www.coolreferat.com

физический (mac-адрес), сетевой (ip-адрес) и символьный (dns-имя)

Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя) 2

MAC – адреса 2

IP-адреса 2

Структура IP адреса 2

Классы IP адресов 3

Особенности интерпретации IP адресов 4

Адрес обратной связи (loopback) 4

Сетевые и широковещательные адреса 4

Ограниченное широковещание 4

Интерпретация нуля как символа "это" 5

Групповая адресация 6

DNS имя 6

Отображение адресов 6

Отображение физических адресов на IP-адреса: протоколы ARP и RARP 6

Протокол ARP 8

ARP-таблица для преобразования адресов 8

Порядок преобразования адресов 8

Запросы и ответы протокола ARP 8

Продолжение преобразования адресов 9

------------------------------------------------------------------------ 10

Опpеделение межсетевого адpеса пpи начальной загpузке(RARP) 10

Отображение символьных адресов на IP-адреса: служба DNS 13

Автоматизация процесса назначения IP-адресов узлам сети - протокол DHCP 13

Недостатки адресации Интернета 15

Ложный ARP-сервер в сети Internet 15

Ложный DNS-сервер в сети Internet 19

Перехват DNS-запроса 20

Направленный шторм ложных DNS-ответов на атакуемый хост 22

Перехват DNS-запроса или создание направленного шторма ложных DNS-ответов на DNS-сервер 24

Литература: 27

Каждый компьютер в сети TCP/IP имеет адреса трех уровней:

Mac – адреса

Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.

Ip-адреса СтруктураIPадреса

Этот адрес используется на сетевом уровне.

Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

IP-адрес имеет длину 4 байта или 32 бита.

Для удобства людей в технических документах или прикладных программах IP-адреса пишутся как четыре десятичных числа, разделенных десятичными точками, и каждое из этих чисел представляет значение одного октета IP-адреса (такое представление называют «точечная десятичная нотация», «точечной квадронотацией» «традиционная десятичная форма представления адреса»).

Поэтому 32-битовый межсетевой адрес

10000000 00001010 00000010 00011110

записывается как

128.10.2.30

На слайде показана структура IP-адреса.

КлассыIPадресов

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Организация адресации в ip сетях. Ip адрес реферат


Организация адресации в ip сетях

ВВЕДЕНИЕ

Стек протоколов TCP/IP тесно связан с сетью Internet, ее историей и современностью. Создан он был в 1969 году, когда для сети ARPANET понадобился ряд стандартов для объединения в единую сеть компьютеров с различными архитектурами и операционными системами. На базе этих стандартов и был разработан набор протоколов, получивших название TCP/IP. Вместе с ростом Internet протокол TCP/IP завоевывал позиции и в других сетях. На сегодняшний день этот сетевой протокол используется как для связи компьютеров всемирной сети, так и в подавляющем большинстве корпоративных сетей. В наши дни используется версия протокола IP, известная как IPv4. В статье мы рассмотрим стандартную схему адресации и более новые методы рационального использования адресного пространства, введенные в результате обнаруженных недостатков в реализации протокола IP.

 

 

 

 

 

 

 

 

 

 

 

1 АДРЕСАЦИЯ ПРОТОКОЛА IP

 

Согласно спецификации протокола, каждому узлу, подсоединенному к IP-сети, присваивается уникальный номер. Узел может представлять собой компьютер, маршрутизатор, межсетевой экран и др. Если один узел имеет несколько физических подключений к сети, то каждому подключению должен быть присвоен свой уникальный номер. Этот номер, или по-другому IP-адрес, имеет длину в четыре октета, и состоит из двух частей. Первая часть определяет сеть, к которой принадлежит узел, а вторая -- уникальный адрес самого узла внутри сети. В классической реализации протокола первую часть адреса называли "сетевым префиксом", поскольку она однозначно определяла сеть. Однако в современной реализации это уже не так и сеть идентифицируют другим образом, ниже речь пойдет о классической адресной схеме протокола ip.

Изначально все адресное пространство разделили на пять классов: A, B, C, D и Е. Такая схема получила название "классовой". Каждый класс однозначно идентифицировался первыми битами левого байта адреса. Сами же классы отличались размерами сетевой и узловой частей. Зная класс адреса, вы могли определить границу между его сетевой и узловой частями. Кроме того, такая схема позволяла при маршрутизации не передавать вместе с пакетом информацию о длине сетевой части IP-адреса.

 

 

 

 

 

 

 

Таблица 1-Иеархическая схема протоколов IP

Класс А Номер бита 0 8 16 2431 Адрес 0....... ........ ........ ........ Сетевая часть Класс В Номер бита 0 8 16 2431 Адрес 10...... ........ ........ ........ Сетевая часть Класс С Номер бита 0 8 16 2431 Адрес 110..... ........ ........ ........ Сетевая часть Класс D Номер бита 0 8 16 2431 Адрес 1110.... ........ ........ ........ Класс E Номер бита 0 8 16 2431 Адрес 1111.... ........ ........ ........

 

 

 

 

Класс А ориентирован на очень большие сети. Все адреса, принадлежащие этому классу, имеют 8-битный сетевой префикс, на что указывает первый бит левого байта адреса установленный в нуль. Соответственно, на идентификацию узла отведено 24 бита и каждая сеть "восьмерка" может содержать до 224-2 узлов. Два адреса необходимо отнять, поскольку адреса, содержащие в правом октете все нули (идентифицирует указанную сеть) и все единицы (широковещательный адрес) используются в служебных целях и не могут быть присвоены узлам. Самих же сетей "восьмерок" может быть 27-2. Снова мы вычитаем двойку, но это уже две служебных сети: 127/8 и 0/8 (по-старому: 127.0.0.0 и 0.0.0.0). Наконец, можно заметить, что класс А содержит всего 27 * 224 = 231 адресов, или половину всех возможных IP-адресов. Класс В предназначен для сетей большого и среднего размеров. Адреса этого класса идентифицируются двумя старшими битами, равными соответственно 1 и 0. Сетевой префикс класса состоит из шестнадцати бит или первых двух октетов адреса. Поскольку два первых бита сетевого префикса заняты определяющим класс ключом, то можно задать лишь 214 различных сетей. Узлов же в каждой сети можно определить до 216-2. В некоторых источниках, для определения количества возможных сетей используется формула 2х-2 для всех классов, а не только для А. Это связано с определенными причинами, которые более детально будут изложены ниже. На сегодняшний день нет никакой необходимости уменьшать количество возможных сетей на две. Проведя вычисления, аналогичные приведенным для класса А,мы увидим, что класс В занимает четверть адресного пространства протокола IPНаконец, самый употребляемый класс сетей класс С имеет 24 битный сетевой префикс, определяется старшими битами, установленными в 110, и может идентифицировать до 221 сетей. Соответственно, класс позволяет адресовать до 28-2 узлов. Занимает восьмую часть адресного пространства протокола TCP/IP. Последние два класса занимают оставшуюся восьмую часть в адресном пространстве и предназначены для служебного (класс D) и экспериментального (класс Е) использования. Для класса D старшие четыре бита адреса установлены в 1110, для класса Е -- 1111. Сегодня класс D используется для групповой передачи информации. Поскольку длинные последовательности из единиц и нулей трудно запомнить, IP адреса обычно записывают в десятичной форме. Для этого каждый октет адреса представляется в виде десятичного числа. Между собой октеты отделяются точкой. Иногда октеты обозначаются как w.x.y.z и называются "z-октет", "y-октет", "x-октет" и "w-октет". Представление IP-адреса в виде четырех десятичных чисел разделенных точками и называется "точечно-десятичная нотация".

Октет W X Y Z Н

www.studsell.com

Адресация в сети internet - страница 2

Форматы адреса

IPv4

В 4ой версии IP адрес представляет собой 32-битовое двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. (или 128.10.2.30 — традиционная десятичная форма представления адреса, а 10000000 00001010 00000010 00011110 — двоичная форма представления этого же адреса).

IPv6

В 6 версии IP адрес (IPv6) имеет 128-битовое представление. Адреса разделяются двоеточиями (напр. fe80:0:0:0:200:f8ff:fe21:67cf). Большое количество нулевых групп может быть пропущено с помощью двойного двоеточия (fe80::200:f8ff:fe21:67cf). Такой пропуск может быть единственным в адресе.

Структура адреса

В обычных (одноадресных) адресах выделяется номер сети и номер узла в сети.

   IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (192.168.0.0/16, 172.16.0.0/12 или 10.0.0.0/8). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA  существует пять RIR: ARIN, обслуживающий Северную Америку; APNIC, обслуживающий страны Юго-Восточной Азии; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Виды адресации.

Бесклассовая адресация

Со второй половины 90-х годов XX века классовая адресация повсеместно вытеснена бесклассовой адресацией, при которой количество адресов в сети определяется только и исключительно маской подсети.

CIDR-адреса vs. INET-адреса

Иногда встречается запись IP-адресов вида 10.96.0.0/11. Данный вид записи заменяет собой указание диапазона IP-адресов. Число после косой черты означает количество единичных разрядов в маске подсети. Для приведённого примера маска подсети будет иметь двоичный вид 11111111 11100000 00000000 00000000 или то же самое в десятичном виде: 255.224.0.0. 11 разрядов IP-адреса отводятся под номер сети, а остальные 32 − 11 = 21 разрядов полного адреса — под локальный адрес в этой сети. Итого, 10.96.0.0/11 означает диапазон адресов от 10.96.0.0 до 10.127.255.255
Значение маски    1    2  3 4
1 128   0 0 0
2 192  0 0 0
3 224  0 0 0
4 240  0 0 0
5 248  0 0 0
6 252  0 0 0
7 254  0 0 0
8 255  0 0 0
9 255 128 0 0
32 255 255 255 255
Запись IP-адресов с указанием через слеш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.    продолжение

Класс А 0

N сети

N узла

Класс В 1

0

N сети

N узла

Класс С 1

1

0

N сети

N узла

Класс D 1

1

1

0

адрес группы multicast

Класс Е 1

1

1

1

0

зарезервирован

Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:

В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.

Класс

Наименьший адрес

Наибольший адрес

Количество узлов

A

01.0.0

126.0.0.0

216…224

B

128.0.0.0

191.255.0.0

28 … 216

C

192.0.1.0

223.255.255.0

До 28

D (multicast)

224.0.0.0

239.255.255.255

-

E

240.0.0.0

247.255.255.255

-

В бесклассовой адресации номер сети к которому принадлежит узел с заданным IP-адресом определяется другим способом: вместе с IP-адресом нам предоставляется маска подсети. В терминологии сетей TCP/IP маской подсети или маской сети называется битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая к адресу самого узла в этой сети. Например, узел с IP-адресом 192.168.0.1 и маской подсети 255.255.255.0 находится в сети 192.168.0.0. Чтобы получить адрес сети, зная IP-адрес и маску подсети, необходимо применить к ним операцию поразрядной конъюнкции. Например:

IP-адрес:

00001010 00001010 00000001 00000100

10.10.1.4

Маска подсети:

11111111 00000000 00000000 00000000

255.0.0.0

Адрес сети:

00001010 00000000 00000000 00000000

10.0.0.0

Для стандартных классов сетей маски имеют следующие значения:

• 255.0.0.0 – маска для сети класса А;

• 255.255.0.0 – маска для сети класса В;

• 255.255.255.0 – маска для сети класса С.

studfiles.net


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.