосодержащие органические соединения

Реферат по химии

на тему:

«Кислородосодержащие органические соединения».

Выполнила: ученица 11б класса

школы № 34

Горбатовская О.

Проверила: Богданова Л.В.

Таганрог

2001

Содержание:

I. Общая характеристика:

-спирты;

-фенолы;

-жиры – сложные эфиры;

-альдегиды;

-карбоновые кислоты.

II. Жиры:

-структура молекул;

-химические свойства;

-распространение в природе;

-применение.

III. Синтетические моющие свойства.

IV. Список литературы.

I.

Спирты – гидроксильные производные углеводородов различных типов.

Для гидроксильных производных бензола и его гомологов, содержащих ОН-группу непосредственно у бензольного ядра, употребляют название фенолы.

По химической природе жиры – это сложные эфиры трехатомного спирта глицерина и высших одноосновных кислот.

Для альдегидов характерно присутствие в молекуле кислорода, связанного двойной связью с атомом углерода.

Органические соединения, содержащие в качестве функциональной группы карбоксил, носят название карбоновых кислот. В зависимости от характера радикала, с которым связана карбоксильная группа, различают кислоты предельные, непредельные, ароматические и т.д. По числу имеющихся в молекуле карбоксильных групп их подразделяют на одноосновные, двухосновные и т.д.

II.

Жиры – вещества главным образом животного и растительного происхождения, состоящие в основном из сложных эфиров глицерина и одноосновных высших карбоновых кислот (триглицеридов):

СН2 – ООС – R

CH – OOC – R

Ch3 – OOC – R

Чаще всего в состав жиров входят насыщенные кислоты — пальмитиновая С15 Н31 СООН, стеариновая С17 Н35 СООН и ненасыщенная кислота – олеиновая С17 Н33 СООН. В небольших количествах в природных жирах находятся также и другие предельные одноосновные кислоты от С4 до С24 и непредельные кислоты с несколькими двойными связями. При этом в составе природных жиров встречаются исключительно кислоты с четным числом углеродных атомов. Это связано с характером обмена веществ в животных и растительных организмах.

Исследуя жиры, французский химик М.Э. Шеврель установил, что жиры состоят из глицерина и кислот, получивших название жирных. В дальнейшем это название было распространено вообще на соединения, содержащие нециклический углеводородный радикал. И сегодня еще употребительно для этих соединений название соединения жирного ряда. Синтез жиров из глицерина и жирных кислот был впервые осуществлен в 1854г. М. Бертло.

Вместе с белками и углеводами жиры входят в число важнейших с биохимической точки зрения веществ. Поступающие с пищей жиры в процессе пищеварения расщепляются на глицерин и жирные кислоты; эти вещества всасываются в кишечнике, затем из них вновь синтезируются жиры. Жиры источник энергии в организме; калорийность чистого жира 3770 кДж (900 ккал)/100 г.

Жиры разного происхождения внешне различаются прежде всего по своему физическому состоянию: они бывают твердыми (животные жиры) и жидкими (растительные масла: жирные, растительные жиры, получаемые из семян и плодов растений отжимом или экстрагированием. Различают р.м. твердые и (чаще) жидкие; высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, хлопковое), невысыхающие (касторовое, кокосовое). Многие р.м. – важные пищевые продукты; их используют также для производства маргарина, мыла, олифы, лаков и др.). При химическом исследовании жиров было выяснено, что в твердых жирах преобладают триглицериды предельных кислот (пальмитиновой, стеариновой), в жидких – содержится значительный процент триглицерида непредельной (олеиновой) кислоты. В индивидуальном виде эти триглицериды имеют следующие точки плавления: трипальмитин +65о С, тристеарин +72о С, триолеин – 4о С.

В коровьем масле в отличие от других жиров содержится в некотором количестве также эфир глицерина с низкомолекулярной масляной кислотой – трибутирин. Отсюда масляная кислота и получила свое название. Осуществляя гидрогенизацию жиров (присоединение к ним водорода в присутствии никелевого катализатора), в промышленном масштабе превращают жидкие жиры в твердые, идущие на производство маргарина, а также для других целей.

Старейшее техническое использование жиров – получение мыла. Если жир нагреть со щелочью, то происходит (как у всякого сложного эфира) его гидролиз с образованием глицерина и солей жирных кислот, которые и составляют мыло:

СН2 – ООС – С17 Н35 СН2 – ОН

СН – ООС – С17 Н35 + 3NаОН СН – ОН + 3С17 Н35 СООNа

СН2 – ООС – С17 Н35 СН2 – ОН

Часто употребляемое для процессов гидролиза второе название – омыление обязано своим происхождением этому старинному процессу.

Технически более удобный способ расщепления жиров основан на использовании кислых катализаторов: серной кислоты, сульфокислот нафтеновых углеводородов (так называемый контакт Петрова), продуктов сульфирования касторового масла (реактив Твитчеля). В последнем случае жирные кислоты выделяются в свободном виде, легко отделяются от глицерина и уже потом перерабатываются действием щелочей (едкий натр, сода) на мыло или используются для других целей.

Моющее действие мыла основано на сложных физико-химических процессах. Являясь солью слабой кислоты и сильного основания, мыло в воде подвергается гидролизу:

С17 Н35 СООNа + Н2 О С17 Н35 СООН + NаОН

Выделяющаяся при гидролизе щелочь в некоторой степени обусловливает моющее действие мыла, однако главную роль играют процессы эмульгирования, связанные с изменением поверхностного натяжения воды под действием мыла.

Для получения мыла расходуются значительные количества жиров. Сокращение расходов пищевого сырья для технических целей достигается двумя путями. Во-первых, высокомолекулярные жирные кислоты, необходимые для производства мыла, получают не только из жиров, но и окислением парафина – смеси высокомолекулярных углеводородов, выделяемых из нефти. Окисление проводят, продувая воздух через расплавленный парафин при температуре около 100о С. катализаторами служат окислы марганца.

Второй путь уменьшения расхода жиров на технические нужды – замена мыла другими моющими средствами.

III.

Синтетические моющие средства.

Основу синтетических моющих средств составляют поверхностно-активные (обладающие способностью понижать поверхностное натяжение) органические вещества, характерной структурной особенностью которых является наличие длинной углеродной цепи и ионогенной группы. Последняя чаще всего представляет собой соль сульфокислоты. Такие вещества можно получить, например, одновременным действием хлора и сернистого газа (сульфохлорирование) на парафиновые углеводороды с 10-14 углеродными атомами и последующей обработкой полученных сульфохлоридов щелочами:

С10 Н22 +SО2 +Сl2 С10 Н21 SО2 Cl+HCl

C10 h31 SO2 Cl+2NaOH C10 h31 SO2 ONa+NaCl+h3 O

В качестве сырья используют также ароматические углеводороды с длинной боковой цепью, подвергая их действию хлорсульфоновой кислоты:

HSO3 Cl NaOH

C8 h27 – C6 H5 C8 h27 – C6 h5 – SO3 H C8 h27 – C6 h5 – SO3 Na

Соли кислых сульфатов высокомолекулярных спиртов также являются поверхностно-активными веществами:

SO3 NaOH

C12 h35 OHC12 h35 OSO3 HC12 h35 OSO3 Na

Перечисленные типы соединений образуют класс анионоактивных поверхностно-активных веществ, поскольку главную роль в них играет органический анион. В качестве катиона в состав таких поверхностно-активных веществ может входить не только натрий, но и калий, аммоний, органические основания – амины. Анионоактивные соединения – самый распространенный тип поверхностно-активных веществ.

Органический остаток может существовать также и в виде катиона, чаще всего в форме четвертичной аммониевой соли [R4 N]+ X-. Подобные вещества называют катионоактивными. Третий тип поверхностно-активных веществ содержит в органическом остатке как катионную, так и анионную группу. Такие вещества относятся к числу амфотерных. Наконец, известны и неионогенные поверхностно-активные вещества.

Моющие средства, используемые на практике, помимо того или иного вида поверхностно-активных веществ, содержат различные добавки, способствующие усилению моющего действия, это некоторые неорганические вещества щелочного характера (сода, различные фосфаты и др.). Кроме того, добавляют вещества, способствующие стабилизации пены, оптические отбеливатели (органические соединения, преобразующие поглощенный ими ультрафиолетовый свет в видимый голубой, повышая тем самым белизну ткани).

Современные синтетические моющие вещества не только являются полноценными заменителями мыла, но и превосходят его по некоторым свойствам. Так, обычное мыло теряет свое моющее действие в жесткой или морской воде. Происходит это из-за образования нерастворимых кальциевых солей жирных кислот:

2С17 h45 COONa+Ca(HCO3 )2 (C17 h45 COO)2 Ca+2NaHCO3

Синтетические моющие средства не обладают этим недостатком. Кроме того, из-за своей меньшей щелочности они меньше разрушают ткань. Все это привело к тому, что ныне производство синтетических моющих средств достигло больших размеров.

Отмечено вместе с тем и нежелательное побочное действие синтетических моющих средств: когда вода, содержащая их, в больших количествах попадает в реки, это вызывает сильное образование пены и ухудшает условия существования рыб и других обитателей рек. Поэтому сейчас стремятся выпускать моющие средства сравнительно нестойкие, легко подвергающиеся деструкции в природных условиях, биологическому разрушению. Такими свойствами прежде всего обладают алкилсульфонаты, в меньшей степени – алкилсульфаты. Хуже всего в этом отношении алкилбензолсульфонаты с разветвленной углеводородной цепью.

Список литературы:

-В.М. Потапов «Органическая химия», М., «Просвещение»,1983г.

-«Большая Российская энциклопедия», Научное издательство, М., 1998г.

www.ronl.ru

Реферат: Кислородосодержащие органические соединения

Содержание:

I. Общая характеристика:* спирты;* фенолы;* жиры – сложные эфиры;* альдегиды;* карбоновые кислоты.II. Жиры:* структура молекул;* химические свойства;* распространение в природе;* применение.III. Синтетические моющие свойства.IV. Список литературы.

I.Спирты – гидроксильные производные углеводородов различных типов.Для гидроксильных производных бензола и его гомологов, содержащих ОН-группу непосредственно у бензольного ядра, употребляют название фенолы.По химической природе жиры – это сложные эфиры трехатомного спирта глицерина и высших одноосновных кислот.Для альдегидов характерно присутствие в молекуле кислорода, связанного двойной связью с атомом углерода.Органические соединения, содержащие в качестве функциональной группы карбоксил, носят название карбоновых кислот. В зависимости от характера радикала, с которым связана карбоксильная группа, различают кислоты предельные, непредельные, ароматические и т.д. По числу имеющихся в молекуле карбоксильных групп их подразделяют на одноосновные, двухосновные и т.д.

II.Жиры – вещества главным образом животного и растительного происхождения, состоящие в основном из сложных эфиров глицерина и одноосновных высших карбоновых кислот (триглицеридов):СН2 – ООС – R

CH – OOC – R

Ch3 – OOC – RЧаще всего в состав жиров входят насыщенные кислоты - пальмитиновая С15Н31СООН, стеариновая С17Н35СООН и ненасыщенная кислота – олеиновая С17Н33СООН. В небольших количествах в природных жирах находятся также и другие предельные одноосновные кислоты от С4 до С24 и непредельные кислоты с несколькими двойными связями. При этом в составе природных жиров встречаются исключительно кислоты с четным числом углеродных атомов. Это связано с характером обмена веществ в животных и растительных организмах.Исследуя жиры, французский химик М.Э. Шеврель установил, что жиры состоят из глицерина и кислот, получивших название жирных. В дальнейшем это название было распространено вообще на соединения, содержащие нециклический углеводородный радикал. И сегодня еще употребительно для этих соединений название соединения жирного ряда. Синтез жиров из глицерина и жирных кислот был впервые осуществлен в 1854г. М. Бертло.Вместе с белками и углеводами жиры входят в число важнейших с биохимической точки зрения веществ. Поступающие с пищей жиры в процессе пищеварения расщепляются на глицерин и жирные кислоты; эти вещества всасываются в кишечнике, затем из них вновь синтезируются жиры. Жиры источник энергии в организме; калорийность чистого жира 3770 кДж (900 ккал)/100 г.Жиры разного происхождения внешне различаются прежде всего по своему физическому состоянию: они бывают твердыми (животные жиры) и жидкими (растительные масла: жирные, растительные жиры, получаемые из семян и плодов растений отжимом или экстрагированием. Различают р.м. твердые и (чаще) жидкие; высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, хлопковое), невысыхающие (касторовое, кокосовое). Многие р.м. – важные пищевые продукты; их используют также для производства маргарина, мыла, олифы, лаков и др.). При химическом исследовании жиров было выяснено, что в твердых жирах преобладают триглицериды предельных кислот (пальмитиновой, стеариновой), в жидких – содержится значительный процент триглицерида непредельной (олеиновой) кислоты. В индивидуальном виде эти триглицериды имеют следующие точки плавления: трипальмитин +65оС, тристеарин +72оС, триолеин – 4оС.В коровьем масле в отличие от других жиров содержится в некотором количестве также эфир глицерина с низкомолекулярной масляной кислотой – трибутирин. Отсюда масляная кислота и получила свое название. Осуществляя гидрогенизацию жиров (присоединение к ним водорода в присутствии никелевого катализатора), в промышленном масштабе превращают жидкие жиры в твердые, идущие на производство маргарина, а также для других целей.Старейшее техническое использование жиров – получение мыла. Если жир нагреть со щелочью, то происходит (как у всякого сложного эфира) его гидролиз с образованием глицерина и солей жирных кислот, которые и составляют мыло:

СН2 – ООС – С17Н35 СН2 – ОНСН – ООС – С17Н35 + 3NаОН СН – ОН + 3С17Н35СООNа СН2 – ООС – С17Н35 СН2 – ОН

Часто употребляемое для процессов гидролиза второе название – омыление обязано своим происхождением этому старинному процессу.Технически более удобный способ расщепления жиров основан на использовании кислых катализаторов: серной кислоты, сульфокислот нафтеновых углеводородов (так называемый контакт Петрова), продуктов сульфирования касторового масла (реактив Твитчеля). В последнем случае жирные кислоты выделяются в свободном виде, легко отделяются от глицерина и уже потом перерабатываются действием щелочей (едкий натр, сода) на мыло или используются для других целей.Моющее действие мыла основано на сложных физико-химических процессах. Являясь солью слабой кислоты и сильного основания, мыло в воде подвергается гидролизу:С17Н35СООNа + Н2О С17Н35СООН + NаОНВыделяющаяся при гидролизе щелочь в некоторой степени обусловливает моющее действие мыла, однако главную роль играют процессы эмульгирования, связанные с изменением поверхностного натяжения воды под действием мыла.Для получения мыла расходуются значительные количества жиров. Сокращение расходов пищевого сырья для технических целей достигается двумя путями. Во-первых, высокомолекулярные жирные кислоты, необходимые для производства мыла, получают не только из жиров, но и окислением парафина – смеси высокомолекулярных углеводородов, выделяемых из нефти. Окисление проводят, продувая воздух через расплавленный парафин при температуре около 100оС. катализаторами служат окислы марганца.Второй путь уменьшения расхода жиров на технические нужды – замена мыла другими моющими средствами.

III.Синтетические моющие средства.Основу синтетических моющих средств составляют поверхностно-активные (обладающие способностью понижать поверхностное натяжение) органические вещества, характерной структурной особенностью которых является наличие длинной углеродной цепи и ионогенной группы. Последняя чаще всего представляет собой соль сульфокислоты. Такие вещества можно получить, например, одновременным действием хлора и сернистого газа (сульфохлорирование) на парафиновые углеводороды с 10-14 углеродными атомами и последующей обработкой полученных сульфохлоридов щелочами:С10Н22+SО2+Сl2 С10Н21SО2Cl+HClC10h31SO2Cl+2NaOH C10h31SO2ONa+NaCl+h3OВ качестве сырья используют также ароматические углеводороды с длинной боковой цепью, подвергая их действию хлорсульфоновой кислоты:HSO3Cl NaOHC8h27 – C6H5 C8h27 – C6h5 – SO3H C8h27 – C6h5 – SO3Na

Соли кислых сульфатов высокомолекулярных спиртов также являются поверхностно-активными веществами:SO3 NaOHC12h35OH C12h35OSO3H C12h35OSO3Na

Перечисленные типы соединений образуют класс анионоактивных поверхностно-активных веществ, поскольку главную роль в них играет органический анион. В качестве катиона в состав таких поверхностно-активных веществ может входить не только натрий, но и калий, аммоний, органические основания – амины. Анионоактивные соединения – самый распространенный тип поверхностно-активных веществ.Органический остаток может существовать также и в виде катиона, чаще всего в форме четвертичной аммониевой соли [R4N]+X-. Подобные вещества называют катионоактивными. Третий тип поверхностно-активных веществ содержит в органическом остатке как катионную, так и анионную группу. Такие вещества относятся к числу амфотерных. Наконец, известны и неионогенные поверхностно-активные вещества.Моющие средства, используемые на практике, помимо того или иного вида поверхностно-активных веществ, содержат различные добавки, способствующие усилению моющего действия, это некоторые неорганические вещества щелочного характера (сода, различные фосфаты и др.). Кроме того, добавляют вещества, способствующие стабилизации пены, оптические отбеливатели (органические соединения, преобразующие поглощенный ими ультрафиолетовый свет в видимый голубой, повышая тем самым белизну ткани).Современные синтетические моющие вещества не только являются полноценными заменителями мыла, но и превосходят его по некоторым свойствам. Так, обычное мыло теряет свое моющее действие в жесткой или морской воде. Происходит это из-за образования нерастворимых кальциевых солей жирных кислот:2С17h45COONa+Ca(HCO3)2 (C17h45COO)2Ca+2NaHCO3Синтетические моющие средства не обладают этим недостатком. Кроме того, из-за своей меньшей щелочности они меньше разрушают ткань. Все это привело к тому, что ныне производство синтетических моющих средств достигло больших размеров.Отмечено вместе с тем и нежелательное побочное действие синтетических моющих средств: когда вода, содержащая их, в больших количествах попадает в реки, это вызывает сильное образование пены и ухудшает условия существования рыб и других обитателей рек. Поэтому сейчас стремятся выпускать моющие средства сравнительно нестойкие, легко подвергающиеся деструкции в природных условиях, биологическому разрушению. Такими свойствами прежде всего обладают алкилсульфонаты, в меньшей степени – алкилсульфаты. Хуже всего в этом отношении алкилбензолсульфонаты с разветвленной углеводородной цепью.

Список литературы:* В.М. Потапов «Органическая химия», М., «Просвещение»,1983г.* «Большая Российская энциклопедия», Научное издательство, М., 1998г.*

www.neuch.ru


Смотрите также