Введение
«Гетерос» — по-гречески разный. Это циклические соединения, в кольца которых, кроме углеродных атомов входят атомы других элементов, например, азота, серы, кислорода (N,S,O) и др. они называются гетероатомами.
Эти соединения имеют большое биологическое значение, они распространены в природе в виде витаминов, алкалоидов, пигментов и других составных частей животных и растительных клеток, участвуют в построении аминокислот, входящих в состав белков; они входят в состав нуклеотидов, нуклеиновых кислот.
Классификация
В основу классификации положены фора ядра и число гетероатомов.
1) Пятичленные гетероциклы:
а) с одним гетероатомом;
б) с двумя гетероатомами и тд.
2) Шестичленные гетероциклы:
а) с одним гетероатомом;
б) с двумя гетероатомами и тд.
3) Гетероциклы с конденсированной системой ядер.
Пятичленные гетероциклы с одним гетероатомом
Важнейшими представителями являются следующие:
НС СН НС СН HCCH
НС СН НС СН HCCH
О SNH
фуран Тиофен Пиррол
Все эти соединения в своем составе имеют по четыре углеродных атома и один гетероатом. У этих соединений имеются две двойные связи, между которыми имеется одинарная связь (это напоминает диеновые углеводороды с сопряженной системой двойных связей). Однако, в химическом отношении ионии больше напоминают ароматические соединения. Каждый углеродный атом у них затрагивает 3 электрона на образование обычных σ-свзей, то есть связей, образованных гибридизированными электронными облаками, а один электрон образует Р — электронное облако (в виде правильной восьмерки).
У гетероатома на образование σ-связей израсходовано два электрона, а еще два электрона образуют Р-электронные облака. В результате видим, то в ядре имеется 6 Р — электронных облаков, которые взаимно перекрываясь, образуют сплошное Р – электронное облако, как и в бензоле. Поэтому они и напоминают по свойствам ароматические соединения, особенно ярко они выражены у тиофена. Как и у ароматических соединений, у них прочное ядро – при обычных химических реакциях не разрывается. И более характерными для них являются реакции замещения атомов водорода.
Более подвижен водород в α-положении, то есть при углероде, который расположен рядом с гетероциклом.
Приведенные гетероциклы легко переходят друг в друга, по реакции Ю.К.Юрьева, которая протекает при катализаторе Al2 O3 и при t=4500C.
НС СН +h3 SНС СН
НС СН +h3 O НС СН
О+Nh4 +Nh4 S
+h3 O +h3 S
HC CH
HCCH
NH
При реакциях гидрогенизации этих гетероциклов образуются их гидрированные производные, у которых уже нет двойных связей.
Н2 C СН2 Н2 C СН2 h3 CCh3
Н2 C СН2 Н2 C СН2 h3 CCh3
О SNH
тетрагидрофуран тетрагидротиофен тетрагидропиррол
Фуран- это бесцветная жидкость, со слабым запахом хлороформа. Температура кипения 31.90С. это вещество нейтрального характера. Не растворим в воде. Фуран и его гомологи содержатся в древесном дегте. В промышленности фуран получают из фурфурола путем отщепления окиси углерода (СО).
НССН HC CH
Ni, 2000C + CO
НС С – С = О HCCH
О Н О
фурфурол фуран
В природе широко встречаются производные тетрагидрофурана — это фурановые формы сахаров.
Тиофен – это бесцветная жидкость, с запахом бензола, температура кипения 840С, не растворим в воде. Содержится в каменноугольной смоле, которая образуется при коксовании каменного угля. Выделяется с фракцией бензола.
В химическом отношении тиофен ярче всех проявляет ароматические свойства. Он легче, чем бензол, хлорируется, сульфируется, нитруется. В природе имеется ряд производных тиофена, один из них является биотином. Это витамин H.
C = O
HN NH
HC CH
h3 C CH – (Ch3 )4 – C = O
SOH
Биотин – витамин роста
Он входит в состав ферментов, участвующих в процессах карбоксилирования. При недостатке биотина наблюдается прекращение роста, заболевание кожи, выпадение волос, шерсти у животных и др.
Пиррол – это бесцветная жидкость, с запахом хлороформа, буреет на воздухе вследствие окисления. Температура кипения 1300С, практически не растворим в воде. Пиррол обладает слабовыраженными кислотными свойствами, а именно: атом водорода в иминогруппе NHможет замещаться металлами (Na или K).
НС СН HCCH
+NaOH +Н2 О
НССН HC CH
NH N – Na
пиррол N – натрий пиррол
Вместо Na можно ввести углеводородный радикал, действуя галогенпроизводными:
НССН HC CH HC CH
+Ch4Iизомеризация
НССН HC CH HC C – Ch4
N – Na N – Ch4 NH
N – натрийпиррол N – метилпирролα-метилпиррол
При реакции гидрогенизации пиррола образуется два продукта: неполный продукт, он называется пирролин (в этом случае присоединяется только два атома водорода) и полный продукт, называется пирролидин (присоединяется еще два атома водорода).
НССН HC CH h3 C Ch3
+2H+2H
НССН h3 C Ch3 h3 C Ch3
NH NHNH
пирролпирролинпирролидин
Производными пирролидина являются две аминокислоты: пролин и оксипролин. Ядра пиррола и пирролина входят в ядро порфина, который образует различные производные, называемые порфиринами. К ним относятся красящее вещество крови – гемоглобин, и растений – хлорофилл.
Ядро порфирина:
1 2
CH
NNH
CHCH
NHN
CH
4 3
Гем крови содержит железо, которое связывает четыре пиррольных ядра и у всех ядер имеются боковые ответвления.
Строение гемма крови:
Ch4 CH=Ch3 Ch4 CH=Ch3
1 2
CH
N N
CH Fe CH
N N
CH
4 3
Ch4 Ch3 – Ch3 Ch3 – Ch3 Ch4
O=CC = O
OHHO
Строение хлорофилла:
Ch4 CH=Ch3 Ch4 Ch3 – Ch4
1 2
CH
N N
CH Mg CH
N N
C
4 3
H – C
Ch4 Ch3 C=O C=O Ch4
Ch3 O – Ch4
O=C – O – C20 h49
Пятичленные гетероциклы с двумя гетероатомами
К ним относятся:
Имидазол
HCN
HCCH.
NH
Ядро имидазола входит в состав аминокислоты гистидина, а также в состав более сложно построенного гетероциклического ядра – пурина, витамина В12, алкалоидов и других соединений.
Тиазол
HC N
HC CH
S
Тиазол имеет большое биологическое значение. Ядро полностью гидрированного тиазола входит в состав пенициллина. Ядро тиазола входит в состав витамина В1 медицинского препарата сульфазола и др.
Шестичленные гетероциклы с одним гетероатомом
Представители:
СН2 СН
НС СН НС СН
НС СН НС СН2
О О
γ-пиран α-пиран
В природе пиран не встречается, но широко известны его производные – тетрагидропиран
СН2
Н2 С СН2
— тетрагидропиран
Н2 ССН2
О
Это пирановые формы сахаров.
Пиридин
Это жидкость с неприятным запахом, температура кипения 1150С, смешивается с водой. В химическом отношении пиридин сильно напоминает ароматические соединения. Как и в бензольном ядре у него имеются 6 р-электронных облаков, по одному у атомов углерода и одно у азота. Перекрываясь взаимно, они обра- зуют сплошное р – электронное облако, как и в молекуле бензола.
СН +
НС – СН –
НС+СН +
N –
Так же, как и бензол, пиридин сульфируется, нитруется, галогенируется. Сам пиридин не окисляется, а окисляются только его производные, у которых имеются боковые радикалы. Отличия пиридина от ароматических соединений следующие:
1. В молекуле пиридина происходит смещение электронной плотности, а именно: азот имеет большую электронную плотность. Углерод в α-положении – имеет меньшую электронную плотность. В бензоле же этого не наблюдается. У бензола смещение электронной плотности наблюдается в том случае, если вводится какой-либо заместитель.
В результате смещения электронной плотности молекула пиридина становится полярной. Дипольный момент ее составляет μ=2,2Д.
СН +
НС – СН –
НС+СН +
N –
2. В молекуле пиридина происходит введение электрофильных заместителей с большими трудностями, чем в бензоле, а нуклеофильные заместители вводятся легче, чем в бензоле.
Производные пиридина
1.никотиновая кислота. 2.амид никотиновой кислоты
СН ОН СН Nh3
НС С – С = О НС С – С = О
НССН НС СН
NN
Никотиновая кислота и ее амид представляют собой витамин РР. Недостаток этого витамина вызывает заболевание пеллагру, выражающуюся в своеобразной сухости кожи, поражении центральной нервной системы.
Производными пиридина является ряд алкалоидов. Это азотсодержащие органические соединения гетероциклического строения. Они содержатся и в растительных организмах и являются продуктами обмена веществ в растениях. Наиболее богаты алкалоидами двудольные растения(семейства маковых, пасленовых и др.)
Многие алкалоиды обладают сильным физиологически действием: в больших количествах они являются ядами, а в малых их часто применяют как ценные лекарственные средства. На вкус эти вещества горькие, железистого цвета.
К алкалоидам, производным пиридина относятся следующие:
1.Конин:
Это жидкость маслообразная, содержится в дурмане. Чрезвы- чайно ядовит, вызывает паралич двигательных нервных оконча ний.
СН2
Н2 С СН2
Н2 ССН – Ch3 – Ch3 – Ch4
NH пропил
2.Никотин
h3 CCh3
СН
НС С – HCCh3
N
НССН Ch4 гидрированное ядро пиролла
N
ядро пиридина
Никотин это бесцветная маслянистая жидкость, смешивающаяся с водой, обладает запахом табака, на воздухе быстро буреет. Содержится в листьях табака (до 8%). Небольшие количества никотина возбуждают нервную систему, большие количества ядовиты, вызывают паралич дыхательных центров. Смертельная доза никотина для человека составляет около 40мг.
Водные суспензии никотина в больших количествах используются для борьбы с вредителями сельского хозяйства.
3. Анабазин
СН2
h3 CCh3
СН
НС С – HCCh3
NН
НССН гидрированное ядро пиридина
N
ядро пиридина
Это важнейший алкалоид ядовитого азиатского растения ежовника безлистного. Анабазин, подобно никотину, очень ядовит и обладает высоким инсектицидным действием.
Шестичленные гетероциклы с двумя гетероатомами
Важнейшим представителем является пиримидин: Это кристаллическое вещество, обладающее слабоосновными свойствами Пиримидиновое ядро встречается в многочисленных природных соединениях витаминах, коферментах, нуклеиновых кислотах. В молекуле пиримидина два азота. В ядре наблюдается смещение электронной плотности. Наибольшая электронная плотность у атомов азота и у 5-го углеродного атома. В молекуле пиримидина образуется секстет из р- электронных облаков. Это придает соединению ароматический характер.
6 CH+ .
N – 15 CH – ,
HC+24 СН +
3 N –
В природе большое биологическое значение имеют окси и аминопроизводные пиримидина, так называемые пиримидиновые основания:
1. Урацил – 2,6-диоксипиримидин
2. Тимин – 2,6-диокси-5-метилпиримидин
3. Цитозин – 2-окси-6-аминопиримидин
4. Барбитуровая кислота – 2,4,6 – триоксипиримидин.
Эти соединения входят в состав нуклеотидов, нуклеиновых кислот. Они проявляют кето-енольную таутомерию, то есть могут находиться в енольной и кетонной формах.
Урацил:
С – ОН C = O
NCHHNCH
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Тимин:
С – ОН C = O
NC – СН3 HNC – СН3
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Цитозин:
С – Nh3 C – Nh3
N CH N CH
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Барбитуровая кислота:
С – ОН C = O
NCHHNCh3
HO – CC – ОHO = CC= О
NNH
енольная форма кетонная форма
Производными барбитуровой кислоты являются снотворные вещества: барбитол, люминал и др.
Производным пиримидина является витамин В1 :
C – Nh3 – HCL
N C – Ch3 – N C – Ch4
Ch4 – C CH HC C – Ch3 – Ch3 – OH
N S
Витамин В1 содержится большом количестве в оболочке рисовых зерен, отрубях, дрожжах, ростках пшеницы. При отсутствии или недостатке его в пище у человека развивается болезнь бери-бери, а у животных – полиневрит.
Список использованной литературы
1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. Под ред. Дебова С.С. / М., «Медицина», 1990.
2. Николаев А.Я. Биохимия. / М., «Высшая школа», 1989.
3. Строев Е.А. Биологическая химия. / М., «Высшая школа», 1986.
4. Бышевский А.Ш… Терсенев О.А. Биохимия для врача. /Екатеринбург, 1994.
5. Кушманова О.Д., Ивченко Г.М. Руководство к лабораторным занятиям по биологической химии. / М., «Медицина», 1983.
www.ronl.ru
Гетероциклические соединения
К гетероциклическим относятся соединения, содержащие циклы, в которых один или два (несколько) атомов являются элементами, отличными от углерода. Гетероциклические системы многообразны. Элементы, которые участвуют в образовании цикла, называют гетероатомами. В соответствии с количеством гетероатомов циклы разделяют на моно-, ди-, тригетероатомные кольца.
Гетероциклы могут содержать три, четыре, пять и более атомов. Как и в случае карбоциклических соединений, наиболее устойчивы циклы с пятью и шестью атомами.
Число возможных гетероциклических систем увеличивается из-за существования конденсированных ядер.
Широко распространены гетероциклические системы в природе, являются побочными продуктами при коксовании угля, переработки нефти и сланцев.
Наиболее важны гетероциклические системы, обладающие ароматическими свойствами. Простейшие из них содержат по одном гетероатому:
Если исходить из этих структур, то можно было бы ожидать, что каждое соединение будет обладать свойствами сопряженных диенов и свойствами амина, простого эфира, сульфида. Но для указанных соединений не характерны реакции, которые можно ожидать из-за наличия гетероатомов.
Для пятичленных циклов типичными являются реакции электрофильного замещения: нитрование, сульфирование, галогенирование, ацилирование, сочетание с солями диазония. Поэтому пиррол, фуран и тиофен можно считать ароматическими соединениями.
Рассмотрим строение тиофена исходя из молекулярных орбиталей. Каждый атом кольца связан s-связями с тремя другими атомами. Для образования этих связей атом использует три sp2-орбитали, которые лежат в плоскости под углом 120о. Каждый атом затрачивает один электрон на образование s-связи, после чего у атома углерода остается один электрон, а у атома серы - два электрона. Эти электроны занимают p-орбитали. Перекрывание p-орбиталей приводит к возникновению p-облаков выше и ниже плоскости кольца. Эти p-облака содержат в сумме шесть p-электронов (ароматический секстет).
Делокализация p-электронов стабилизирует кольцо. В результате этого тиофен вступает в реакции с сохранением кольца, т.е. в реакции замещения.
Номенклатура и изомерия
Нумерация всегда начинается с гетероатома. Если в цикле имеется несколько гетероатомов, то их нумеруют в следующем порядке: O, S, N. Если имеется третичный азот и NH, то нумерацию начинают с NH.
Положения 2 и 5 часто обозначают a и a’, а положения 3 и 4 - b и b’. По рациональной номенклатуре названия гетероциклов: фуран, тиофен, пиррол, имидазол, тиазол. В систематической номенклатуре природа гетероатома обозначается приставками:
O |
окса- |
S |
тиа- |
N |
аза- |
размер цикла
3 |
-ир |
4 |
-ет |
5 |
-ол |
6 |
-ин |
7 |
-ен |
8 |
-ок |
Соответственно суффиксами обозначается степень ненасыщенности:
-идин |
насыщенный цикл с атомом N |
-ан |
насыщенный цикл без атома N |
-ин |
ненасыщенный цикл с атомом N |
Допускаются упрощения названий.
Методы получения пятичленных гетероциклов
Пиррол и тиофен содержатся в каменноугольной смоле. Фракционной перегонкой смолы тиофен (Тпл 84 оС) перегоняется вместе с бензолом (Ткип 80 оС) и содержание его в бензоле 0,5% (1884 г., В.Мейер). Тиофен в промышленности может быть получен при взаимодействии бутана с серой при 560 оС:
Гомологи получают при нагревании 1,4-дикарбонильных соединений:
Фуран:
Пентозы, претерпевая дегидратацию и циклизацию, образуют фурфурол. При нагревании его с окисным катализатором образуется фуран. При сухой перегонке соли пирослизевой кислоты:
Большинство замещенных тиофена и фурана получают циклизацией:
Пятичленные циклы могут взаимно переходить друг в друга (реакция Юрьева) при нагревании над Al2O3 при 450 оС:
Электрофильное замещение, реакционная способность, ориентация
Фуран, пиррол и тиофен обладают значительной реакционной способностью по отношению к электрофильным реагентам. Это вызвано несимметричным распределением заряда в этих гетероциклах, из-за чего на углеродных атомах в цикле сосредоточен больший отрицательный заряд, чем в бензоле. Фуран обладает несколько большей реакционной способностью, чем пиррол.
Фуран бурно реагирует с сильными кислотами с образованием смолистых веществ, пиррол в результате протонирования по атому азота также неустойчив в кислых средах и полимеризуется. Тиофен более устойчив по отношению к кислотам, что позволяет использовать кислые реагенты при выборе условий для реакций электрофильного замещения.
Механизм электрофильного замещения в пятичленных гетероциклах существенно не отличается от общепринятого механизма замещения в ароматических соединениях, который предполагает изменение гибридизации атакуемого атома углерода от sp2 в sp3 и образование комплексов, являющимися промежуточными соединениями. Образование s-комплекса является стадией, определяющей скорость реакции.
В настоящее время основные пятичленные гетероциклы расположены в ряд по реакционной способности:
пиррол ³ фуран > теллурофен > селенофен > тиофен
Электрофильное замещение по a-положению происходит легче, чем в b-положение, так как в возникающем при этом промежуточном переходном состоянии в результате присоединения по a-положению резонансная стабилизация больше, чем в катионе, являющаяся результатом присоединения по b-положению.
В катионе (2) двойная связь не может участвовать в мезомерной делокализации положительного заряда.
Скорость замещения зависит от различия энергий основного и переходного состояний, и более высокую скорость будет иметь тот процесс, который протекает через более стабильное переходное состояние.
Реакционная способность a- и b-положений сильно зависит от электрофильного агента и экспериментальных условий. Чем меньше сила электрофильного агента, тем выше величина a:b. Это соотношение зависит также от гетероатома. 2-Монозамещенные производные образуют с элктрофильными реагентами смеси изомеров. Положения 2 и 5 находятся в сопряжении подобно п-положениям в бензоле, поэтому возможно резонансное взаимодействие реакционного центра в положении 5 с заместителем в положении 2. Положения 2 и 4 являются положениями мета-типа, между которыми невозможно резонансное взаимодействие. Если в положении 2 находятся орто-пара-ориентирующие группы, то замещение протекает в положении 5, которое является a-положением по отношению к гетероатому и пара-положением по отношению к заместителю. Если мета-ориентирующий заместитель находится в положении 2, возникает конкуренция между ориентирующим влиянием гетероатома и заместителя. В фуране и тиофене, для которых соотношение a:b велико, a-ориентирующий эффект гетероатома преобладает и замещение протекает, главным образом, в положении 5. В пирроле образуется смесь изомеров с преобладанием 4-изомера.
Реакции электрофильного замещения в фуране
1. Бромирование диоксандибромидом:
2. Сульфирование комплексом SO3 с пиридином (А.П. Терентьев, Л.А. Яновская):
3. Ацилирование
4. Нитрование фурана ацетилнитратом с обработкой продукта присоединения пиридином
Реакции электрофильного замещения тиофена
1. Хлорирование тиофена сульфурилхлоридом:
2. Тиофен легко сульфируется h3SO4 (95%) с образованием 2-тиофенсульфокислоты:
3. Нитрование ацетилнитратом приводит к смеси 2- и 3-нитротиофенов в соотношении 6:1.
4. Введение альдегидной группировки в тиофен может быть достигнуто при взаимодействии тиофена с комплексом POCl3 и N,N-диметилформамида.
5. Бромирование тиофена может протекать при взаимодействии с бромом:
Лучшие выходы достигаются при бромировании N-сукцинимидом
6. Ацилирование тиофена в положение 2:
Реакции электрофильного замещения пиррола
Для пиррола также характерны реакции электрофильного замещения в мягких условиях. Кислотность пиррольного водорода намного выше, чем кислотность алифатических аминов. При нагревании с сухим KOH пиррол депротонируется.
1. Соли пиррола со щелочными металлами получают действием калия или натрия в жидком аммиаке:
2. Пирролнатрий легко вступает в реакции замещения натрия на алкилы с образованием N-алкилпиррола
3. При нагревании N-алкилпиррол изомеризуется в С-алкилпирролы:
4. Амилнитрат реагирует с пирролом в присутствии этилата натрия с образованием натриевой соли 3-нитропиррола:
www.referatmix.ru
Введение
«Гетерос» — по-греческиразный. Это циклические соединения, в кольца которых, кроме углеродных атомоввходят атомы других элементов, например, азота, серы, кислорода (N,S,O)и др. они называются гетероатомами.
Эти соединения имеютбольшое биологическое значение, они распространены в природе в виде витаминов,алкалоидов, пигментов и других составных частей животных и растительных клеток,участвуют в построении аминокислот, входящих в состав белков; они входят всостав нуклеотидов, нуклеиновых кислот.
Классификация
В основу классификацииположены фора ядра и число гетероатомов.
1) Пятичленныегетероциклы:
а) с однимгетероатомом;
б) с двумягетероатомами и тд.
2) Шестичленныегетероциклы:
а) с однимгетероатомом;
б) с двумягетероатомами и тд.
3) Гетероциклы сконденсированной системой ядер.
Пятичленные гетероциклыс одним гетероатомом
Важнейшимипредставителями являются следующие:
/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>НС СН НС СН HC CH
/>/>/>/>/>/>НС СН НС СН HC CH
О S NH
фуран Тиофен Пиррол
Все эти соединения всвоем составе имеют по четыре углеродных атома и один гетероатом. У этихсоединений имеются две двойные связи, между которыми имеется одинарная связь(это напоминает диеновые углеводороды с сопряженной системой двойных связей).Однако, в химическом отношении ионии больше напоминают ароматические соединения.Каждый углеродный атом у них затрагивает 3 электрона на образование обычных σ-свзей,то есть связей, образованных гибридизированными электронными облаками, а одинэлектрон образует Р — электронное облако (в виде правильной восьмерки).
У гетероатома наобразование σ-связей израсходовано два электрона, а еще два электронаобразуют Р-электронные облака. В результате видим, то в ядре имеется 6 Р — электронных облаков, которые взаимно перекрываясь, образуют сплошное Р –электронное облако, как и в бензоле. Поэтому они и напоминают по свойствам ароматическиесоединения, особенно ярко они выражены у тиофена. Как и у ароматических соединений,у них прочное ядро – при обычных химических реакциях не разрывается. И болеехарактерными для них являются реакции замещения атомов водорода.
Более подвижен водородв α-положении, то есть при углероде, который расположен рядом с гетероциклом.
Приведенные гетероциклылегко переходят друг в друга, по реакции Ю.К.Юрьева, которая протекает прикатализаторе Al2O3и при t=4500C.
/>/>/>/>/>/>/>/>/>/>/> НС СН +h3S НС СН
/>
/>/>/>/> НС СН +h3O НС СН
/>/>/>/> О +Nh4 +Nh4 S
+h3O +h3S
/>/>/>/>/> HC CH
/>/> HC CH
NH
При реакцияхгидрогенизации этих гетероциклов образуются их гидрированные производные, укоторых уже нет двойных связей.
/>/>/>/>/>/>/>/>/>Н2C СН2 Н2C СН2 h3C Ch3
/>/>/>/>/>/>Н2C СН2 Н2C СН2 h3C Ch3
О S NH
тетрагидрофуран тетрагидротиофен тетрагидропиррол
Фуран- это бесцветнаяжидкость, со слабым запахом хлороформа. Температура кипения 31.90С.это вещество нейтрального характера. Не растворим в воде. Фуран и его гомологисодержатся в древесном дегте. В промышленности фуран получают из фурфуролапутем отщепления окиси углерода (СО).
/>/>/>/>/>/>/>/>/>/>НС СН HC CH
/> Ni, 2000C +CO
/>/>/>/>/>НС С – С =О HC CH
О Н О
фурфурол фуран
В природе широковстречаются производные тетрагидрофурана — это фурановые формы сахаров.
Тиофен – это бесцветнаяжидкость, с запахом бензола, температура кипения 840С, не растворимв воде. Содержится в каменноугольной смоле, которая образуется при коксованиикаменного угля. Выделяется с фракцией бензола.
В химическом отношениитиофен ярче всех проявляет ароматические свойства. Он легче, чем бензол,хлорируется, сульфируется, нитруется. В природе имеется ряд производныхтиофена, один из них является биотином. Это витамин H.
/> C = O
HN NH
/> HC CH
/>h3C CH – (Ch3)4 – C = O
S OH
Биотин – витамин роста
Он входит в составферментов, участвующих в процессах карбоксилирования. При недостатке биотинанаблюдается прекращение роста, заболевание кожи, выпадение волос, шерсти уживотных и др.
Пиррол – это бесцветнаяжидкость, с запахом хлороформа, буреет на воздухе вследствие окисления.Температура кипения 1300С, практически не растворим в воде. Пирролобладает слабовыраженными кислотными свойствами, а именно: атом водорода виминогруппе NHможетзамещаться металлами (Naили K).
/>/>/>/>/>/>/>/>/>/>НС СН HC CH
/> +NaOH +Н2О
/>/>/>/>НС СН HC CH
NH N –Na
пиррол N – натрий пиррол
Вместо Naможно ввести углеводородный радикал, действуя галогенпроизводными:
/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>НС СН HC CH HC CH
/>/> +Ch4I изомеризация
/>/>/>/>/>/>НС СН HC CH HC C – Ch4
N –Na N – Ch4 NH
N – натрийпиррол N – метилпиррол α-метилпиррол
При реакциигидрогенизации пиррола образуется два продукта: неполный продукт, он называетсяпирролин (в этом случае присоединяется только два атома водорода) и полныйпродукт, называется пирролидин (присоединяется еще два атома водорода).
/>/>/>/>/>/>/>/>/>/>/>/>НС СН HC CH h3C Ch3
/>/> +2H +2H
/>/>/>/>/>/>НС СН h3C Ch3 h3C Ch3
NH NH NH
пиррол пирролин пирролидин
Производными пирролидинаявляются две аминокислоты: пролин и оксипролин. Ядра пиррола и пирролина входятв ядро порфина, который образует различные производные, называемые порфиринами.К ним относятся красящее вещество крови – гемоглобин, и растений – хлорофилл.
Ядро порфирина:
/>/>/>/>/>/>/>/>/>
1 2
/>/>/>/>/>/>/>/>/>/> CH
N NH
/>/>/>/>CH CH
/>/>/>/>/> NH N
/>/>/> CH/>/>/>/>
/> 4 3
/>/>/>
Гем крови содержитжелезо, которое связывает четыре пиррольных ядра и у всех ядер имеются боковыеответвления.
Строение гемма крови:
Ch4 CH=Ch3 Ch4 CH=Ch3
/>/>/>/>/>/>/>/>/>/>/>/>/>
1 2
/>/>/>/>/>/>/>/>/>/> CH
/>/>/>/> N N
/>/>/>/>/>/>/>/>CH Fe CH
/>/>/>/>/> N N
/>/>/> CH/>/>/>/>
/> 4 3
/>/>/>/>/>/>/>
/>/> Ch4 Ch3 – Ch3 Ch3 – Ch3 Ch4
/>/> O=C C= O
OH HO
Строение хлорофилла:
Ch4 CH=Ch3 Ch4 Ch3– Ch4
/>/>/>/>/>/>/>/>/>/>/>/>/>
1 2
/>/>/>/>/>/>/>/>/>/> CH
/>/>/>/> N N
/>/>/>/>/>/>/>/>CH Mg CH
/>/>/>/>/> N N
/>/>/>/>/>/> C/>/>
4 3
/>/>/>/>/>/>/>/>/> H – C
/>/> Ch4 Ch3 C=O C=O Ch4
/> Ch3 O – Ch4
O=C – O – C20h49
Пятичленные гетероциклыс двумя гетероатомами
К ним относятся:
Имидазол
/>/>/>/>/>HC N
/>
/>HC CH .
NH
Ядро имидазола входит всостав аминокислоты гистидина, а также в состав более сложно построенногогетероциклического ядра – пурина, витамина В12, алкалоидов и других соединений.
Тиазол
/>/>/>/>/> HC N
/>/> HC CH
S
Тиазол имеет большоебиологическое значение. Ядро полностью гидрированного тиазола входит в составпенициллина. Ядро тиазола входит в состав витамина В1 медицинскогопрепарата сульфазола и др.
Шестичленныегетероциклы с одним гетероатомом
Представители:
/>/>/> СН2 СН
/>/>/>НС СН НС СН
НС СН НС СН2
О О
γ-пиран α-пиран
В природе пиран невстречается, но широко известны его производные – тетрагидропиран
/> СН2
Н2С СН2
— тетрагидропиран
Н2С СН2
О
Это пирановые формысахаров.
Пиридин
Это жидкость снеприятным запахом, температура кипения 1150С, смешивается с водой.В химическом отношении пиридин сильно напоминает ароматические соединения. Каки в бензольном ядре у него имеются 6 р-электронных облаков, по одному у атомовуглерода и одно у азота. Перекрываясь взаимно, они обра- зуют сплошное р – электронноеоблако, как и в молекуле бензола.
/>/> СН +
/>НС – СН–
/>НС<sub/>+ СН +
N –
Так же, как и бензол,пиридин сульфируется, нитруется, галогенируется. Сам пиридин не окисляется, аокисляются только его производные, у которых имеются боковые радикалы. Отличияпиридина от ароматических соединений следующие:
1. В молекуле пиридинапроисходит смещение электронной плотности, а именно: азот имеет большуюэлектронную плотность. Углерод в α-положении – имеет меньшую электроннуюплотность. В бензоле же этого не наблюдается. У бензола смещение электроннойплотности наблюдается в том случае, если вводится какой-либо заместитель.
В результате смещенияэлектронной плотности молекула пиридина становится полярной. Дипольный моментее составляет μ=2,2Д.
/>/> СН +
/>НС – СН–
/>НС<sub/>+ СН +
N –
2. В молекуле пиридинапроисходит введение электрофильных заместителей с большими трудностями, чем вбензоле, а нуклеофильные заместители вводятся легче, чем в бензоле.
Производные пиридина
1.никотиновая кислота. 2.амидникотиновой кислоты
/>/>/>/>/>/> СН ОН СН Nh3
/>/>НС С – С = О НС С – С =О
/>
/>НС СН НС СН
N N
Никотиновая кислота иее амид представляют собой витамин РР. Недостаток этого витамина вызываетзаболевание пеллагру, выражающуюся в своеобразной сухости кожи, поражениицентральной нервной системы.
Производными пиридинаявляется ряд алкалоидов. Это азотсодержащие органические соединениягетероциклического строения. Они содержатся и в растительных организмах и являютсяпродуктами обмена веществ в растениях. Наиболее богаты алкалоидами двудольныерастения(семейства маковых, пасленовых и др.)
Многие алкалоиды обладаютсильным физиологически действием: в больших количествах они являются ядами, а вмалых их часто применяют как ценные лекарственные средства. На вкус эти веществагорькие, железистого цвета.
К алкалоидам, производнымпиридина относятся следующие:
1.Конин:
Это жидкостьмаслообразная, содержится в дурмане. Чрезвы- чайно ядовит, вызывает параличдвигательных нервных оконча ний.
/> СН2
Н2С СН2
/>Н2С СН – Ch3 – Ch3– Ch4
NH пропил
2.Никотин
/>/>/> h3C Ch3
/>/> СН
/>/>/>НС С – HC Ch3
/>/> N
/>НС СН Ch4 гидрированноеядро пиролла
/> N
ядро пиридина
Никотин это бесцветнаямаслянистая жидкость, смешивающаяся с водой, обладает запахом табака, навоздухе быстро буреет. Содержится в листьях табака (до 8%). Небольшиеколичества никотина возбуждают нервную систему, большие количества ядовиты,вызывают паралич дыхательных центров. Смертельная доза никотина для человекасоставляет около 40мг.
Водные суспензииникотина в больших количествах используются для борьбы с вредителями сельского хозяйства.
3. Анабазин
/> СН2
h3C Ch3
/>/> СН
/>/>НС С – HC Ch3
NН
/>/>НС СН гидрированное ядро пиридина
N
ядро пиридина
Это важнейший алкалоидядовитого азиатского растения ежовника безлистного. Анабазин, подобно никотину,очень ядовит и обладает высоким инсектицидным действием.
Шестичленныегетероциклы с двумя гетероатомами
Важнейшимпредставителем является пиримидин: Это кристаллическое вещество, обладающееслабоосновными свойствами Пиримидиновое ядро встречается в многочисленныхприродных соединениях витаминах, коферментах, нуклеиновых кислотах. В молекулепиримидина два азота. В ядре наблюдается смещение электронной плотности.Наибольшая электронная плотность у атомов азота и у 5-го углеродного атома. Вмолекуле пиримидина образуется секстет из р- электронных облаков. Это придаетсоединению ароматический характер.
/>/> 6 CH+ .
/>N – 1 5 CH – ,
/>
HC+2 4СН +
3 N–
В природе большое биологическоезначение имеют окси и аминопроизводные пиримидина, так называемые пиримидиновыеоснования:
1. Урацил –2,6-диоксипиримидин
2. Тимин –2,6-диокси-5-метилпиримидин
3. Цитозин –2-окси-6-аминопиримидин
4. Барбитуровая кислота– 2,4,6 – триоксипиримидин.
Эти соединения входят всостав нуклеотидов, нуклеиновых кислот. Они проявляют кето-енольную таутомерию,то есть могут находиться в енольной и кетонной формах.
Урацил:
/>/>/> С –ОН C = O
/>/> N CH HN CH
/>/>/>
HO – C CH O = C CH
N NH
енольнаяформа кетонная форма
Тимин:
/>/>/> С –ОН C = O
/>/> N C – СН3 HN C – СН3
/>/>/>
HO – C CH O = C CH
N NH
енольнаяформа кетонная форма
Цитозин:
/>/>/> С – Nh3 C – Nh3
/>/> N CH N CH
/>/>/>
HO – C CH O = C CH
N NH
енольнаяформа кетонная форма
Барбитуровая кислота:
/>/>/> С –ОН C = O
/> N CH HN Ch3
/>/>/>
HO – C C – ОH O = C C = О
N NH
енольная форма кетоннаяформа
Производными барбитуровойкислоты являются снотворные вещества: барбитол, люминал и др.
Производным пиримидинаявляется витамин В1:
/>/> C – Nh3 – HCL
/>/>/>/>/>/> N C – Ch3 –N C – Ch4
/>/>/>Ch4– C CH HC C – Ch3– Ch3 – OH
N S
Витамин В1содержится большом количестве в оболочке рисовых зерен, отрубях, дрожжах,ростках пшеницы. При отсутствии или недостатке его в пище у человекаразвивается болезнь бери-бери, а у животных – полиневрит.
Список использованнойлитературы
1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. Под ред.Дебова С.С. / М., «Медицина», 1990.
2. Николаев А.Я. Биохимия. / М., «Высшая школа», 1989.
3. Строев Е.А. Биологическая химия. / М., «Высшая школа», 1986.
4. Бышевский А.Ш… Терсенев О.А. Биохимия для врача./Екатеринбург, 1994.
5. Кушманова О.Д., Ивченко Г.М. Руководство к лабораторнымзанятиям по биологической химии. / М., «Медицина», 1983.
www.ronl.ru
Введение
«Гетерос» — по-гречески разный. Это циклические соединения, в кольца которых, кроме углеродных атомов входят атомы других элементов, например, азота, серы, кислорода (N,S,O) и др. они называются гетероатомами.
Эти соединения имеют большое биологическое значение, они распространены в природе в виде витаминов, алкалоидов, пигментов и других составных частей животных и растительных клеток, участвуют в построении аминокислот, входящих в состав белков; они входят в состав нуклеотидов, нуклеиновых кислот.
Классификация
В основу классификации положены фора ядра и число гетероатомов.
1) Пятичленные гетероциклы:
а) с одним гетероатомом;
б) с двумя гетероатомами и тд.
2) Шестичленные гетероциклы:
а) с одним гетероатомом;
б) с двумя гетероатомами и тд.
3) Гетероциклы с конденсированной системой ядер.
Пятичленные гетероциклы с одним гетероатомом
Важнейшими представителями являются следующие:
НС СН НС СН HCCH
НС СН НС СН HCCH
О SNH
фуран Тиофен Пиррол
Все эти соединения в своем составе имеют по четыре углеродных атома и один гетероатом. У этих соединений имеются две двойные связи, между которыми имеется одинарная связь (это напоминает диеновые углеводороды с сопряженной системой двойных связей). Однако, в химическом отношении ионии больше напоминают ароматические соединения. Каждый углеродный атом у них затрагивает 3 электрона на образование обычных σ-свзей, то есть связей, образованных гибридизированными электронными облаками, а один электрон образует Р — электронное облако (в виде правильной восьмерки).
У гетероатома на образование σ-связей израсходовано два электрона, а еще два электрона образуют Р-электронные облака. В результате видим, то в ядре имеется 6 Р — электронных облаков, которые взаимно перекрываясь, образуют сплошное Р – электронное облако, как и в бензоле. Поэтому они и напоминают по свойствам ароматические соединения, особенно ярко они выражены у тиофена. Как и у ароматических соединений, у них прочное ядро – при обычных химических реакциях не разрывается. И более характерными для них являются реакции замещения атомов водорода.
Более подвижен водород в α-положении, то есть при углероде, который расположен рядом с гетероциклом.
Приведенные гетероциклы легко переходят друг в друга, по реакции Ю.К.Юрьева, которая протекает при катализаторе Al2 O3 и при t=4500C.
НС СН +h3 SНС СН
НС СН +h3 O НС СН
О+Nh4 +Nh4 S
+h3 O +h3 S
HC CH
HCCH
NH
При реакциях гидрогенизации этих гетероциклов образуются их гидрированные производные, у которых уже нет двойных связей.
Н2 C СН2 Н2 C СН2 h3 CCh3
Н2 C СН2 Н2 C СН2 h3 CCh3
О SNH
тетрагидрофуран тетрагидротиофен тетрагидропиррол
Фуран- это бесцветная жидкость, со слабым запахом хлороформа. Температура кипения 31.90С. это вещество нейтрального характера. Не растворим в воде. Фуран и его гомологи содержатся в древесном дегте. В промышленности фуран получают из фурфурола путем отщепления окиси углерода (СО).
НССН HC CH
Ni, 2000C + CO
НС С – С = О HCCH
О Н О
фурфурол фуран
В природе широко встречаются производные тетрагидрофурана — это фурановые формы сахаров.
Тиофен – это бесцветная жидкость, с запахом бензола, температура кипения 840С, не растворим в воде. Содержится в каменноугольной смоле, которая образуется при коксовании каменного угля. Выделяется с фракцией бензола.
В химическом отношении тиофен ярче всех проявляет ароматические свойства. Он легче, чем бензол, хлорируется, сульфируется, нитруется. В природе имеется ряд производных тиофена, один из них является биотином. Это витамин H.
C = O
HN NH
HC CH
h3 C CH – (Ch3 )4 – C = O
SOH
Биотин – витамин роста
Он входит в состав ферментов, участвующих в процессах карбоксилирования. При недостатке биотина наблюдается прекращение роста, заболевание кожи, выпадение волос, шерсти у животных и др.
Пиррол – это бесцветная жидкость, с запахом хлороформа, буреет на воздухе вследствие окисления. Температура кипения 1300С, практически не растворим в воде. Пиррол обладает слабовыраженными кислотными свойствами, а именно: атом водорода в иминогруппе NHможет замещаться металлами (Na или K).
НС СН HCCH
+NaOH +Н2 О
НССН HC CH
NH N – Na
пиррол N – натрий пиррол
Вместо Na можно ввести углеводородный радикал, действуя галогенпроизводными:
НССН HC CH HC CH
+Ch4Iизомеризация
НССН HC CH HC C – Ch4
N – Na N – Ch4 NH
N – натрийпиррол N – метилпирролα-метилпиррол
При реакции гидрогенизации пиррола образуется два продукта: неполный продукт, он называется пирролин (в этом случае присоединяется только два атома водорода) и полный продукт, называется пирролидин (присоединяется еще два атома водорода).
НССН HC CH h3 C Ch3
+2H+2H
НССН h3 C Ch3 h3 C Ch3
NH NHNH
пирролпирролинпирролидин
Производными пирролидина являются две аминокислоты: пролин и оксипролин. Ядра пиррола и пирролина входят в ядро порфина, который образует различные производные, называемые порфиринами. К ним относятся красящее вещество крови – гемоглобин, и растений – хлорофилл.
Ядро порфирина:
1 2
CH
NNH
CHCH
NHN
CH
4 3
Гем крови содержит железо, которое связывает четыре пиррольных ядра и у всех ядер имеются боковые ответвления.
Строение гемма крови:
Ch4 CH=Ch3 Ch4 CH=Ch3
1 2
CH
N N
CH Fe CH
N N
CH
4 3
Ch4 Ch3 – Ch3 Ch3 – Ch3 Ch4
O=CC = O
OHHO
Строение хлорофилла:
Ch4 CH=Ch3 Ch4 Ch3 – Ch4
1 2
CH
N N
CH Mg CH
N N
C
4 3
H – C
Ch4 Ch3 C=O C=O Ch4
Ch3 O – Ch4
O=C – O – C20 h49
Пятичленные гетероциклы с двумя гетероатомами
К ним относятся:
Имидазол
HCN
HCCH.
NH
Ядро имидазола входит в состав аминокислоты гистидина, а также в состав более сложно построенного гетероциклического ядра – пурина, витамина В12, алкалоидов и других соединений.
Тиазол
HC N
HC CH
S
Тиазол имеет большое биологическое значение. Ядро полностью гидрированного тиазола входит в состав пенициллина. Ядро тиазола входит в состав витамина В1 медицинского препарата сульфазола и др.
Шестичленные гетероциклы с одним гетероатомом
Представители:
СН2 СН
НС СН НС СН
НС СН НС СН2
О О
γ-пиран α-пиран
В природе пиран не встречается, но широко известны его производные – тетрагидропиран
СН2
Н2 С СН2
— тетрагидропиран
Н2 ССН2
О
Это пирановые формы сахаров.
Пиридин
Это жидкость с неприятным запахом, температура кипения 1150С, смешивается с водой. В химическом отношении пиридин сильно напоминает ароматические соединения. Как и в бензольном ядре у него имеются 6 р-электронных облаков, по одному у атомов углерода и одно у азота. Перекрываясь взаимно, они обра- зуют сплошное р – электронное облако, как и в молекуле бензола.
СН +
НС – СН –
НС+СН +
N –
Так же, как и бензол, пиридин сульфируется, нитруется, галогенируется. Сам пиридин не окисляется, а окисляются только его производные, у которых имеются боковые радикалы. Отличия пиридина от ароматических соединений следующие:
1. В молекуле пиридина происходит смещение электронной плотности, а именно: азот имеет большую электронную плотность. Углерод в α-положении – имеет меньшую электронную плотность. В бензоле же этого не наблюдается. У бензола смещение электронной плотности наблюдается в том случае, если вводится какой-либо заместитель.
В результате смещения электронной плотности молекула пиридина становится полярной. Дипольный момент ее составляет μ=2,2Д.
СН +
НС – СН –
НС+СН +
N –
2. В молекуле пиридина происходит введение электрофильных заместителей с большими трудностями, чем в бензоле, а нуклеофильные заместители вводятся легче, чем в бензоле.
Производные пиридина
1.никотиновая кислота. 2.амид никотиновой кислоты
СН ОН СН Nh3
НС С – С = О НС С – С = О
НССН НС СН
NN
Никотиновая кислота и ее амид представляют собой витамин РР. Недостаток этого витамина вызывает заболевание пеллагру, выражающуюся в своеобразной сухости кожи, поражении центральной нервной системы.
Производными пиридина является ряд алкалоидов. Это азотсодержащие органические соединения гетероциклического строения. Они содержатся и в растительных организмах и являются продуктами обмена веществ в растениях. Наиболее богаты алкалоидами двудольные растения(семейства маковых, пасленовых и др.)
Многие алкалоиды обладают сильным физиологически действием: в больших количествах они являются ядами, а в малых их часто применяют как ценные лекарственные средства. На вкус эти вещества горькие, железистого цвета.
К алкалоидам, производным пиридина относятся следующие:
1.Конин:
Это жидкость маслообразная, содержится в дурмане. Чрезвы- чайно ядовит, вызывает паралич двигательных нервных оконча ний.
СН2
Н2 С СН2
Н2 ССН – Ch3 – Ch3 – Ch4
NH пропил
2.Никотин
h3 CCh3
СН
НС С – HCCh3
N
НССН Ch4 гидрированное ядро пиролла
N
ядро пиридина
Никотин это бесцветная маслянистая жидкость, смешивающаяся с водой, обладает запахом табака, на воздухе быстро буреет. Содержится в листьях табака (до 8%). Небольшие количества никотина возбуждают нервную систему, большие количества ядовиты, вызывают паралич дыхательных центров. Смертельная доза никотина для человека составляет около 40мг.
Водные суспензии никотина в больших количествах используются для борьбы с вредителями сельского хозяйства.
3. Анабазин
СН2
h3 CCh3
СН
НС С – HCCh3
NН
НССН гидрированное ядро пиридина
N
ядро пиридина
Это важнейший алкалоид ядовитого азиатского растения ежовника безлистного. Анабазин, подобно никотину, очень ядовит и обладает высоким инсектицидным действием.
Шестичленные гетероциклы с двумя гетероатомами
Важнейшим представителем является пиримидин: Это кристаллическое вещество, обладающее слабоосновными свойствами Пиримидиновое ядро встречается в многочисленных природных соединениях витаминах, коферментах, нуклеиновых кислотах. В молекуле пиримидина два азота. В ядре наблюдается смещение электронной плотности. Наибольшая электронная плотность у атомов азота и у 5-го углеродного атома. В молекуле пиримидина образуется секстет из р- электронных облаков. Это придает соединению ароматический характер.
6 CH+ .
N – 15 CH – ,
HC+24 СН +
3 N –
В природе большое биологическое значение имеют окси и аминопроизводные пиримидина, так называемые пиримидиновые основания:
1. Урацил – 2,6-диоксипиримидин
2. Тимин – 2,6-диокси-5-метилпиримидин
3. Цитозин – 2-окси-6-аминопиримидин
4. Барбитуровая кислота – 2,4,6 – триоксипиримидин.
Эти соединения входят в состав нуклеотидов, нуклеиновых кислот. Они проявляют кето-енольную таутомерию, то есть могут находиться в енольной и кетонной формах.
Урацил:
С – ОН C = O
NCHHNCH
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Тимин:
С – ОН C = O
NC – СН3 HNC – СН3
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Цитозин:
С – Nh3 C – Nh3
N CH N CH
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Барбитуровая кислота:
С – ОН C = O
NCHHNCh3
HO – CC – ОHO = CC= О
NNH
енольная форма кетонная форма
Производными барбитуровой кислоты являются снотворные вещества: барбитол, люминал и др.
Производным пиримидина является витамин В1 :
C – Nh3 – HCL
N C – Ch3 – N C – Ch4
Ch4 – C CH HC C – Ch3 – Ch3 – OH
N S
Витамин В1 содержится большом количестве в оболочке рисовых зерен, отрубях, дрожжах, ростках пшеницы. При отсутствии или недостатке его в пище у человека развивается болезнь бери-бери, а у животных – полиневрит.
Список использованной литературы
1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. Под ред. Дебова С.С. / М., «Медицина», 1990.
2. Николаев А.Я. Биохимия. / М., «Высшая школа», 1989.
3. Строев Е.А. Биологическая химия. / М., «Высшая школа», 1986.
4. Бышевский А.Ш… Терсенев О.А. Биохимия для врача. /Екатеринбург, 1994.
5. Кушманова О.Д., Ивченко Г.М. Руководство к лабораторным занятиям по биологической химии. / М., «Медицина», 1983.
www.ronl.ru
Введение
«Гетерос» — по-гречески разный. Это циклические соединения, в кольца которых, кроме углеродных атомов входят атомы других элементов, например, азота, серы, кислорода (N,S,O) и др. они называются гетероатомами.
Эти соединения имеют большое биологическое значение, они распространены в природе в виде витаминов, алкалоидов, пигментов и других составных частей животных и растительных клеток, участвуют в построении аминокислот, входящих в состав белков; они входят в состав нуклеотидов, нуклеиновых кислот.
Классификация
В основу классификации положены фора ядра и число гетероатомов.
1) Пятичленные гетероциклы:
а) с одним гетероатомом;
б) с двумя гетероатомами и тд.
2) Шестичленные гетероциклы:
а) с одним гетероатомом;
б) с двумя гетероатомами и тд.
3) Гетероциклы с конденсированной системой ядер.
Пятичленные гетероциклы с одним гетероатомом
Важнейшими представителями являются следующие:
НС СН НС СН HCCH
НС СН НС СН HCCH
О SNH
фуран Тиофен Пиррол
Все эти соединения в своем составе имеют по четыре углеродных атома и один гетероатом. У этих соединений имеются две двойные связи, между которыми имеется одинарная связь (это напоминает диеновые углеводороды с сопряженной системой двойных связей). Однако, в химическом отношении ионии больше напоминают ароматические соединения. Каждый углеродный атом у них затрагивает 3 электрона на образование обычных σ-свзей, то есть связей, образованных гибридизированными электронными облаками, а один электрон образует Р — электронное облако (в виде правильной восьмерки).
У гетероатома на образование σ-связей израсходовано два электрона, а еще два электрона образуют Р-электронные облака. В результате видим, то в ядре имеется 6 Р — электронных облаков, которые взаимно перекрываясь, образуют сплошное Р – электронное облако, как и в бензоле. Поэтому они и напоминают по свойствам ароматические соединения, особенно ярко они выражены у тиофена. Как и у ароматических соединений, у них прочное ядро – при обычных химических реакциях не разрывается. И более характерными для них являются реакции замещения атомов водорода.
Более подвижен водород в α-положении, то есть при углероде, который расположен рядом с гетероциклом.
Приведенные гетероциклы легко переходят друг в друга, по реакции Ю.К.Юрьева, которая протекает при катализаторе Al2 O3 и при t=4500C.
НС СН +h3 SНС СН
НС СН +h3 O НС СН
О+Nh4 +Nh4 S
+h3 O +h3 S
HC CH
HCCH
NH
При реакциях гидрогенизации этих гетероциклов образуются их гидрированные производные, у которых уже нет двойных связей.
Н2 C СН2 Н2 C СН2 h3 CCh3
Н2 C СН2 Н2 C СН2 h3 CCh3
О SNH
тетрагидрофуран тетрагидротиофен тетрагидропиррол
Фуран- это бесцветная жидкость, со слабым запахом хлороформа. Температура кипения 31.90С. это вещество нейтрального характера. Не растворим в воде. Фуран и его гомологи содержатся в древесном дегте. В промышленности фуран получают из фурфурола путем отщепления окиси углерода (СО).
НССН HC CH
Ni, 2000C + CO
НС С – С = О HCCH
О Н О
фурфурол фуран
В природе широко встречаются производные тетрагидрофурана — это фурановые формы сахаров.
Тиофен – это бесцветная жидкость, с запахом бензола, температура кипения 840С, не растворим в воде. Содержится в каменноугольной смоле, которая образуется при коксовании каменного угля. Выделяется с фракцией бензола.
В химическом отношении тиофен ярче всех проявляет ароматические свойства. Он легче, чем бензол, хлорируется, сульфируется, нитруется. В природе имеется ряд производных тиофена, один из них является биотином. Это витамин H.
C = O
HN NH
HC CH
h3 C CH – (Ch3 )4 – C = O
SOH
Биотин – витамин роста
Он входит в состав ферментов, участвующих в процессах карбоксилирования. При недостатке биотина наблюдается прекращение роста, заболевание кожи, выпадение волос, шерсти у животных и др.
Пиррол – это бесцветная жидкость, с запахом хлороформа, буреет на воздухе вследствие окисления. Температура кипения 1300С, практически не растворим в воде. Пиррол обладает слабовыраженными кислотными свойствами, а именно: атом водорода в иминогруппе NHможет замещаться металлами (Na или K).
НС СН HCCH
+NaOH +Н2 О
НССН HC CH
NH N – Na
пиррол N – натрий пиррол
Вместо Na можно ввести углеводородный радикал, действуя галогенпроизводными:
НССН HC CH HC CH
+Ch4Iизомеризация
НССН HC CH HC C – Ch4
N – Na N – Ch4 NH
N – натрийпиррол N – метилпирролα-метилпиррол
При реакции гидрогенизации пиррола образуется два продукта: неполный продукт, он называется пирролин (в этом случае присоединяется только два атома водорода) и полный продукт, называется пирролидин (присоединяется еще два атома водорода).
НССН HC CH h3 C Ch3
+2H+2H
НССН h3 C Ch3 h3 C Ch3
NH NHNH
пирролпирролинпирролидин
Производными пирролидина являются две аминокислоты: пролин и оксипролин. Ядра пиррола и пирролина входят в ядро порфина, который образует различные производные, называемые порфиринами. К ним относятся красящее вещество крови – гемоглобин, и растений – хлорофилл.
Ядро порфирина:
1 2
CH
NNH
CHCH
NHN
CH
4 3
Гем крови содержит железо, которое связывает четыре пиррольных ядра и у всех ядер имеются боковые ответвления.
Строение гемма крови:
Ch4 CH=Ch3 Ch4 CH=Ch3
1 2
CH
N N
CH Fe CH
N N
CH
4 3
Ch4 Ch3 – Ch3 Ch3 – Ch3 Ch4
O=CC = O
OHHO
Строение хлорофилла:
Ch4 CH=Ch3 Ch4 Ch3 – Ch4
1 2
CH
N N
CH Mg CH
N N
C
4 3
H – C
Ch4 Ch3 C=O C=O Ch4
Ch3 O – Ch4
O=C – O – C20 h49
Пятичленные гетероциклы с двумя гетероатомами
К ним относятся:
Имидазол
HCN
HCCH.
NH
Ядро имидазола входит в состав аминокислоты гистидина, а также в состав более сложно построенного гетероциклического ядра – пурина, витамина В12, алкалоидов и других соединений.
Тиазол
HC N
HC CH
S
Тиазол имеет большое биологическое значение. Ядро полностью гидрированного тиазола входит в состав пенициллина. Ядро тиазола входит в состав витамина В1 медицинского препарата сульфазола и др.
Шестичленные гетероциклы с одним гетероатомом
Представители:
СН2 СН
НС СН НС СН
НС СН НС СН2
О О
γ-пиран α-пиран
В природе пиран не встречается, но широко известны его производные – тетрагидропиран
СН2
Н2 С СН2
— тетрагидропиран
Н2 ССН2
О
Это пирановые формы сахаров.
Пиридин
Это жидкость с неприятным запахом, температура кипения 1150С, смешивается с водой. В химическом отношении пиридин сильно напоминает ароматические соединения. Как и в бензольном ядре у него имеются 6 р-электронных облаков, по одному у атомов углерода и одно у азота. Перекрываясь взаимно, они обра- зуют сплошное р – электронное облако, как и в молекуле бензола.
СН +
НС – СН –
НС+СН +
N –
Так же, как и бензол, пиридин сульфируется, нитруется, галогенируется. Сам пиридин не окисляется, а окисляются только его производные, у которых имеются боковые радикалы. Отличия пиридина от ароматических соединений следующие:
1. В молекуле пиридина происходит смещение электронной плотности, а именно: азот имеет большую электронную плотность. Углерод в α-положении – имеет меньшую электронную плотность. В бензоле же этого не наблюдается. У бензола смещение электронной плотности наблюдается в том случае, если вводится какой-либо заместитель.
В результате смещения электронной плотности молекула пиридина становится полярной. Дипольный момент ее составляет μ=2,2Д.
СН +
НС – СН –
НС+СН +
N –
2. В молекуле пиридина происходит введение электрофильных заместителей с большими трудностями, чем в бензоле, а нуклеофильные заместители вводятся легче, чем в бензоле.
Производные пиридина
1.никотиновая кислота. 2.амид никотиновой кислоты
СН ОН СН Nh3
НС С – С = О НС С – С = О
НССН НС СН
NN
Никотиновая кислота и ее амид представляют собой витамин РР. Недостаток этого витамина вызывает заболевание пеллагру, выражающуюся в своеобразной сухости кожи, поражении центральной нервной системы.
Производными пиридина является ряд алкалоидов. Это азотсодержащие органические соединения гетероциклического строения. Они содержатся и в растительных организмах и являются продуктами обмена веществ в растениях. Наиболее богаты алкалоидами двудольные растения(семейства маковых, пасленовых и др.)
Многие алкалоиды обладают сильным физиологически действием: в больших количествах они являются ядами, а в малых их часто применяют как ценные лекарственные средства. На вкус эти вещества горькие, железистого цвета.
К алкалоидам, производным пиридина относятся следующие:
1.Конин:
Это жидкость маслообразная, содержится в дурмане. Чрезвы- чайно ядовит, вызывает паралич двигательных нервных оконча ний.
СН2
Н2 С СН2
Н2 ССН – Ch3 – Ch3 – Ch4
NH пропил
2.Никотин
h3 CCh3
СН
НС С – HCCh3
N
НССН Ch4 гидрированное ядро пиролла
N
ядро пиридина
Никотин это бесцветная маслянистая жидкость, смешивающаяся с водой, обладает запахом табака, на воздухе быстро буреет. Содержится в листьях табака (до 8%). Небольшие количества никотина возбуждают нервную систему, большие количества ядовиты, вызывают паралич дыхательных центров. Смертельная доза никотина для человека составляет около 40мг.
Водные суспензии никотина в больших количествах используются для борьбы с вредителями сельского хозяйства.
3. Анабазин
СН2
h3 CCh3
СН
НС С – HCCh3
NН
НССН гидрированное ядро пиридина
N
ядро пиридина
Это важнейший алкалоид ядовитого азиатского растения ежовника безлистного. Анабазин, подобно никотину, очень ядовит и обладает высоким инсектицидным действием.
Шестичленные гетероциклы с двумя гетероатомами
Важнейшим представителем является пиримидин: Это кристаллическое вещество, обладающее слабоосновными свойствами Пиримидиновое ядро встречается в многочисленных природных соединениях витаминах, коферментах, нуклеиновых кислотах. В молекуле пиримидина два азота. В ядре наблюдается смещение электронной плотности. Наибольшая электронная плотность у атомов азота и у 5-го углеродного атома. В молекуле пиримидина образуется секстет из р- электронных облаков. Это придает соединению ароматический характер.
6 CH+ .
N – 15 CH – ,
HC+24 СН +
3 N –
В природе большое биологическое значение имеют окси и аминопроизводные пиримидина, так называемые пиримидиновые основания:
1. Урацил – 2,6-диоксипиримидин
2. Тимин – 2,6-диокси-5-метилпиримидин
3. Цитозин – 2-окси-6-аминопиримидин
4. Барбитуровая кислота – 2,4,6 – триоксипиримидин.
Эти соединения входят в состав нуклеотидов, нуклеиновых кислот. Они проявляют кето-енольную таутомерию, то есть могут находиться в енольной и кетонной формах.
Урацил:
С – ОН C = O
NCHHNCH
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Тимин:
С – ОН C = O
NC – СН3 HNC – СН3
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Цитозин:
С – Nh3 C – Nh3
N CH N CH
HO – C CH O = C CH
N NH
енольная форма кетонная форма
Барбитуровая кислота:
С – ОН C = O
NCHHNCh3
HO – CC – ОHO = CC= О
NNH
енольная форма кетонная форма
Производными барбитуровой кислоты являются снотворные вещества: барбитол, люминал и др.
Производным пиримидина является витамин В1 :
C – Nh3 – HCL
N C – Ch3 – N C – Ch4
Ch4 – C CH HC C – Ch3 – Ch3 – OH
N S
Витамин В1 содержится большом количестве в оболочке рисовых зерен, отрубях, дрожжах, ростках пшеницы. При отсутствии или недостатке его в пище у человека развивается болезнь бери-бери, а у животных – полиневрит.
Список использованной литературы
1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. Под ред. Дебова С.С. / М., «Медицина», 1990.
2. Николаев А.Я. Биохимия. / М., «Высшая школа», 1989.
3. Строев Е.А. Биологическая химия. / М., «Высшая школа», 1986.
4. Бышевский А.Ш… Терсенев О.А. Биохимия для врача. /Екатеринбург, 1994.
5. Кушманова О.Д., Ивченко Г.М. Руководство к лабораторным занятиям по биологической химии. / М., «Медицина», 1983.
www.ronl.ru
Реферат на тему:
Гетероциклические соединения (гетероциклы) — органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее разнообразны и хорошо изучены ароматические азотсодержащие гетероциклические соединения. Предельные случаи гетероциклических соединений — соединения, не содержащие атомов углерода в цикле, например, пентазол.
Особенности реакционной способности гетероциклических соединений по сравнению с их карбоциклическими аналогами обуславливаются именно такими гетерозаместителями. В качестве гетероатомов чаще всего выступают элементы второго периода (N, O) и S, реже — Se, P, Si и др. элементы. Как и в случае карбоциклических соединений, наиболее специфические свойства гетероциклических соединений проявляют ароматические гетероциклические соединения (гетероароматические соединения). В отличие от атомов углерода карбоциклических ароматических соединений, гетероатомы могут отдавать в ароматическую систему не только один (гетероатомы пиридинового типа), но и два (гетероатомы пиррольного типа) электрона. Гетероатомы пиррольного типа обычно входят в состав пятичленных циклов (пиррол, фуран, тиофен). В одном гетероцикле могут сочетаться оба типа гетероатомов (имидазол, оксазол). Особенности реакционной способности гетероароматических соединений определяются распределением электронной плотнности в цикле, которая, в свою очередь, зависит от типов гетероатомов и их электроотрицательности.
Так, для пятичленных гетероциклов с одним гетероатомом (пиррольный тип), ароматический секстет электронов распределяется по пяти атомам цикла как, что ведёт к высокой нуклеофильности этих соединений. Для них характерны реакции электрофильного замещения, они весьма легко протонируются по пиридиновому азоту (предпочтительно, см. далее) или углероду цикла, галогенируются и сульфируются в мягких условиях. Реакционная способность при электрофильном замещении убывает в ряду пиррол > фуран > селенофен > тиофен > бензол.
Введение гетероатомов пиридинового типа в пятичленные гетероциклы ведёт к снижению электронной плотности, нуклеофильности, и, соответственно, реакционной способности в реакциях электрофильного замещения, то есть эффект аналогичен влиянию электроноакцепторных заместителей для производных бензола. Азолы реагируют с электрофилами подобно пирролам с одним или несколькими электроноакцепторными заместителями в кольце, а для оксазолов и тиазолов становится возможным лишь при наличии активирующих заместителей с +M-эффектом (амино- и гидроксигруппы).
Для шестичленных гетероциклов (пиридиновый тип) пониженная по сравнению с бензолом электронная плотность ведёт с пониженной нуклеофильности этих соединений: реакции электрофильного замещения идут в жёстких условиях. Так, пиридин сульфируется олеумом при 220—270 °C.
Для азотсодержащих гетероциклических соединений с азотом пиридинового типа п-электронная плотность максимальна именно на атоме азота. В качестве иллюстрации можно привести расчётную п-электронную плотность для пиридина:
1.43 |
0.84 |
1.01 |
0.87 |
Соответственно, атаки электрофилов в этом случае направляются на пиридиновый атом азота. В качестве электрофилов могут выступать разнообразные алкилирующие и ацилирующие агенты (реакция кватернизиции с образованием соответствующих четвертичных солей) и пероксикислоты (с образованием N-оксидов).
Атом азота пиррольного типа значительно менее нуклеофилен — алкилирование N-замещенных имидазолов идёт преимущественно по азоту пиридинового типа, однако, при депротонировании незамещённого пиррольного азота направление замещения обращается. Так, 4-нитроимидазол при метилировании в нейтральных условиях даёт в основном 1-метил-5-нитроимидазол, а в щелочных растворах (где субстратом является его депротонированная форма) главным продуктом реакции оказывается 1-метил-4-нитроимидазол.
Такое повышение нуклеофильности азота пиррольного типа при депротонировании типично для всех гетероароматических соединений, однако направление атаки электрофила зависит от степени диссоциации образующегося аниона: если индолил- и пирролилмагнийгалогениды подвергаются электрофильной атаке преимущественно по углероду, то соответствующие соли щелочных металлов реагируют в основном по атому азота. Подтверждением влияния диссоциации комплекса N-анион — металл на направление реакции является обращения направления электрофильной атаки при реакции индолилмагнийгалогенидов с метилйодидом в ГМФТА вследствие промотируемой растворителем диссоциации магниевого комплекса.
Электрофильность гетероароматических соединений растёт при падении п-электронной плотности, то есть при увеличении числа гетероатомов и, при их равном числе, выше для шестичленных, по сравнению с пятичленными, гетероциклами. Так, для пирролов и индолов реакции нуклеофильного замещения атипичны, пиридин и бензимидазол аминируются амидом натрия, а 1,3,5-триазин быстро гидролизуется до формиата аммония уже в водном растворе.
Реакционная способность неароматических гетероциклических близка к таковой их ациклических аналогов с поправкой на стерические эффекты.
В случае гетероароматических соединений на реакционную способность боковых цепей существенно влияют мезомерные эффекты. Кислотность метиленовых водородов в 2- и 4-замещённых пиридинах существенно повышена: так, альдольная конденсация 2-метилпиридина (α-пиколина) с формальдегидом с образованием 2-этоксиэтил-2-пиридина с последующей его дегидратацией служит промышленным методом синтеза 2-винилпиридина.
В химии гетероциклические соединения в силу исторических причин широко применяются тривиальные названия; так, например, при именовании пяти- и шестичленных соединений, содержащих 1 или 2 гетероатома N, O или S в подавляющем большинстве случаев используются тривиальные названия.
Систематическая номенклатура гетероциклических соединений строится по правилам, предложенным Ганчем и Видманом (см. Номенклатура гетероциклических соединений).
Гетероциклические соединения широко распространены в живой природе и играют важное значение в химии природных соединений и биохимии. Функции, выполняемые этими соединениями весьма широки — от структурообразующих полимеров (производные целлюлозы и других циклических полисахаридов) до коферментов и алкалоидов.
Некоторые гетероциклические соединения получают из каменноугольной смолы (пиридин, хинолин, акридин и пр.) и при переработке растительного сырья (фурфурол). Многие природные и синтетические гетероциклические соединения — ценные красители (индиго), лекарственные вещества (хинин, морфин, акрихин, пирамидон). Гетероциклические соединения используют в производстве пластмасс, как ускорители вулканизации каучука, в кинофотопромышленности.
wreferat.baza-referat.ru
Гетероциклические соединения
К гетероциклическим относятся соединения, содержащие циклы, в которых один или два (несколько) атомов являются элементами, отличными от углерода. Гетероциклические системы многообразны. Элементы, которые участвуют в образовании цикла, называют гетероатомами. В соответствии с количеством гетероатомов циклы разделяют на моно-, ди-, тригетероатомные кольца.
Гетероциклы могут содержать три, четыре, пять и более атомов. Как и в случае карбоциклических соединений, наиболее устойчивы циклы с пятью и шестью атомами.
Число возможных гетероциклических систем увеличивается из-за существования конденсированных ядер.
Широко распространены гетероциклические системы в природе, являются побочными продуктами при коксовании угля, переработки нефти и сланцев.
Наиболее важны гетероциклические системы, обладающие ароматическими свойствами. Простейшие из них содержат по одном гетероатому:
Если исходить из этих структур, то можно было бы ожидать, что каждое соединение будет обладать свойствами сопряженных диенов и свойствами амина, простого эфира, сульфида. Но для указанных соединений не характерны реакции, которые можно ожидать из-за наличия гетероатомов.
Для пятичленных циклов типичными являются реакции электрофильного замещения: нитрование, сульфирование, галогенирование, ацилирование, сочетание с солями диазония. Поэтому пиррол, фуран и тиофен можно считать ароматическими соединениями.
Рассмотрим строение тиофена исходя из молекулярных орбиталей. Каждый атом кольца связан s-связями с тремя другими атомами. Для образования этих связей атом использует три sp2-орбитали, которые лежат в плоскости под углом 120о. Каждый атом затрачивает один электрон на образование s-связи, после чего у атома углерода остается один электрон, а у атома серы - два электрона. Эти электроны занимают p-орбитали. Перекрывание p-орбиталей приводит к возникновению p-облаков выше и ниже плоскости кольца. Эти p-облака содержат в сумме шесть p-электронов (ароматический секстет).
Делокализация p-электронов стабилизирует кольцо. В результате этого тиофен вступает в реакции с сохранением кольца, т.е. в реакции замещения.
Номенклатура и изомерия
Нумерация всегда начинается с гетероатома. Если в цикле имеется несколько гетероатомов, то их нумеруют в следующем порядке: O, S, N. Если имеется третичный азот и NH, то нумерацию начинают с NH.
Положения 2 и 5 часто обозначают a и a’, а положения 3 и 4 - b и b’. По рациональной номенклатуре названия гетероциклов: фуран, тиофен, пиррол, имидазол, тиазол. В систематической номенклатуре природа гетероатома обозначается приставками:
O | окса- |
S | тиа- |
N | аза- |
размер цикла
3 | -ир |
4 | -ет |
5 | -ол |
6 | -ин |
7 | -ен |
8 | -ок |
Соответственно суффиксами обозначается степень ненасыщенности:
-идин | насыщенный цикл с атомом N |
-ан | насыщенный цикл без атома N |
-ин | ненасыщенный цикл с атомом N |
Допускаются упрощения названий.
Методы получения пятичленных гетероциклов
Пиррол и тиофен содержатся в каменноугольной смоле. Фракционной перегонкой смолы тиофен (Тпл 84 оС) перегоняется вместе с бензолом (Ткип 80 оС) и содержание его в бензоле 0,5% (1884 г., В.Мейер). Тиофен в промышленности может быть получен при взаимодействии бутана с серой при 560 оС:
Гомологи получают при нагревании 1,4-дикарбонильных соединений:
Фуран:
Пентозы, претерпевая дегидратацию и циклизацию, образуют фурфурол. При нагревании его с окисным катализатором образуется фуран. При сухой перегонке соли пирослизевой кислоты:
Большинство замещенных тиофена и фурана получают циклизацией:
Пятичленные циклы могут взаимно переходить друг в друга (реакция Юрьева) при нагревании над Al2O3 при 450 оС:
Электрофильное замещение, реакционная способность, ориентация
Фуран, пиррол и тиофен обладают значительной реакционной способностью по отношению к электрофильным реагентам. Это вызвано несимметричным распределением заряда в этих гетероциклах, из-за чего на углеродных атомах в цикле сосредоточен больший отрицательный заряд, чем в бензоле. Фуран обладает несколько большей реакционной способностью, чем пиррол.
Фуран бурно реагирует с сильными кислотами с образованием смолистых веществ, пиррол в результате протонирования по атому азота также неустойчив в кислых средах и полимеризуется. Тиофен более устойчив по отношению к кислотам, что позволяет использовать кислые реагенты при выборе условий для реакций электрофильного замещения.
Механизм электрофильного замещения в пятичленных гетероциклах существенно не отличается от общепринятого механизма замещения в ароматических соединениях, который предполагает изменение гибридизации атакуемого атома углерода от sp2 в sp3 и образование комплексов, являющимися промежуточными соединениями. Образование s-комплекса является стадией, определяющей скорость реакции.
В настоящее время основные пятичленные гетероциклы расположены в ряд по реакционной способности:
пиррол ³ фуран > теллурофен > селенофен > тиофен
Электрофильное замещение по a-положению происходит легче, чем в b-положение, так как в возникающем при этом промежуточном переходном состоянии в результате присоединения по a-положению резонансная стабилизация больше, чем в катионе, являющаяся результатом присоединения по b-положению.
В катионе (2) двойная связь не может участвовать в мезомерной делокализации положительного заряда.
Скорость замещения зависит от различия энергий основного и переходного состояний, и более высокую скорость будет иметь тот процесс, который протекает через более стабильное переходное состояние.
Реакционная способность a- и b-положений сильно зависит от электрофильного агента и экспериментальных условий. Чем меньше сила электрофильного агента, тем выше величина a:b. Это соотношение зависит также от гетероатома. 2-Монозамещенные производные образуют с элктрофильными реагентами смеси изомеров. Положения 2 и 5 находятся в сопряжении подобно п-положениям в бензоле, поэтому возможно резонансное взаимодействие реакционного центра в положении 5 с заместителем в положении 2. Положения 2 и 4 являются положениями мета-типа, между которыми невозможно резонансное взаимодействие. Если в положении 2 находятся орто-пара-ориентирующие группы, то замещение протекает в положении 5, которое является a-положением по отношению к гетероатому и пара-положением по отношению к заместителю. Если мета-ориентирующий заместитель находится в положении 2, возникает конкуренция между ориентирующим влиянием гетероатома и заместителя. В фуране и тиофене, для которых соотношение a:b велико, a-ориентирующий эффект гетероатома преобладает и замещение протекает, главным образом, в положении 5. В пирроле образуется смесь изомеров с преобладанием 4-изомера.
Реакции электрофильного замещения в фуране
Бромирование диоксандибромидом:
Сульфирование комплексом SO3 с пиридином (А.П. Терентьев, Л.А. Яновская):
3. Ацилирование
4. Нитрование фурана ацетилнитратом с обработкой продукта присоединения пиридином
Реакции электрофильного замещения тиофена
Хлорирование тиофена сульфурилхлоридом:
Тиофен легко сульфируется h3SO4 (95%) с образованием 2-тиофенсульфокислоты:
Нитрование ацетилнитратом приводит к смеси 2- и 3-нитротиофенов в соотношении 6:1.
Введение альдегидной группировки в тиофен может быть достигнуто при взаимодействии тиофена с комплексом POCl3 и N,N-диметилформамида.
Бромирование тиофена может протекать при взаимодействии с бромом:
Лучшие выходы достигаются при бромировании N-сукцинимидом
Ацилирование тиофена в положение 2:
Реакции электрофильного замещения пиррола
Для пиррола также характерны реакции электрофильного замещения в мягких условиях. Кислотность пиррольного водорода намного выше, чем кислотность алифатических аминов. При нагревании с сухим KOH пиррол депротонируется.
1. Соли пиррола со щелочными металлами получают действием калия или натрия в жидком аммиаке:
2. Пирролнатрий легко вступает в реакции замещения натрия на алкилы с образованием N-алкилпиррола
3. При нагревании N-алкилпиррол изомеризуется в С-алкилпирролы:
4. Амилнитрат реагирует с пирролом в присутствии этилата натрия с образованием натриевой соли 3-нитропиррола:
bukvasha.ru