Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Теплота. Теплообмен и его виды. Источники теплоты реферат


Использование низкотемпературного тепла земли, воды и воздуха

Использование низкотемпературного тепла земли, воды и воздуха

Тепловой насос - это компактная отопительная установка, предназначенная для автономного обогрева и горячего водоснабжения жилых и производственных помещений. Система экологически чиста, так как работает без сжигания топлива и не производит вредных выбросов в атмосферу.

Используя на 75% тепло окружающей среды и лишь 25% электроэнергии, вы получаете 100% отопления! Это бережет не только ваш кошелек, но и жизненное пространство.

Проблема снижения затрат на отопление, горячее водоснабжение, обогрев бассейнов в условиях Беларуси с ее продолжительными и суровыми зимами достаточно актуальна на сегодняшний день. Использование для теплоснабжения традиционных источников энергии требует существенных финансовых затрат. Рост цен на энергоносители и высокие расходы на их доставку заставляют задумываться об экономии. Кроме того, основными недостатками традиционных источников теплоснабжения являются низкая энергетическая (особенно в малых котельных) и экономическая эффективность. Простое и экономичное решение данной проблемы - тепловой насос.

Тепловой насос в буквальном смысле качает тепло - тепло земли, воды или воздуха. Ему не требуется уголь, нефть или газ для того, чтобы генерировать тепло. Он ничего не сжигает (а значит, ничего «не выбрасывает» в окружающую среду). Процесс происходит примерно так: солнце нагревает поверхность земли (или воздух, или воду), из центра земли у поверхности также поступает тепло. В результате на глубине от 18 метров положительная температура (до +10) постоянна в течение года. И это несмотря на то, что температура «на улице» может достигать 30 градусов.

Тепловой насос позволяет забрать у земли (или воздуха, или воды) то количество тепла, которое она способна восстановить. А добытое таким образом тепло утилизировать и направить в систему отопления и горячего водоснабжения. Иными словами, тепловой насос - холодильник наоборот. Холодильник забирает холод окружающей среды, а тепловой насос - ее тепло.

В случае тепла у земли это выглядит так: на глубину около сотни метров пробуривается скважина, в нее опускается зонд, в котором циркулирует специальная жидкость - рассол. Именно она забирает тепло земли и транспортирует его наверх. А компрессор теплового насоса повышает полученные +10 до +65. Электроэнергия требуется лишь для работы приводов. Коэффициент эффективности теплового насоса 1/4, это значит, что потраченный один кВт электроэнергии даст в результате 4 кВт тепловой энергии.

Практика показывает, что тепловой насос окупается в течение пяти-семи отопительных сезонов. За это время можно затратить на сжигаемое топливо столько денег, сколько стоил этот насос. Но он и дальше будет исправно давать почти бесплатное тепло еще лет 75, а вот цены на энергоносители будут неуклонно расти. Кроме того, запасы этих теплоносителей не безграничны.

Для теплового насоса нет ограничений по площади - 50 квадратных метров или 20000. Важно сохранить баланс - взять у земли (или воды, или воздуха) ровно столько тепла, сколько она готова восполнить.

Тепловые насосы для жителей Германии или Швеции не экзотика и даже уже не передний край науки - это абсолютно рядовое решение теплообеспечения зданий. Тепловые насосы давно и с успехом применяются в Финляндии, Японии, США. Вполне возможно, что в этот ряд скоро встанет и Беларусь.

Тепловой насос имеет четыре основных элемента: испаритель, компрессор, конденсатор и сбросной клапан. В испарителе хладагент нагревается до температуры 6-8С, отобранной из окружающей среды (земли, воды или воздуха), закипает и испаряется. Полученный пар сжимается компрессором, и при росте давления температура хладагента поднимается до 35-65С. Эта температура отдается через теплообменник конденсатора рабочей жидкости отопительного контура, и хладагент обратно конденсируется. Сбросной клапан сбрасывает давление в конденсаторе, перепуская хладагент в испаритель. Цикл замыкается.

Тепловой насос представляет эффективную замену котлу на жидком, газовом топливе или электрическому отоплению. Для хорошо спроектированного и построенного дома площадью 180 м2 необходимо 10-12 кВт тепловой энергии, которую можно получить, опустив два зонда в землю на глубину 100 м, для этого нужен участок земли размером 6х6 м.

Желательно использовать участок с влажным грунтом, идеально с близкими грунтовыми водами, однако сухой грунт не является помехой - это приводит лишь к увеличению длины контура.

Тепловые насосы целесообразно использовать в основном на небольших отдельно стоящих объектах с земельными участками. Применение тепловых насосов требует значительных капитальных затрат. Выбор тепловых насосов в качестве источника теплоснабжения целесообразно проводить еще на этапе проектирования объекта

Преимущества теплового насоса перед другими источниками теплоснабжения неоспоримы.

Термодинамически тепловой насос представляет собой обращённую холодильную машину и, по аналогии, содержит испаритель, конденсатор и контур, осуществляющий термодинамический цикл.

Основные типы термодинамических циклов - абсорбционный и, наиболее распространённый, парокомпрессионный. Если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель - теплообменным аппаратом, утилизирующим низкопотенциальную теплоту.

Как и холодильная машина, тепловой насос потребляет энергию на реализацию термодинамического цикла (привод компрессора). Температурный уровень теплоснабжения от тепловых насосов 35 - 55 °С.

Схема теплового насоса показана на рис. 1. В тепловом насосе источником тепла может быть скалистая порода, земля, вода или, например, воздух. Охлажденный теплоноситель, проходя по трубопроводу 1, уложенному в землю (озеро) нагревается на несколько градусов. Внутри теплового насоса теплоноситель, проходя через теплообменник 2, называемый испарителем, отдает собранное из окружающей среды тепло во внутренний контур теплового насоса.

1 - контур подачи низкотемпературного тепла;

2 - испаритель;

3 - компрессор;

4 - конденсатор;

5 - контур подачи высокотемпературного тепла;

6 - дроссельный клапан

Низкое энергопотребление достигается за счет высокого КПД теплового насоса (от 300 до 700%) и позволяет получить на 1 кВт затраченной электрической энергии 3-7 кВт тепловой энергии. Система требует минимум электроэнергии для поддержания комфортной температуры жилья, а также получения достаточного запаса горячей воды. Непосредственно в самой установке единственной движущей частью является компрессор, срок службы которого составляет 15 лет, и который можно легко заменить по истечении срока его эксплуатации. Отсутствие необходимости в закупке, транспортировке, хранении топлива и расходе денежных средств, связанных с этим. Высвобождение значительной территории, необходимой для размещения котельной, подъездных путей и склада с топливом.

Тепловой насос работает устойчиво. Колебания температуры и влажности в помещении минимальны. Не требует специальной вентиляции помещений, где происходит нагрев воды и теплоносителя. Абсолютно взрыво- и пожаробезопасен. В процессе эксплуатации система не нуждается в специальном обслуживании, возможные манипуляции не требуют специальных навыков и описаны в инструкции. Систему можно диагностировать на расстоянии и вносить корректировки. Для этого необходимо иметь линию Интернет. Обслуживание установок заключается в сезонном техническом осмотре и периодическом контроле режима работы.

Тепловой насос - экологически чистый метод отопления и кондиционирования, т.к. при его работе не производится эмиссия CO2, NOХ и других выбросов, приводящих к нарушению озонового слоя и кислотным дождям. Отсутствуют аллергенно опасные выбросы в помещение, поскольку нет сжигаемого топлива и не используются запрещенные хладагенты.

Источники тепла и варианты установки тепловых насосов Для рационального использования тепла из окружающей среды в распоряжении имеются такие источники тепла, как грунт, вода и воздух. Все они аккумулируют солнечную энергию.

Источник тепла - грунт. Грунт аккумулирует солнечную энергию. Эта энергия воспринимается грунтом либо непосредственно в форме солнечной радиации, либо косвенно, в форме тепла, получаемого от дождя или из воздуха и составляет в течение всего года 8-12 градусов. Грунт имеет свойство сохранять солнечное тепло в течение длительного времени, что ведет к относительно равномерному уровню температуры источника тепла на протяжении всего года, это обеспечивает эксплуатацию теплового насоса с высоким коэффициентом мощности (к. п. д.).

Аккумулированное грунтом тепло передается вместе со смесью из воды и антифриза, точка замерзания которой должна находиться примерно на уровне -15°С, через горизонтально проложенные грунтовые теплообменники или через вертикально расположенные грунтовые зонды.

Спиралевидные коллекторы являются альтернативой при использовании тепла грунта. Посредством вертикального бурения они помещаются на глубину от 2 до 4 метров. На расстоянии около 4 метров друг от друга.

Коллекторы, работающие на энергии грунта, располагаются горизонтально на 20 см ниже границы промерзания грунта. На практике, в большинстве случаев эта глубина от 1 м до 1.4 м. Размер коллектора зависит от отопительной нагрузки здания и особенностей аккумулирования энергии, но об этом позаботится специалист. Источник тепла - грунтовые воды.

Грунтовые воды - хороший аккумулятор солнечного тепла. Даже в холодные зимние дни они сохраняют постоянную температуру до +12°С. По причине неизменного температурного уровня источника тепла коэффициент мощности теплового насоса остается высоким в течение всего года. Ели грунтовые воды не содержат кислорода, но содержание железа и марганца в них высокое, то колодцы могут разрушаться. В этих случаях нельзя допускать контакта грунтовых вод с окружающим воздухом или необходимо соответствующим образом обработать воду.

На использование грунтовых вод должно быть получено разрешение соответствующего ведомства (обычно службы Госводонадзора). Для использования тепла необходимо построить поглощающий колодец и водопоглощающий или инфильтрационный колодец.

Источник тепла - воздух. Тепловые насосы воздух / вода сегодня могут эксплуатироваться круглый год, однако при низких температурах коэффициент мощности резко уменьшается. Окружающий (атмосферный) воздух особенно легко использовать в качестве источника тепла, поскольку он имеется везде и в неограниченном количестве.

В случае насосов, использующих тепло окружающего воздуха, расчет размеров источника тепла задается конструкцией или размером установки. Требуемое количество воздуха подается вентилятором (который встроен в установку) на испаритель через воздушные каналы, при всём этом происходит охлаждение воздуха

Существуют три типа тепловых насосов, работающих на энергии воздуха и воды: - компактные тепловые насосы для размещения снаружи, - компактные тепловые насосы для размещения внутри здания, - и тепловые насосы, составные части которых расположены как внутри здания, так и снаружи.

Новостройки. Отопление тепловым насосом является идеальным вариантом для низкотемпературных систем отопления. К ним относятся панельное отопление и «теплый» пол. Их преимуществом является то, что они обходятся низкими температурами (30-40 градусов). Традиционным радиаторам необходима температура по меньшей мере 50 градусов.

Старые дома.

Существует специальное отопление и «теплый» пол, которые можно установить при ремонте старых домов. Раньше радиаторы были очень больших размеров - это как раз тот случай, когда вы можете использовать также тепловой насос. Существуют также высокотемпературные тепловые насосы, которые предусмотрены как раз для старых домов. В любом случае, с этими тепловыми насосами можно продолжать использовать уже имеющиеся радиаторы. Так же как не существует препятствий для установки теплового насоса при модернизации системы отопления. Режим эксплуатации. Правильный режим эксплуатации определяет экономичность установки с тепловым насосом.

Существуют следующие режимы эксплуатации:

Одновалентный

В нем нагревает исключительно тепловой насос. При очень низкой температуре окружающей среды одновалентный тепловой насос производит достаточно тепловой энергии. Обычно, одновалентными являются тепловые насосы, работающие на энергии грунта и грунтовых вод.

Моноэнергетический

Это обычный режим эксплуатации для теплового насоса, работающего на энергии воздуха или воды. При необходимости тепловой насос поддерживается электрическим нагревательным стержнем. Регулирование теплового насоса гарантирует, что этот вид дополнительного отопления следует использовать как можно реже, то есть только в очень холодные дни.

Двухвалентный

Наряду с тепловым насосом существует еще и второй производитель тепла, который поддерживает отопление дома при очень низкой температуре окружающей среды. Во время модернизации системы отопления им может оказаться котел, работающий на горючем. Какой режим эксплуатации выбрать, зависит от источника тепла. Неважно, какая система отопления установлена, важно сначала найти оптимальное решение вопроса теплоизоляции. Потому что чем лучше теплоизоляция, тем меньший прибор можно установить. А это означает небольшие инвестиции и небольшие затраты на отопление. Существуют разные виды подогрева воды. Около 10% энергии всей системы отопления расходуется на эту сферу. Поэтому и в этом вопросе следует искать экономный вариант.

Подогрев воды тепловым насосом системы отопления.

Если дом отапливается тепловым насосом, то он может при соответствующей регулировке осуществлять водоподогрев по приоритетной схеме. У водоподогрева в сравнении с отоплением есть преимущественное право, иными словами, когда тепловой насос подогревает воду, он не отапливает помещение. Поэтому важно установить достаточно большой аккумулятор.

Подогрев воды тепловым насосом системы водонагрева.

Компактные тепловые насосы системы водонагрева используются отдельно от системы отопления и служат для централизованной подачи горячей воды. Они забирают тепло из воздуха в помещении и подогревают таким образом хозяйственно-питьевую воду. Дополнительно может быть использовано отработанное тепло других приборов, например, холодильного шкафа. Преимуществом теплового насоса системы водоподогрева является то, что он забирает влагу из воздуха в помещении и охлаждает его, таким образом, помещение, где расположен тепловой насос, например, подвал, становится суше и холоднее. У этого прибора очень низкое энергопотребление. Тепловые насосы системы водонагрева обладают закрытым аккумулятором, в котором хранится тепло (в среднем вместимость составляет 300 литров), благодаря чему, горячую воду можно подавать в разные части дома.

Децентрализованный водоподогрев.

Это очень рациональная возможность подавать горячую воду в независимости от отопления благодаря децентрализованным источникам нагрева воды напрямую в кухню и ванную комнату.

«Солнечная» комбинация.

Солнечные коллекторы, соединенные с тепловым насосом, являются основным энергетически оптимальным решением водоподогрева, при всём этом они не наносят вред окружающей среде. Благодаря солнечной энергии можно подогреть 60-70% всей требуемой воды, что облегчит работу теплового насоса системы отопления. Оставшиеся 30-40% воды можно подогреть либо при помощи теплового насоса, либо энергией солнечных аккумуляторов.

Проветривание помещений при помощи рекуперации тепла и теплового насоса. Новостройки и дома с низким потреблением энергии обычно обладают хорошей изоляцией и изолированными, иногда даже звукоизолированными, окнами. Они почти герметичны. Вентиляционные приборы, рекуперирующие тепло, заботятся о том, чтобы в помещении было достаточно свежего воздуха. Кроме того, это снижает расходы на отопление. Специальные комплексные системы заботятся о теплоснабжении системы отопления, вентиляции помещений, о системе отдачи тепла и о подогреве воды. Эти системы также позволяют охлаждать помещения. Другой вариант представляет собой комбинацию, например, из теплового насоса, работающего на соляном источнике или воде, и вентиляционного прибора. Тепловой насос отапливает дом. Вентиляционный прибор забирает «грязный» воздух из определенных помещений (кухня, ванная, туалет). Благодаря интегрированному тепловому насосу, работающему на воздухе и воде, содержащееся в «отработанном» воздухе отработанное тепло используется для водонагрева. По встроенным в стены вентиляционным клапанам в помещение поступает свежий воздух из окружающей среды.

Модернизация отопления.

Модернизация отопления при помощи теплового насоса. Конечно же, модернизация отопления требует встраивания в систему теплового насоса. В пользу этого в старых домах говорят как низкие расходы на электроэнергию и низкое ее потребление, так и исключительный баланс с окружающей средой. Если ваша система отопления обходится температурой в 50-60 градусов, то вы легко можете встроить в нее тепловой насос. В старых домах предпочтительнее использовать такой источник тепла как воздух, так как это не требует больших затрат, связанных с перестройкой старой системы отопления. Существуют приборы, которые устанавливаются и внутри и снаружи помещения. Так как раньше радиаторы, по большей части, были увеличенных размеров, то они подходят для работы теплового насоса. Как и в новостройках, хороша комбинация низкотемпературной системы отопления, а стало быть «теплого» пола и панельного отопления. Недавно разработанные тепловые насосы, работающие на энергии воздуха и воды, с температурой запуска до 75 градусов спокойно заменяют старые котлы с мазутной топкой или газовые котлы. Высокотемпературные тепловые котлы создаются специально для модернизации системы отопления. Их преимущество заключается в следующем: в большинстве случаев можно продолжать использовать уже имеющиеся радиаторы. Таким образом сокращаются затраты на модернизацию. Тепловые насосы нового поколения спокойно отапливают жилые помещения площадью до 250 кв/м. Конечно, в старых домах можно также использовать такие источники тепла как грунт, в этом случае следует предпочесть вертикальные коллекторы, и грунтовые воды. Какие условия должны быть соблюдены, читайте в разделе «Источники тепла». Кстати, тот, кто решается приобрести тепловой насос, должен платить за изоляцию меньше, чем тот, кто устанавливает низкотемпературное мазутное отопление. Экономия может составить несколько тысяч евро.

Даже если на первый взгляд расходы на приобретение всей отопительной установки с тепловым насосом кажутся несколько выше, чем расходы на традиционную систему отопления, Вам не следует забывать, что начиная с первого дня использования этой системы, расходы на отопление сократятся почти в два раза, так как система почти полностью работает от бесплатного тепла окружающей среды. Неважно сколько стоят мазут или газ, отапливать тепловым насосом все равно выгоднее.

referatwork.ru

Источники тепла

Количество просмотров публикации Источники тепла - 117

Глава 12

Раздел III

ТЕПЛО- И ГАЗОСНАБЖЕНИЕ ТЕРРИТОРИЙ ПОСЕЛЕНИЙ И ЗДАНИЙ

ТЕПЛОСНАБЖЕНИЕ ПОСЕЛЕНИЙ

Тепловая энергия требуется для работы промышленных предприятий, отопления, вентиляции, кондиционирования и централизованного горячего водоснабжения зданий. Жилищно-коммунальное хозяйство использует около 25 % всœей тепловой энергии, потребляемой городом.

Теплоснабжение посœелœений может осуществляться двумя способами. Централизованное теплоснабжение – получение тепловой энергии от теплоэлектроцентрали (ТЭЦ), местных котельных. Децентрализованное теплоснабжение – получение энергии от местных источников тепла (котельной установки, газоводогрейного

агрегата или печи).

Централизованное теплоснабжение представляет собой систему, состоящую из источника теплоты, трубопроводов и потребителœей теплоты. Тепловой источник снабжает теплом группу домов, квартал или район города, а также промышленные предприятия. Он может находиться на значительном отдалении от потребителœей. В соответствии со СНиП 2.07.01-89* теплоснабжение городов и жилых районов с застройкой зданиями высотой более двух этажей должно быть централизованным.

Теплоносителœем может служить вода с температурой 95 °С и выше, пар (низкого и высокого давления) и воздух. Водяные системы используют в жилых домах, паровые системы – на промышленных предприятиях, воздушные – в общественных зданиях.

По характеру тепловых нагрузок различают сезонных (система отопления, вентиляции, кондиционирования) и постоянных (промышленные производства, системы горячего водоснабжения жилых и общественных зданий) потребителœей. Сезонные потребители изменяют нагрузку по времени года и сохраняют ее в течение суток. Постоянные потребители изменяют интенсивность потребления в течение суток. Мощность источника тепла выбирают по укрупненным показателям – по количеству жителœей или зданий. Расход тепла для производств определяют по нормам расхода тепла на единицу продукции.

Источником тепла может служить ТЭЦ, где вырабатывается и тепловая и электрическая энергия. Это наиболее совершенная форма теплового источника. Распространенным тепловым источником служат котельные установки, которые исходя из назначения подразделяют на производственные и отопительные. Отопительные котельные дают тепло на нужды отопления, вентиляции и горячего водоснабжения жилых и общественных зданий Οʜᴎ исходя из производственной мощности бывают индивидуальные и групповые. Последние условно подразделяют исходя из размера обслуживаемой территории на квартальные и районные.

Читайте также

  • - Источники тепла при резании

    Тепловые процессы при резании материалов При резании тепло образуется в трёх источниках: в плоскости сдвига ОА, на передней поверхности инструмента OC и на задней поверхности Oh, рис. 2.1 Рис. 2.1. Источники тепла при резании: 1- резец, 2 –заготовка, 3- стружка ... [читать подробнее].

  • - Источники тепла при резании

    Тепловые процессы при резании материалов При резании тепло образуется в трёх источниках: в плоскости сдвига ОА, на передней поверхности инструмента OC и на задней поверхности Oh, рис. 2.1 Рис. 2.1. Источники тепла при резании: 1- резец, 2 –заготовка, 3- стружка ... [читать подробнее].

  • - Источники тепла земных недр

    Тепловое поле земной коры формируется в результате процесса теплообмена при наличии источников тепла. Теплообмен в земной коре осуществляется посредством теплопроводности, конвекции и излучения. В зависимости от природы процессов, приводящих к выделению тепла в... [читать подробнее].

  • - Источники тепла в подземных выработках

    Учет источников тепловыделения в выработках и определение их интенсивности необходимо для составления уравнений теплового баланса, на основании которых производят расчет необходимого расхода воздуха и его температуры. Перечислим источники тепловыделения и приведем... [читать подробнее].

  • referatwork.ru

    Теплота. Теплообмен и его виды - реферат

    План: 1. Введение. Понятие теплоты 2. Теплопередача 3.Три основных вида передачи тепла 4. Роль теплоты и её использование 5. Список использованной литературы 1. Введение ТЕПЛОТА, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже). Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию. До конца 18 в. теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом – это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика. 2. ТЕПЛОПЕРЕДАЧА Теплопередача – это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда). 3. Три основных вида передачи тепла Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен. Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное). Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ/Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м2) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(мDК)]. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид: где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры. Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин – коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию. В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов. Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы. ТЕПЛОПРОВОДНОСТЬ НЕКОТОРЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ Вещества и материалы Теплопроводность, Вт/(мD К) Металлы Алюминий 205 Бронза 105 Висмут 8,4 Вольфрам 159 Железо 67 Золото 287 Кадмий 96 Магний 155 Медь 389 Мышьяк 188 Никель 58 Платина 70 Ртуть 7 Свинец 35 Цинк 113 Другие материалы Асбест 0,08 Бетон 0,59 Воздух 0,024 Гагачий пух (неплотный) 0,008 Дерево (орех) 0,209 Магнезия (MgO) 0,10 Опилки 0,059 Резина (губчатая) 0,038 Слюда 0,42 Стекло 0,75 Углерод (графит) 15,6 Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества. Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов. Конвекция. Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха. Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона q = hA (TW  T), где q – тепловой поток (измеряемый в ваттах), A – площадь поверхности источника тепла (в м2), TW и T – температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м2хК). Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность – это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные. Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса. Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен. Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен – отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение – это один из видов электромагнитного излучения. Другие его виды – радиоволновое, ультрафиолетовое и гамма-излучения – возникают в отсутствие разности температур. На рис. 8 представлена зависимость энергии теплового (инфракрасного) излучения от длины волны. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра. Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт), A – площадь поверхности излучающего тела (в м2), а T1 и T2 – температуры (в кельвинах) излучающего тела и окружения, поглощающего это излучение. Коэффициент s называется постоянной Стефана – Больцмана и равен (5,66961х0,00096)х10–8 Вт/(м2 DК4). Представленный закон теплового излучения справедлив лишь для идеального излучателя – так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана – Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального. Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте. Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м2. Солнечная энергия – источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд. 4. РОЛЬ ТЕПЛОТЫ И ЕЕ ИСПОЛЬЗОВАНИЕ Глобальные процессы теплообмена не сводятся к нагреванию Земли солнечным излучением. Массивными конвекционными потоками в атмосфере определяются суточные изменения погодных условий на всем земном шаре. Перепады температуры в атмосфере между экваториальными и полярными областями совместно с кориолисовыми силами, обусловленными вращением Земли, приводят к появлению непрерывно изменяющихся конвекционных потоков, таких, как пассаты, струйные течения, а также теплые и холодные фронты. Перенос тепла (за счет теплопроводности) от расплавленного ядра Земли к ее поверхности приводит к извержению вулканов и появлению гейзеров. В некоторых регионах геотермальная энергия используется для обогрева помещений и выработки электроэнергии. Теплота – непременный участник почти всех производственных процессов. Упомянем такие наиболее важные из них, как выплавка и обработка металлов, работа двигателей, производство пищевых продуктов, химический синтез, переработка нефти, изготовление самых разных предметов – от кирпичей и посуды до автомобилей и электронных устройств. Многие промышленные производства и транспорт, а также теплоэлектростанции не могли бы работать без тепловых машин – устройств, преобразующих теплоту в полезную работу. Примерами таких машин могут служить компрессоры, турбины, паровые, бензиновые и реактивные двигатели. Важным источником теплоты для таких целей, как производство электроэнергии и транспортные перевозки, служат ядерные реакции. В 1905 А.Эйнштейн показал, что масса и энергия связаны соотношением E = mc2, т.е. могут переходить друг в друга. Скорость света c очень велика: 300 тыс. км/с. Это означает, что даже малое количество вещества может дать огромное количество энергии. Так, из 1 кг делящегося вещества (например, урана) теоретически можно получить энергию, которую за 1000 суток непрерывной работы дает электростанция мощностью 1 МВт 5. ЛИТЕРАТУРА Земанский М. Температуры очень высокие и очень низкие. М., 1968 Поль Р. Механика, акустика и учение о теплоте. М., 1971 Смородинский Я.А. Температура. М., 1981 Фен Дж. Машины, энергия и энтропия. М., 1986 Эткинс П.В. Порядок и беспорядок в природе. М., 1987

    2dip.su


    Смотрите также

     

    ..:::Новинки:::..

    Windows Commander 5.11 Свежая версия.

    Новая версия
    IrfanView 3.75 (рус)

    Обновление текстового редактора TextEd, уже 1.75a

    System mechanic 3.7f
    Новая версия

    Обновление плагинов для WC, смотрим :-)

    Весь Winamp
    Посетите новый сайт.

    WinRaR 3.00
    Релиз уже здесь

    PowerDesk 4.0 free
    Просто - напросто сильный upgrade проводника.

    ..:::Счетчики:::..

     

         

     

     

    .