Гиалуронат: история исследования гиалуроновой кислоты. Гиалуроновая кислота реферат


Реферат Гиалуроновая кислота

скачать

Реферат на тему:

План:

Введение

Повторяющееся дисахаридное звено гиалуроновой кислоты

Гиалуро́новая кислота́ (гиалурона́т, гиалурона́н) — несульфированный гликозаминогликан, входящий в состав соединительной, эпителиальной и нервной тканей. Является одним из основных компонентов внеклеточного матрикса, содержится во многих биологических жидкостях (слюне, синовиальной жидкости и др.). Принимает значительное участие в пролиферации и миграции клеток, может быть вовлечена в процесс развития злокачественных опухолей. Продуцируется некоторыми бактериями (напр. Streptococcus). В теле человека весом 70 кг в среднем содержится около 15 граммов гиалуроновой кислоты, треть из которой преобразуется (расщепляется или синтезируется) каждый день.[1]

1. Функции

Гиалуроновая кислота является главным компонентом синовиальной жидкости, отвечающим за её вязкость. Наряду с лубрицином, гиалуроновая кислота — основной компонент биологической смазки.

Гиалуроновая кислота — важный компонент суставного хряща, в котором присутствует в виде оболочки каждой клетки (хондроцита). При связывании гиалуроновой кислоты с мономерами аггрекана в присутствии связующего белка, в хряще формируются крупные отрицательно заряженные агрегаты, поглощающие воду. Эти агрегаты отвечают за упругость хряща (устойчивость его к компрессии). Молекулярная масса (длина цепи) гиалуроновой кислоты в хряще уменьшается с возрастом организма, при этом общее её содержание увеличивается.[2]

Также, гиалуроновая кислота входит в состав кожи, где участвует в регенерации ткани. При чрезмерном воздействии на кожу ультрафиолета, происходит её воспаление («солнечный ожог»), при этом в клетках дермы прекращается синтез гиалуроновой кислоты и увеличивается скорость её распада.

Вследствие своего высокого содержания во внеклеточных матриксах, гиалуроновая кислота играет важную роль в гидродинамике тканей, процессах миграции и пролиферации клеток, а также участвует в ряде взаимодействий с поверхностными рецепторами клеток, в особенности со своим первичным рецептором CD44. Участие гиалуроновой кислоты в процессе развития опухолей может быть обусловлено именно её взаимодействием с CD44.

В то время как сама гиалуроновая кислота связывается с CD44, есть свидетельства того, что трансдукция воспалительного сигнала продуктов её деградации осуществляется через рецепторы макрофагов и дендритных клеток TLR2, TLR4 или через оба этих рецептора. Толл-подобные рецепторы (TLR) и гиалуроновая кислота принадлежат к системе врождённого иммунитета.

2. Структура

Химическая структура гиалуроновой кислоты была установлена в 1950-х годах в лаборатории Карла Мейера (Karl Meyer). Гиалуроновая кислота представляет собой полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, соединённых поочерёдно β-1,4- и β-1,3-гликозидными связями (см. рисунок). Молекула гиалуроновой кислоты может содержать до 25 000 таких дисахаридных звеньев. Природная гиалуроновая кислота имеет молекулярную массу от 5 000 до 20 000 000 Да. Средняя молекулярная масса полимера, содержащегося в синовиальной жидкости у человека составляет 3 140 000 Да.[3]

Молекула гиалуроновой кислоты является энергетически стабильной в частности благодаря стереохимии составляющих её дисахаридов. Объёмные заместители пиранозного кольца находятся в стерически выгодных положениях, в то время как меньшие по размеру атомы водорода занимают менее выгодные аксиальные позиции.

3. Биосинтез

Гиалуроновая кислота синтезируется классом встроенных мембранных белков, называющихся гиалуронат-синтетазами. В организмах позвоночных содержатся три типа гиалуронат-синтетаз: HAS1, HAS2 и HAS3. Эти ферменты удлиняют молекулу гиалуроновой кислоты, поочерёдно присоединяя к исходному полисахариду глюкуроновую кислоту и N-ацетилглюкозамин, при этом экструдируя («выдавливая») полимер через клеточную мембрану в межклеточное пространство.

4. Биодеградация

Гиалуроновая кислота деградируется семейством ферментов, называемых гиалуронидазами. В организме человека существуют по меньшей мере семь типов гиалуронидазоподобных ферментов, некоторые из которых являются супрессорами опухолеобразования. Продукты разложения гиалуроновой кислоты (олигосахариды и крайне низкомолекулярные гиалуронаты) проявляют проангиогенные свойства. Кроме того, недавние исследования показали, что фрагменты гиалуроновой кислоты, в отличие от нативного высокомолеколекулярного полисахарида, способны индуцировать воспалительный ответ в макрофагах и дендритных клетках при повреждениях тканей и отторжении трансплантированной кожи.

5. Применение

5.1. Применение в медицине

Тот факт, что гиалуроновая кислота входит в состав многих тканей (кожа, хрящи, стекловидное тело), обусловливает её применение в лечении заболеваний, связанных с этими тканями (катаракта, остеоартрит и др.): эндопротезы синовиальной жидкости; хирургическая среда для офтальмологических операций; препараты для мягкого увеличения тканей и заполнения морщин (в том числе в виде внутрикожных инъекций) в косметической хирургии.

5.2. Прочее применение

Гиалуроновая кислота используется в косметике, как составная часть средств ухода за кожей: кремов, губной помады, лосьонов и пр.

6. Происхождение названия

Название «гиалуроновая кислота» этому веществу было дано в 1934 году К. Мейером (K. Meyer) и Дж. Палмером (J. W. Palmer), которые впервые выделили его из стекловидного тела глаза.[4] Название происходит от греч. hyalos — стекловидный и уроновая кислота.

Сопряжённое основание для гиалуроновой кислоты носит название гиалуронат. Поскольку молекула в организме обычно существует в промежуточной полианионной форме, многие авторы считают более корректным использование термина гиалуронан.

Примечания

  1. Stern R (August 2004). «Hyaluronan catabolism: a new metabolic pathway». Eur J Cell Biol 83 (7): 317-25. PMID 15503855 - www.ncbi.nlm.nih.gov/pubmed/15503855?dopt=Abstract. Проверено 2007-06-12.
  2. Holmes M W A, Bayliss M T, Muir H (1988). «Hyaluronic acid in human articular cartilage. Age-related changes in content and size». Biochem J 250: 435-441. Бесплатная PDF-версия - www.biochemj.org/bj/250/0435/2500435.pdf
  3. Saari H et al. (1993) Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate. Inflammation 17:403-415.
  4. K. Meyer and J. W. Palmer (1934). «The polysaccharide of the vitreous humor». J. Biol. Chem. 107: 629-634. Бесплатная PDF-версия - www.jbc.org/cgi/reprint/107/3/629

wreferat.baza-referat.ru

ГИАЛУРОНОВАЯ КИСЛОТА И ЕЕ ПРИМЕНЕНИЕ В МЕДИЦИНЕ

ГИАЛУРОНОВАЯ  КИСЛОТА  И  ЕЕ  ПРИМЕНЕНИЕ  В  МЕДИЦИНЕ

Нетескина  Алина  Валерьевна

студент  2  курса,  кафедра  медицинской  химии  НГМУ,  РФ,  г.  Новосибирск

E-mail :  [email protected]

Терах  Елена  Игоревна

научный  руководитель,  канд.  хим.  наук,  доцент  НГМУ,  РФ,  г.  Новосибирск

E-mail:  [email protected]

 

Гиалуроновая  кислота  (ГК)  достаточно  широко  применяется  в  различных  областях  медицины,  фармакологии  и  косметологии.  В  1918  г.  П.  Левин  и  Дж.  Лопес-Суарес  выделили  из  пуповинной  крови  и  стекловидного  тела  полисахарид,  состоящий  из  глюкозамингликана  и  глюкуроновой  кислоты,  с  примесью  небольшого  количества  сульфатированных  цепей  [2].  Название  происходит  от  греческого  hyalos  +  uro.  –  стекловидный  +  уроновая  кислота.  Так  же  ГК  была  обнаружена  в  гребнях  кур,  гиалиновом  хряще,  синовиальной  жидкости  и  коже.

ГК  является  высокополимерным  неразветвленным  (линейным)  гликозаминогликаном,  построенным  из  N-ацетил-β-D-глюкозамина  и  β-D-глюкуроновой  кислоты,  соединенных  между  собой  1→3  и  1→4  О-гликозидными  связями  соответственно: 

 

 

Молекула  ГК  отличается  как  своей  вариабильностью  гибкости  и  жесткости  по  всей  длине  цепи,  так  и  способностью  изгибаться  и  изменять  свою  форму  в  результате  внутримолекулярного  теплового  движения,  а  так  же  внешних  факторов  [2].  Она  является  энергетически  стабильной,  в  частности,  благодаря  стереохимии  входящих  в  её  состав  дисахаридов. 

В  зависимости  от  характеристики  растворителя  макромолекулы  ГК  могут  принимать  самые  различные  конформации,  —  от  предельно  вытянутых  цепей  до  глобулы  [2].  Параметры  растворителя  значительно  изменяются  при  сворачивании  макромолекул  ГК  в  клубки,  растворы  переходят  в  коллоидное  состояние,  присущие  высокомолекулярным  соединениям  —  золям.

Для  высокомолекулярных  и  коллоидных  растворов  соединений  ГК  характерны  существенно  меньшие  величины  осмотического  давления,  скорости  диффузии,  изменения  температур  замерзания  и  кипения  по  сравнению  с  растворами  низкомолекулярных  соединений  [2].  Вместе  с  тем  растворы  высокомолекулярных  соединений  ГК  имеют  специфические  свойства,  такие  как  вязкость  и  наличие  стадии  набухания  растворяемого  вещества,  предшествующего  растворению. 

При  высоких  концентрациях  коллоидно-осмотическое  давление  растворов  ГК  оказывается  выше,  чем  у  растворов  альбуминов.  Это  свойство  может  быть  использовано  в  тканях  для  поддержания  гомеостаза.  За  счет  плотной  трехмерной  сети  цепочек,  ГК  может  формировать  препятствия  для  тока  жидкости  в  тканях,  а  также  вытеснять  из  раствора  все  остальные  макромолекулы.  Исключение  полимеров  снижает  растворимость  многих  белков.  Околоклеточный  слой  ГК  может  защищать  клетки  от  воздействия  макромолекул,  выделяемых  другими  клетками,  что  связывают  с  формированием  в  тканях  диффузных  барьеров. 

С  химической  точки  зрения  щелочная  экстракция  природной  ГК  приводит  к  выделению  её  в  форме  соли,  а  не  в  форме  карбоновой  кислоты.  В  настоящее  время  преобладают  продукты  на  основе  гиалуроната  натрия.

На  сегодняшний  очень  значима  функция  ГК  как  транспортного  средства  для  доставки  и  контролируемого  освобождения  лекарственных  средств.

Взаимодействие  ГК  с  различными  системами  клеток,  тканей  и  органов  позволяет  ей  активно  участвовать  в  органно-циркулярном  устройстве  иммунной  системы.  Проведенные  исследования  показали,  что  эндогенная  гиалуроновая  кислота  выполняет  регуляторную  роль  в  поддержании  активного  гемопоэза:  деградация  ГК  в  костномозговых  культурах  с  помощью  специфического  энзима  гиалуронидазы  приводит  к  значительному  снижению  числа  зрелых  миелоидных  и  лимфоидных  клеток,  а  также  их  коммитированных  предшественников,  продуцируемых  in  vitro  [3].

Наиболее  интересным  и  перспективным  результатом  проведенных  исследований  является  эффект  экзогенной  ГК  in  vivo,  введение  которой  восстанавливает  функцию  ниши  и  ускоряет  процесс  восстановления  гемопоэза  после  химиотерапии  и  иррадиации  [3].  Поскольку  применение  стимулирующих  препаратов  у  онкологических  больных  связано  с  риском  опухолевой  прогрессии,  важным  результатом  является  негативный  эффект  ГК  на  вторичный  рост  опухоли  после  химиотерапии.

Большое  количество  работ  по  проблемам  использования  ГК  и  инструментальных  методов  её  введения  относится  к  разработкам  для  косметологии  —  широкий  выбор  изделий  на  её  основе  позволяет  подобрать  средство  практически  для  любого  топа  кожи.  Многообразие  форм  выпуска,  начиная  с  традиционных  кремов,  гелей,  лосьонов  и  заканчивая  салфетками  и  пленочными  покрытиями,  расширяет  сферу  и  способы  применения  ГК  [5].  Обширен  арсенал  аппаратного  введения  гиалуроната  натрия  в  кожу  —  широко  используется  лазеро-,  магнито-,  электро-  и  ультрофорез,  газоструйная  техника.

В  косметологии  препараты  на  основе  ГК  в  виде  внутрикожных  инъекций  используются  для  коррекции  возрастных  изменений  кожи,  увеличения  тканей,  устранения  морщин,  лечения  рубцов  и  стимуляции  обменных  процессов  в  клетках  кожи.  Чаще  эти  средства  гипоаллергенны.  В  более  современных  препаратах  используется  ГК  биотехнологического  происхождения  (бактериальная  ферментация  непатогенных  штаммов  стрептококка),  поскольку  она  обладает  полной  инфекционной  безопасностью,  низкой  аллергенностью  и  может  иметь  заданный  молекулярный  состав.

Сочетанная  методика  лазерофореза  по  сравнению  с  раздельным  воздействием  гиалуроновой  кислоты  и  низкоинтенсивным  лазерным  излучением  более  эффективно  усиливает  микроциркуляцию  крови,  повышает  эффективность  кислородного  обмена  клеток  кожи,  а  также  частично  восстанавливает  коллаген-эластиновый  матрикс  дермы  у  женщин  45—55  лет  [1].  После  курса  лазерофореза  гиалуроновой  кислоты  обнаружено  увеличение  показателя  микроциркуляции  на  39  %,  сатурации  кислородом  смешанной  крови  на  10%,  флуоресцентного  показателя  потребления  кислорода  на  16  %,  эффективности  кислородного  обмена  клеток  кожи  на  48  %,  а  также  уменьшение  коэффициентов  флуоресцентной  контрастности  липофусцина  на  7  %,  коллагена  и  эластина  на  12  %.

Установлено,  что  эффект  после  лазерофореза  сохраняется  в  течение  длительного  времени  [1].  Методика  лазерофореза  гиалуроновой  кислоты  безопасна  в  использовании  и  может  эффективно  применяться  для  восстановления  возрастных  изменений  кожи  и  предупреждения  развития  патологических  процессов,  существенно  улучшая  качество  жизни. 

Гиалуронат  натрия  как  полиэлектролит,  хорошо  удерживающий  воду,  вводится  в  состав  глазных  капель  —  «искусственных  слез»  [2].  В  отличие  от  других  искусственных  слез,  раствор  гиалуроната  натрия  является  натуральным  заменителем  слезы  и  его  концентрация  в  слезной  жидкости  увеличивается  в  ответ  на  повреждение  глаза  и  в  течение  заживления  раны  роговицы.  Глазные  капли  с  содержанием  гиалуроната  натрия  0,2—0,5  %  полезны  для  лечения  синдрома  «сухого  глаза».  Глазные  капли  с  гиалуронатом  натрия  повышают  стабильность  прекорнеальной  слезной  пленки  и  смачиваемость  роговицы,  снижают  скорость  испарения  слезы  и  время  заживления  роговичного  эпителия  [2]. 

В  настоящее  время  для  индукции  родов  и  прерывания  беременности  используют  препараты,  способствующие  созреванию  шейки  матки.  Во  время  беременности  главные  составляющие  тканей  матки  —  хондроэтилсульфат  и  ГК  —  деполимеризуются  в  результате  действия  гиалуронидазы,  что  способствует  расщеплению  коллагеновых  волокон  и  увеличению  гидрофильности  тканей  шейки  матки  [4]. 

ГК  может  использоваться  в  перевязочных  средствах  как  в  качестве  основного  действующего  вещества,  обладающего  ранозаживляющим  действием,  так  и  в  комбинации  с  другими  веществами  [2].  Перспективным,  в  частности,  представляется  защитное  покрытие,  состоящее  из  гиалуроновой  кислоты  и  альгинатов.  Пленки,  образованные  по  предложенной  технологии,  обладают  прозрачностью,  гибкостью,  хорошими  механическими  свойствами,  низкой  адгезивностью  к  раневой  поверхности,  проницаемы  для  газов,  но  не  проницаемы  для  жидкости  и  бактерий.  Химически  модифицированные  биодеградируемые  производные  ГК  могут  быть  использованы  для  создания  искусственной  кожи  или  кожных  трансплантатов. 

Таким  образом,  ГК  —  один  из  основных  гликозамингликанов  внеклеточного  матрикса  на  всех  этапах  развития  организма  от  эмбрионального  до  взрослого,  обладающий  важнейшими  биологическими  функциями.  Она  имеет  широкое  применение  во  многих  областях  медицины,  является  одним  из  самых  популярных  компонентов  в  косметике,  регулирует  водный  баланс  в  тканях  и  системах  организма,  участвуя  в  гидродинамике  тканей  и  поддерживая  на  должном  уровне  увлажнённость  эпидермиса  и  других,  более  глубоких  слоёв  кожи. 

 

Список  литературы:

1.Антипов  Е.В.  Лазерофорез  гиалуроновой  кислоты  в  коррекции  возрастных  изменений  микроциркуляции  и  кислородного  обмена  клеток  кожи.  Автореф.  дисс.  …  канд.  биол.  наук.  М.,  2013.  —  23  с. 

2.Федорищев  И.А.  Гиалуроновая  кислота:  монография.  Книга  1.  Тула:  ТулГУ,  2011.  —  237  с.

3.Халдояниди  С.К.  Роль  гиалуроновой  кислоты  в  регуляции  иммуно-  и  миелопоэза.  Автореф.  дисс.  …  докт.  мед.  наук.  Новосибирск,  2011.  —  34  с.

4.Энкин  М.,  Кейрс  М.,  Ренфрью  М.  и  др.  Руководство  по  эффективной  помощи  при  беременности  и  родах  /  Перевод  с  англ.  под  редакцией  А.В.  Михайлова,  П.П.  Симбирцевой  и  Е.С.  Некрасовой.  СПб,  2003.  —  455  с.

5.Brown  T.J.,  Alcorn  D.,  Fraser  J.R.  Absorption  of  hyaluronan  applied  to  the  surface  of  intact  skin  //  J.  Invest.  Dermatol.  —  1999.  —  V.  113.  —  №  5.  —  P.  740—746.

sibac.info

Гиалуронат: история исследования гиалуроновой кислоты

Изучить опыт пациентов и выбрать пластическую операцию или косметологическую процедуру можно на главной странице сайта

В данном историческом обзоре, посвященном гиалуроновой кислоте, мы постарались привлечь внимание посетителя вебсайта к наиболее важным открытиям и исследованиям, на которых строились все последующие работы в области изучения этого уникального полисахарида. Выбор данных и источников для обзора является полностью субъективным.

ВВЕДЕНИЕ

В настоящий момент никаких принципиально новых данных о гиалуроновой кислоте не существует, поэтому мы решил сделать темой этой небольшой статьи «Гиалуроновая кислота - история». При существующем в настоящее время темпе движения научной мысли далеко не каждый человек имеет достаточно времени для того, чтобы оглянуться назад и просмотреть данные литературы, в которой описаны ключевые открытия в области гиалуроновой кислоты, поэтому мы постарались кратко изложить существующие результаты. Выбор источников и данных основан только на наших знаниях и мнении, поэтому может расходиться с взглядами других людей.

КАК ВСЕ НАЧИНАЛОСЬ

Венгерский ученый Bandi Balazs эмигрировал из Венгрии в 1947 году. Приехав в Швецию, он начала работать в Стокгольме над проблемой биологической роли внеклеточных полисахаридов, причем особенно много внимания он уделял именно гиалуронату.

В те годы культуральная работа с клетками выглядела совсем по-другому. До появления антибиотиков все манипуляции выполнялись в строго стерильных условиях близких к условиям в операционной. Клетки растили на подвешенных сгустках фибрина. Фибробласты выделялись из измельченных куриных сердец, кусочки которых клались на фибриновые сгустки, а скорость роста культуры определялась по изменению площади колонии, которая указывала на скорость и расстояние миграции клеток.

Одним из первых открытий было выделение из ткани пуповины гиалуроната для того, чтобы затем вводить его в культуру фибробластов.

Гиалуронат выделялся из пуповинной крови и преципитировался в спирту. Затем его очищали от белков путем встряхивания экстракта в смеси хлороформа и изоамилового спирта (по методу Sewag). Была предпринята попытка разработать метод стерилизации вязкого раствора гиалуроната. Его нельзя было подвергать фильтрации, поэтому в конечном итоге ученые пришли к использованию автоклавирования.

В самом начале работы было сделано три очень важных наблюдения, которые заложили основу для дальнейших исследований.

Во-первых, удалось выделить гиалуронат из ткани пуповины, причем при разных ионных условиях был получен материал с различной степенью вязкости. Самая высокая вязкость была у раствора, приготовленного на дистиллированной воде. Ученые предположили, что вязкость раствора гиалуроната может колебаться в зависимости от значения рН и ионной силы растворителя. Сейчас это уже знает каждый, однако на тот момент этот феномен был описан Raymond Fuoss только для растворов синтетических полиэлектролитов. В журнале «Journal of Polymer Chemistry» была опубликована статья "The viscosity function of hyaluronic acid as a polyelectrolyte" ( Показатель взякости гиалуроновой кислоты как полиэлектролита ). С этого момент ученые вплотную занялись исследованиями физических и химических свойств гиалуроната.

Во-вторых, при попытке простерилизовать гиалуронат с помощью УФ-излучения он полностью утратил вязкость в растворе. В дальнейшем было показано, что при воздействии потока электронов гиалуронат также полностью подвергается деградации. Сейчас уже можно сказать, что то наблюдение было одним из первых описаний свободнорадикального расщепления гиалуроната.

В-третьих, исследовались и биологические эффекты гиалуроната и ряда сульфатированных полисахаридов – гепарина, гепарансульфата ( который в те годы назывался «гепарин-односерной кислотой» ) и синтетически сульфатированного гиалуроната. Ученые сравнили их влияние на рост культуры клеток, антикоагулянтную активность и антигиалуронидазную активность. Главной задачей было выяснить действительно ли гепарин представляет собой сульфатированный гиалуронат, как это утверждалось в работах Asboe-Hansen, однако был сделан вывод, что это утверждение было ошибочно.

Гиалуронат, в отличие от сульфатированных полисахаридов, ускорял рост клеток и это, пожалуй, было одно из первых описаний взаимодействия гиалуроната с живыми клетками – сегодня мы знаем, что это взаимодействие опосредовано клеточным рецептором. Интересно, что это было также одно из первых исследований, посвященных изучению биологической активности гепарансульфата.

Все вышесказанные исследования были выполнены в короткий промежуток времени, начиная с сентября 1949 по декабрь 1950, то есть заняли лишь немногим больше 1 года.

ОТКРЫТИЕ ГИАЛУРОНАТА И ГИАЛУРОНИДАЗЫ

Karl Meyer открыл гиалуронат в 1934 году во время работы в глазной клинике в Университете штата Колумбия. Он выделил это соединение из стекловидного тела глаза коровы в кислых условиях и назвал его гиалуроновой кислотой от греческого hyalos - стекловидный и уроновой кислоты, которая входила в состав этого полимера. Сразу следует сказать, что до этого были выделены и другие полисахариды (хондроитинсульфат и гепарин). Более того, еще в 1918 году Levene and Lopez-Suarez выделили из стекловидного тела и пуповинной крови полисахарид, состоявший из глюкозамина, глюкуроновой кислоты и небольшого количества сульфат-ионов. Тогда его назвали мукоитин-серной кислотой, однако в настоящее время он боле известен как гиаулуронат, который в их работе был выделен с небольшой примесью сульфата.

В течение следующих десяти лет Karl Meyer и еще целый ряд авторов выделили гиалуронат из различных тканей. Так, например, он был обнаружен в суставной жидкости, пуповине и ткани петушиного гребня. Самым интересным было то, что в 1937 году Kendall удалось выделить гиалуронат из капсул стрептококков. В дальнейшем практически из всех тканей организма позвоночных был выделен гиалуронат.

Еще до открытия гиалуроната Duran-Reynals обнаружил в семенниках некий биологически активный фактор. В дальнейшем его стали называть «распространяющийся фактор». Похожим действием обладали яд пчел и медицинских пиявок. При его введении подкожно в смеси с тушью отмечалось очень быстрое распространение черного окрашивания. Этим фактором оказался фермент, разрушающий гиалуронаты, который в дальнейшем назвали гиалуронидазой. Даже в крови млекопитающих присутствует определенное количество гиалуронидаз, но их активация происходит только при кислотных значениях рН.

ВЫДЕЛЕНИЕ ГИАЛУРОНАТА

Самый первый метод выделения гиалуроната был стандартным протоколом для выделения полисахаридов, то есть по методу Sewag или с помощью протеаз из экстракта удалялся весь белок. Затем полимер преципитировался на фракции добавлением этилового спирта.

Большим шагом вперед стало разделение разнозаряженных полисахаридов, которое разработал John Scott при исследовании методов преципитации с катионным детергентом (ЦПХ, цетилпиридинхлоридом), в котором изменялась концентрация солей. Гиалуронат с высокой эффективностью отделялся от сульфатированных полисахаридов. Этим методом также можно было пользоваться и для фракционирования по молекулярной массе. По своей сути, схожие результаты могут быть получены при использовании метода ионно-обменной хроматографии.

СТРУКТУРА И КОНФОРМАЦИЯ ГИАЛУРОНАТА

Химическая структура полисахаридной молекулы была расшифрована Karl Meyer и его коллегами в 1950-е. Сейчас все знают, что гиалуронат является длинной полимерной молекулой, состоящей из дисахаридных звеньев, компонентами которых являются N-ацетил-D-глюкозамин и D-глюкуроновая кислота, связанные между собой В1-4 и В1-3 связями. Karl Meyer не пользовался стандартным методом для исследования структуры интактного полисахарида. Вместо этого он проводил гиалуронидазное расщепление полисахарида, получив смесь дисахаридов и олигосахаридов, которую ему удалось полностью охарактеризовать. На основании полученных им результатов он и сделал свой вывод о возможной структуре исходной полимерной молекулы.

Конформационный анализ «волокон», состоящих из гиалуроната был впервые предпринят с использованием метода рентгеновской кирсталлографии. На конференции в г. Турку в 1972 году шли горячие споры между группами специалистов о том, имеет ли гиалуронат спиральную структуру или нет. Очевидно, что гиалуронат может формировать спирали различной структуры в зависимости от ионного состава растворителя и доли воды в нем. В 70-е и 80-е годы в литературе появлялись самые различные версии структуры гиалуроната.

Прорывом в этой области стала работа John Scott. Опираясь на то, что гиалуронат обладает малой реакционной способностью при пероксидазном окислении в водном растворе, он сделал вывод о том, что в воде он принимает конформацию с внутрицепочечными водородными связями. В дальнейшем его гипотеза нашла свое подтверждение при ЯМР-анализе, а в 1927 году Atkins с соавторами охарактеризовали конформацию как двойную спиральную.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Пятьдесят лет назад не была известна химическая структура гиалуроната и его макромолеуклярные свойства – масса, гомогенность, форма молекулы, степень гидратированности и взаимодействия с прочими молекулами. В последние 20 лет это стало объектом внимания A. G. Ogston и его сотрудников в Оксфорде, доктора Balazs с коллегами в Бостоне, Torvard С Laurent, работающего в Стокгольме, и еще нескольких лабораторий.

Основной проблемой являлось выделение гиалуроната, очищенного от белков и прочих компонентов, которое необходимо проводить перед любыми физическими методами исследования. Всегда имеется риск деградации полимерной структуры в процессе очистки. Ogston использовал технику ультрафильтрации, предположив, что свободные белки преодолеют фильтр, а белки, связанные с гиалуронатом, будут задержаны фильтром. Объектом исследования стал комплекс с содержанием белка равным 30%. Другие авторы пытались использовать разнообразные методы физической, химической и ферментативной очистки, которые позволяли снижать содержание белка до нескольких процентов. В то же время результаты физико-химического анализа дали более полное описание молекулы гиалуроната. Ее молекулярный вес близок к нескольким миллионам, хотя разброс между образцами был достаточно высок. Рассеивание света показало, что молекула ведет себя как случайным образом скрученная, достаточно плотно упакованная цепь с радиусом изгиба порядка 200 нм. Упакованность и малоподвижность цепи связана с наличием внутрицепочечных водородных связей, о которых уже говорилось выше. Случайно скрученная структура полностью соответствует полученному соотношению вязкости и молекулярной массы вещества. Ogston и Stanier использовали методы седиментации, диффузии, разделения в зависимости от градиента скорости сдвига и вязкости а также метод двойного преломления, которые показали, что молекула гиалуроната имеет форму высоко гидратированной сферы, что вполне отвечает известным свойствам молекул с упаковкой в виде случайно скрученной спирали.

АНАЛИТИЧЕСКИЕ МЕТОДИКИ

Единственно возможным путем количественного исследования гиалуроновой кислоты было выделение полисахарида в чистом виде и измерение содержания в нем уроновой кислоты и/или N-ацетилглюкозамина. Методами выбора в данном случае являлись карбазольный методы Дише для оценки содержания уроновой кислоты и реакция Эльсона-Моргана на уровень гексозамина.

В данном случае трудно переоценить важность использования карбазольного метода. При анализе гиалуроната иногда приходилось использовать миллиграммы вещества.

Следующим шагом стало открытие специфичных ферментов. Гиалуронидаза грибов Streptomycesдействовала только на гиалуронат, при этом образовывались ненасыщенные гекса- и тетрасахариды. При анализе содержания гиалуроната можно было использовать это свойство грибов, особенно при наличии в среде других полисахаридов и примесей, а ненасыщенная форма гиалуроновой кислоты может использоваться для снижения лимита обнаружения продукта. Ферментативный метод значительно повысил чувствительность обнаружения гиалуроната, доведя ее до уровня микрограммов.

Последним этапом стало использование аффинных белков, специфично связывающихся с гиалуронатом. Tengblad использовал гиалуронат-связывающие белки из хрящей, а Delpech в дальнейшем использовал гиалуронектин, выделенный из головного мозга. Эти белки могут использоваться при анализе по аналогии с иммунологическими методами, а после разработки этого метода точность количественного определения гиалуроната возросла до уровня нанограммов, что позволило определять содержание гиалуроната в образцах тканей и физиологических жидкостях. Метод Tengblad стал основой для большей части работ Uppsala, выполненных позже.

ВИЗУАЛИЗАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в срезах тканей тесно связано с анализом полимеров в тканевой жидкости. С самого начала использовались методы неспецифического окрашивания со стандартными красителями. John Scott удалось повысить специфичность по такому же принципу, которым он руководствовался при разработке метода фракционирования анионных полисахаридов в детергентах. Он окрашивал их красителем алциановый синий в разных ионных концентрациях, при этом ему удалось добиться различимого окрашивания разных полисахаридов. В дальнейшем он перешел на использование купромеронового синего.

В то же время гиалуронат можно хорошо выявлять на срезах ткани с помощью специфично связывающихся с ним белков. Первые сообщения о таком методе были опубликованы в 1985. Этот метод использовался с большим успехом и, благодаря ему, были получены ценные данные о распределении содержания гиалуроната в разных органах и тканях.

Гиалуронат также может быть обнаружен при электронной микроскопии. На первых изображениях, которые были опубликованы Jerome Gross к сожалению, не удалось увидеть каких-либо тонких деталей структуры. Первой хорошо объяснявшей результаты работой можно считать статью Fessler и Fessler. В ней было указано, что гиалуронат имеет протяженную одноцепочечную структуру.

Затем Robert Fraser описал еще один изящный метод визуализации околоклеточно расположенного гиалуроната. Он добавлял суспензию частиц гиалуроната к культуре фибробластов. Частицы не были обнаружены в толстом слое, окружающем культуру фибробластов. Таким образом было показано, что в околоклеточном пространстве имеется гиалуронат, подвергающийся расщеплению под действием гиалуронидазы.

ЭЛАСТИЧНОСТЬ И РЕОЛОГИЯ

Исходя из размеров одной из самых крупных молекул гиалуроната, несложно предположить, что при концентрации порядка 1 г/л они практически полностью насыщают раствор. При высоких концентрациях молекулы перепутываются, а раствор представляет собой некую сеть из цепей гиалуроната. Точка полимеризации определяется достаточно легко – это момент насыщения раствора, после которого его вязкость резко увеличивается по мере увеличения концентрации. Еще одним свойством раствора, которое зависит от его концентрации является скорость сдвига вязкости. Это явление описали Ogston и Stanier. Эластические свойства раствора изменяются по мере нарастания концентрации и молекулярной массы полимеров. Текучесть чистого гиалуроната была впервые определена Jensen и Koefoed, и более подробный анализ вязкости и эластичности раствора был выполнен Gibbs et al.

Является ли такое интересное поведение раствора следствием сугубо механического переплетения цепочек полимеров или оно связано и с их химическим взаимодействием? В ранних работах, опубликованных Ogston, обсуждались возможные взаимодействия, опосредованные через белки. Welsh с соавторами получил указания на существование взаимодействий цепочек между собой. Это было достигнуто путем добавления коротких цепочек гиалуроната ( 60 дисахаридов ) к раствору, что вызывало уменьшение его эластичности и вязкости. Очевидно, что при этом происходило конкурентное взаимодействие коротких и длинных цепей. В более поздних работах John Scott было показано, что конформация гиалуроната с наличием гидрофобных связей между цепочками хорошо соответствовала склонности гиалуроната к формированию спиралей с находящимися рядом молекулами, которые стабилизировались гидрофобными связями. Таким образом, наиболее вероятным является межцепочечное взаимодействие, которое во многом и определяет реологические свойства гиалуроната.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ГИАЛУРОНОВЫХ ПОЛИМЕРОВ

Открытие переплетение цепочек гиалуроната при нарастании концентрации, которое может происходить в тканях, стало основой для предположения, что гиалуронат может быть задействован во многих физиологических процессах за счет создания большой трехмерной сети цепочек. Обсуждались самые разнообразные свойства таких сетей.

Вязкость. Очень высокая вязкость концентрированных растворов гиалуроната, а также зависимость сдвига от вязкости, могут быть использованы для суставной смазки. Гиалуронат всегда присутствует во всех пространствах, разделяющих подвижные элементы организма – в суставах и между мышц.

Осмотическое давление. Осмотическое давление растворов гиалуроната в значительной мере зависит от их концентрации. При высоких концентрациях коллоидно-осмотическое давление такого раствора оказывается выше, чем у растворов альбуминов. Это свойство может быть использовано в тканях для поддержания гомеостаза.

Сопротивление потоку. Плотная сеть цепочек является достаточно хорошим препятствием току жидкости. Гиалуронат действительно может формировать препятствия для тока жидкости в тканях, что впервые было показано Day.

Исключенный объем. Трехмерная сеть цепочек вытесняет из раствора все остальные макромолекулы. Доступный объем может быть измерен в опыте диализного уравнивания раствора гиалуроната и буферного раствора, при этом оказалось, что полученный эффект совпал с расчетным по данным теоретических исследований, проведенных Ogston. Эффект исключения обсуждался в связи с разделением белка, содержащегося в сосудистом русле и внеклеточном пространстве, однако он также рассматривался и в качестве механизма накопления физиологических и патологических молекул в соединительной ткани. Исключение полимеров снижает растворимость многих белков.

Диффузионный барьер. Движение макромолекул через раствор гиалуроната может быть измерено при седиментационном и диффузионном анализе. Чем больше молекула тем ниже будет скорость ее движения. Этот эффект связали с формированием в тканях диффузионных барьеров. Например, околоклеточный слой гиалуроната может защищать клетки от воздействия макромолекул, выделяемых другими клетками.

ГИАЛУРОН-СВЯЗЫВАЮЩИЕ БЕЛКИ (ГИАЛАДГЕРИНЫ)

Протеогликаны.До 1972 года считалось, что гиалуронат является инертным соединением и не взаимодействует с другими макромолекулами. В 1972 Hardingham и Muir показали, что гиалуронат может связываться с протеогликанами хрящевой ткани. Исследования Hascall и Heinegard показали, что гиалуронат может специфично связываться с N-концевым доменом глобулярной части протеогликанов и соединительных белков. Данная связь является достаточно прочной и на одну цепь гиалуроната могут садиться несколько протеогликанов, в результате чего в хряще и иных тканях формируются крупные агрегации молекул.

Рецепторы гиалуроната. В 1972 Pessac и Defendi и Wasteson с соавторами показали, что суспензии некоторых клеток начинают агрегировать при добавлении гиалуроната. Это было первым сообщением, указывавшим на специфичное связывание гиалуроната с поверхностью клеток. В 1979 Underhill и Toole показали, что гиалуронат действительно связывается клетками, а в 1985 году был выделен отвечающий за это взаимодействие рецептор. В 1989 году сразу 2 группы авторов опубликовали работы, в которых было показано, что рецептор хоуминга лимфоцитов CD44 обладает способностью связываться с гиалуронатом в хрящевой ткани. Вскоре было показано, что рецептор, выделенный Underhill и Toole был полностью идентичен CD44. Еще одним гиалуронат-связывающим белком, выделенным позднее из супернатанта культуры клеток 3T3 в 1982 году Turley с соавторами оказался РГРП (рецептор гиалуроната, опосредующий подвижность). После этих работ был открыт еще целый ряд гиаладгеринов.

РОЛЬ ГИАЛУРОНАТА В КЛЕТКЕ

Вплоть до открытия гиаладгеринов считалось, что гиалуронат оказывает влияние на клетки только за счет физических взаимодействий. Данные о том, что гиалуронат может играть роль в биологических процессах были единичными и, в большинстве своем, были построены на отсутствии или наличии гиалуроната при разных биологических процессах. Многие из спекуляций того времени были построены на методах неспецифического гистологического окрашивания.

В начале 1970-х в Бостоне было выполнено очень интересное исследование. Bryan Toole и Jerome Gross показали, что во время регенерации конечности у головастиков гиалуронат синтезируется в самом начале, а затем его количество уменьшается под действием гиалуронидазы, при этом происходит замещение гиалуроната хондроитинсульфатом. Таким же образом развиваются события и при формировании роговицы у цыпленка. Toole указал, что накопление гиалуроната совпадает с периодами миграции клеток в ткани. Как уже было сказано выше, Toole также провел первые исследования мембранно-связанных гиаладгеринов, а с открытием рецепторов гиалуроната у нас есть все больше оснований полагать, что гиалуронат играет роль регуляции клеточной активности, например, при движении клеток. В последние 10 лет можно наблюдать всплеск числа публикаций, посвященных роли гиалуроната в миграции клеток, митозе, воспалении, опухолевом росте, ангиогенезе, оплодотворении и т.д.

БИОСИНТЕЗ ГИАЛУРОНАТА

Исследования биосинтеза гиалуроната можно условно разделить на 3 фазы. Первым автором и наиболее выдающимся ученым в первую фазу был Albert Dorfman. Он и его коллеги еще в начале 50-х описали источник моносахаридов, которые встраивались в гиалуроновые цепочки стрептококков. В 1955 году Glaser и Brown впервые показали возможность синтеза гиалуроната отдельной синтетической системой вне клетки. Они использовали фермент, выделенный из клеток куриной саркомы Rous и вводили в состав гиалуроновых олигосахаридов меченую изотопом 14С УТФ-глюкуроновую кислоту. Группа Dorfman также выделила молекулы-предшественники УТФ-глюкуроновой кислоты и УТФ-N-ацетилглюкозамина из экстракта стрептококков, а также синтезировала гиалуронат, пользуясь для этого ферментативной фракцией, выделенной из стрептококков.

Во второй фазе стало понятно, что гиалуронат должен синтезироваться по пути, отличному от гликозаминогликанов. Синтез гиалуроната, в отличие от сульфатированных полисахаридов, не требует активного синтеза белка. Ответственная за это синтаза расположена в мембране протопласта бактерий и плазматической мембране эукариотических клеток, но не в аппарате Гольджи. Синтетический аппарат, предположительно расположен на внутренней стороне мембраны, так как он оказался нечувствительным к воздействию внеклеточных протеаз. Кроме того, гиалуроновая цепочка пронизывает мембрану, так как воздействие на клетки гиалуронидазы усиливало продукцию гиалуроната. В 80-ые годы были предприняты несколько безуспешных попыток выделить синтазу из эукариотических клеток.

В начале 90-ых было показано, что гиалуронат-синтаза является фактором вирулентности стрептококков группы А. Взяв эти данные за основу, две группы авторов смогли определить ген и локус, отвечающий за синтез гиалуроновой капсулы. Вскоре удалось и клонировать ген этой синтазы и полностью его просеквенировать. Гомологичные белки, выделенные в последние годы у всех позвоночных, дали ценную информацию о ее строении. Важной областью исследования может стать изучение механизмов регуляции активности этой синтазы.

МЕТАБОЛИЗМ И ДЕГРАДАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в крови, а также его переноса от тканей по лимфатической системе стало основой для проведения совместного исследования, проводившегося доктором Robert Fraser в Мельбурне и лабораторией в г. Уппсала. Следовые количества полисахарида, меченого тритием по ацетильной группе были обнаружены в крови после введения его кроликам и людям, а метка соединения исчезала с периодом полувыведения равным нескольким минутам. Вскоре стало понятно, что большая часть радиации была накоплена печенью, где полимер быстро подвергался расщеплению. Меченая тритием вода обнаруживалась в крови через 20 минут. Авторадиограммы показали, что накопление радиации происходило также в селезенке, лимфоузлах и костном мозге. Методом фракционирования клеток было также показано, что в печени накопление происходило в основном в эндотелии синусов, что было позднее подтверждено при исследовании in vitro и при радиографии in situ. На этих клетках имеется рецептор для эндоцитоза гиалуроната, который принципиально отличается от прочих гиалуронат-связывающих белков. Далее полисахарид расщепляется в лизосомах. Исследования гиалуроната проводились и в других тканях, и теперь существует цельная картина метаболизма этого полисахарида.

В последнее время еще один аспект катаболизма гиалуроната стал объектом большого числа исследований. Из работ Gunther Kreil ( Австрия ) и Robert Stern и его коллег ( Сан-Франциско ) стали известны структуры и свойства различных гиалуронидаз. Эти данные стали основой для исследований, прояснивших биологическую роль этих ферментов.

ГИАЛУРОНАТ ПРИ РАЗЛИЧНЫХ ЗАБОЛЕВАНИЯХ

С самого начала интерес ученых был прикован к свойствам гиалуроната, содержащегося в суставной жидкости, особенно к изменению его уровня при заболеваниях суставов. Было также показано, что гиперпродукция гиалуроната наблюдается при целом ряде заболеваний, например, при злокачественных опухолях – мезотелиомах, однако в то время еще не существовало достаточно точных и чувствительных методов обнаружения гиалуроната. Такая ситуация имела место вплоть до 1980 годов, когда были разработаны новые аналитические методики, что вновь привлекло интерес ученых к колебаниям содержания гиалуроната при разных заболеваниях. Были определены содержание гиалуроната в крови в норме и при патологии, особенно при циррозе печени. При ревматоидном артрите содержание гиалуроната в крови возрастало при физических нагрузках, особенно по утрам, что давало объяснение симптому «утренней скованности» в суставах. При различных воспалительных заболеваниях уровень гиалуроната в крови повышался как местно, так и системно. Органные дисфункции также могли быть объяснены накоплением гиалуроната, что вызывало интерстициальные отеки тканей.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

Основной прорыв в медицинском использовании гиалуроната целиком является заслугой д-ра Balazs. Он разработал основные положения и идеи, первым синтезировал форму гиалуроната, которую хорошо переносили больные, продвигал идею промышленного производства гиалуроната и популяризовал идею применения полисахаридов в качестве лекарственных средств.

В 50-ые годы Balazs сконцентрировал усилия на изучении состава стекловидного тела и начал проводить опыты с заменителями для возможного протезирования при лечении отслойки сетчатки. Одним из наиболее серьезных препятствий на пути применения гиалуроновых протезов стала высокая сложность выделения чистого гиалуроната, свободного от всех примесей, вызывающих воспалительную реакцию.

Balazs разрешил эту проблему и получившийся в итоге препарат получил название НВФ-NaГУ ( невоспалительная фракция гиалуроната натрия ). В 1970 гиалуронат был впервые введен в суставы беговым лошадям, страдавшим от артритов, причем был получен клинический выраженный ответ на лечение с уменьшением симптомов заболевания. Двумя годами позже Balazs смог убедить руководство компании Pharmacia AB в г. Уппсала начать производство гиалуроната для использования в клинической и ветеринарной практике. Miller и Stegman по совету д-ра Balazs начали использовать гиалуронат в составе имплантируемых внутриглазных линз и гиалуронат быстро стал одним из самых употребительных компонентов в хирургической офтальмологии, получив торговое название Healon®. С того момента были предложены и испытаны многие другие варианты использования гиалуроната. Его производные ( например, поперечно структурированные гиалуронаты ) также были испытаны для использования в клинике. Особенно хочется отметить, что еще в 1951 году Balazs уже сообщал о биологической активности самых первых из полученных тогда производных гиалуроната.

ЗАКЛЮЧЕНИЕ

В данном докладе нам удалось охватить лишь основные и наиболее значимые события в истории исследования гиалуроната, и еще многие другие интересные факты и данные будут обсуждаться на нашем веб-сайте. Из представленных статей будет ясно, что исследования гиалуроната становятся все более актуальными и необходимыми. Сегодня ежегодно в научной литературе публикуется от 300 до 400 статей, посвященных гиалуронату.

Первая международная конференция, целиком посвященная гиалуронату, проводилась в г. Сен-Тропез в 1985 году, после чего были проведены конгрессы в Лондоне ( 1988 ), Стокгольме ( 1996 ) и Падуе ( 1999 ).

Рост интереса связан, во многом, с успешными работами Endre Balazs, который сделал очень много в области исследования свойств гиалуроната, получил самые первые данные о нем, указал на возможность клинического применения гиалуроната и является вдохновителем, подвигающим научное сообщество на новые исследования.

medgel.ru

Свойства гиалуроновой кислоты и ее строение

Изучить опыт пациентов и выбрать пластическую операцию или косметологическую процедуру можно на главной странице сайта

Гиалуроновая кислота, компонент внеклеточного матрикса, является высокомолекулярным гликозаминогликаном, который состоит из повторяющихся дисахаридов N-ацетилглюкозамина и глюкуроновой кислоты (Рис. 1). Эта относительно простая структура не изменилась при эволюционном развитии, и одинакова у всех млекопитающих. Это позволяет предположить, что гиалуроновая кислота является биологической молекулой особой важности . В организме гиалуроновая кислота присутствует в форме соли, гиалуроната, и обнаружена в высоких концентрациях в некоторых мягких соединительных тканях, в составе кожи, пуповины, синовиальной жидкости, и стекловидного тела. Значительное количество гиалуроновой кислоты найдено также в легких, почках, головном мозге, и мышечных тканях. При промышленном производстве гиалуроновая кислота обычно экстрагируется из гребня петуха и человеческой пуповины, или же производится в больших количествах путем бактериальной ферментации. Клеточный синтез гиалуроновой кислоты является очень своеобразным и тщательно контролируемым процессом. Большинство гликозаминогликанов синтезируется в аппарате Гольджи. Гиалуроновая кислота, однако, синтезируется на цитоплазматической мембране и сразу же транспортируется наружу в межклеточный матрикс. Этот процесс осуществляется группой белков, называемых ГК-синтазами, которые расположены в клеточной мембране. Для более подробной информации о ГК-синтазах см. другие статьи. Структура гиалуроновой кислоты обеспечивает уникальные физико-химические и биологические свойства, которые находятся в зависимости от молекулярного веса. Если экстрагировать гиалуроновую кислоту из тканей, она полидисперсна по размеру, со средним молекулярным весом в несколько миллионов. В физиологическом растворе, гиалуроновая кислота формирует ригидные спирали случайного размера, длина периметра в них около 2.5 мкм на каждую цепь массой 1*106, содержащую порядка 2650 дисахаридных повторов. Вторичные водородные связи формируются вдоль оси гиалуроновой кислоты, обеспечивая стабильность и формируя гидрофобные участки, благодаря чему гиалуроновая кислота организуется в упорядоченные структуры. Раствор гиалуроновой кислоты обладает высокой вязкоэластичностью, другими словами, при увеличении скорости сдвига цепи гиалуроновой кислоты выстраиваются по направлению движения, что приводит к снижению вязкости раствора. Этот эффект снижения вязкости можно наблюдать при выдавливании гиалуроновой кислоты из шприца. Гиалуроновая кислота – высоко-гидрофильный полимер. Каждая единица глюкуроновой кислоты содержит карбоксильную группу, благодаря чему при физиологическом pH возрастает полианионный характер ГК. В присутствии воды молекулы ГК могут увеличиваться в объеме в 1000 раз и формировать слабоупакованный гидратированный матрикс. Благодаря этому свойству, гиалуроновая кислота выполняет несколько функций во внеклеточном матриксе: она действует как заполнитель объема, смазочный материал, и осмотический буфер. Сеть из гидратированных полимеров гиалуроновой кислоты может действовать как сито, ограничивая движение патогенов, белков плазмы и протеаз. Кроме того, полионная структура ГК способна захватывать свободные радикалы, обладая вследствие этого антиоксидантными свойствами и принимая участие в регуляции воспалительного процесса.

Свойства гиалуроновой кислоты

Рис. 1. Структура природной ГК. ГК – биополимер, состоящий из повторяющихся дисахаридов, включающих в себя N-ацетилглюкозамин и глюкуроновую кислоту. Молекулярный вес нативной ГК обычно составляет несколько миллионов. Каждый дисахаридный мономер гиалуроновой кислоты содержит три возможных участка для модификации: гидроксильную, карбоксильную группы и ацетамидогруппу.

medgel.ru

Реферат Гиалуронан

скачать

Реферат на тему:

План:

Введение

Повторяющееся дисахаридное звено гиалуроновой кислоты

Гиалуро́новая кислота́ (гиалурона́т, гиалурона́н) — несульфированный гликозаминогликан, входящий в состав соединительной, эпителиальной и нервной тканей. Является одним из основных компонентов внеклеточного матрикса, содержится во многих биологических жидкостях (слюне, синовиальной жидкости и др.). Принимает значительное участие в пролиферации и миграции клеток, может быть вовлечена в процесс развития злокачественных опухолей. Продуцируется некоторыми бактериями (напр. Streptococcus). В теле человека весом 70 кг в среднем содержится около 15 граммов гиалуроновой кислоты, треть из которой преобразуется (расщепляется или синтезируется) каждый день.[1]

1. Функции

Гиалуроновая кислота является главным компонентом синовиальной жидкости, отвечающим за её вязкость. Наряду с лубрицином, гиалуроновая кислота — основной компонент биологической смазки.

Гиалуроновая кислота — важный компонент суставного хряща, в котором присутствует в виде оболочки каждой клетки (хондроцита). При связывании гиалуроновой кислоты с мономерами аггрекана в присутствии связующего белка, в хряще формируются крупные отрицательно заряженные агрегаты, поглощающие воду. Эти агрегаты отвечают за упругость хряща (устойчивость его к компрессии). Молекулярная масса (длина цепи) гиалуроновой кислоты в хряще уменьшается с возрастом организма, при этом общее её содержание увеличивается.[2]

Также, гиалуроновая кислота входит в состав кожи, где участвует в регенерации ткани. При чрезмерном воздействии на кожу ультрафиолета, происходит её воспаление («солнечный ожог»), при этом в клетках дермы прекращается синтез гиалуроновой кислоты и увеличивается скорость её распада.

Вследствие своего высокого содержания во внеклеточных матриксах, гиалуроновая кислота играет важную роль в гидродинамике тканей, процессах миграции и пролиферации клеток, а также участвует в ряде взаимодействий с поверхностными рецепторами клеток, в особенности со своим первичным рецептором CD44. Участие гиалуроновой кислоты в процессе развития опухолей может быть обусловлено именно её взаимодействием с CD44.

В то время как сама гиалуроновая кислота связывается с CD44, есть свидетельства того, что трансдукция воспалительного сигнала продуктов её деградации осуществляется через рецепторы макрофагов и дендритных клеток TLR2, TLR4 или через оба этих рецептора. Толл-подобные рецепторы (TLR) и гиалуроновая кислота принадлежат к системе врождённого иммунитета.

2. Структура

Химическая структура гиалуроновой кислоты была установлена в 1950-х годах в лаборатории Карла Мейера (Karl Meyer). Гиалуроновая кислота представляет собой полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, соединённых поочерёдно β-1,4- и β-1,3-гликозидными связями (см. рисунок). Молекула гиалуроновой кислоты может содержать до 25 000 таких дисахаридных звеньев. Природная гиалуроновая кислота имеет молекулярную массу от 5 000 до 20 000 000 Да. Средняя молекулярная масса полимера, содержащегося в синовиальной жидкости у человека составляет 3 140 000 Да.[3]

Молекула гиалуроновой кислоты является энергетически стабильной в частности благодаря стереохимии составляющих её дисахаридов. Объёмные заместители пиранозного кольца находятся в стерически выгодных положениях, в то время как меньшие по размеру атомы водорода занимают менее выгодные аксиальные позиции.

3. Биосинтез

Гиалуроновая кислота синтезируется классом встроенных мембранных белков, называющихся гиалуронат-синтетазами. В организмах позвоночных содержатся три типа гиалуронат-синтетаз: HAS1, HAS2 и HAS3. Эти ферменты удлиняют молекулу гиалуроновой кислоты, поочерёдно присоединяя к исходному полисахариду глюкуроновую кислоту и N-ацетилглюкозамин, при этом экструдируя («выдавливая») полимер через клеточную мембрану в межклеточное пространство.

4. Биодеградация

Гиалуроновая кислота деградируется семейством ферментов, называемых гиалуронидазами. В организме человека существуют по меньшей мере семь типов гиалуронидазоподобных ферментов, некоторые из которых являются супрессорами опухолеобразования. Продукты разложения гиалуроновой кислоты (олигосахариды и крайне низкомолекулярные гиалуронаты) проявляют проангиогенные свойства. Кроме того, недавние исследования показали, что фрагменты гиалуроновой кислоты, в отличие от нативного высокомолеколекулярного полисахарида, способны индуцировать воспалительный ответ в макрофагах и дендритных клетках при повреждениях тканей и отторжении трансплантированной кожи.

5. Применение

5.1. Применение в медицине

Тот факт, что гиалуроновая кислота входит в состав многих тканей (кожа, хрящи, стекловидное тело), обусловливает её применение в лечении заболеваний, связанных с этими тканями (катаракта, остеоартрит и др.): эндопротезы синовиальной жидкости; хирургическая среда для офтальмологических операций; препараты для мягкого увеличения тканей и заполнения морщин (в том числе в виде внутрикожных инъекций) в косметической хирургии.

5.2. Прочее применение

Гиалуроновая кислота используется в косметике, как составная часть средств ухода за кожей: кремов, губной помады, лосьонов и пр.

6. Происхождение названия

Название «гиалуроновая кислота» этому веществу было дано в 1934 году К. Мейером (K. Meyer) и Дж. Палмером (J. W. Palmer), которые впервые выделили его из стекловидного тела глаза.[4] Название происходит от греч. hyalos — стекловидный и уроновая кислота.

Сопряжённое основание для гиалуроновой кислоты носит название гиалуронат. Поскольку молекула в организме обычно существует в промежуточной полианионной форме, многие авторы считают более корректным использование термина гиалуронан.

Примечания

  1. Stern R (August 2004). «Hyaluronan catabolism: a new metabolic pathway». Eur J Cell Biol 83 (7): 317-25. PMID 15503855 - www.ncbi.nlm.nih.gov/pubmed/15503855?dopt=Abstract. Проверено 2007-06-12.
  2. Holmes M W A, Bayliss M T, Muir H (1988). «Hyaluronic acid in human articular cartilage. Age-related changes in content and size». Biochem J 250: 435-441. Бесплатная PDF-версия - www.biochemj.org/bj/250/0435/2500435.pdf
  3. Saari H et al. (1993) Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate. Inflammation 17:403-415.
  4. K. Meyer and J. W. Palmer (1934). «The polysaccharide of the vitreous humor». J. Biol. Chem. 107: 629-634. Бесплатная PDF-версия - www.jbc.org/cgi/reprint/107/3/629

wreferat.baza-referat.ru

Физические свойства

Гиалуроновая кислота – аморфный полимер. Очищенный препарат представляет собой белый мелкодисперсный порошок.

Макромолекулы гиалуроновой кислоты имеют линейное строение и характеризуются высокой степенью асимметрии.

Молекулярная масса гиалуроновой кислоты зависит от способа получения препарата и может составлять 50 - 8 000 кДа. Предположительно, природная гиалуроновая кислота в нативном состоянии имеет молекулярную массу 1 000 - 20 000 кДа. Средняя молекулярная масса полисахарида, содержащегося в синовиальной жидкости человека, составляет 3 000 - 3 500 кДа.

Гиалуроновая кислота – оптически активный полимер. Удельное оптическое вращение водных растворов составляет = – 70 - – 80 град.

Гиалуроновая кислота растворяется в воде и в водном растворе NaCl, не растворяется в органических растворителях.

Гиалуроновая кислота относится к классу природных полиэлектролитов. Поэтому вязкость диализованных водных растворов (т.е. очищенных от ионовNa+,K+и др.) гиалуроновой кислоты значительно выше вязкости растворов, содержащих низкомолекулярную соль.

Гиалуроновая кислота является гидрофильнымполимером и характеризуется высокой сорбционной способностью к молекулам воды. В присутствии воды гиалуроновая кислота образует упругие и в то же время эластичные (мягкие) гели, связывая при этом 10 000-кратный объем воды. (Это свойство лежит в основе стабилизирующей функции гиалуроновой кислоты. Например, она выполняет функцию стабилизатора геля встекловидном теле глаза, которое содержит всего 1% гиалуроновой кислоты и на 98% состоит из воды.) Особенность гелей – прочное удерживание молекул воды, которая практически не испаряется из геля даже в сухой атмосфере.

В организме человека содержится изрядное количество воды. Примерно 15 - 18% (в зависимости от возраста и генетических особенностей организма) всей воды находится в дермальном слое кожи. Молекулы воды в результате диффузии через мембрану кровеносных сосудов проникают в дерму, а затем испаряются с поверхности рогового слоя. Оба процесса носят пассивный характер. Гиалуроновая кислота, благодаря своим гидрофильным свойствам, регулирует водный баланс ткани. Высокая гидрофильность обуславливает широкое применение этого полисахарида в косметологии и медицине.

Химические свойства

1. Гидролитическая деструкция. При полном кислотном гидролитическом расщеплении гиалуроновой кислоты образуются β-D-глюкуроновая кислота, β-N-глюкозамин и уксусная кислота:

2. Ферментативная деструкция. Биодеградацию гиалуроновой кислоты вызывает семейство ферментов, называемыхгиалуронидазами. Эти ферменты делятся на два основных типа:тестикулярныеибактериальныегиалуронидазы. Продуктами ферментативной деструкции под действием термоустойчивых тестикулярных гиалуронидаз являются тетраолигосахариды (состоящие из двух элементарных единиц макромолекулы гиалуроновой кислоты, соединенных β-(1→4)-гликозидной связью), под действием бактериальных гиалуронидаз – дисахариды (β-N-глюкозамин-(1→4)-β-D-глюкуронат):

Для получения олигомеров гиалуроновой кислоты используют протеолитические ферменты(папини др.). Олигомерные продукты ферментативной деструкции гиалуроновой кислоты проявляют проангиогенные свойства. Кроме того, олигомеры гиалуроновой кислоты, в отличие от нативного высокомолеколекулярного полисахарида, способны индуцировать воспалительный ответ в макрофагах и дендритных клетках при повреждении тканей.

В организме человека существуют по меньшей мере семь типов гиалуронидазоподобных ферментов, некоторые из которых являются супрессорамиопухолеобразования.

studfiles.net

Гиалуроновая кислота

СПИСОК ПАТЕНТОВ С УПОМИНАНИЕМ ГИАЛУРОНОВОЙ КИСЛОТЫ

 

РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ Патент №2157381

(54) СПОСОБ ПОЛУЧЕНИЯ ГИАЛУРОНОВОЙ КИСЛОТЫ

(57) Реферат:

Изобретение относится к области химической технологии и может быть использовано при производстве гиалуроновой кислоты для медицинских целей. Задача, решаемая изобретением, заключается в разработке способа получения гиалуроновой кислоты, который отличается относительной простотой и небольшим временем протекания технологического процесса. Для решения поставленной задачи в известном способе получения гиалуроновой кислоты, включающем многостадийную экстракцию измельченных петушиных гребней, для осаждения уксусной кислотой используют пятую и последующие вытяжки, а после обработки щелочью последовательно производят ферментный гидролиз белка, ультрафильтрацию, спиртоосаждение этанолом и последующее растворение осадка в водном растворе последнего. Заявленный способ не требует значительных расходов химических реактивов, а этанол легко перегоняется и возвращается в техпроцесс. Это характеризует данный способ как экономичный и предпочтительный для использования и тиражирования. 3 з.п. ф-лы. Изобретение относится к области химической технологии и может быть использовано при производстве гиалуроновой кислоты для медицинских целей. Известен способ получения гиалуроновой кислоты путем обескровливания петушиных гребней, измельчения их, экстракции водой, термообработки экстракта при 90-100oC, охлаждения экстракционной массы до 4-6oC, отделения липидов, фильтрации массы, очистки фильтрата и выделения препарата путем введения активированного угля, перемешивания массы и фильтрования ее, а затем смешиванием полученного фильтрата с осадком сырья и двухстадийной экстракцией его водой в присутствии пенициллина с последующей сушкой экстракта /авт. св. СССР N1616926, C 08 B 37/08, БИ N 48, 1990 /. Способ отличается сложностью при его реализации на производстве. Применение пенициллина может вызвать аллергическую реакцию организма на препарат. Выделение препарата путем введения активированного угля влечет за собой большие потери продукта, что весьма нетехнологично. Известен способ получения гиалуроновой кислоты, согласно которому сырье - гребни петухов и кур обескровливают, измельчают, многократно отмывают этанолом, содержащим хлороформ, дважды экстрагируют водой, объединенные экстракты подвергают депротеинизации путем многократной обработкой хлороформом, целевой продукт осаждают этанолом, обрабатывают ацетоном и сушат /Layton G. T., Stanwerth D.R. J. Immuol. Methods, 1984,42, p.329/. Полученный известным способом продукт используется преимущественно в офтальмологии, так как он содержит до 0,5% белковых веществ, однако использование ацетона при его производстве, помимо сохранения его неприятного запаха, может привести к неприятным последствиям в случае, когда в продукте (имеется в виду случайно) могут оказаться остатки опасной жидкости. Известен способ получения гиалуроновой кислоты, включающий обескровливание и получение сырья - гребней петухов и кур, многократную промывку измельченного сырья этанолом и хлороформом, экстракцию промытого и измельченного сырья водой, подкисленной до pH 3-4, депротеинизацию профильтрованного экстракта активированным углем, а затем диэтиламиноэтилцеллюлозой, фильтрацию последовательным пропусканием депротеинизированного экстракта через разнообразные фильтры и сушку целевого продукта / патент РФ N 2074196, C 08 B 37/08, БИ N 6,1997 /. Полученный продукт содержит менее 0,05% белка. Однако это трудно согласуется с экстракцией сырья водой, подкисленной до pH 3-4 при 90-100oC в течение 40-50 мин. При таких условиях в режиме экстракции протеогликановый агрегат (АПГ) - белково-гиалуроновый комплекс - коагулирует. Активированный уголь, используемый для первой стадии депротеинизации, адсорбирует на свою поверхность не только свободный белок, но и саму кислоту. При такой технологии выход продукта составляет лишь 0,09-0,12% от массы сырья, что не оправдано экономически. Известен способ получения гиалуроновой кислоты, сходный с заявленным по наибольшему количеству существенных признаков / патент РФ N 2102400, C 08 B 37/08, БИ N 2,1998 /. Способ включает двухстадийную экстракцию измельченных петушиных гребней, объединение экстрактов, осаждение гиалуроновой кислоты уксусной кислотой, растворение осадка в воде, обработку едким натром, окончательную очистку и получение концентрированного целевого продукта лиофилизацией. Продукт, полученный известным способом, не нормируется по содержанию в нем белка. Это обосновано в случае его наружного применения, например в дерматологии и косметике. Повышение стабильности гиалуроновой кислоты при наличии в ее составе белка в то же время снижает ее биологическую совместимость с организмом потребителя (медицинская и ветеринарная практика). При этом необходимо отметить такие положительные качества известной технологии, как относительная простота, экономичность и стабильность целевого продукта по химическому составу. Задача, решаемая изобретением, заключается в разработке очередного способа получения гиалуроновой кислоты, который отличается относительной простотой и небольшим временем протекания технологического процесса, в результате чего появится продукт с минимальным содержанием белка, что позволит применять его в медицинских целях, например в гинекологии. Для решения поставленной задачи в известном способе получения гиалуроновой кислоты, включающем многостадийную экстракцию измельченных петушиных гребней, объединение экстрактов, осаждение уксусной кислотой, растворение осадка в воде, обработку едким натром, окончательную очистку и получение концентрированного целевого продукта, для осаждения уксусной кислотой используют пятую и последующие вытяжки, а после обработки щелочью последовательно производят ферментный гидролиз белка, ультрафильтрацию, спиртоосаждение этанолом и последующее растворение осадка в водном растворе последнего. Кроме этого:

- ферментный гидролиз белка ведут раствором папаина в течение 20-40 ч с восстановлением pH раствора до 6-7 через каждые 6-8 ч, а спиртоосаждение ведут 90-96% этанолом;

- окончательную очистку продукта ведут мембранной фильтрацией его раствора в 30-50% растворе этанола в воде;

- концентрированный целевой продукт получают удалением этанола из отфильтрованного раствора. Гиалуроновую кислоту получают следующим образом. Петушиные гребни очищают от посторонних предметов, заливают холодной водой и выстаивают в течение некоторого времени с периодической сменой воды. Гребни извлекают, отжимая воду, и измельчают до получения фарша. Фарш заливают водой, доводят до кипения, экстракт отделяют. Процесс вытяжки повторяют еще три раза. Таким образом происходит удаление липидов и частично свободных белков. Полученные экстракты направляются на другие технологические нужды. Начиная с пятой и последующих вытяжек экстракты объединяют и фильтруют для отделения твердых включений и больших белковых конгломератов. Для осаждения АПГ отфильтрованные экстракты обрабатывают уксусной кислотой. Надосадочную жидкость удаляют. Осадок растворяют в дистиллированой воде и обрабатывают раствором щелочи для получения натриевой соли гиалуроновой кислоты (ГУК). Далее производят ферментный гидролиз присоединенного белка, входящего в состав АПГ. Гидролизованный белок отделяют ультрафильтрацией. В концентрированном продукте производят спиртоосаждение ГУК этанолом. Одновременно осуществляется стерилизация вещества. Надосадочную жидкость удаляют. Полученный коагулят растворяют в смеси этанола с водой, этот раствор фильтруют на мембранных фильтрах до получения совершенно прозрачного фильтрата. Такой способ фильтрации позволяет не только отфильтровывать споры бактерий, но и сохранять стерильность на протяжении всего процесса. Кроме этого, этанол способствует прохождению макромолекул ГУК через поры мембраны, что значительно увеличивает производительность (в сравнении с водным раствором ГУК). В дальнейшем этанол выводится из раствора вакуумным выпариванием. После этой операции можно производить лиофильную сушку, так как выпаривание приводит к значительному увеличению концентрации раствора. Реализацию способа получения гиалуроновой кислоты проиллюстрируем на следующем примере. 23 кг петушиных гребней очищают от посторонних предметов и тщательно промывают холодной водой. Полученное сырье измельчают до получения фарша вязкости 2,1. Фарш заливают водой в пропорции 1: 2,5, доводят до кипения, экстракт отделяют. Процесс вытяжки повторяют еще три раза. Экстракты первых четырех вытяжек не участвуют в дальнейшем технологическом процессе. Начиная с пятой и последующих вытяжек экстракты объединяют и фильтруют на тканях для отделения твердой фазы. Отфильтрованные экстракты обрабатывают уксусной кислотой при pH 5 в течение 18,5 ч. Формируется осадок. Надосадочную жидкость сливают. Осадок смешивают с дистиллированной водой в соотношении 1:3 и обрабатывают раствором едкого натра при pH 8. Добавляют 0,1% раствор папаина в количестве 5 литров. Периодически в течение 26 ч с интервалом в 6,5 ч pH раствора восстанавливают до 7. Полученный продукт очищают ультрафильтрацией и производят его обработку 96% этанолом. Надосадочную жидкость сливают. Осадок смешивают с 40% раствором этанола в воде. Производят окончательную очистку методом мембранной фильтрации. Путем выпаривания этанола в течение 0,5 ч концентрацию продукта доводят с 1,5 до 3% ГУК. После этого производят лиофильную сушку. Полученный препарат представляет собой натриевую соль гиалуроновой кислоты - так называемое "сухое вещество" с минимальным содержанием белка. Как показала практика, предпочтительными для осаждения гиалуроновой кислоты уксусной кислотой являются пятая и шестая вытяжки. Объем осадка в них сопоставим с первыми четырьмя вытяжками, количество липидов - практически равно нулю, содержание белка - минимально, а количество "сухого вещества" - выгодно отличается в большую сторону. Заявленный способ не требует значительных расходов химических реактивов, а этанол легко перегоняется и возвращается в техпроцесс. Это характеризует данный способ как экономичный и предпочтительный для использования и тиражирования.

Формула изобретения

1. Способ получения гиалуроновой кислоты, включающий многостадийную экстракцию измельченных до состояния фарша петушиных гребней, объединение экстрактов, осаждение гиалуроновой кислоты уксусной кислотой, растворение осадка в воде, обработку едким натром, окончательную очистку и получение концентрированного целевого продукта, отличающийся тем, что процесс экстракции включает доведение до кипения залитого водой фарша, причем для осаждения уксусной кислотой используют пятую и последующие вытяжки, а после обработки щелочью последовательно производят ферментный гидролиз белка, ультрафильтрацию, спиртоосаждение этанолом и последующее растворение осадка в водном растворе последнего. 2. Способ по п.1, отличающийся тем, что ферментный гидролиз белка ведут раствором папаина в течение 20 - 40 ч с восстановлением рН раствора до 6 - 7 через каждые 6 - 8 ч, а спиртоосаждение ведут 90 - 96%-ным этанолом. 3. Способ по п. 1 или 2, отличающийся тем, что окончательную очистку продукта ведут мембранной фильтрацией его раствора в 30 - 50%-ном растворе этанола в воде. 4. Способ по п.3, отличающийся тем, что концентрированный целевой продукт получают удалением этанола из отфильтрованного раствора.

placenta-lab.ru


Смотрите также