Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

применение атомной энергии. Использование ядерной энергии в мирных целях реферат


применение атомной энергии | Социальная сеть работников образования

Государственное  бюджетное  общеобразовательное  учреждение среднего  профессионального  образования   « Самарский торгово-экономический колледж»

ДОКЛАД

Применение атомной энергии

                                                            Подготовили ;        Белов Максим,    Канисева  Инна -        студенты          ГБОУ СПО Самарского  торгово- экономического колледжа.

                                                          Руководитель: Уракова Ахслу Рашидовна,  преподаватель      физики и математики.

САМАРА 2012

Атомная энергия

Уже в конце 20 века проблема поиска альтернативных источников энергии стала весьма актуальной. Несмотря на то, что наша планета поистине богата природными ископаемыми, такими как нефть, уголь, древесина и т.д., все эти богатства, к сожалению, исчерпаемы. К тому же, потребности человечества растут с каждым днем и приходится искать все более новые и совершенные источники энергии. На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии. Ядерная теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. Все началось еще в 1896 году, когда А.Беккерель зарегистрировал невидимые лучи, которые испускала урановая руда, и которые обладали большой проникающей способностью. В дальнейшем это явление получило название радиоактивности. История развития ядерной энергии содержит в себе несколько десятков выдающихся фамилий, в том числе и советских физиков. Завершающим этапом развития можно назвать 1939 год – когда Ю.Б.Харитон и Я.Б.Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Далее развитие ядерной энергетики шло семимильными шагами. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1 килограмма урана, можно сравнить с энергией, которая получается при сжигании 2 500 000 кг каменного угля.

Но из-за начавшейся войны, все исследования были перенаправлены в военную область. Первым примером ядерной энергии, который человек смог продемонстрировать всему миру, стала атомная бомба… Потом водородная… Лишь спустя годы научное сообщество обратило свое внимание на более мирные области, где применение ядерной энергии могло бы стать действительно полезным. Так начался рассвет самой молодой области энергетики. Стали появляться атомные электростанции (АЭС), причем первая в мире АЭС была построена в городе Обнинске Калужской  области. На сегодняшний день насчитывается несколько сотен атомных электростанций по всему миру. Развитие ядерной энергетики происходило невероятно стремительно. Меньше чем за 100 лет она смогла достигнуть сверхвысокого уровня технологического развития. То количество энергии, которое выделяется при делении ядер урана или плутония, несравнимо велико – это сделало возможным создание крупных атомных электростанций промышленного типа.    Так как же получают эту энергию? Все дело в цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон – элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло.    Данный вид энергии производят не только в АЭС. Он так же используется на атомных подводных лодках и атомных ледоколах.Для нормального функционирования АЭС им все-таки необходимо топливо. Как правило, это уран. Этот элемент имеет широкое распространение в природе, но при этом труднодоступен. В природе не существует залежей урана (как например нефти), он как бы «размазан» по всей земной коре. Самые богатые урановые руды, которые встречаются очень редко, содержат до 10% чистого урана. Уран обычно содержится в урансодержащих минералах в качестве изоморфно замещающего элемента. Но при всем это общее количество урана на планете грандиозно велико. Возможно в ближайшем будущем новейшие технологии позволят увеличить процент добычи урана.    Но столь мощный источник энергии, а значит и силы, не может не вызывать опасений. Постоянно ведутся споры о его надежности и безопасности. Трудно оценить какой ущерб наносит атомная энергетика окружающей среде. Настолько ли она эффективна и выгодна, чтобы пренебрегать такими потерями? Насколько она безопасна? Причем, в отличие от любой другой энергетики, речь ведется не только об экологической безопасности. Все прекрасно помнят страшные последствия событий в Хиросиме и Нагасаки. Когда человечество обладает такой мощью, встает вопрос а достойно ли оно такого могущества? Сможем ли мы достойно распоряжаться тем, что имеем и не разрушать это?    Если бы завтра на нашей планете закончились все запасы источников традиционной энергии, то ядерная энергетика, пожалуй, стала  бы единственной областью, которая реально смогла бы заменить ее. Нельзя отрицать ее преимущества, но и не стоит забывать о возможных последствиях.

 Применение атомной энергии

Энергия деления ядер урана или плутония применяется в ядерном и термоядерном оружии (как пускатель термоядерной реакции). Существовали экспериментальные ядерные ракетные двигатели, но испытывались они исключительно на Земле и в контролируемых условиях, по причине опасности радиоактивного загрязнения в случае аварии.

На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы, атомные подводные лодки, атомные авианосцы). В условиях дефицита энергетических ресурсов ядерная энергетика считается наиболее перспективной в ближайшие десятилетия.

Энергия, выделяемая при радиоактивном распаде, используется в долгоживущих источниках тепла и бетагальванических элементах. Автоматические межпланетные станции типа «Пионер» и «Вояджер» используют радиоизотопные термоэлектрические генераторы. Изотопный источник тепла использовал советский Луноход-1.

Энергия термоядерного синтеза применяется в водородной бомбе.

Ядерная энергия используется в медицине:

  1. Функциональная диагностика: сцинтиграфия и позитрон-эмиссионная томография
  2. Диагностика: радиоиммунология
  3. Лечение рака щитовидной железы с помощью изотопа 131I
  4. Протонная хирургия

На сегодняшний день ядерная медицина позволяет исследовать практически все системы органов человека и находит применение в неврологии, кардиологии, онкологии,эндокринологии, пульмонологии и других разделах медицины.

С помощью методов ядерной медицины изучают кровоснабжение органов, метаболизм желчи, функцию почек, мочевого пузыря, щитовидной железы.

В ядерной медицине возможно не только получение статических изображений, но и наложение изображений, полученных в разные моменты времени, для изучения динамики. Такая техника применяется, например, при оценке работы сердца.

Чернобыльская Катастрофа

Почти 25 лет прошло после страшного события, повергшего в шок весь мир. Отголоски этой катастрофы века еще долго будут бередить души людей, а ее последствия еще не раз коснутся человека.

Чернобыльская катастрофа и ее последствия

Последствия Чернобыльской катастрофы дали знать о себе в первые же месяцы после взрыва. Люди, проживавшие на территориях, прилежащих к месту трагедии, умирали от кровоизлияний и апоплексических ударов. Пострадали ликвидаторы последствий аварии: из общего числа ликвидаторов в 600 000 около 100 000 человек уже нет в живых – они умерли от злокачественных опухолей и разрушения системы кроветворения. Существование других ликвидаторов не назовешь безоблачным – они страдают от многочисленных заболеваний, в том числе онкологических, расстройств нервной и эндокринной системы.

     . Но тем не менее в условиях дефицита энергетических ресурсов ядерная энергетика считается наиболее перспективной в ближайшие десятилетия.

   Список литературы

 

1. Игнатенко. Е. И. Чернобыль: события и уроки. М., 1989г.

2. Атомная энергетика. История и современность. М., Наука. 1991г

nsportal.ru

Реферат - Ядерная энергия - Физика

Д О К Л А Д

п о ф и з и к е

по теме

«Термоядерный синтез»

Введение

В 1939 году впервые удалось расщепить атом урана. Прошло еще 3 года, и в США был создан реактор для осуществления управляемой ядерной реакции. Затем в 1945г. была изготовлена и испытана атомная бомба, а в 1954г. в нашей стране была пущена в эксплуатацию первая в мире атомная электростанция. Во всех этих случаях использовалась огромная энергия распада атомного ядра. Еще большее количество энергии выделяется в результате синтеза атомных ядер. В 1953 году в СССР впервые была испытана термоядерная бомба, и человек научился воспроизводить процессы, происходящие на солнце. Пока использовать для мирных целей ядерный синтез нельзя, но, если это станет возможным, то люди обеспечат себя дешевой энергией на миллиарды лет. Эта проблема — одно из важнейших направлений современной физики на протяжении последних 50 лет.

Ядерная энергия выделяется при распаде или синтезе атомных ядер. Любая энергия — физическая, химическая, или ядерная проявляется своей способностью выполнять работу, излучать высокую температуру или радиацию. Энергия в любой системе всегда сохраняется, но она может быть передана другой системе или изменена по форме.

Приблизительно до 1800 года основным топливом было дерево. Энергия древесины получена из солнечной энергии, запасенной в растениях в течение их жизни. Начиная с Индустриальной революции, люди зависели от полезных ископаемых — угля и нефти, энергия которых также происходила из запасенной солнечной энергии. Когда топливо типа угля сжигается, атомы водорода и углерода, содержащиеся в угле, объединяются с атомами кислорода воздуха. При возникновении водного или углеродистого диоксида происходит выделение высокой температуры, эквивалентной приблизительно 1.6 киловатт-час на килограмм или приблизительно 10 электрон-вольт на атом углерода. Это количество энергии типично для химических реакций, приводящих к изменению электронной структуры атомов. Части энергии, выделенной в виде высокой температуры, достаточно для поддержания продолжения реакции.

Атом

Атом состоит из маленького, массивного, положительно заряженного ядра, окруженного электронами. Ядро составляет основную часть массы атома. Оно состоит из нейтронов и протонов (общее название нуклоны), связанных между собой очень большими ядерными силами, намного превышающими электрические силы, которые связывают электроны с ядром. Энергия ядра определяется тем, насколько сильно его нейтроны и протоны удерживаются ядерными силами. Энергия нуклона — это энергия, требуемая, чтобы удалить один нейтрон или протон из ядра. Если два легких ядра соединяются, чтобы сформировать более тяжелое ядро или если тяжелое ядро распадается на два более легких, то в обоих случаях выделяется большое количество энергии.

Ядерная энергия, измеренная в миллионах электрон-вольт, образуется в результате синтеза двух легких ядер, когда, два изотопа водорода, (дейтерия) объединяются в результате следующей реакции:

При этом образуется атом гелия с массой 3 а.е.м., свободный нейтрон, и 3.2 Мэв, или 5.1 * 106 Дж (1.2 * 103 кал).

Ядерная энергия также образуется, когда происходит расщепление тяжелого ядра (к примеру ядра изотопа урана-235) вследствие поглощения нейтрона:

В итоге распадаясь на цезий-140, рубидий-93, три нейтрона, и 200 Мэв, или 3.2 • 1016 Дж (7.7 • 108 кал). Ядерная реакция распада выпускает в 10 миллионов раз больше энергии чем при аналогичной химической реакции.

Ядерный Синтез

Выделение ядерной энергии может происходить в нижнем конце кривой энергии при соединение двух легких ядер в одно более тяжелое. Энергия, излучаемая звездами подобно солнцу, является результатом таких же реакций синтеза в их недрах.

При огромном давлении и температуре 15 миллионов градусов C0. Существующие там водородные ядра объединяется согласно уравнению (1) и в результате их синтеза образуется энергия солнца.

Ядерный синтез был впервые достигнут на Земле в начале 30-ых годов. В циклотроне — ускорителе элементарных частиц — производили бомбардировку ядер дейтерия. При этом происходило выделение высокой температуры, однако, эту энергию не удавалось использовать. В 1950-ых годах первый крупномасштабный, но не контролируемый процесс выделения энергии синтеза был продемонстрирован в испытаниях термоядерного оружия Соединенными Штатами, СССР, Великобританией и Францией. Однако это была кратковременная и неуправляемая реакция, которая не могла быть использована для получения электроэнергии.

В реакциях распада нейтрон, который не имеет никакого электрического заряда, может легко приближаться и реагировать с расщепляемым ядром, например урана-235. В типичной реакции синтеза, однако, реагирующие ядра имеют положительный электрический заряд и поэтому по закону Кулона отталкиваются, таким образом силы, возникающие вследствие закона Кулона, должны быть преодолены до того, как ядра смогут соединиться. Это происходит, когда температура реагирующего газа — достаточно высока от 50 до 100 миллионов градусов C0. В газе тяжелых водородных изотопов дейтерия и трития при такой температуре происходит реакция синтеза:

выделяя приблизительно 17.6 Мэв. Энергия появляется сначала, как кинетическая энергия гелия-4 и нейтрона, но скоро проявляется в виде высокой температуры в окружающих материалах и газе.

Если при такой высокой температуре, плотность газа составляет 10-1 атмосфер (т.е. почти вакуум), то активный гелий-4 может передавать свою энергию окружающему водороду. Таким образом, поддерживается высокая температура и создаются условия для протекания самопроизвольной реакции синтеза. При этих условиях происходит «ядерное воспламенение ».

Достижению условий управляемого термоядерного синтеза препятствуют несколько основных проблем. Во-первых, нужно нагреть газ до очень высокой температуры. Во-вторых, необходимо контролировать количество реагирующих ядер в течение достаточно долгого времени. В-третьих, количество выделяемой энергии должно быть больше, чем было затрачено для нагревания и ограничения плотности газа. Следующая проблема — накопление этой энергии и преобразование ее в электричество.

При температурах даже 100000 C0все атомы водорода полностью ионизируются. Газ состоит из электрически нейтральной структуры: положительно заряженных ядер и отрицательно заряженных свободных электронов. Это состояние называется плазмой.

Плазма, достаточно горяча для синтеза, но не может находиться в обычных материалах. Плазма охладилась бы очень быстро, и стенки сосуда были бы разрушены при перепаде температур. Однако, так как плазма состоит из заряженных ядер и электронов, которые двигаются по спирали вокруг силовых линий магнитного поля, плазма может содержаться в ограниченной магнитным полем области без того, чтобы реагировать со стенками сосуда.

В любом управляемом устройстве синтеза выделение энергии должно превышать энергию, требуемую, для ограничения и нагрева плазмы. Это условие может быть выполнено, когда время заключения плазмы t и ее плотность n превышает приблизительно 1014. Отношения tn > 1014 называются критерием Лоусона.

Многочисленные схемы магнитного заключения плазмы были испытаны начиная с 1950 в Соединенных Штатах, СССР, Великобритании, Японии и в других местах. Термоядерные реакции наблюдали, но критерий Лоусона редко превышал 1012. Однако одно устройство “Токамак” (это название – сокращение русских слов: ТОроидальная КАмера с МАгнитными Катушками), первоначально предложенное в СССР Игорем Таммом и Андреем Сахаровым начало давать хорошие результаты в начале 1960-ых.

Токамак

Токамак — это тороидальная вакуумная камера, на которую надеты катушки, создающие сильное тороидальное магнитное поле. Тороидальное магнитное поле равное приблизительно 50000 Гаусс поддерживается внутри этой камеры мощными электромагнитами. Продольный поток нескольких миллионов ампер создается в плазме катушками трансформатора. Замкнутые магнитные полевые линии устойчиво ограничивают плазму.

Основанные на успешном действии экспериментального маленького «Tокамака» в нескольких лабораториях в начале 1980-ых были построены два больших устройства, один в Принстонском Университете в Соединенных Штатах и один в СССР. В «Tокамаке» высокая плазменная температура возникает в результате выделения тепла при сопротивлении мощного тороидального потока, а также путем дополнительного нагревания при введении нейтрального луча, что в совокупности должно приводить к воспламенению.

Другой возможный путь получить энергию синтеза — также инерционного свойства. В этом случае топливо — тритий или дейтерий содержится в пределах крошечного шарика, бомбардируемого с нескольких сторон импульсным лазерным лучом. Это приводит к взрыву шарика, с образованием термоядерной реакции, которая зажигает топливо. Несколько лабораторий в Соединенных Штатах и в других местах в настоящее время исследуют эту возможность. Прогресс исследования синтеза был многообещающим, но задача создания практических систем для устойчивой реакции синтеза, которая производит большее количество энергии чем потребляет, пока остается не решенной и потребует еще много времени и сил.

Однако, некоторое продвижение в этом вопросе было достигнуто в начале 1990-ых. В 1991 году впервые удалось получить существенное количество энергии — приблизительно 1.7 миллион ватт в результате управляемого ядерного синтеза в Объединенной европейской лаборатории (Торус). В декабре 1993 года, исследователи в Принстонском университете использовали реактор типа токамак для реакции синтеза, чтобы произвести управляемую ядерную реакцию, выделенная энергия равнялась 5.6 миллионов ватт. Однако, и в реакторе типа токамак и в лаборатории Торус затратили большее количество энергии, чем было получено.

Если получение энергии ядерного синтеза станет практически доступным, то это даст следующие преимущества: первое — безграничный источник топлива, дейтерий из океана; второе — исключит возможность несчастного случая в реакторе, так как количество топлива в системе очень мало; и третье — отходы намного менее радиоактивны и их проще хранить, чем отходы от реакций распада.

Список литературы

1. Люди и атомы (Уильям Лоуренс)

2. Элементы вселенной (Сиборг и Вэленс)

3. Советский Энциклопедический Словарь

4. Энциклопедия Encarta 96

www.ronl.ru

Мирное использование атомной энергии, применение атомной энергии

Энергия - это основа основ. Все блага цивилизации, все материальные сферы деятельности человека - от стирки белья до исследования Луны и Марса - требуют расхода энергии. И чем дальше, тем больше.

 На сегодняшний день энергия атома широко используется во многих отраслях экономики. Строятся мощные подводные лодки и надводные корабли с ядерными энергетическими установками. С помощью мирного атома осуществляется поиск полезных ископаемых. Массовое применение в биологии, сельском хозяйстве, медицине, в освоении космоса нашли радиоактивные изотопы.

Значение атомных электростанций в энергобалансе любой страны трудно переоценить. Гидроэнергетика требует создания крупных водохранилищ, под которые затапливаются большие площади плодородных земель. Вода в них застаивается и теряет свое качество, что, в свою очередь, обостряет проблемы водоснабжения, рыбного хозяйства и индустрии досуга.

Теплоэнергетические станции в наибольшей степени способствуют разрушению биосферы и природной среды Земли. Они уже израсходовали  десятки тонн органического топлива (угля). Для его добычи в сельском хозяйстве и других сферах экономики изымаются огромные земельные площади. В местах открытой добычи угля образуются «лунные ландшафты», а повышенное содержание золы в топливе является основной причиной выброса в воздух десятков миллионов тонн SO2.  Тепловые энергетические установки во всем мире выбрасывают в атмосферу за год до 250 млн. тонн золы и около 60 млн. тонн сернистого ангидрида.

Атомные электростанции (АЭС) - это третий «кит» в системе современной мировой энергетики. Техническая обеспеченность АЭС, бесспорно, являются крупнейшим достижением научно-технического прогресса (НТП). В случае их безаварийной работы не производится практически никакого загрязнения окружающей среды, кроме теплового. Правда, в результате работы АЭС (и предприятий атомного топливного цикла) образуются радиоактивные отходы, представляющие потенциальную опасность для всего живого. Обнадеживает тот факт, что объем радиоактивных отходов довольно мал, они весьма компактны, и их можно хранить в таких условиях, которые гарантируют отсутствие утечки. АЭС много экономичнее обычных тепловых электростанций, а, самое главное, при их правильной  эксплуатации – это чистые источники энергии.

В 1990 году атомными электростанциями мира производилось 16% всей электроэнергии. Такие электростанции работали в 31 стране и строились еще в 6 странах. Ядерный сектор энергетики наиболее значителен во Франции, Бельгии, Финляндии, Швеции, Болгарии и Швейцарии, т.е. в тех промышленно развитых странах, где недостаточно природных энергоресурсов. Эти страны производят от четверти до половины своей электроэнергии на АЭС. США производят на АЭС только восьмую часть своей электpоэнеpгии, но это составляет около одной пятой ее мирового производства.

Вместе с тем, развивая ядерную энергетику в интересах экономики, нельзя забывать и о безопасности и здоровье людей, так как ошибки могут привести к катастрофическим последствиям. Всего с момента начала эксплуатации атомных станций в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Наиболее характерные из них: в 1957 г. – в Уиндскейле (Англия), в 1959 г. – в Санта-Сюзанне (США),  в 1961 г. –  в  Айдахо-Фолсе  (США), в 1979 г. – на АЭС Три-Майл-Айленд (США), в 1986 г. – на Чернобыльской АЭС (бывший СССР, сейчас Украина) .

Атомная энергетика по-прежнему остается предметом острых дебатов. Сторонники и противники атомной энергетики резко расходятся в оценках ее безопасности, надежности и экономической эффективности. Кроме того, широко pаспpостpанено мнение о возможной утечке ядерного топлива из сферы выработки электpоэнеpгии и его использовании для создания ядерного оружия.

infinite-energy.ru

Применение ядерной энергии: проблемы и перспективы

Образование 3 августа 2015

Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

применение ядерной энергии

Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к оружию массового поражения, потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции термоядерного синтеза. Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов – это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

применение ядерной энергии в военных целях

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Международное агентство по атомной энергии (МАГАТЭ)

МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

Но самая главная функция – это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

Цель этой программы – обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

Видео по теме

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили первую в мире атомную станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

ядерная энергия применение

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с плазменными двигателями. Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Применение ядерной энергии в промышленности

Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

применение ядерной энергии в промышленности

Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной – применяется для производства алюминия.

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии – это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

применение ядерной энергии в медицине

Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

применение ядерной энергии

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии – это различные суда как военного, так и гражданского назначения:

  • Атомные ледоколы.
  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Плюсы и минусы использования ядерной энергии

Сегодня доля ядерной энергетики в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует органическое топливо, но его запасы не бесконечны.

Поэтому, как альтернативный вариант, используется ядерное топливо. Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской атомной электростанции и Фукусиме.

применение ядерной энергии в сельском хозяйстве

С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Животноводство в нашем крае: проблемы и перспективы развитияБизнес Животноводство в нашем крае: проблемы и перспективы развития

Животноводство в России представляет собой одну из самых перспективных отраслей производства. Благодаря продукции, которая производится в этой сфере, удается обеспечить население пищей и товарами легкой и кожевенной п...

Утилизация твердых отходов: проблемы и перспективыБизнес Утилизация твердых отходов: проблемы и перспективы

Утилизация твердых отходов считается одной из критических экологических проблем. Существующая сегодня система обращения с ними в нашей стране сложилась еще в советские времена. Основной метод, по которому сейчас проис...

Угольная промышленность – проблемы и перспективыБизнес Угольная промышленность – проблемы и перспективы

Исключительно важной частью мировой экономики является ее топливно-энергетический комплекс. Доля энергетической продукции в мировом ВВП составляет не менее 10 %. Темпы ее потребления растут с каждым годом, пропорциона...

Работа риэлтором. Плюсы и минусы, проблемы и перспективыКарьера Работа риэлтором. Плюсы и минусы, проблемы и перспективы

Очень многим работа риэлтора и сфера деятельности, связанная с ней, кажутся чрезвычайно привлекательными и высокодоходными. Такое мнение небезосновательно. Но тем, кто намерен для себя выбрать эту профессию, следует п...

Восточная Сибирь: проблемы и перспективыНовости и общество Восточная Сибирь: проблемы и перспективы

Сибирь - это одна из крупнейших по площади частей РФ. На ее территории сосредоточено большое количество различных ресурсов, но в этом регионе есть и существенные проблемы. Об этом следует узнать подробнее.Вост...

Техногенная цивилизация: описание, история, развитие, проблемы и перспективыОбразование Техногенная цивилизация: описание, история, развитие, проблемы и перспективы

Современная техногенная цивилизация имеет несколько ключевых особенностей. Главная из них заключается в том, что в подобном обществе на первом месте всегда стоит научный прогресс и свобода личности.Появление т...

Энергетика Украины: структура, география, проблемы и перспективы развития отраслиНовости и общество Энергетика Украины: структура, география, проблемы и перспективы развития отрасли

В современной структуре народного хозяйства Украины энергетика занимает одно из ведущих мест. Это старейшая отрасль украинской экономики. Она базируется на сжигании ископаемого угля, газа, мазута, а также использовани...

Пеноблок: размеры пеноблока, история появления и перспективы примененияБизнес Пеноблок: размеры пеноблока, история появления и перспективы применения

Каждое движение каменщика выполняется с определенной скоростью. Обычный глиняный кирпич массой около 3 кг или крупный пеноблок той же массы будут установлены в стену за одно и то же время. Но размеры пеноблока в восем...

Альтернативные движители. Роторный двигатель: принцип работы, область применения и перспективыОбразование Альтернативные движители. Роторный двигатель: принцип работы, область применения и перспективы

Представьте, сколько в мире существует автотранспорта. Практически 99% всего автомобильного парка мира имеют движитель - поршневой ДВС. Этот двигатель надежен и уже довольно долго эксплуатируется в различных типах авт...

Микро-USB: сфера применения и перспективыТехнологии Микро-USB: сфера применения и перспективы

Сейчас уже можно говорить об официальном рождении микро-USB. Его появление на рынке мобильных устройств нетрудно было предугадать. В связи с миниатюризацией прежние контактные виды связи постепенно заменяются более ко...

monateka.com

Реферат Ядерная энергия

скачать

Реферат на тему:

План:

    Введение
  • 1 Энергия связи
  • 2 Высвобождение ядерной энергии
  • 3 Применение ядерной энергии
  • Литература

Введение

Ядерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях.

1. Энергия связи

Зависимость удельной энергии связи (приходящейся на один нуклон) от числа нуклонов в ядре

Зависимость энергии связи, приходящейся на один нуклон, от числа нуклонов в ядре приведена на графике.

Энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента. Удельная энергия связи нуклона в ядре колеблется, в среднем, в пределах от 1 МэВ у лёгких ядер (дейтерий) до 8,6 МэВ, у ядер среднего веса (А≈100). У тяжёлых ядер (А≈200) удельная энергия связи нуклона меньше, чем у ядер среднего веса, приблизительно на 1 МэВ, так что их превращение в ядра среднего веса (деление на 2 части) сопровождается выделением энергии в количестве около 1 МэВ на нуклон, или около 200 МэВ на ядро. Превращение лёгких ядер в более тяжёлые даёт ещё больший энергетический выигрыш в расчёте на нуклон. Так, например, реакция соединения дейтерия и трития

1D²+1T³→2He4+0n1

сопровождается выделением энергии 17,6 МэВ, т.е. 3,5 МэВ на нуклон[1].

2. Высвобождение ядерной энергии

Известны экзотермические ядерные реакции, высвобождающие ядерную энергию.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Другим способом высвобождения ядерной энергии является термоядерный синтез. При этом два ядра лёгких элементов соединяются в одно тяжёлое. Такие процессы происходят на Солнце.

Многие атомные ядра являются неустойчивыми. С течением времени часть таких ядер самопроизвольно превращаются в другие ядра, высвобождая энергию. Такое явление называют радиоактивным распадом.

3. Применение ядерной энергии

Впервые на уран как новый источник энергии обратил внимание академик В. И. Вернадский в 1914 г. Он писал:

«...источник огромной энергии в миллион раз превышает все источники сил, какие рисовались человеческому воображению. Сумеет ли человек воспользоваться этой силой, направить ее на добро, а не на самоуничтожение?».

Энергия деления ядер урана или плутония применяется в ядерном и термоядерном оружии (как пускатель термоядерной реакции). Существовали экспериментальные ядерные ракетные двигатели, но испытывались они исключительно на Земле и в контролируемых условиях, по причине опасности радиоактивного загрязнения в случае аварии. На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы, атомные подводные лодки, атомные авианосцы). В условиях дефицита энергетических ресурсов ядерная энергетика считается наиболее перспективной в ближайшие десятилетия.

Энергия термоядерного синтеза применяется в водородной бомбе.

Энергия, выделяемая при радиоактивном распаде, используется в долгоживущих источниках тепла и бетагальванических элементах. Автоматические межпланетные станции типа «Пионер» и «Вояджер» используют радиоизотопные термоэлектрические генераторы. Изотопный источник тепла использовал советский Луноход-1.

Литература

  1. Краткая энциклопедия "Атомная энергия", Государственное научное издательство "Большая советская энциклопедия", 1956 г.

wreferat.baza-referat.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.