alive-inter.net

Реферат: Катионы второй аналитической группы

Министерство народного образования РБ

Профессиональное училище № 19

 

 

 

 

 

 

 

 

 

КУРСОВАЯ РАБОТА

Тема: « Катионы второй аналитической группы»

 

 

 

Обучающейся: Забелиной Татьяны Олеговны

Группы №15

Специальность: лаборант-эколог

Мастер производственного обучения: Павлова Н.В.

Преподаватель по спецтехнологии: Логинова О.Ю.

 

 

 

 

 

 

г. Салават

 

Содержание

 

Качественный анализ

Системный и дробный анализ

Аналитическая классификация катионов и периодическая система Д.И. Менделеева

Характеристика II аналитической группы Ag, Pb, Hg

Общие и частные реакции катионов

Систематический ход анализа катионов II аналитической группы

Техника работы с ртутью и кислотами

Лабораторная работа

Список литературы

 

 

Качественный анализ

 

Анализ того или иного вещества проводят с целью установления его качественного или количественного химического состава.

В соответствии с этим различают качественный и количественный анализ.

Задачи качественного анализа могут быть разнообразными, но все они сводятся к качественному обнаружению (открытию):

1)                Химических элементов, входящих в состав анализируемого вещества; например, методами качественного анализа можно установить, что в состав сульфида железа FeS входят элементы: железо и сера;

2)                Простых ионов, образующихся при растворении исследуемого вещества в воде или других растворителях; например, методами качественного анализа можно установить, какие ионы (Fe2+ или Fe3+, CO2+ или Cu2+ и т.д.) входят в состав данного вещества;

3)                Группа атомов или сложных ионов, составляющих исследуемые вещества; например, методами качественного анализа можно обнаружить, что в состав исследуемого вещества входят CO32-, SO42-, PO43-, [Zn(Nh4)6]2+ и другие сложные ионы;

4)                Молекул, например CuSO4·5h3O, Na2CO3 и Na2CO3·10h3O и т.д.

Другими словами, при помощи качественного анализа находят, из каких химических элементов, ионов, групп атомов и молекул состоит анализируемое вещество.

 

 

Системный и дробный анализы

 

Дробный анализ. Для обнаружения отдельных ионов не всегда сразу удается подобрать специальный реактив, который дает характерный осадок или окрашивание только с открываемыми ионами. Задача значительно затрудняется в присутствии посторонних ионов, которые могут давать аналогичные продукты реакции или вызывать другие затруднения в процессе анализа. Особенно усложняется анализ в тех случаях, когда концентрация посторонних ионов значительно превышает концентрацию обнаруживаемых ионов.

Чтобы сделать анализ смеси нескольких веществ, близких по свои химическим свойствам, приходится их предварительно разделить и только затем проводить частные реакции на отдельные ионы. Поэтому качественный анализ включает не только реакции обнаружения ионов, но и методы их разделения. За методами разделения или выделения следует идентификация ионов отдельных элементов.

Реакции, позволяющие обнаруживать искомые ионы в отдельных порциях сложной смеси при условии устранения влияния посторонних ионов, называют дробными реакциями. Метод анализа, основанный на применении дробных реакций, называют дробным анализом. Таким образом, качественным дробным анализом является метод обнаружения искомых ионов из отдельных порций анализируемого раствора при помощи дробных реакций, выполняемых в любой последовательности. Качественный дробный анализ выполняют в пробирках.

Метод дробного анализа детально разработан Н.А. Тананаевым. Метод заключается в том, что отдельные небольшие пробы исследуемого раствора обрабатывают реактивами (или смесями нескольких реактивов), устраняющими влияние посторонних ионов, которые мешают обнаружению искомых ионов. Затем обнаруживают искомые ионы при помощи характерных реакций. При этом порядок обнаружения катионов или анионов не имеет особого значения. При дробном методе анализа в первую очередь используют высокочувствительные избирательные реактивы, позволяющие обнаруживать данный ион в присутствии других. Такой метод не требует много времени и дает возможность обнаруживать те или иные ионы, минуя длительные операции последовательного отделения одних ионов от других.

Дробный анализ дает возможность быстро обнаруживать ограниченное число (от одного до пяти) ионов, содержащихся в смеси, состав которой приблизительно известен. В этом случае нет необходимости в проведении полного качественного анализа исследуемого образца, требуется лишь установить наличие или отсутствие в нем некоторых компонентов.

Дробный качественный анализ имеет много преимуществ перед другими химическими методами анализа, но и ему присущи некоторые недостатки.

Систематический анализ. Полный анализ многокомпонентной смеси можно провести значительно быстрее, если применить систематический анализ.

При выполнении систематического анализа в отличие от дробного анализа соблюдают определенный порядок разделения и последующего открытия искомых ионов. Поэтому для исследования берут одну относительно большую пробу анализируемого раствора. Разделение ионов на группы выполняют в определенной последовательности. Для этого используют сходства или различия свойств ионов в отношении действия групповых реактивов, из которых главным является сероводород. Группы ионов подразделяют на подгруппы, а затем в пределах данной подгруппы разделяют индивидуальные ионы и обнаруживают их при помощи характерных реакций. Другими словами, при выполнении систематического анализа к обнаружению ионов приступают главным образом лишь после удаления из анализируемого раствора в результате последовательных операций всех других ионов, мешающих открытию искомых ионов.

 

Аналитическая классификация катионов и периодическая система Д.И. Менделеева

 

Аналитическая классификация катионов. Ионы делятся на аналитические группы. Классификация катионов по аналитическим группам основана на растворимости некоторых образуемых ими солей.

Согласно классификации, предложенной Н.А. Меншуткиным, все ионы металлов (катионы) делятся на две большие группы:

а) ионы, осаждаемые сероводородом или сульфидом аммония;

б) ионы, не осаждаемые указанными реактивами.

Ионы металлов, сульфиды которых растворимы в воде, подразделяют в свою очередь на ионы, осаждаемые и не осаждаемые карбонатом аммония.

Таким образом, сероводород, сульфид аммония и карбонат аммония являются общими, или групповыми реактивами, способными к взаимодействию с группой ионов.

Много лет прошло с тех пор, как Н.А. Меншуткин предложил свою классификацию. За этот период другие ученые не раз предлагали различные системы классификации катионов. Однако до сих пор наиболее распространенной и общепринятой является классификация, основанная на принципах, предложенных Н.А. Меншуткиным.

Согласно этой классификации, катионы подразделяются на следующие пять аналитических групп:

I аналитическая группа катионов – катионы натрия, калия, аммония, магния и др.;

II аналитическая группа катионов – катионы серебра, ртути, свинца и др.;

III аналитическая группа катионов – катионы кальция, стронция, бария и др.

IV аналитическая группа катионов – катионы цинка, алюминия, олова и др.

V аналитическая группа катионов – катионы магния, марганца, железа и др.

VI аналитическая группа катионов – катионы никеля, кобальта, кадмия и др.

Периодическая система Д.И. Менделеева. При разделении катионов на аналитические группы казалось бы естественным распределить их по группам периодической системы элементов Д.И.Менделеева. Однако такое деление менее удобно, чем размещение катионов по аналитическим группам, основанное на различии растворимости хлоридов, сульфидов, гидроксидов и карбонатов различных элементов. Но если разделить катионы по группам в соответствии с положением элементов в периодической системе возможно, то разместить по этому признаку анионы оказалось бы невозможно, так как один и тот же элемент, относящийся к группе неметаллов, дает по нескольку анионов, характеризующихся различными свойствами, как, например, аниона сернистой, серной, сероводородной, тиосерных кислот и т.п.

Некоторые элементы, относящиеся к металлам, образуют не одни, а несколько типов ионов (в том числе и анионов), отличающихся различными свойствами, например Cr2+, Cr3+, CrO42-, Cr2O72-, Mn2+, Mn3+. В периодической системе элементы делятся на группы в зависимости от их порядковых номеров, т.е. зарядов их ядер. В аналитической химии принято разделение ионов по аналитическим группам. Распределение ионов по аналитическим группам основано на отношении их к действию различных реактивов. Между аналитической классификацией ионов и периодической системой Менделеева существует определенная связь. Но аналитическая классификация ионов в принципе отличается от распределения химических элементов по группам периодической системы Менделеева.

катион аналитический реакция ртуть

 

Характеристика II аналитической группы катионов Ag+, Pb2+ и Hg22+

 

Во вторую аналитическую группу входят катионы Ag+, Pb2+ и Hg22+, образующие с хлороводородной кислотой и ее солями нерастворимые осадки хлоридов.

Катионы этой группы бесцветны. При взаимодействии с нитрат- и нитрит-ионами образуют растворимые соли. При взаимодействии с сульфат-, сульфид-, фосфат-, хромат-, карбонат-, бромид- и йодид-ионом образуют осадки, т.е. в воде растворимы нитраты и нитриты серебра, свинца и ртути, остальные соли этих металлов в воде не растворяются. При действии щелочей Ag+ и Hg2+ образуют гидроксиды, которые сразу разлагаются на воду и оксиды серебра и ртути; Pb2+ образует осадок гидроксида свинца. При действии восстановителей указанные катионы могут восстанавливаться до металла.

Групповым реактивом является соляная кислота, при действии которой выпадают белые осадки хлоридов:

 

Ag++Cl- =>AgCl

Pb2++2Cl- =>PbCl2

Hg22++2Cl- =>HgCl2

 

Все они нерастворимы в азотной кислоте. Растворимость хлоридов в воде различна. При 20°С растворимость AgCl составляет 1,3*10-5моль/л, PbCl2 – 1.6*10-5 моль/л. При повышении температуры растворимость PbCl2 заметно растет, растворимость других хлоридов практически не изменяется. Таким путем можно отделить хлорид свинца от других хлоридов этой группы.

AgCl растворим в аммиаке, при этом образуется комплексная соль:

 

AgCl+2Nh5OH =>[Ag(Nh4)2]Cl+2h3O

 

Если к раствору этого комплекса добавить HNO3, выпадает осадок AgCl. При добавлении раствора KI можно наблюдать образование желтоватого осадка AgI.

Белый осадок Hg2Cl2 при действии аммиака чернеет – выделяются металлическая ртуть и нерастворимый амидохлорид ртути:

 

Hg2Cl2+2Nh5OH =>Hg↓+Nh3HgCl+Nh5Cl+2h3O

 

Выполнение реакции. В отдельные пробирки помещают по 4-5 капель растворов солей Ag+, Pb2+ и Hg22+ и добавляют по 4-5 капель раствора HCl. Образовавшиеся белые осадки отфильтровывают, делят пополам и переносят в чистые пробирки, добавляют в одни по 8-10 капель воды, в другие – по 4-5 капель раствора Nh5OH. Пробы разбавляют водой, нагревают до кипения и убеждаются, что PbCl2 растворился. В других пробирках AgCl растворился в аммиаке, а белый осадок HgCl2 почернел.

 

Общие и частные реакции катионов II аналитической группы

 

Некоторые общие реакции катионов второй аналитической группы представлены в таблице.

 

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Катионы второй аналитической группы. Катионы реферат


Реферат - Катионы второй аналитической группы

Министерство народного образования РБ

Профессиональное училище № 19

КУРСОВАЯ РАБОТА

Тема: « Катионы второй аналитической группы»

Обучающейся: Забелиной Татьяны Олеговны

Группы №15

Специальность: лаборант-эколог

Мастер производственного обучения: Павлова Н.В.

Преподаватель по спецтехнологии: Логинова О.Ю.

г. Салават

Содержание

Качественный анализ

Системный и дробный анализ

Аналитическая классификация катионов и периодическая система Д.И. Менделеева

Характеристика II аналитической группы Ag, Pb, Hg

Общие и частные реакции катионов

Систематический ход анализа катионов II аналитической группы

Техника работы с ртутью и кислотами

Лабораторная работа

Список литературы

Качественный анализ

Анализ того или иного вещества проводят с целью установления его качественного или количественного химического состава.

В соответствии с этим различают качественный и количественный анализ.

Задачи качественного анализа могут быть разнообразными, но все они сводятся к качественному обнаружению (открытию):

1) Химических элементов, входящих в состав анализируемого вещества; например, методами качественного анализа можно установить, что в состав сульфида железа FeS входят элементы: железо и сера;

2) Простых ионов, образующихся при растворении исследуемого вещества в воде или других растворителях; например, методами качественного анализа можно установить, какие ионы (Fe2+ или Fe3+, CO2+ или Cu2+ и т.д.) входят в состав данного вещества;

3) Группа атомов или сложных ионов, составляющих исследуемые вещества; например, методами качественного анализа можно обнаружить, что в состав исследуемого вещества входят CO32-, SO42-, PO43-, [Zn(Nh4)6]2+ и другие сложные ионы;

4) Молекул, например CuSO4·5h3O, Na2CO3 и Na2CO3·10h3O и т.д.

Другими словами, при помощи качественного анализа находят, из каких химических элементов, ионов, групп атомов и молекул состоит анализируемое вещество.

Системный и дробный анализы

Дробный анализ. Для обнаружения отдельных ионов не всегда сразу удается подобрать специальный реактив, который дает характерный осадок или окрашивание только с открываемыми ионами. Задача значительно затрудняется в присутствии посторонних ионов, которые могут давать аналогичные продукты реакции или вызывать другие затруднения в процессе анализа. Особенно усложняется анализ в тех случаях, когда концентрация посторонних ионов значительно превышает концентрацию обнаруживаемых ионов.

Чтобы сделать анализ смеси нескольких веществ, близких по свои химическим свойствам, приходится их предварительно разделить и только затем проводить частные реакции на отдельные ионы. Поэтому качественный анализ включает не только реакции обнаружения ионов, но и методы их разделения. За методами разделения или выделения следует идентификация ионов отдельных элементов.

Реакции, позволяющие обнаруживать искомые ионы в отдельных порциях сложной смеси при условии устранения влияния посторонних ионов, называют дробными реакциями. Метод анализа, основанный на применении дробных реакций, называют дробным анализом. Таким образом, качественным дробным анализом является метод обнаружения искомых ионов из отдельных порций анализируемого раствора при помощи дробных реакций, выполняемых в любой последовательности. Качественный дробный анализ выполняют в пробирках.

Метод дробного анализа детально разработан Н.А. Тананаевым. Метод заключается в том, что отдельные небольшие пробы исследуемого раствора обрабатывают реактивами (или смесями нескольких реактивов), устраняющими влияние посторонних ионов, которые мешают обнаружению искомых ионов. Затем обнаруживают искомые ионы при помощи характерных реакций. При этом порядок обнаружения катионов или анионов не имеет особого значения. При дробном методе анализа в первую очередь используют высокочувствительные избирательные реактивы, позволяющие обнаруживать данный ион в присутствии других. Такой метод не требует много времени и дает возможность обнаруживать те или иные ионы, минуя длительные операции последовательного отделения одних ионов от других.

Дробный анализ дает возможность быстро обнаруживать ограниченное число (от одного до пяти) ионов, содержащихся в смеси, состав которой приблизительно известен. В этом случае нет необходимости в проведении полного качественного анализа исследуемого образца, требуется лишь установить наличие или отсутствие в нем некоторых компонентов.

Дробный качественный анализ имеет много преимуществ перед другими химическими методами анализа, но и ему присущи некоторые недостатки.

Систематический анализ. Полный анализ многокомпонентной смеси можно провести значительно быстрее, если применить систематический анализ.

При выполнении систематического анализа в отличие от дробного анализа соблюдают определенный порядок разделения и последующего открытия искомых ионов. Поэтому для исследования берут одну относительно большую пробу анализируемого раствора. Разделение ионов на группы выполняют в определенной последовательности. Для этого используют сходства или различия свойств ионов в отношении действия групповых реактивов, из которых главным является сероводород. Группы ионов подразделяют на подгруппы, а затем в пределах данной подгруппы разделяют индивидуальные ионы и обнаруживают их при помощи характерных реакций. Другими словами, при выполнении систематического анализа к обнаружению ионов приступают главным образом лишь после удаления из анализируемого раствора в результате последовательных операций всех других ионов, мешающих открытию искомых ионов.

Аналитическая классификация катионов и периодическая система Д.И. Менделеева

Аналитическая классификация катионов . Ионы делятся на аналитические группы. Классификация катионов по аналитическим группам основана на растворимости некоторых образуемых ими солей.

Согласно классификации, предложенной Н.А. Меншуткиным, все ионы металлов (катионы) делятся на две большие группы:

а) ионы, осаждаемые сероводородом или сульфидом аммония;

б) ионы, не осаждаемые указанными реактивами.

Ионы металлов, сульфиды которых растворимы в воде, подразделяют в свою очередь на ионы, осаждаемые и не осаждаемые карбонатом аммония.

Таким образом, сероводород, сульфид аммония и карбонат аммония являются общими, или групповыми реактивами, способными к взаимодействию с группой ионов.

Много лет прошло с тех пор, как Н.А. Меншуткин предложил свою классификацию. За этот период другие ученые не раз предлагали различные системы классификации катионов. Однако до сих пор наиболее распространенной и общепринятой является классификация, основанная на принципах, предложенных Н.А. Меншуткиным.

Согласно этой классификации, катионы подразделяются на следующие пять аналитических групп:

I аналитическая группа катионов – катионы натрия, калия, аммония, магния и др.;

II аналитическая группа катионов – катионы серебра, ртути, свинца и др.;

III аналитическая группа катионов – катионы кальция, стронция, бария и др.

IV аналитическая группа катионов – катионы цинка, алюминия, олова и др.

V аналитическая группа катионов – катионы магния, марганца, железа и др.

VI аналитическая группа катионов – катионы никеля, кобальта, кадмия и др.

Периодическая система Д.И. Менделеева. При разделении катионов на аналитические группы казалось бы естественным распределить их по группам периодической системы элементов Д.И.Менделеева. Однако такое деление менее удобно, чем размещение катионов по аналитическим группам, основанное на различии растворимости хлоридов, сульфидов, гидроксидов и карбонатов различных элементов. Но если разделить катионы по группам в соответствии с положением элементов в периодической системе возможно, то разместить по этому признаку анионы оказалось бы невозможно, так как один и тот же элемент, относящийся к группе неметаллов, дает по нескольку анионов, характеризующихся различными свойствами, как, например, аниона сернистой, серной, сероводородной, тиосерных кислот и т.п.

Некоторые элементы, относящиеся к металлам, образуют не одни, а несколько типов ионов (в том числе и анионов), отличающихся различными свойствами, например Cr2+, Cr3+, CrO42-, Cr2O72-, Mn2+, Mn3+. В периодической системе элементы делятся на группы в зависимости от их порядковых номеров, т.е. зарядов их ядер. В аналитической химии принято разделение ионов по аналитическим группам. Распределение ионов по аналитическим группам основано на отношении их к действию различных реактивов. Между аналитической классификацией ионов и периодической системой Менделеева существует определенная связь. Но аналитическая классификация ионов в принципе отличается от распределения химических элементов по группам периодической системы Менделеева.

катион аналитический реакция ртуть

Характеристика II аналитической группы катионов Ag +, Pb 2+ и Hg 22+

Во вторую аналитическую группу входят катионы Ag+, Pb2+ и Hg22+, образующие с хлороводородной кислотой и ее солями нерастворимые осадки хлоридов.

Катионы этой группы бесцветны. При взаимодействии с нитрат- и нитрит-ионами образуют растворимые соли. При взаимодействии с сульфат-, сульфид-, фосфат-, хромат-, карбонат-, бромид- и йодид-ионом образуют осадки, т.е. в воде растворимы нитраты и нитриты серебра, свинца и ртути, остальные соли этих металлов в воде не растворяются. При действии щелочей Ag+ и Hg2+ образуют гидроксиды, которые сразу разлагаются на воду и оксиды серебра и ртути; Pb2+ образует осадок гидроксида свинца. При действии восстановителей указанные катионы могут восстанавливаться до металла.

Групповым реактивом является соляная кислота, при действии которой выпадают белые осадки хлоридов:

Ag++Cl- =>AgCl

Pb2++2Cl- =>PbCl2

Hg22++2Cl- =>HgCl2

Все они нерастворимы в азотной кислоте. Растворимость хлоридов в воде различна. При 20°С растворимость AgCl составляет 1,3*10-5моль/л, PbCl2 – 1.6*10-5 моль/л. При повышении температуры растворимость PbCl2 заметно растет, растворимость других хлоридов практически не изменяется. Таким путем можно отделить хлорид свинца от других хлоридов этой группы.

AgCl растворим в аммиаке, при этом образуется комплексная соль:

AgCl+2Nh5OH =>[Ag(Nh4)2]Cl+2h3O

Если к раствору этого комплекса добавить HNO3, выпадает осадок AgCl. При добавлении раствора KI можно наблюдать образование желтоватого осадка AgI.

Белый осадок Hg2Cl2 при действии аммиака чернеет – выделяются металлическая ртуть и нерастворимый амидохлорид ртути:

Hg2Cl2+2Nh5OH =>Hg↓+Nh3HgCl+Nh5Cl+2h3O

Выполнение реакции. В отдельные пробирки помещают по 4-5 капель растворов солей Ag+, Pb2+ и Hg22+ и добавляют по 4-5 капель раствора HCl. Образовавшиеся белые осадки отфильтровывают, делят пополам и переносят в чистые пробирки, добавляют в одни по 8-10 капель воды, в другие – по 4-5 капель раствора Nh5OH. Пробы разбавляют водой, нагревают до кипения и убеждаются, что PbCl2 растворился. В других пробирках AgCl растворился в аммиаке, а белый осадок HgCl2 почернел.

Общие и частные реакции катионов II аналитической группы

Некоторые общие реакции катионов второй аналитической группы представлены в таблице.

Реагент Катионы
Ag+ Pb2+ Hg22+
NaOH Ag2O↓ — бурый, растворим в Nh5OH Pb(OH)2↓ — белый, растворим в щелочах Hg2O↓ — черный
Nh5OH Ag2O↓ — бурый, растворим в избытке Nh5OH Pb(OH)2↓ — белый Hg↓+Nh3HgCl↓ — черный, растворим в «царской водке»
Na2CO3 Ag2CO3↓ — желтый, растворим в Nh5OH Pb2(OH)2CO3↓ — белый, растворим в щелочах Hg2CO3↓ — желтый, разлагается
h3SO4 Ag2SO4↓ — белый (из концентрированных растворов), растворим в горячем воде PbSO4↓ — белый, растворим в щелочах, в концентрированных h3SO4, HCl Hg2SO4↓ — белый, растворим в «царской водке»
Na2HPO4 Ag3PO4 – желтый, растворим в Nh5OH, HNO3 Pb3(PO4)2↓ — желтый, растворим в щелочах, HNO3 Hg2HPO4↓ — белый, растворим в HNO3
K2CrO4 Ag2CrO4↓ — кирпично-красный, растворим в Nh5OH, HNO3 PbCrO4↓ — желтый, растворим в щелочах, HNO3 Hg2CrO4↓ — красный
Окислители Pb2+ Hg2+
Восстановители Ag Pb Hg
KI AgI↓ — желтый, растворим в Na2S2O3, нерастворим в Nh5OH PbI2↓ — золотисто-желтые иглы, растворим в горячей воде, в избытке KI, в Ch4COOH Hg2I2↓ — зеленый; в избытке KI образуется [HgI4]2-+Hg

Частные реакции катионов серебра Ag +.

Реакция с хроматом калия. При этом образуется кирпично-красный осадок хромата серебра, растворимый в азотной кислоте и в растворе аммиака:

2Ag++K2CrO4- =>Ag2CrO4↓+2K+

Выполнение реакции. В пробирку помещают 3-4 капли раствора соли серебра, добавляют 5-6 капель воды, проверяют pH по универсальной индикаторной бумаге (он должен быть 6,5-7,5) и добавляют 1-2 капли раствора K2CrO4/

Восстановление Ag + до металлического серебра (реакция серебряного зеркала). При действии формальдегида на аммиачный раствор соли серебра на стенках пробирки образуется тонкий блестящий слой серебра:

2[Ag(Nh4)2]++HCHO+2h3O =>2Ag↓+3Nh5++HCOO-+Nh4↑

Ионы ртути мешают анализу и должны быть предварительно отделены.

Выполнение реакции. Пробирку промывают хромовой смесью и дистиллированной водой, затем помещают в нее по 3-4 капли раствора серебра и 20%-ного раствора Nh5OH. Перемешивают, добавляют 5-6 капель 10%-ного раствора формальдегида и осторожно погружают пробирку в баню с горячей водой. Через несколько минут наблюдают образование на стенках пробирки блестящего зеркала металлического серебра.

Частные реакции катионов свинца Pb 2+

Реакция с хроматом калия. При этом образуется желтый осадок хромата свинца, растворимый в концентрированной щелочи, в HNO3. В отличие от хромата серебра нерастворим в Nh5OH.

Выполнение реакции. В пробирку помещают 2-3 капли раствора соли свинца, добавляют 2-3 капли раствора K2CrO4 и наблюдают образование желтого осадка. Осадок отделяют, делят на три части, переносят в разные пробирки и проводят реакции со щелочью, HNO3, Nh5OH.

Реакция с иодидом калия. При комнатной температуре образуется желтый осадок PbI2:

Pb2++2KI =>PbI2↓+2K+

Эта соль довольно хорошо растворима в воде, при 25°С растворимость составляет 1,3*10-3моль/л. При охлаждении горячего раствора PbI2 выпадает в форме красивых золотисто-желтых кристаллов.

Выполнение реакции. В пробирку помещают 4-5 капель раствора соли свинца, добавляют 1-2 капли уксусной кислоты, 2-3 капли воды и нагревают до кипения, добавляя по капле воду, пока осадок не растворится. Содержимое пробирки медленно охлаждают, наблюдая образование кристаллов.

Реакция с дитизоном (дифенилтиокарбазоном):

- N = N - C - NH - NH -

S

Этот реактив в виде раствора в хлороформе образует с ионами Pb2+ ярко окрашенное комплексное соединение кирпично-красного цвета. Реакция высокочувствительна. Катионы Ag+ мешают определению Pb2+.

Выполнение реакции. В пробирку помещают 4-5 капель раствора соли свинца, добавляют 2-3 капли раствора дитизона в хлороформе, взбалтывают и наблюдают окрашивание хлороформного слоя в красный цвет.

Частные реакции катионов ртути Hg 22+

Реакции с иодидом калия. При этом образуется зеленый осадок иодида ртути:

Hg22++2KI=>Hg2I2+2K+

С добавлением избытка реактива он растворяется, и образуется комплексное соединение и металлическая ртуть, выпадающая в форме черного осадка:

Hg2I2+2K=>K2[HgI4]+Hg↓

Выполнение реакции. В пробирку помещают 3-4 капли раствора соли Hg22+, добавляют 3-4 капли раствора KI и наблюдают образование осадка грязно-зеленого цвета. Добавляют еще 5-6 капель реактива и наблюдают растворение зеленого и появление черного осадка.

Восстановление Hg 22+ до металлической ртути. Многие восстановители, например SnCl2, Cu, восстанавливают ион Hg22+ до металлической ртути:

Hg22++Sn2+=>2Hg+Sn4+

Hg22++Cu=>2Hg+Cu2+

При этом из раствора выпадает черный осадок ртути. Если медь взята в виде пластинки или монеты, то на ее поверхности образуется амальгама меди.

Выполнение реакции. На полоску фильтровальной бумаги наносят каплю раствора соли Hg22+, рядом – каплю раствора SnCl2 и наблюдают появление черного пятна. На очищенную медную пластинку наносят 2-3 капли раствора соли Hg22+. Через 5 минут промывают водой, протирают образовавшееся серое пятно фильтровальной бумагой и наблюдают образование блестящей амальгамы меди. Вместо пластинки можно взять медную монету. Поверхность меди необходимо предварительно обработать азотной кислотой и промыть водой.

Систематический ход анализа катионов II аналитической группы катионов

При систематическом анализе смесь катионов второй группы анализируют после отделения от остальных катионов в форме хлоридов.

Выполнение реакции. С этой операции начинают анализ смеси катионов второй группы. К 3 мл исследуемого раствора добавляют в пробирке 3 мл 2 н. раствора HCl, осадок отфильтровывают, проверяют на полноту осаждения и затем промывают осадок холодной водой, подкисленной HCl. Фильтрат и промывки в дальнейшем анализе не используют. Осадок дважды обрабатывают горячей водой (по 1мл) и отфильтровывают. В этот фильтрат переходит PbCl2, растворимый в горячей воде; AgCl и Hg2Cl2 остаются в осадке. В фильтрате открывают Pb2+ реакциями с хроматом калия, иодидом калия или дитизоном. Остаток обрабатывают концентрированным раствором Nh5OH. При этом AgCl переходит в раствор, образуя аммиачный комплекс. Hg2Cl2 взаимодействует с аммиаком, образуя черный осадок амидохлорида ртути и металлической ртути. Этот осадок отфильтровывают и в фильтрате определяют Ag+, добавляя HNO3 и KI.

Техника работы с ртутью, кислотами и щелочами

Техника работы с ртутью. Металлическая ртуть широко используется в лабораторной практике. Это вещество, которым заполняют термометры, вакуумметры при электрохимических исследованиях, как катализаторов различных химически реакциях.

Источники опасности:

1. Пары металлической ртути и большинство соединений обладают чрезвычайно высокой токсичностью. ПДК (предел допустимой концентрации) паров ртути в воздухе рабочей зоны составляет 0,01 мг/дм3.

2. Ртуть чрезвычайно подвижная жидкость и при неаккуратном обращении может быть пролита на пол или на рабочий стол, при этом мельчайшие шарики ртути раскатываются по всему помещению, попадая в самые незначительные щели и труднодоступные места. Собрать ее всю очень трудно. Мельчайшие капельки ртути интенсивно испаряются и быстро создают опасные для здоровья рабочих концентрации паров, поэтому если разбить всего один ртутный термометр и не провести тщательную демеркуризацию, то рабочий в этом помещении с течением времени получает ртутное отравление. Пары ртути активно поглощаются штукатуркой, деревом, некоторыми марками линолеума, стеклом и даже металлами. Поэтому стены, потолок, мебель, зараженные ртутью помещением становится дополнительными источниками выделения ее паров, особенно при повышении температуры воздуха. Опасны испарения не только пролитой ртути, негерметичность приборов со ртутью, тоже постоянные источники поступления паров ртути в атмосферу.

1. Все приборы со ртутью должны быть герметичными

2. К работам, связанной с применением ртути, или ртутных приборов и аппаратов допускаются рабочие, прошедшие специальный инструктаж

3. Стены помещения, где выполняется работа со ртутью должны быть на 2/3 окрашены масляной краской. Полы должны быть покрыты линолеумом с отбортовкой у стен, должны быть тщательно заделаны.

4. Переносить ртутные приборы и аппараты, установив их на противнях

5. Категорически запрещается хранить ртуть в открытых сосудах, хранить ртуть в склянках из литьевого стекла и керамики, не более 1кг. Склянка с ртутью помещается в резиновый мешок, или в металлическую банку. Допускается хранить небольшие количества ртути под слоем воды, масла, глицерина.

6. Все работы со ртутью выполняются в вытяжном шкафу, при включенной вентиляции, в отдельной комнате, изолированной от остальных помещений

7. Случайно пролитую ртуть собирать при помощи стеклянной ловушки с грушей. Вместо груши к ловушке можно присоединить водоструйный или вакуумный насосы

8. Мельчайшие частицы ртути можно собрать амальгамированными полосками, или кисточками из белой жести, белой или латунной проволоки. Можно применять влажную, слабо пропитанную фильтровальную бумагу. Капельки ртути, прилипшие к бумаге перенести в банку с водой, при взбалтывании ртуть отделяется от бумаги и падает на дно.

9. После механической очистки, надо провести демеркуризацию химическим способом. Для этого используют 3% раствор CaMnO4, подкисленный HCl или 20% раствор FeCl3

10. В помещении, где работают со ртутью надо не реже 2 раз в год автоматическим анализатором определять содержание паров ртути в воздухе

11. По окончании работ надо тщательно вымыть лицом и руки с мылом

12. Первыми признаками отравления ртутью являются тошнота, рвота, резь в желудке, нарушение деятельности нервной системы. При хроническом отравлении – дрожание рук, потливость, головные боли, рассеянность, кровоточивость десен.

13. Пострадавшему дать белок, касторовое масло во внутрь, при отравлении ртутью и ее соединениями дают сырые яйца в молоке (1л) и вызывают рвоту

14. Для защиты от паров ртути применяют противогаз «Г» и защитную спецодежду из плотной хлопчатобумажной ткани.

Правила безопасной работы с кислотами и щелочами. Работать с кислотами и едкими щелочами надо помнить, что несоблюдение правил обращения с ними приводит к сильным химическим ожогам. Концентрированные кислоты вызывают обезвоживание кожи и других тканей. Сильные кислоты разрушают ткани быстрее: царская водка (азотная кислота, соляная кислота), HNO3, h3SO4, HCl, уксусная, щавельная, очень опасны ожоги хромовой смесью.

HCl и HNO3 (их называют дымящими) оказывают сильное раздраженное действие на слизистой оболочке, дыхательный путей и глаз. Концентрированные растворы едких щелочей образуют очень болезненные и медленно заживающие раны. Особенно опасны ожоги глаз!

1. Запасные количества кислот и других агрессивных жидкостей должны храниться в специальном помещении – кислотном складе

2. Разливка их из бутылей большой емкости в расходные склянки, производится с помощью сифона

3. Разливку концентрированных кислот, а также аммиака следует проверять осторожно, под тягой. Работу выполнять в вытяжном шкафу

4. Переносить склянки с растворами кислот надо в корзинке. Нельзя переносить склянки, только взяв за горло сосуда

5. Большие бутыли переносят в специальных корзинах вдвоем, или перевозят на тележке.

6. При разбавлении концентрированных кислот водой нужно лить кислоту в воду , при постоянном помешивании. Приливание воды к концентрированной кислоте (особенно в h3SO4) сопровождается сильным разогревом и разбрызгиванием жидкости, что может привести к ожогам. Пользоваться только термостойкой или фарфоровой химической посудой

7. Во избежание ожогов полости рта, а так же отравления запрещается набирать растворы кислот, щелочей агрессивных жидкостей в пипетку ртом. При засасывании веществ надо пользоваться пипетками с различными ловушками, посредством резиновой груши.

8. При всех операциях с кислотами и щелочами надо применять резиновые перчатки, защитные очки, фартуки. При разливке концентрированных растворов кислот надо одевать маску от противогаза

9. Растворять щелочи надо в фарфоровой посуде, путем медленного прибавления к воде небольших порций вещества, при непрерывном помешивании. Кусочки щелочи брать только пинцетом или щипцами, или шпателем. Нельзя брать щелочь руками, работать только в специальной одежде в вытяжном шкафу.

10. Отработанные кислоты и щелочи следует собирать раздельно, в специально предназначенную посуду, и сливать в канализацию только после нейтрализации

11. Разлитые кислоты и щелочи надо немедленно засыпать песком, нейтрализовать и после этого производить уборку в специальной одежде. Кислоту нейтрализуют содой или 6-10% раствором щелочи. Щелочь нейтрализовать 10% h3SO4 или HCl

12. При попадании кислоты или щелочи в глаза надо промыть обильно водой, в широком сосуде, широко открыв глаза, в течении 10-15 минут. Можно промывать из промывалки. В случае попадания в глаза кислоты после промывания водой продолжать промывание раствором пищевой соды. При резких болях вводят 1-2 капли 1% раствора новокаина, особенно опасно поражение глаз щелочами. После удаления большей части щелочи с помощью струи воды в течении 50 минут продолжать промывать глаза раствором NaCl еще 30-60 минут.

Лабораторная работа

Тема: «Анализ катионов II аналитической группы»

Для работы требуется: штатив с пробирками, спиртовка, этиловый спирт (C2H5OH), AgNO3, Pb(Ch4COO)2, Nh5OH, NaOH, h3SO4, Ch4COOH, HNO3, K2CrO4, KJ (Cэ=2 моль (дм3)

Задание:

1. Подготовить рабочее место и реактивы

2. Изучить действие группового реактива на катионы II аналитической группы

3. Изучить частные реакции катиона серебра

4. Изучить частные реакции катиона свинца

5. Выполнить систематический анализ смеси катионов II аналитической группы

6. Оформить отчет о выполненной работе

Ход работы:

1. Подготовила рабочее место и реактивы

2. В качестве группового реактива применила раствор HCl (Сэ= 2 моль (дм3)

а) Взаимодействие иона серебра с соляной кислотой

Выполнение опыта: в пробирку поместила 2-3 капли раствора AgNO3 добавила 1-2 капли раствора HCl. Наблюдала выпадение белого творожистого осадка.

AgNO 3+ HCl => AgCl ↓+ HNO 3

Осадок не растворим в воде, но растворяется в Nh5OH. Также осадок не растворяется в разбавленных кислотах

б) взаимодействие иона свинца с соляной кислотой

Выполнение реакции: в пробирку поместила 5-6 капель Pb(Ch4COO)2 добавила 4-5 капель раствора HCl. Наблюдала выпадение белого кристаллического осадка. Частично растворимого в воде. Для снижения растворимости и более полного осаждения в PbCl2 добавляют C2H5OH или раствор охлаждают. Для повышения растворимости раствор нагревают.

Pb(Ch4COO)2+2HCl=>PbCl2↓+2Ch4COOH

3. Частные реакции катиона серебра

а) Взаимодействие ионов серебра с соляной кислотой

Выполнение реакции: к осадку AgCl2 прибавила избыток раствора Nh5OH. Наблюдала растворение осадка.

AgCl 2+2 NH 4 OH =>[ Ag ( NH 3)2] Cl +2 H 2 O

К аммиачному раствору прибавила по каплям разбавленный раствор HNO3, снова выпал осадок AgCl2.

[Ag(Nh4)2Cl+2HNO3=>AgCl2↓+Nh5NO3

б) Взаимодействие иона серебра с едкими щелочами

Выполнение реакции: в две пробирки поместила по 10 капель AgNO3 добавила в одну пробирку 10 капель NaOH, в другую 10 капель Nh5OH

I -ая пробирка:

AgNO 3+ NaOH => AgOH ↓+ NaNO 3

2 AgOH ↓=> Ag 2 O ↓+ H 2 O

II- ая пробирка :

AgNO3+Nh5OH=>AgOH↓+Nh5NO3

2AgOH↓=>Ag2O↓+h3O

Ag2O+4Nh5OH=>2[Ag(Nh4)2OH+3h3O

Наблюдала в первой пробирке выпадение бурого осадка оксида серебра нерастворимого в NaOH. Во второй пробирке осадок Ag2O растворился в избытке Nh5OH

в) Взаимодействие иона серебра с K2CrO4

Выполнение реакции: к 5-6 каплям раствора AgNO3 добавила 5-6 капель дистиллированной воды и 4-5 капель K2CrO4

2 AgNO 3+ K 2 CrO 4=> Ag 2 CrO 4↓+2 KNO 3

Наблюдала выпадение осадка кирпично-красного цвета, растворимого в Nh5OH и HNO3

4. Частные реакции катиона свинца

а) Взаимодействие иона свинца с едкими щелочами

Выполнение реакции: к нескольким каплям ацетата свинца медленно по каплям прибавила раствор NaOH. Наблюдала выпадение белого осадка Pb(OH)2 обладающего амфотерными свойствами. При добавлении избытка щелочи осадок растворился.

Pb(Ch4COO)2+2NaOH=>Pb(OH)2↓+2Ch4COONa

H 2 PbO 2+2 NaOH => Na 2 PbO 2+2 H 2 O

б) Взаимодействие ионов свинца с хроматом калия

Выполнение реакции: в три пробирки внесла по 5-6 капель Pb(Ch4COO)2 и K2CrO4. Наблюдала выпадение осадка желтого цвета PbCrO4, нерастворимого в Nh5OH, Ch4COOH, но растворимого в NaOH.

Pb ( CH 3 COO )2+ K 2 CrO 4=> PbCrO 4↓+2 CH 3 COOK

PbCrO 4+ NH 4 OH =>осадок не растворился

PbCrO 4+ CH 3 COOH =>осадок не растворился

PbCrO 4+4 NaOH => Na 2 CrO 4+ Na 2 PbO 2+2 H 2 O

в) Взаимодействие ионов свинца с иодидом калия

Выполнение реакции: в пробирку поместила 5-6 капель Pb(Ch4COO)2, добавила 1см3 дистиллированной воды, 6 капель раствора KJ и несколько капель Ch4COOH. Наблюдала выпадение желтого осадка PbJ2.

Pb ( CH 3 COO )2+2 KJ => PbJ 2↓+2 CH 3 COOK

Содержимое пробирки нагрела на водяной бане. Наблюдала растворение осадка. Затем раствор медленно охладила под краном с холодной водой: выпали переливающиеся золотисто-желтые кристаллы PbJ2 («золотой дождь»).

г) Взаимодействие ионов свинца с серной кислотой

Выполнение реакции: к нескольким каплям ацетата свинца добавила несколько капель h3SO4 выпадает мелкокристаллический осадок PbSO4, растворимый в избытке щелочи.

Pb(Ch4COO)2+h3SO4=>PbSO4↓+2Ch4COOH

PbSO4+4NaOH=>Na2PbO2+Na2SO4+2h3O

5. 1) К исследуемой смеси, содержащей серебро и свинец, добавила раствор HCl и C2H5OH (для более полного осаждения PbCl2). В осадках AgCl2, PbCl2 раствор не исследуют.

2) К осадку добавила горячую дистиллированную и прокипятила 1-2 минуты. PbCl2 при этом переходит в раствор в осадке AgCl2.

3) Осадок отцентрифугировала и в центрифугате открыла катион Pb2+ проводя реакцию золотистого дождя.

4)Осадок обработала Nh5OH, jосадок растворился. В растворе [Ag(Nh4)2]Cl. К раствору добавила 1-2 капли фенолфталеина – малиновый цвет. Затем по каплям добавила азотной кислоты до исчезновения малиновой окраски. В присутствии ионов серебра снова выпадает осадок AgCl2 белого цвета.

Вывод: научилась действовать групповым реактивом на ионы серебра и свинца; проводила частные реакции на катионы II аналитической группы; проводила систематический анализ смеси катионов II аналитической группы; закрепила навыки по определению pH среды с помощью УИБ.

Список литературы

1. Курс аналитической химии. Качественный анализ, книга первая. Под ред. А.П. Крешкова. Изд. 5-е, исправленное, М., «Химия», 1981. – 416с., ил.

2. Пособие по химии для старших классов. 8-11 кл./ Н.Е. Кузьменко, В.В. Еремин, В.А. Попков. – М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. – 544 с.: ил. – (Школьное учебное пособие).

3. Дневник производственного обучения

4. Химический анализ: Учебник для средних ПТУ. – М.: Высш. шк., 1985. – 295 с., ил.

5. Справочник школьника: 5-11 классы. – М.: АСТ-ПРЕСС, 2002. – 704 с.

www.ronl.ru

Реферат - Аналитическая классификация катионов

В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов, позволяющее отделять (или отличать) одни группы ионов от других.

Существуют разные системы группового разделения ионов: сероводородная, кислотно-основная, аммиачно-фосфатная, тиоацетамидная и т. д. Каждая из этих систем имеет свои преимущества и недостатки. Основным недостатком сероводородной системы является необходимость работы с сероводородом, что требует хорошей вентиляции, склонность к образованию коллоидных сульфидных осадков, в результате чего нарушается разделение катионов на группы, и т. д. В кислотно-основной системе при разделении групп можно встретиться с затруднениями, особенно если концентрации разделяемых катионов сильно различаются. С подобными же затруднениями можно встретиться и в других системах разделения. Сознательный подход к групповому разделению позволяет в каждом конкретном случае использовать для этой цели метод, наиболее подходящий для анализируемой смеси ионов.

Классический систематический метод качественного анализа катионов основан на сульфидной классификации катионов, в которой катионы подразделяются на пять групп на основании различия в растворимости их сульфидов, хлоридов, карбонатов и гидроксидов (см. табл. 3).

Основываясь на приведенных в табл. 3 данных, операцию обнаружения катионов различных аналитических групп проводят следующим образом.

1. Исследуемый раствор подкисляют разбавленной НCl. При этом ионы V группы осаждаются в виде соответствующих хлоридов.

2. Отделив осадок, пропускают через кислый раствор газообразный h3 S. При этом катионы IV группы осаждаются в виде сульфидов. Для отделения ионов IVБ подгруппы осадок обрабатывают Na2 S, после чего в осадке остаются только сульфиды катионов IVА подгруппы.

3. Раствор после отделения осадка сульфидов ионов IV группы нейтрализуют Nh5 OH (с Nh5 C1) и обрабатывают (Nh5 )2 S. При этом осаждаются сульфиды или гидроксиды (в случае А13+, Сг3+ ) катионов III группы.

4. Разрушив избыток (Nh5 )2 S кипячением с уксусной кислотой, на раствор действуют (Nh5 )2 CO3. При этом катионы II группы выпадают в осадок в виде карбонатов, а катионы I группы остаются в растворе, где их и открывают.

Обнаружение иона Nh5+, который в ходе анализа вводят в раствор с реактивами, проводят в отдельной порции исследуемого раствора с помощью специфической реакции (щелочь в газовой камере) или реактива Несслера, представляющего собой смесь K2 [HgI4 ] и КОН. Реактив Несслера при взаимодействии с солями аммония образует красно-бурый осадок:

Nh5 C1 + 2K2 [HgI4 ] + 4КОН = [OHg2 Nh3 ]I + 7KI + KCl + 3h3 O

Связь сульфидной классификации катионов с электронной конфигурацией атомов и ионов

Растворимость солей и гидроксидов катионов, лежащая в основе аналитической классификации, как и все другие свойства катионов, функционально связана с положением соответствующих элементов в периодической системе.

Катионы s-элементов, обладающие 2- и 8-электронным внешним слоем (Li+, Na+, K+, Mg2+, Са2+, Sr2+ ,Ba2+ и др.), являются слабыми поляризаторами и почти не поляризуются сами. При взаимодействии подобных катионов с сульфид-ионами не происходит заметной деформации электронных оболочек. Такие катионы, как правило, не образуют труднорастворимых в воде сульфидов и относятся к I и II аналитическим группам. Катионы Ag+, Hg2+, As(III), As(V), Sn+, Sb(III), Pb2+, Bi3+ и др., обладающие многоэлектронным внешним слоем (18 и 18 + 2), являются сильными поляризаторами и в то же время легко поляризуются сами. При взаимодействии подобных катионов с легко деформируемыми электронными оболочками сульфид-ионов происходит сильная поляризация обоих ионов и значительная деформация их внешних электронных оболочек. В соответствии с этим все катионы, обладающие внешней электронной структурой 18е- или (18 + 2e- ) как правило, образуют сульфиды с очень малыми значениями констант растворимости и потому принадлежат к IV и V аналитическим группам.

Катионы с переходной электронной структурой, т. е. с незаконченным 18-электронным внешним слоем (Mn2+, Fc2+, Fe3+, Co2+, Ni2+ и др.), занимают промежуточное положение. Являясь сравнительно сильными поляризаторами, они в то же время заметно поляризуются сами и потому при взаимодействии с сульфид-ионами дают труднорастворимые сульфиды. Эти катионы образуют III аналитическую группу. Их сульфиды имеют значительно большие значения констант растворимости, чем катионы IV и V групп.

Таким образом, сульфидная классификация катионов, основанная на признаке, имеющем на первый взгляд чисто практический характер, ни в коей мере не случайна, а связана с электронной конфигурацией атомов и ионов.

Группа катионов I II III IV V
А Б А Б
Характеристика группы Сульфиды и карбонаты растворимы в воде Сульфиды растворимы в воде, карбонаты — нет Сульфиды или образующиеся вместо них гидроксиды растворимы в разбавленных кислотых Сульфиды нерастворимы в разбавленных кислотых
Гидроксиды амфитерны Гидроксиды неамфотерны Сульфиды нерастворимы в Na2 S Сульфиды растворимы в Na2 S Хлориды нерастворимы в воде
Катионы Na+, K+, Nh5+ Mg2+, Ca2+, Sr2+, Ba2+ Al3+, Cr3+, Zn2+ Fe2+, Fe3+, Mn2+, Co2+, Ni2+ Cu2+, Bi3+, Cd2+ As(III, V), Sb(III, V), Sn2+, Sn(IV), Hg2+ Ag+, Hg22+, Pb2+
Групповой реагент Нет (Nh5 )2 CO3 (Nh5 )2 S в присутствии Nh5 OH и Nh5 Cl h3 S в присутствии HCl HCl

www.ronl.ru

Реферат: Аналитическая классификация катионов

Аналитическая классификация катионов

В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов, позволяющее отделять (или отличать) одни группы ионов от других.

Существуют разные системы группового разделения ионов: сероводородная, кислотно-основная, аммиачно-фосфатная, тиоацетамидная и т. д. Каждая из этих систем имеет свои преимущества и недостатки. Основным недостатком сероводородной системы является необходимость работы с сероводородом, что требует хорошей вентиляции, склонность к образованию коллоидных сульфидных осадков, в результате чего нарушается разделение катионов на группы, и т. д. В кислотно-основной системе при разделении групп можно встретиться с затруднениями, особенно если концентрации разделяемых катионов сильно различаются. С подобными же затруднениями можно встретиться и в других системах разделения. Сознательный подход к групповому разделению позволяет в каждом конкретном случае использовать для этой цели метод, наиболее подходящий для анализируемой смеси ионов.

Классический систематический метод качественного анализа катионов основан на сульфидной классификации катионов, в которой катионы подразделяются на пять групп на основании различия в растворимости их сульфидов, хлоридов, карбонатов и гидроксидов (см. табл. 3).

Основываясь на приведенных в табл. 3 данных, операцию обнаружения катионов различных аналитических групп проводят следующим образом.

1. Исследуемый раствор подкисляют разбавленной НCl. При этом ионы V группы осаждаются в виде соответствующих хлоридов.

2. Отделив осадок, пропускают через кислый раствор газообразный h3S. При этом катионы IV группы осаждаются в виде сульфидов. Для отделения ионов IVБ подгруппы осадок обрабатывают Na2S, после чего в осадке остаются только сульфиды катионов IVА подгруппы.

3. Раствор после отделения осадка сульфидов ионов IV группы нейтрализуют Nh5OH (с Nh5C1) и обрабатывают (Nh5)2S. При этом осаждаются сульфиды или гидроксиды (в случае А13+,Сг3+) катионов III группы.

4. Разрушив избыток (Nh5)2S кипячением с уксусной кислотой, на раствор действуют (Nh5)2CO3. При этом катионы II группы выпадают в осадок в виде карбонатов, а катионы I группы остаются в растворе, где их и открывают.

Обнаружение иона Nh5+, который в ходе анализа вводят в раствор с реактивами, проводят в отдельной порции исследуемого раствора с помощью специфической реакции (щелочь в газовой камере) или реактива Несслера, представляющего собой смесь K2[HgI4] и КОН. Реактив Несслера при взаимодействии с солями аммония образует красно-бурый осадок:

Nh5C1 + 2K2[HgI4] + 4КОН = [OHg2Nh3]I + 7KI + KCl + 3h3O

Связь сульфидной классификации катионов с электронной конфигурацией атомов и ионов

Растворимость солей и гидроксидов катионов, лежащая в основе аналитической классификации, как и все другие свойства катионов, функционально связана с положением соответствующих элементов в периодической системе.

Катионы s-элементов, обладающие 2- и 8-электронным внешним слоем (Li+, Na+, K+, Mg2+, Са2+, Sr2+,Ba2+ и др.), являются слабыми поляризаторами и почти не поляризуются сами. При взаимодействии подобных катионов с сульфид-ионами не происходит заметной деформации электронных оболочек. Такие катионы, как правило, не образуют труднорастворимых в воде сульфидов и относятся к I и II аналитическим группам. Катионы Ag+, Hg2+, As(III), As(V), Sn+, Sb(III), Pb2+, Bi3+ и др., обладающие многоэлектронным внешним слоем (18 и 18 + 2), являются сильными поляризаторами и в то же время легко поляризуются сами. При взаимодействии подобных катионов с легко деформируемыми электронными оболочками сульфид-ионов происходит сильная поляризация обоих ионов и значительная деформация их внешних электронных оболочек. В соответствии с этим все катионы, обладающие внешней электронной структурой 18е- или (18 + 2e-) как правило, образуют сульфиды с очень малыми значениями констант растворимости и потому принадлежат к IV и V аналитическим группам.

Катионы с переходной электронной структурой, т. е. с незаконченным 18-электронным внешним слоем (Mn2+, Fc2+, Fe3+, Co2+, Ni2+ и др.), занимают промежуточное положение. Являясь сравнительно сильными поляризаторами, они в то же время заметно поляризуются сами и потому при взаимодействии с сульфид-ионами дают труднорастворимые сульфиды. Эти катионы образуют III аналитическую группу. Их сульфиды имеют значительно большие значения констант растворимости, чем катионы IV и V групп.

Таким образом, сульфидная классификация катионов, основанная на признаке, имеющем на первый взгляд чисто практический характер, ни в коей мере не случайна, а связана с электронной конфигурацией атомов и ионов.

Группа катионов

I

II

III

IV

V

А

Б

А

Б

Характеристика группы

Сульфиды и карбонаты растворимы в воде

Сульфиды растворимы в воде, карбонаты - нет

Сульфиды или образующиеся вместо них гидроксиды растворимы в разбавленных кислотых

Сульфиды нерастворимы в разбавленных кислотых

Гидроксиды амфитерны

Гидроксиды неамфотерны

Сульфиды нерастворимы в Na2S

Сульфиды растворимы в Na2S

Хлориды нерастворимы в воде

Катионы

Na+, K+, Nh5+

Mg2+, Ca2+, Sr2+, Ba2+

Al3+, Cr3+, Zn2+

Fe2+, Fe3+, Mn2+, Co2+, Ni2+

Cu2+, Bi3+, Cd2+

As(III, V), Sb(III, V), Sn2+, Sn(IV), Hg2+

Ag+, Hg22+, Pb2+

Групповой реагент

Нет

(Nh5)2CO3

(Nh5)2S в присутствии Nh5OH и Nh5Cl

h3S в присутствии HCl

HCl

 

www.referatmix.ru

Реферат на тему Аналитическая классификация катионов

В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов, позволяющее отделять (или отличать) одни группы ионов от других.

Существуют разные системы группового разделения ионов: сероводородная, кислотно-основная, аммиачно-фосфатная, тиоацетамидная и т. д. Каждая из этих систем имеет свои преимущества и недостатки. Основным недостатком сероводородной системы является необходимость работы с сероводородом, что требует хорошей вентиляции, склонность к образованию коллоидных сульфидных осадков, в результате чего нарушается разделение катионов на группы, и т. д. В кислотно-основной системе при разделении групп можно встретиться с затруднениями, особенно если концентрации разделяемых катионов сильно различаются. С подобными же затруднениями можно встретиться и в других системах разделения. Сознательный подход к групповому разделению позволяет в каждом конкретном случае использовать для этой цели метод, наиболее подходящий для анализируемой смеси ионов.

Классический систематический метод качественного анализа катионов основан на сульфидной классификации катионов, в которой катионы подразделяются на пять групп на основании различия в растворимости их сульфидов, хлоридов, карбонатов и гидроксидов (см. табл. 3).

Основываясь на приведенных в табл. 3 данных, операцию обнаружения катионов различных аналитических групп проводят следующим образом.

1. Исследуемый раствор подкисляют разбавленной НCl. При этом ионы V группы осаждаются в виде соответствующих хлоридов.

2. Отделив осадок, пропускают через кислый раствор газообразный h3S. При этом катионы IV группы осаждаются в виде сульфидов. Для отделения ионов IVБ подгруппы осадок обрабатывают Na2S, после чего в осадке остаются только сульфиды катионов IVА подгруппы.

3. Раствор после отделения осадка сульфидов ионов IV группы нейтрализуют Nh5OH (с Nh5C1) и обрабатывают (Nh5)2S. При этом осаждаются сульфиды или гидроксиды (в случае А13+,Сг3+) катионов III группы.

4. Разрушив избыток (Nh5)2S кипячением с уксусной кислотой, на раствор действуют (Nh5)2CO3. При этом катионы II группы выпадают в осадок в виде карбонатов, а катионы I группы остаются в растворе, где их и открывают.

Обнаружение иона Nh5+, который в ходе анализа вводят в раствор с реактивами, проводят в отдельной порции исследуемого раствора с помощью специфической реакции (щелочь в газовой камере) или реактива Несслера, представляющего собой смесь K2[HgI4] и КОН. Реактив Несслера при взаимодействии с солями аммония образует красно-бурый осадок:

Nh5C1 + 2K2[HgI4] + 4КОН = [OHg2Nh3]I + 7KI + KCl + 3h3O

Связь сульфидной классификации катионов с электронной конфигурацией атомов и ионов

Растворимость солей и гидроксидов катионов, лежащая в основе аналитической классификации, как и все другие свойства катионов, функционально связана с положением соответствующих элементов в периодической системе.

Катионы s-элементов, обладающие 2- и 8-электронным внешним слоем (Li+, Na+, K+, Mg2+, Са2+, Sr2+, Ba2+ и др.), являются слабыми поляризаторами и почти не поляризуются сами. При взаимодействии подобных катионов с сульфид-ионами не происходит заметной деформации электронных оболочек. Такие катионы, как правило, не образуют труднорастворимых в воде сульфидов и относятся к I и II аналитическим группам. Катионы Ag+, Hg2+, As(III), As(V), Sn+, Sb(III), Pb2+, Bi3+ и др., обладающие многоэлектронным внешним слоем (18 и 18 + 2), являются сильными поляризаторами и в то же время легко поляризуются сами. При взаимодействии подобных катионов с легко деформируемыми электронными оболочками сульфид-ионов происходит сильная поляризация обоих ионов и значительная деформация их внешних электронных оболочек. В соответствии с этим все катионы, обладающие внешней электронной структурой 18е- или (18 + 2e-) как правило, образуют сульфиды с очень малыми значениями констант растворимости и потому принадлежат к IV и V аналитическим группам.

Катионы с переходной электронной структурой, т. е. с незаконченным 18-электронным внешним слоем (Mn2+, Fc2+, Fe3+, Co2+, Ni2+ и др.), занимают промежуточное положение. Являясь сравнительно сильными поляризаторами, они в то же время заметно поляризуются сами и потому при взаимодействии с сульфид-ионами дают труднорастворимые сульфиды. Эти катионы образуют III аналитическую группу. Их сульфиды имеют значительно большие значения констант растворимости, чем катионы IV и V групп.

Таким образом, сульфидная классификация катионов, основанная на признаке, имеющем на первый взгляд чисто практический характер, ни в коей мере не случайна, а связана с электронной конфигурацией атомов и ионов.

Группа катионов I II III IV V
А Б А Б
Характеристика группы Сульфиды и карбонаты растворимы в воде Сульфиды растворимы в воде, карбонаты - нет Сульфиды или образующиеся вместо них гидроксиды растворимы в разбавленных кислотых Сульфиды нерастворимы в разбавленных кислотых
Гидроксиды амфитерны Гидроксиды неамфотерны Сульфиды нерастворимы в Na2S Сульфиды растворимы в Na2S Хлориды нерастворимы в воде
Катионы Na+, K+, Nh5+ Mg2+, Ca2+, Sr2+, Ba2+ Al3+, Cr3+, Zn2+ Fe2+, Fe3+, Mn2+, Co2+, Ni2+ Cu2+, Bi3+, Cd2+ As(III, V), Sb(III, V), Sn2+, Sn(IV), Hg2+ Ag+, Hg22+, Pb2+
Групповой реагент Нет (Nh5)2CO3 (Nh5)2S в присутствии Nh5OH и Nh5Cl h3S в присутствии HCl HCl

Реагент

Катионы

Ag+

Pb2+

Hg22+

NaOH

Ag2O↓ - бурый, растворим в Nh5OH

Pb(OH)2↓ - белый, растворим в щелочах

Hg2O↓ - черный

Nh5OH

Ag2O↓ - бурый, растворим в избытке Nh5OH

Pb(OH)2↓ - белый

Hg↓+Nh3HgCl↓ - черный, растворим в «царской водке»

Na2CO3

Ag2CO3↓ - желтый, растворим в Nh5OH

Pb2(OH)2CO3↓ - белый, растворим в щелочах

Hg2CO3↓ - желтый, разлагается

h3SO4

Ag2SO4↓ - белый (из концентрированных растворов), растворим в горячем воде

PbSO4↓ - белый, растворим в щелочах, в концентрированных h3SO4, HCl

Hg2SO4↓ - белый, растворим в «царской водке»

Na2HPO4

Ag3PO4 – желтый, растворим в Nh5OH, HNO3

Pb3(PO4)2↓ - желтый, растворим в щелочах, HNO3

Hg2HPO4↓ - белый, растворим в HNO3

K2CrO4

Ag2CrO4↓ - кирпично-красный, растворим в Nh5OH, HNO3

PbCrO4↓ - желтый, растворим в щелочах, HNO3

Hg2CrO4↓ - красный

Окислители

 

Pb2+

Hg2+

Восстановители

Ag

Pb

Hg

KI

AgI↓ - желтый, растворим в Na2S2O3, нерастворим в Nh5OH

PbI2↓ - золотисто-желтые иглы, растворим в горячей воде, в избытке KI, в Ch4COOH

Hg2I2↓ - зеленый; в избытке KI образуется [HgI4]2-+Hg

 

Частные реакции катионов серебра Ag+.

Реакция с хроматом калия. При этом образуется кирпично-красный осадок хромата серебра, растворимый в азотной кислоте и в растворе аммиака:

 

2Ag++K2CrO4- =>Ag2CrO4↓+2K+

 

Выполнение реакции. В пробирку помещают 3-4 капли раствора соли серебра, добавляют 5-6 капель воды, проверяют pH по универсальной индикаторной бумаге (он должен быть 6,5-7,5) и добавляют 1-2 капли раствора K2CrO4/

Восстановление Ag+ до металлического серебра (реакция серебряного зеркала). При действии формальдегида на аммиачный раствор соли серебра на стенках пробирки образуется тонкий блестящий слой серебра:

 

2[Ag(Nh4)2]++HCHO+2h3O =>2Ag↓+3Nh5++HCOO-+Nh4↑

 

Ионы ртути мешают анализу и должны быть предварительно отделены.

Выполнение реакции. Пробирку промывают хромовой смесью и дистиллированной водой, затем помещают в нее по 3-4 капли раствора серебра и 20%-ного раствора Nh5OH. Перемешивают, добавляют 5-6 капель 10%-ного раствора формальдегида и осторожно погружают пробирку в баню с горячей водой. Через несколько минут наблюдают образование на стенках пробирки блестящего зеркала металлического серебра.

Частные реакции катионов свинца Pb2+

Реакция с хроматом калия. При этом образуется желтый осадок хромата свинца, растворимый в концентрированной щелочи, в HNO3. В отличие от хромата серебра нерастворим в Nh5OH.

Выполнение реакции. В пробирку помещают 2-3 капли раствора соли свинца, добавляют 2-3 капли раствора K2CrO4 и наблюдают образование желтого осадка. Осадок отделяют, делят на три части, переносят в разные пробирки и проводят реакции со щелочью, HNO3, Nh5OH.

Реакция с иодидом калия. При комнатной температуре образуется желтый осадок PbI2:

 

Pb2++2KI =>PbI2↓+2K+

 

Эта соль довольно хорошо растворима в воде, при 25°С растворимость составляет 1,3*10-3моль/л. При охлаждении горячего раствора PbI2 выпадает в форме красивых золотисто-желтых кристаллов.

Выполнение реакции. В пробирку помещают 4-5 капель раствора соли свинца, добавляют 1-2 капли уксусной кислоты, 2-3 капли воды и нагревают до кипения, добавляя по капле воду, пока осадок не растворится. Содержимое пробирки медленно охлаждают, наблюдая образование кристаллов.

Реакция с дитизоном (дифенилтиокарбазоном):

 

 -N=N-C-NH-NH-

        S

 

Этот реактив в виде раствора в хлороформе образует с ионами Pb2+ ярко окрашенное комплексное соединение кирпично-красного цвета. Реакция высокочувствительна. Катионы Ag+ мешают определению Pb2+.

Выполнение реакции. В пробирку помещают 4-5 капель раствора соли свинца, добавляют 2-3 капли раствора дитизона в хлороформе, взбалтывают и наблюдают окрашивание хлороформного слоя в красный цвет.

Частные реакции катионов ртути Hg22+

Реакции с иодидом калия. При этом образуется зеленый осадок иодида ртути:

 

Hg22++2KI=>Hg2I2+2K+

 

С добавлением избытка реактива он растворяется, и образуется комплексное соединение и металлическая ртуть, выпадающая в форме черного осадка:

 

Hg2I2+2K=>K2[HgI4]+Hg↓

 

Выполнение реакции. В пробирку помещают 3-4 капли раствора соли Hg22+, добавляют 3-4 капли раствора KI и наблюдают образование осадка грязно-зеленого цвета. Добавляют еще 5-6 капель реактива и наблюдают растворение зеленого и появление черного осадка.

Восстановление Hg22+ до металлической ртути. Многие восстановители, например SnCl2, Cu, восстанавливают ион Hg22+ до металлической ртути:

Hg22++Sn2+=>2Hg+Sn4+

Hg22++Cu=>2Hg+Cu2+

 

При этом из раствора выпадает черный осадок ртути. Если медь взята в виде пластинки или монеты, то на ее поверхности образуется амальгама меди.

Выполнение реакции. На полоску фильтровальной бумаги наносят каплю раствора соли Hg22+, рядом – каплю раствора SnCl2 и наблюдают появление черного пятна. На очищенную медную пластинку наносят 2-3 капли раствора соли Hg22+. Через 5 минут промывают водой, протирают образовавшееся серое пятно фильтровальной бумагой и наблюдают образование блестящей амальгамы меди. Вместо пластинки можно взять медную монету. Поверхность меди необходимо предварительно обработать азотной кислотой и промыть водой.

 

Систематический ход анализа катионов II аналитической группы катионов

 

При систематическом анализе смесь катионов второй группы анализируют после отделения от остальных катионов в форме хлоридов.

Выполнение реакции. С этой операции начинают анализ смеси катионов второй группы. К 3 мл исследуемого раствора добавляют в пробирке 3 мл 2 н. раствора HCl, осадок отфильтровывают, проверяют на полноту осаждения и затем промывают осадок холодной водой, подкисленной HCl. Фильтрат и промывки в дальнейшем анализе не используют. Осадок дважды обрабатывают горячей водой (по 1мл) и отфильтровывают. В этот фильтрат переходит PbCl2, растворимый в горячей воде; AgCl и Hg2Cl2 остаются в осадке. В фильтрате открывают Pb2+ реакциями с хроматом калия, иодидом калия или дитизоном. Остаток обрабатывают концентрированным раствором Nh5OH. При этом AgCl переходит в раствор, образуя аммиачный комплекс. Hg2Cl2 взаимодействует с аммиаком, образуя черный осадок амидохлорида ртути и металлической ртути. Этот осадок отфильтровывают и в фильтрате определяют Ag+, добавляя HNO3 и KI.

 

Техника работы с ртутью, кислотами и щелочами

 

Техника работы с ртутью. Металлическая ртуть широко используется в лабораторной практике. Это вещество, которым заполняют термометры, вакуумметры при электрохимических исследованиях, как катализаторов различных химически реакциях.

Источники опасности:

1.                Пары металлической ртути и большинство соединений обладают чрезвычайно высокой токсичностью. ПДК (предел допустимой концентрации) паров ртути в воздухе рабочей зоны составляет 0,01 мг/дм3.

2.                Ртуть чрезвычайно подвижная жидкость и при неаккуратном обращении может быть пролита на пол или на рабочий стол, при этом мельчайшие шарики ртути раскатываются по всему помещению, попадая в самые незначительные щели и труднодоступные места. Собрать ее всю очень трудно. Мельчайшие капельки ртути интенсивно испаряются и быстро создают опасные для здоровья рабочих концентрации паров, поэтому если разбить всего один ртутный термометр и не провести тщательную демеркуризацию , то рабочий в этом помещении с течением времени получает ртутное отравление. Пары ртути активно поглощаются штукатуркой, деревом, некоторыми марками линолеума, стеклом и даже металлами. Поэтому стены, потолок, мебель, зараженные ртутью помещением становится дополнительными источниками выделения ее паров, особенно при повышении температуры воздуха. Опасны испарения не только пролитой ртути, негерметичность приборов со ртутью, тоже постоянные источники поступления паров ртути в атмосферу.

1.                Все приборы со ртутью должны быть герметичными

2.                К работам, связанной с применением ртути, или ртутных приборов и аппаратов допускаются рабочие, прошедшие специальный инструктаж

3.                Стены помещения, где выполняется работа со ртутью должны быть на 2/3 окрашены масляной краской. Полы должны быть покрыты линолеумом с отбортовкой у стен, должны быть тщательно заделаны.

4.                Переносить ртутные приборы и аппараты, установив их на противнях

5.                Категорически запрещается хранить ртуть в открытых сосудах, хранить ртуть в склянках из литьевого стекла и керамики, не более 1кг. Склянка с ртутью помещается в резиновый мешок, или в металлическую банку. Допускается хранить небольшие количества ртути под слоем воды, масла, глицерина.

6.                Все работы со ртутью выполняются в вытяжном шкафу, при включенной вентиляции, в отдельной комнате, изолированной от остальных помещений

7.                Случайно пролитую ртуть собирать при помощи стеклянной ловушки с грушей. Вместо груши к ловушке можно присоединить водоструйный или вакуумный насосы

8.                Мельчайшие частицы ртути можно собрать амальгамированными полосками, или кисточками из белой жести, белой или латунной проволоки. Можно применять влажную, слабо пропитанную фильтровальную бумагу. Капельки ртути, прилипшие к бумаге перенести в банку с водой, при взбалтывании ртуть отделяется от бумаги и падает на дно.

9.                После механической очистки, надо провести демеркуризацию химическим способом. Для этого используют 3% раствор CaMnO4, подкисленный HCl или 20% раствор FeCl3

10.           В помещении, где работают со ртутью надо не реже 2 раз в год автоматическим анализатором определять содержание паров ртути в воздухе

11.           По окончании работ надо тщательно вымыть лицом и руки с мылом

12.           Первыми признаками отравления ртутью являются тошнота, рвота, резь в желудке, нарушение деятельности нервной системы. При хроническом отравлении – дрожание рук, потливость, головные боли, рассеянность, кровоточивость десен.

13.           Пострадавшему дать белок, касторовое масло во внутрь, при отравлении ртутью и ее соединениями дают сырые яйца в молоке (1л) и вызывают рвоту

14.           Для защиты от паров ртути применяют противогаз «Г» и защитную спецодежду из плотной хлопчатобумажной ткани.

Правила безопасной работы с кислотами и щелочами. Работать с кислотами и едкими щелочами надо помнить, что несоблюдение правил обращения с ними приводит к сильным химическим ожогам. Концентрированные кислоты вызывают обезвоживание кожи и других тканей. Сильные кислоты разрушают ткани быстрее: царская водка (азотная кислота, соляная кислота), HNO3, h3SO4, HCl, уксусная, щавельная, очень опасны ожоги хромовой смесью.

HCl и HNO3 (их называют дымящими) оказывают сильное раздраженное действие на слизистой оболочке, дыхательный путей и глаз. Концентрированные растворы едких щелочей образуют очень болезненные и медленно заживающие раны. Особенно опасны ожоги глаз!

1.                Запасные количества кислот и других агрессивных жидкостей должны храниться в специальном помещении – кислотном складе

2.                Разливка их из бутылей большой емкости в расходные склянки, производится с помощью сифона

3.                Разливку концентрированных кислот, а также аммиака следует проверять осторожно, под тягой. Работу выполнять в вытяжном шкафу

4.                Переносить склянки с растворами кислот надо в корзинке. Нельзя переносить склянки, только взяв за горло сосуда

5.                Большие бутыли переносят в специальных корзинах вдвоем, или перевозят на тележке.

6.                При разбавлении концентрированных кислот водой нужно лить кислоту в воду, при постоянном помешивании. Приливание воды к концентрированной кислоте (особенно в h3SO4) сопровождается сильным разогревом и разбрызгиванием жидкости, что может привести к ожогам. Пользоваться только термостойкой или фарфоровой химической посудой

7.                Во избежание ожогов полости рта, а так же отравления запрещается набирать растворы кислот, щелочей агрессивных жидкостей в пипетку ртом. При засасывании веществ надо пользоваться пипетками с различными ловушками, посредством резиновой груши.

8.                При всех операциях с кислотами и щелочами надо применять резиновые перчатки, защитные очки, фартуки. При разливке концентрированных растворов кислот надо одевать маску от противогаза

9.                Растворять щелочи надо в фарфоровой посуде, путем медленного прибавления к воде небольших порций вещества, при непрерывном помешивании. Кусочки щелочи брать только пинцетом или щипцами, или шпателем. Нельзя брать щелочь руками, работать только в специальной одежде в вытяжном шкафу.

10.           Отработанные кислоты и щелочи следует собирать раздельно, в специально предназначенную посуду, и сливать в канализацию только после нейтрализации

11.           Разлитые кислоты и щелочи надо немедленно засыпать песком, нейтрализовать и после этого производить уборку в специальной одежде. Кислоту нейтрализуют содой или 6-10% раствором щелочи. Щелочь нейтрализовать 10% h3SO4 или HCl

12.           При попадании кислоты или щелочи в глаза надо промыть обильно водой, в широком сосуде, широко открыв глаза, в течении 10-15 минут. Можно промывать из промывалки. В случае попадания в глаза кислоты после промывания водой продолжать промывание раствором пищевой соды. При резких болях вводят 1-2 капли 1% раствора новокаина, особенно опасно поражение глаз щелочами. После удаления большей части щелочи с помощью струи воды в течении 50 минут продолжать промывать глаза раствором NaCl еще 30-60 минут.

 

Лабораторная работа

 

Тема: «Анализ катионов II аналитической группы»

Для работы требуется: штатив с пробирками, спиртовка, этиловый спирт (C2H5OH), AgNO3, Pb(Ch4COO)2, Nh5OH, NaOH, h3SO4, Ch4COOH, HNO3, K2CrO4, KJ (Cэ=2 моль (дм3)

Задание:

1.                Подготовить рабочее место и реактивы

2.                Изучить действие группового реактива на катионы II аналитической группы

3.                Изучить частные реакции катиона серебра

4.                Изучить частные реакции катиона свинца

5.                Выполнить систематический анализ смеси катионов II аналитической группы

6.                Оформить отчет о выполненной работе

Ход работы:

1.                Подготовила рабочее место и реактивы

2.                В качестве группового реактива применила раствор HCl (Сэ= 2 моль (дм3)

а) Взаимодействие иона серебра с соляной кислотой

Выполнение опыта: в пробирку поместила 2-3 капли раствора AgNO3 добавила 1-2 капли раствора HCl. Наблюдала выпадение белого творожистого осадка.

 

AgNO3+HCl=>AgCl↓+HNO3

 

Осадок не растворим в воде, но растворяется в Nh5OH. Также осадок не растворяется в разбавленных кислотах

б) взаимодействие иона свинца с соляной кислотой

Выполнение реакции: в пробирку поместила 5-6 капель Pb(Ch4COO)2 добавила 4-5 капель раствора HCl. Наблюдала выпадение белого кристаллического осадка. Частично растворимого в воде. Для снижения растворимости и более полного осаждения в PbCl2 добавляют C2H5OH или раствор охлаждают. Для повышения растворимости раствор нагревают.

 

Pb(Ch4COO)2+2HCl=>PbCl2↓+2Ch4COOH

 

3.                Частные реакции катиона серебра

а) Взаимодействие ионов серебра с соляной кислотой

Выполнение реакции: к осадку AgCl2 прибавила избыток раствора Nh5OH. Наблюдала растворение осадка.

 

AgCl2+2Nh5OH=>[Ag(Nh4)2]Cl+2h3O

 

К аммиачному раствору прибавила по каплям разбавленный раствор HNO3, снова выпал осадок AgCl2.

 

[Ag(Nh4)2Cl+2HNO3=>AgCl2↓+Nh5NO3

 

б) Взаимодействие иона серебра с едкими щелочами

Выполнение реакции: в две пробирки поместила по 10 капель AgNO3 добавила в одну пробирку 10 капель NaOH, в другую 10 капель Nh5OH

I-ая пробирка:

 

AgNO3+NaOH=>AgOH↓+NaNO3

2AgOH↓=>Ag2O↓+h3O

 

II-ая пробирка:

 

AgNO3+Nh5OH=>AgOH↓+Nh5NO3

2AgOH↓=>Ag2O↓+h3O

Ag2O+4Nh5OH=>2[Ag(Nh4)2OH+3h3O

 

Наблюдала в первой пробирке выпадение бурого осадка оксида серебра нерастворимого в NaOH. Во второй пробирке осадок Ag2O растворился в избытке Nh5OH

в) Взаимодействие иона серебра с K2CrO4

Выполнение реакции: к 5-6 каплям раствора AgNO3 добавила 5-6 капель дистиллированной воды и 4-5 капель K2CrO4

 

2AgNO3+K2CrO4=>Ag2CrO4↓+2KNO3

 

Наблюдала выпадение осадка кирпично-красного цвета, растворимого в Nh5OH и HNO3

4.                Частные реакции катиона свинца

а) Взаимодействие иона свинца с едкими щелочами

Выполнение реакции: к нескольким каплям ацетата свинца медленно по каплям прибавила раствор NaOH. Наблюдала выпадение белого осадка Pb(OH)2 обладающего амфотерными свойствами. При добавлении избытка щелочи осадок растворился.

 

Pb(Ch4COO)2+2NaOH=>Pb(OH)2↓+2Ch4COONa

h3PbO2+2NaOH=>Na2PbO2+2h3O

 

б) Взаимодействие ионов свинца с хроматом калия

Выполнение реакции: в три пробирки внесла по 5-6 капель Pb(Ch4COO)2 и K2CrO4. Наблюдала выпадение осадка желтого цвета PbCrO4, нерастворимого в Nh5OH, Ch4COOH, но растворимого в NaOH.

 

Pb(Ch4COO)2+K2CrO4=>PbCrO4↓+2Ch4COOK

PbCrO4+Nh5OH=>осадок не растворился

PbCrO4+Ch4COOH=>осадок не растворился

PbCrO4+4NaOH=>Na2CrO4+Na2PbO2+2h3O

 

в) Взаимодействие ионов свинца с иодидом калия

Выполнение реакции: в пробирку поместила 5-6 капель Pb(Ch4COO)2, добавила 1см3 дистиллированной воды, 6 капель раствора KJ и несколько капель Ch4COOH. Наблюдала выпадение желтого осадка PbJ2.

 

Pb(Ch4COO)2+2KJ=>PbJ2↓+2Ch4COOK

 

Содержимое пробирки нагрела на водяной бане. Наблюдала растворение осадка. Затем раствор медленно охладила под краном с холодной водой: выпали переливающиеся золотисто-желтые кристаллы PbJ2 («золотой дождь»).

г) Взаимодействие ионов свинца с серной кислотой

Выполнение реакции: к нескольким каплям ацетата свинца добавила несколько капель h3SO4 выпадает мелкокристаллический осадок PbSO4, растворимый в избытке щелочи.

 

Pb(Ch4COO)2+h3SO4=>PbSO4↓+2Ch4COOH

PbSO4+4NaOH=>Na2PbO2+Na2SO4+2h3O

 

5.                1) К исследуемой смеси, содержащей серебро и свинец, добавила раствор HCl и C2H5OH (для более полного осаждения PbCl2). В осадках AgCl2, PbCl2 раствор не исследуют.

2) К осадку добавила горячую дистиллированную и прокипятила 1-2 минуты. PbCl2 при этом переходит в раствор в осадке AgCl2.

3) Осадок отцентрифугировала и в центрифугате открыла катион Pb2+ проводя реакцию золотистого дождя.

4)Осадок обработала Nh5OH, jосадок растворился. В растворе [Ag(Nh4)2]Cl. К раствору добавила 1-2 капли фенолфталеина – малиновый цвет. Затем по каплям добавила азотной кислоты до исчезновения малиновой окраски. В присутствии ионов серебра снова выпадает осадок AgCl2 белого цвета.

Вывод: научилась действовать групповым реактивом на ионы серебра и свинца; проводила частные реакции на катионы II аналитической группы; проводила систематический анализ смеси катионов II аналитической группы; закрепила навыки по определению pH среды с помощью УИБ.

 

Список литературы

 

1.                Курс аналитической химии. Качественный анализ, книга первая. Под ред. А.П. Крешкова. Изд. 5-е, исправленное, М., «Химия», 1981. – 416с., ил.

2.                Пособие по химии для старших классов. 8-11 кл./ Н.Е. Кузьменко, В.В. Еремин, В.А. Попков. – М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2003. – 544 с.: ил. – (Школьное учебное пособие).

3.                Дневник производственного обучения

4.                Химический анализ: Учебник для средних ПТУ. – М.: Высш. шк., 1985. – 295 с., ил.

5.                Справочник школьника: 5-11 классы. – М.: АСТ-ПРЕСС, 2002. – 704 с.

 

www.referatmix.ru

Аналитическая классификация катионов - реферат

Аналитическая классификация катионов

В основуклассификации ионов в аналитической химии положено различие в растворимостиобразуемых ими солей и гидроксидов, позволяющее отделять (или отличать) однигруппы ионов от других.

Существуютразные системы группового разделения ионов: сероводородная, кислотно-основная,аммиачно-фосфатная, тиоацетамидная и т. д. Каждая из этих систем имеет своипреимущества и недостатки. Основным недостатком сероводородной системы являетсянеобходимость работы с сероводородом, что требует хорошей вентиляции,склонность к образованию коллоидных сульфидных осадков, в результате чегонарушается разделение катионов на группы, и т. д. В кислотно-основной системе приразделении групп можно встретиться с затруднениями, особенно если концентрацииразделяемых катионов сильно различаются. С подобными же затруднениями можновстретиться и в других системах разделения. Сознательный подход к групповомуразделению позволяет в каждом конкретном случае использовать для этой целиметод, наиболее подходящий для анализируемой смеси ионов.

Классическийсистематический метод качественного анализа катионов основан на сульфиднойклассификации катионов, в которой катионы подразделяются на пять групп наосновании различия в растворимости их сульфидов, хлоридов, карбонатов игидроксидов (см. табл. 3).

Основываясь наприведенных в табл. 3 данных, операцию обнаружения катионов различныханалитических групп проводят следующим образом.

1.Исследуемый раствор подкисляют разбавленной НCl. При этом ионы V группыосаждаются в виде соответствующих хлоридов.

2.Отделив осадок, пропускают через кислый раствор газообразный h3S.При этом катионы IV группы осаждаются в виде сульфидов. Для отделения ионов IVБподгруппы осадок обрабатывают Na2S, после чего в осадке остаютсятолько сульфиды катионов IVА подгруппы.

3.Раствор после отделения осадка сульфидов ионов IV группы нейтрализуют Nh5OH(с Nh5C1) и обрабатывают (Nh5)2S. При этомосаждаются сульфиды или гидроксиды (в случае А13+,Сг3+)катионов III группы.

4.Разрушив избыток (Nh5)2S кипячением с уксусной кислотой,на раствор действуют (Nh5)2CO3. При этомкатионы II группы выпадают в осадок в виде карбонатов, а катионы I группыостаются в растворе, где их и открывают.

Обнаружениеиона Nh5+, который в ходе анализа вводят в раствор среактивами, проводят в отдельной порции исследуемого раствора с помощьюспецифической реакции (щелочь в газовой камере) или реактива Несслера,представляющего собой смесь K2[HgI4] и КОН. РеактивНесслера при взаимодействии с солями аммония образует красно-бурый осадок:

Nh5C1 + 2K2[HgI4] + 4КОН = [OHg2Nh3]I+ 7KI + KCl + 3h3OСвязьсульфидной классификации катионов с электронной конфигурацией атомов и ионов

Растворимостьсолей и гидроксидов катионов, лежащая в основе аналитической классификации, каки все другие свойства катионов, функционально связана с положениемсоответствующих элементов в периодической системе.

Катионыs-элементов, обладающие 2- и 8-электронным внешним слоем (Li+, Na+,K+, Mg2+, Са2+, Sr2+, Ba2+и др.), являются слабыми поляризаторами и почти не поляризуются сами. Привзаимодействии подобных катионов с сульфид-ионами не происходит заметнойдеформации электронных оболочек. Такие катионы, как правило, не образуют труднорастворимыхв воде сульфидов и относятся к I и II аналитическим группам. Катионы Ag+,Hg2+, As(III), As(V), Sn+, Sb(III), Pb2+, Bi3+и др., обладающие многоэлектронным внешним слоем (18 и 18 + 2), являютсясильными поляризаторами и в то же время легко поляризуются сами. Привзаимодействии подобных катионов с легко деформируемыми электронными оболочкамисульфид-ионов происходит сильная поляризация обоих ионов и значительнаядеформация их внешних электронных оболочек. В соответствии с этим все катионы, обладающиевнешней электронной структурой 18е- или (18 + 2e-) какправило, образуют сульфиды с очень малыми значениями констант растворимости ипотому принадлежат к IV и V аналитическим группам.

Катионы спереходной электронной структурой, т. е. с незаконченным 18-электронным внешнимслоем (Mn2+, Fc2+, Fe3+, Co2+, Ni2+и др.), занимают промежуточное положение. Являясь сравнительно сильнымиполяризаторами, они в то же время заметно поляризуются сами и потому привзаимодействии с сульфид-ионами дают труднорастворимые сульфиды. Эти катионыобразуют III аналитическую группу. Их сульфиды имеют значительно большиезначения констант растворимости, чем катионы IV и V групп.

Таким образом,сульфидная классификация катионов, основанная на признаке, имеющем на первый взглядчисто практический характер, ни в коей мере не случайна, а связана сэлектронной конфигурацией атомов и ионов.

Группа катионов

I

II

III

IV

V

А

Б

А

Б

Характеристика группы

Сульфиды и карбонаты растворимы в воде

Сульфиды растворимы в воде, карбонаты -нет

Сульфиды или образующиеся вместо нихгидроксиды растворимы в разбавленных кислотых

Сульфиды нерастворимы в разбавленныхкислотых

Гидроксиды амфитерны

Гидроксиды неамфотерны

Сульфиды нерастворимы в Na2S

Сульфиды растворимы в Na2S

Хлориды нерастворимы в воде

Катионы

Na+, K+, Nh5+

Mg2+,Ca2+, Sr2+, Ba2+

Al3+,Cr3+, Zn2+

Fe2+,Fe3+, Mn2+, Co2+, Ni2+

Cu2+,Bi3+, Cd2+

As(III,V), Sb(III, V), Sn2+, Sn(IV), Hg2+

Ag+,Hg22+, Pb2+

Групповой реагент

Нет

(Nh5)2CO3

(Nh5)2S вприсутствии Nh5OH и Nh5Cl

h3S в присутствии HCl

HCl

Списоклитературы

Для подготовкиданной работы были использованы материалы с сайта http://chemistry.narod.ru/

2dip.su

Реферат Химия Качественный анализ анионов и катионов

етоды качественного анализа делятся на химиче­ские, физико-химические и физические. Физические методы основаны на изучении фи­зических свойств анализируемого вещества. К этим ме­тодам относятся спектральный, рентгеноструктурный, масс- спектрометрический анализы и др. В физико-химических методах течение ре­акции фиксируется измерением определенного физического свойства исследуемого раствора. К этим методам относятся полярография, хроматография и др. К химическим методам относятся методы, ос­нованные на использовании химических свойств иссле­дуемых веществ.

Аналитические реакции

Анализ вещества, проводи­мый в растворах, называется анализом мокрым путем. Это основной путь полного определения соста­ва вещества. При этом применяют реакции образования осадка, окрашенных соединений или выделения газа. Эти реакции проводят обычно в пробирках. Ряд качест­венных реакций проводят на предметных стеклах и об­разующиеся кристаллы рассматривают под микроско­пом. Это так называемые микрокристаллоскопические реакции. Иногда прибегают к выполнению реакций ка­пельным методом. Для этого на полоску фильтроваль­ной бумаги наносят каплю испытуемого раствора и кап­лю реактива и рассматривают окраску пятна на бу­маге. Реакции, проводимые сухим путем (не в раство­рах), обычно применяются как вспомогательные, глав­ным образом при предварительных испытаниях. Из ре­акций, проводимых сухим путем, чаще применяются ре­акции окрашивания перлов буры. В качественном анализе используются также пирохимические реакции: окраши­вание пламени в различные цвета летучими солями не­которых катионов. В химическом анализе используется лишь незначи­тельная часть того многообразия реакций, которое свой­ственно данному иону Для открытия ионов пользуются реакциями, сопро­вождающимися различными внешними изменениями, на­пример выпадением или растворением осадка, измене­нием окраски раствора, выделением газов, т. е. откры­ваемый ион переводят в соединение, внешний вид и свойства которого характерны и хорошо известны. Про­исходящее при этом химическое превращение называет­ся аналитической реакцией. Вещества, с помощью которых выполняется открытие ионов, называются реактивами на соответствующие ио­ны. Реакции, характерные для какого-либо иона, назы­ваются частными реакциями этого иона. Аналитическая реакция должна отвечать определен­ным требованиям. Она должна протекать не слишком медленно и быть достаточно простой по выполнению. Для аналитических реакций важнейшими требова­ниями являются специфичность и чувствительность. Чем меньшее количество ионов вступает в реакцию с данным реактивом, тем более специфична данная реакция. Чем меньшее количество вещества может быть опреде­лено с помощью данного реактива, тем более чувстви­тельна эта реакция. Чувствительность реакции можно охарактеризовать количественно при помощи двух показателей: открывае­мого минимума и предельного разбавления. Открываемым минимумом называется наименьшее количество вещества или иона, которое может быть от­крыто данным реактивом при данных условиях. Предельное разбавление характеризует наименьшую концентрацию вещества (или иона), при которой еще возможно открыть его данным реактивом.

Условия проведения аналитических реакций

Выпол­нение каждой аналитической реакции требует соблюде­ния определенных условий ее проведения, важнейшими из которых являются: 1) концентрация реагирующих ве­ществ, 2) среда раствора, 3) температура.

Реактивы

Реактивы используемые для выполнения аналитиче­ских реакций, делятся на специфические, избиратель­ные, или селективные, и групповые. Специфические реактивы образуют характерный оса­док или окрашивание только с определенным ионом. Например, реактив Кз[Fе(СN)6 ] образует темно-синий осадок только с ионами Fe 2+. Избирательные, или селективные, реактивы реагиру­ют с несколькими ионами, которые могут принадлежать к одной или к разным группам. Например, реактив KI реагирует с ионами Pb 2+, Ag +, Hg 22+ (II группа), а так­же с ионами Hg 2+ и Си 2+ (VI группа). Групповой реактив вступает в реакцию со всеми ио­нами данной группы. С помощью этого реактива ионы данной группы можно отделить от ионов других групп. Например, групповым реактивом второй аналитической группы является хлороводородная кислота, которая с катионами Pb 2+, Ag + , Hg22+ образует белые труднорас­творимые осадки.

Систематический и дробный анализ

Большин­ство аналитических реакций недостаточно специфично и дает сходный эффект с несколькими ионами. Поэтому в процессе анализа приходится прибегать к отделению ионов друг от друга. Таким образом, открытие ионов проводится в определенной последовательности. После­довательное разделение ионов и их открытие носит на­звание систематического хода анализа. Систематический ход анализа основан на том, что сначала с помощью групповых реактивов разделяют смесь ионов на группы и подгруппы, а затем уже в пре­делах этих подгрупп обнаруживают каждый ион харак­терными реакциями. Групповыми реагентами действу­ют на смесь ионов последовательно и в строго опреде­ленном порядке. В ряде случаев прибегают не к систематическому разделению ионов, а к дробному методу анализа. Этот метод основан на открытии ионов специфическими реак­циями, проводимыми в отдельных порциях исследуемого раствора. Так, например, ион Fe 2+ можно открыть при помощи реактива Кз [Fе(СN)6] в присутствии любых ионов. Так как специфических реакций немного, то в ряде случаев мешающее влияние посторонних ионов устраня­ют маскирующими средствами. Например, ион Zn2+ можно открыть в присутствии Fe2+ при помо­щи реактива (Nh5 )2[Hg(SCN)4], связывая мешающие ионы Fe2+ гидротартратом натрия в бесцветный комп­лекс. Дробный анализ имеет ряд преимуществ перед систе­матическим ходом анализа: возможность обнаруживать ионы в отдельных порциях в любой последовательности, а также экономия времени и реактивов. Но так как специфических реакций немного и ме­шающее влияние многих ионов нельзя устранить маски­рующими средствами, в случае присутствия в растворе многих катионов из разных групп прибегают к систе­матическому ходу анализа, открывая лишь некоторые ионы дробным методом. аиболее удобно в обычной практике проводить ка­чественное исследование полумикрометодом. Этот метод не требует больших количеств веществ для анализа, дает значительную экономию времени и реактивов по срав­нению с макрометодом. В то же время этот метод значительно проще микрометода, требующего специальной аппаратуры и особых навыков работы. Для работы полумикрометодом в лаборатории необ­ходимо иметь следующее оборудование. 1. Переносной деревянный штатив с набором капель­ниц с растворами солей, реактивов, кислот и щелочей и баночек с сухими солями (рис. 1). Рис. 1. 2. Штатив для пробирок. 3. Металлический штатив с кольцом, фарфоровым треугольником и асбестированной сеткой. 4. Держатели для пробирок. 5. Центрифужные пробирки (рис. 2). Рис. 2. 6. Пробирки цилиндрические. 7. Капиллярные пипетки (рис. 3.). Рис. 3. 8. Стеклянные палочки (рис. 4.). Рис. 4. 9. Фарфоровые чашки диаметром 3—5 см. 10. Промывалка (рис. 5). Рис. 5. 11. Предметные стекла. 12. Фарфоровая капельная пластинка (рис. 6). Рис. 6. 13. Предметные стекла с углублениями (рис. 7). Рис. 7. 14. Ершик для мытья посуды. 15. Водяная баня (рис. 8). Рис. 8. 16. Центрифуга (рис. 9) Рис. 9. Частные реакции, а также операции разделения ио­нов проводят в конических пробирках для центрифуги­рования или в маленьких цилиндрических пробирках. В пробирку вносят несколько капель анализируемого раствора и, соблюдая необходимые условия, прибавля­ют по каплям реактив, помешивая реакционную смесь стеклянной палочкой. Выполняя реакцию, необходимо следить за тем, чтобы кончик пипетки не касался стенок пробирки во избежание загрязнения реактива. Вынутую из капельницы пипетку по выполнении реакции необходимо сразу же опустить в ту же капельницу. Вместо пробирок частные реакции можно выполнять также на фарфоровых капельных пластинках (рис. 6) или особых предметных стеклах с углублениями (рис. 7). В этом случае расход реактивов минималь­ный, а результат реакции хорошо заметен. Для нагревания реакционной смеси пробирку погру­жают в кипящую водяную баню. Водяная баня может также служить для упаривания (выпаривания до небольшого объема) растворов. Выпаривание до­суха обычно проводят в фарфоровой чашке, нагревая ее на пламени газовой горелки. Пока жидкость не вы­парилась до конца, целесообразно ставить чашку на асбестированную сетку. Если остаток от выпаривания необходимо прокалить, чашку ставят на фарфоро­вый треугольник. Для отделения осадка от раствора пробирку с осад­ком помещают в центрифугу.

ак известно из курса неорганической химии, к анионам отно­сятся отрицательно заряженные частицы, состоящие из отдельных" атомов или групп атомов различных элементов. Эти частицы могут нести один или несколько отрицательных зарядов. В отличие от катионов, которые в большинстве своем состоят из одного атома, анионы могут иметь сложный состав, состоящий из нескольких атомов. Общепринятой классификации анионов не существует. Разными авторами предложены различные системы классификации их. В настоящем руководстве принята наиболее часто применяемая классификация, по которой все анионы делятся на три аналитические группы в зависимости от растворимости их бариевых и серебряных селей. В данном случае групповыми реагентами являются растворимые соли бария и серебра (табл. 1).

Классификация анионов

ГруппаАнионыГрупповой реагентХарактеристика группы
1

SO4 2-, SO3 2- ,

СO32-, РO43-,

SiO3 2-

Хлорид бария ВаСl2 в нейтральном или слабо­щелочном растворе

Соли бария практически нерастворимы в воде
2

С1- , Вг- , I-, S2-

Нитрат серебра AgNO3 и присутствии HNO3

Соли серебра практически нерастворимы в воде и разбавленной кис­лоте
3

NO3-, NO2-,

Ch4COO-

Группового реагента нетСоли бария и серебра рас­творимы в воде
первой аналитической группе анионов относятся сульфат-ион SO42- , сульфит-ион SO32-, корбонат-ион СO32- , фосфат-ион РO43-, силикат-ион SiO32- . Эти анионы образуют с катионом Ва2+ соли, мало растворимые в воде, но, за исключением сульфата бария, хороню растворимые в разбавленных минеральных кислотах. Поэтому выделить анионы этой группы в виде осадка групповым реагентом—хлоридом бария BaCl2 можно только в нейтральной или слабощелочной среде. Анионы первой группы образуют с катионами серебра Ag+ соли, растворимые в разбавленной азотной кислоте, а сульфат серебра Ag2S0 4 растворим даже в воде.

Обнаружение анионов первой группы

Вначале исследуют раствор на присутствие анионов первой группы действием группового реагента (хлорида бария BaCl2). Для чего в пробирку к 3—5 каплям нейтрального или слабощелоч­ного раствора прибавляют 5—7 капель 0,5 н. раствора хлорида бария. Образование осадка указывает на присутствие анионов пер­вой группы. Обнаружение сульфат-ионов SO4 2-. К 4—5 каплям анализируе­мого paunopa прпбапьк- 6—8 капель 2 и раствора азотной кислоты и 3—4 капли 2 н . раствора хлорида бария BaCl2 . Образование осад­ка говорит о присутствии сульфат-иона. Обнаружение сульфит-иона SO32-. В склянку прибора прилейте 4—5 капель анализируемого раствора, добавьте 2.—3 капли раствора хлороводородной кислоты НС1. В ушко нихромовой про­волоки поместите каплю разбавленного раствора иода (подкрашен­ного крахмалом в синий цвет). Склянку закройте пробкой, имею­щей небольшую прорезь, и слегка нагрейте. При наличии сульфит-иона SO32 синяя капля через некоторое время обесцвечивается. Обнаружение карбонат-иона СO32-. Если в анализируемом рас­творе обнаружен сульфит-ион SO32 , то его необходимо окислить в сульфат-ион SO42 , прибавив к раствору 4—5 капель пероксида водорода (8—10%) и осторожно нагрев на водяной бане. После этого приступайте к обнаружению карбонат-иона, дчя чего в пробир­ку прибавьте 6—8 капель 2 н . раствора хлороводородной кислоты НС1 и выделяющийся газ СО2, пропустите через известковую воду. Помутнение последней в пипетке прибора укажет на присутствие карбонат-иона СO32-. Обнаружение силикат-иона SiO32-. Возьмите пробирку и налей­те 6—8 капель анализируемого раствора, бросьте в нее несколько кристалликов хлорида аммония Nh5C1 и слегка нагрейте. Образо­вание белого студенистого осадка поликремниевых кислот говорит о наличии аниона SiO 32-. Обнаружение фосфат-иона РO43-. Поместите в пробирку 7—8 ка­пель раствора молибдата аммония (Nh5)2Мо04 и 6—7 капель 6 н. раствора азотной кислоты НNO3. К полученной смеси прилейте 5—6 капель анализируемого раствора и слегка нагрейте. В при­сутствии фосфат-иона РO43 появляется желтый осадок молибдофосфата аммония.

Частные реакции анио­нов первой группы

В качестве примера рассмотрим реакции сульфат-аниона SO42-1. Хлорид бария BaCI2 обрадует с анионом SO42- белый осадок BaSO4: ВаС2 + h3SO4 ® BaSO4 ¯ + 2НС1 Ва2+ + SO42- ® BaSO42. Нитрат серебра AgNO3 при взаимодействии с анионом SO4 2- в концентрированных растворах образует белый осадок сульфата серебра Ag 2S04, растворимый в азотной кислоте: Na2SO4 + 2AgNО3 ® Ag2SO4¯ + 2NaNO3 SO42- + 2Ag+- ® Ag2SO4Опыт. Налейте в две пробирки по 3—4 капли раствора сульфа­та натрия Na 2SO4 и добавьте в первую 2—3 капли раствора хлорида бария, а во вторую — 3—4 капли раствора нитрата серебра. Обрати­те внимание на характер осадков и проверьте их растворимость. Условия проведения опыта. 1. Реакцию образования BаSO4 можно проводить как в нейтраль­ных, так и в кислых средах (р11 < 7). 2. Осадок Ag2SO4 будет выпадать только из концентрированных растворов (растворимость Ag2SO4 = 2,6 . 10~2моль/л). о второй аналитической группе анионов относятся хлорид-ион С1- бромид-ион Вг- , иодид-ион I-, и сульфид-ион S2- . Эти анионы образуют с катионом Ag+ соли, нерастворимые в воде и разбавленной азотной кислоте. Групповым реагентом на анионы второй группы является нитрат серебра AgN03 в присут­ствии азотной кислоты HNO 3. Хлорид бария BaCl2 с анионами вто­рой группы осадков не образует. Предварительно опреде­ляют присутствие анионов второй группы. С этой целью к 2—3 кап­лям испытуемого раствора добавьте 3—4 капли 2 н . раствора азот­ной кислоты HNO3 и 2—3 капли раствора нитрата серебра AgN03 — группового реагента. Выпадение осадка указывает на наличие анионов второй аналитической группы. Если при этом осадок черного цвета, то что говорит о присутствии сульфид-иона S2-. Добившись полного осаждения, осадок отцснтрифугируйте и промой­те его дистиллированной водой. Растворение хлорида серебра и обнаружение хлорид-иона С1-. Полученный осадок, который может содержать AgCl, AgBr, Agi2 и Ag2S, обработайте 1—2 мл 12-процентного раствора карбоната аммония (NН4 )2СОз или таким же количеством реактива Фаургольта. При этом хлорид серебра перейдет в раствор в виде комплексной соли диаминоаргентахлорида [Ag (NН3)2С1]. Осадок отделите цен­трифугированием. Центрифугат разделите на две части. К первой части прибавьте несколько капель азотной кислоты, ко второй— иодида калия. Помутнение раствора в первой и более интенсивное выпадение осадка во второй части указывает на присутствие хло­рид-иона. Растворение бромида и иодида серебра и обнаружение бромид-и иодид-ионов. К осадку после отделения хлорид-иона добавьте 4—5 капель 2 н . раствора серной кислоты Н2SО4, и небольшое коли­чество цинковой пыли. Содержание пробирки нагрейте на водяной бане до полного прекращения выделения газа. Осадок отцетрифугируйте (избыток цинка и свободное cеребро). К центрифугату, содержащему бромид и иодид-ионы, добавьте несколько капель хлорной воды и бензола. Смесь встряхните. По изменению окраски раствора сделайте заключение о наличии бромид- и иодид-ионов.

Частные реакции анио­нов второй группы

В качестве примера рассмотрим реакции хлорид-иона С1- .

1. Нитрат серебра AgNO3 образует с анионом С1- белый тво­рожистый осадок хлорида серебра, нерастворимый в воде и кисло­тах. Осадок растворяется в аммиаке, при этом образуется комплек­сная соль серебра [Ag (NНз)2]С1. При действии азотной кислоты комплексный ион разрушается и хлорид серебра снова выпадает в осадок. Реакции протекают в такой последовательности: С1- + Ag+ ® AgCl AgCl + 2Nh50H ® [Ag (NНз)2]С1 + 2h30 [Ag (NНз)2]С1 + 2H+ ® AgCl ¯ + 2Nh5+

третьей группе анионов относятся нитрат-ион NO3-, нитрит-нон NO2- , ацетат- ион Ch4COO- .

Катионы бария Ва+ и серебра Ag+ с аннонами этой группы осадкон кс образуют. Группового реаген­та на анионы третьей группы нет.

Обнаружение анионов третьей группы

При наличии в испыту­емом растворе сульфид-иона S2- его необходимо предварительно удалить действием сульфата цинка ZnS04. Обнаружение нитрит-иона NO2- . Возьмите 5—6 капель испыту­емого раствора, добавьте 2—3 капли 2 н . раствора серной кислоты h3S04, 4—5 капель 10-процентного раствора иодида калия KI и несколько капель крахмального клейстера. Полученную смесь перемешайте. В присутствии нитрит-иона NO2- появляется интен­сивно-синее окрашивание раствора. Обнаружение нитрат-иона NO3- в присутствии нитрит-иона NO2- . При наличии нитрит-иона его необходимо, предварительно удалить. Для этого в пробирку поместите 5—6 капель анализируемого раст­вора, добавьте несколько кристалликов хлорида аммония NН 4Cl и нагрейте до прекращения выделения газа (N2). Возьмите 2—3 кап­ли раствора дифениламина в концентрированной серной кислоте и поместите их на фарфоровую пластинку или предметное стекло. Туда же внесите на кончике стеклянной палочки небольшое коли­чество анализируемого раствора и перемешайте. В присутствии нит­рат-иона NO3- появляется интенсивно-синее окрашивание. Обнаружение ацетат-иона СН3СОО- производится частными реакциями.

Частные реакции анионов третьей группы

В качестве примера рассмотрим реакции с нитрат-ионом NO3-1. Дифениламин (C6H5)2NH с нитрат-ионом NO3- образует ин­тенсивно-синее окрашивание. Опыт. На чистое и сухое часовое стекло поместите 4—5 капель раствора дифениламина в концентрированной серной кислоте. Внеси­те туда же стеклянной палочкой каплю испытуемого раствора и пе­ремешайте. В присутствии аниона NO 3- появляется интенсивно-синяя окраска раствора вследствие окисления дифениламина. Ана­логичное окрашивание дает и анион NO 2- . Условия проведения опыта. 1. Окислители и иодид-ион I-, который может окисляться сер­ной кислотой до I2, мешают проведению реакции. 2. Анионы-восстановители S032-, S2- и др. также мешают от­крытию нитрат-нона NO3- . 3. Для выполнения реакции лучше брать разбавленные раство­ры испытуемых веществ. становление присутствия тех или иных катионов в исследуе­мом растворе значительно облегчает обнаружение анионов. Поль­зуясь таблицей растворимости, можно заранее предсказать наличие в исследуемом растворе отдельных анионов. Например, если соль хорошо растворяется в воде и в нейтральном водном растворе обна­ружен катион Ва2+, то этот раствор не может содержать анионы SO 42-, CO32-, SO32- . Определив предварительно присутствие отдельных групп анио­нов, обнаруживают их соответствующими групповыми и характер­ными для них реакциями. В зависимости от присутствия тех или иных анионов и катионов схемы анализа могут быть самыми раз­личными. Например, водный раствор исследуемого вещества имеет нейтральную реакцию. При действии на отдельную пробу его рас­твором соляной кислоты образуется осадок, который растворяется в горячей воде. Это позволяет сделать вывод, что в растворе при­сутствует катион Рb2+. Проверяют катион Рb 2+ - частной реакцией с иодидом калия KI. Далее обнаруживают анионы. Ими могут быть только анионы третьей группы, так как только они образуют с катионом Рb2+ растворимые в воде соли. Испытание на анионы первой группы. К 2—3 каплям нейтраль­ного или слабощелочного раствора добавляют 2 капли раствора хлорида бария. Если осадок выпадает, то присутствуют анионы первой группы. Испытание на анионы второй группы. 2 капли раствора подкис­ляют 2 каплями 2 н. раствора азотной кислоты и добавляют каплю раствора нитрата серебра. Выпадение осадка указывает на при­сутствие анионов второй группы. Испытание на анионы третьей группы. Если при испытании на анионы первой и второй групп осадки не выпали, то, возможно, присутствуют анионы третьей группы.

works.tarefer.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.