Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Физическая картина мира 4. Физическая картина мира реферат


Реферат - Физическая картина мира 4

Федеральное агенство по образованию

Государственне образовательное учреждение высшего профессионального образования

Санкт-петербургский торгово-экономический институт

Кафедра философии и политологии

Контрольная работа по дисциплине

«Концепция современного естествознания»

На тему: Физическая картина мира

Выполнила Леонова И.В.

Студентка группы 125-с

Проверил

Санкт-Петербург

2011

Содержание:

1. Введение

2. Понятие физической карты мира.

3. Механическая картина мира, ее основное содержание.

4.Электромагнитная картина мира.

5.Становление современной физической картины мира.

6. Заключение.

7. Список литературы.

1.Введение.

Познание единичных вещей и процессов невозможно без одновременного познания всеобщего, а последнее в свою очередь познается только через первое. Сегодня это должно быть ясно каждому образованному уму. Точно также и целое постижимо лишь в органическом единстве с его частями, а часть может быть понята лишь в рамках целого. И любой открытый нами «частный» закон — если он действительно закон, а не эмпирическое правило — есть конкретное проявление всеобщности. Нет такой науки, предметом которой было бы исключительно всеобщее без познания единичного, как невозможна и наука, ограничивающая себя лишь познанием особенного.

Всеобщая связь явлений — наиболее общая закономерность существования мира, представляющая собой результат и проявление универсального взаимодействия всех предметов и явлений и воплощающаяся в качестве научного отражения в единстве и взаимосвязи наук. Она выражает внутреннее единство всех элементов структуры и свойств любой целостной системы, а также бесконечное разнообразие отношений данной системы с другими окружающими ее системами или явлениями. Без понимания принципа всеобщей связи не может быть истинного знания. Осознание универсальной идеи единства всего живого со всем мирозданием входит в науку, хотя уже более полувека назад в своих лекциях, читанных в Сорбонне, В.И.Вернадский отмечал, что ни один живой организм в свободном состоянии на Земле не находится, но неразрывно связан с материально энергетической средой. «В нашем столетии биосфера получает совершенно новое понимание. Она выявляется как планетное явление космического характера».

Естественнонаучное миропонимание (ЕНМП) — система знаний о природе, образующаяся в сознании учащихся в процессе изучения естественнонаучных предметов, и мыслительная деятельность по созданию этой системы.

Понятие «картина мира» является одним из фундаментальных понятий философии и естествознания и выражает общие научные представления об окружающей действительности в их целостности. Понятие «картина мира» отражает мир в целом как единую систему, то есть «связное целое», познание которого предполагает «познание всей природы и истории...»

В основе построения научной картины мира лежит принцип единства природы и принцип единства знания. Общий смысл последнего заключается в том, что знание не только бесконечно многообразно, но оно вместе с тем обладает чертами общности и целостности. Если принцип единства природы выступает в качестве общей философской основы построения картины мира, то принцип единства знаний, реализованный в системности представлений о мире, является методологическим инструментом, способом выражения целостности природы.

Система знаний в научной картине мира не строится как система равноправных партнеров. В результате неравномерного развития отдельных отраслей знания одна из них всегда выдвигается в качестве ведущей, стимулирующей развитие других. В классической научной картине мира такой ведущей дисциплиной являлась физика с ее совершенным теоретическим аппаратом, математической насыщенностью, четкостью принципов и научной строгостью представлений. Эти обстоятельства сделали ее лидером классического естествознания, а методология сведения придала всей научной картине мира явственную физическую окраску.

В соответствии с современным процессом «гуманизации» биологии возрастает ее роль в формировании научной картины мира. Обнаруживаются две«горячие точки» в ее развитии… Это — стык биологии и наук о неживой природе, и стык биологии и общественных наук...

Представляется, что с решением вопроса о соотношении социального и биологического научная картина мира отразит мир в виде целостной системы знаний о неживой природе, живой природе и мире социальных отношений.

2. Физическая картина мира

Понятие «физическая картина мира» употребляется в естествознании давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как самостоятельный вид знания — общее теоретическое знание в физике, система понятий, принципов и гипотез, служащих исходной основой для построения теорий. Физическая картина мира, с одной стороны, обобщает все ранее полученные знания о природе, а с другой стороны, вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы, которых до этого не было и которые коренным образом меняют основы физического теоретического знания. Иными словами, физическая картина мира рассматривается как физическая модель природы, включающая в себя фундаментальные физические и философские идеи, физические теории, наиболее общие понятия, принципы и методы познание, соответствующие определенному историческому этапу развития физики.

Постоянное развитие и замена одних картин мира другими более адекватно отражающими структуру и свойства материи, есть процесс развития самой физической картины мира. Основой для выделения отдельных ее типов служит качественное изменение фундаментальных идей, являющихся базой для физической теории и наших представителей о структуре материи и формах ее существования. С изменением физической картины мира начинается новый этап в развитии физики с иной системой исходных понятий, принципов, гипотез и стиля мышления. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в крушении старой картины мира и появлении новой.

В истории естествознания было три последовательно сменявших друг друга физические картины мира: механическая, в рамках которой не могли найти объяснения электромагнитные явления; электромагнитная; квантово-полевая.

3. Механическая картина мира

Ее основу составили идеи, принципы, законы и теории механики, которые представляли собой совокупность наиболее существенных знаний о физических закономерностях, наиболее полно отражали физические процессы в природе. В широком смысле механика изучает механическое движение материи, тел и происходящее при этом взаимодействие между ними.

Основу механической картины мира составил атомизм — теория, которая весь мир, включая человека, рассматривала как совокупность огромного числа мельчайших, неделимых, абсолютно твердых материальных частиц — атомов. Они перемещаются в пространстве и времени в соответствии с законами механики, которые считались фундаментальными законами мироздания. Поэтому ключевым понятием механической картины мира было понятие движения, которое понималось как механическое перемещение и объяснялось на основе трех законов Ньютона.

В соответствии с механической картиной мира Вселенная представляла собой хорошо отлаженный механизм, действующий по законам строгой необходимости, в котором все предметы и явления связаны между собой жесткими причинно- следственными отношениями. В таком мире нет случайностей, они полностью исключались.

Жизнь и разум в механической картине не обладали никакой качественной спецификой. Человек рассматривался как природное тело в ряду других тел. По сути дела, классическое естествознание не стремилось постичь человека.

Однако развитие науки раскрыло относительный характер механической картины мира. Несостоятельной оказалась не сама механическая картина мира, а ее исходная философская идея — механизм. В результате в XIX в. В физике наступил кризис, который свидетельствовал, что физика нуждалась в существенном изменении своих взглядов на мир. Так, в недрах механической стали складываться элементы новой — электромагнитной картины мира.

4. Электромагнитная картина мира

Наибольший вклад в формирование данного представления о мире внесли работы М. Фарадея и Д. Максвелла. После создания последним на основе открытого Фарадеем явления электромагнитной индукции теории электромагнитного поля стало возможным говорить о появлении электромагнитной картины мира.

Теория электромагнитного поля Максвелла ознаменовала собой начало нового этапа в физике. В соответствии с ней мир стал представляться единой электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля.

Важнейшими понятиями новой теории являются: заряд, который может быть как положительным, так и отрицательным; напряженность поля — сила, которая действовала бы на тело, несущее единичный заряд, если бы оно находилось в рассматриваемой точке.

Когда электрические заряды движутся друг относительно друга, появляется дополнительная магнитная сила. Поэтому общая сила, объединяющая электрическую (покоящиеся заряды) и магнитную (движущиеся заряды) силы, называется электромагнитной. Все многообразие этих сил и. зарядов описывается системой уравнений классической электродинамики. Они известны как уравнения Максвелла. Это — закон Ш. Кулона, который полностью эквивалентен закону всемирного тяготения Ньютона; магнитные силовые линии непрерывны и не имеют ни начала, ни конца, магнитных зарядов не существует; электрическое поле создается переменным магнитным полем; магнитное поле может создаваться как электрическим током, так и переменным электрическим полем.

Таким образом, были выдвинуты новые физические и философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механическую картину мира. Но I нельзя сказать, что эти изменения были кардинальны, так как I они осуществились в рамках классической науки. Поэтому новую электромагнитную картину мира можно считать промежуточной, соединяющей в себе как новые идеи, так и старые механистические представления о мире.

Кардинально изменились представления о материи. Согласно электромагнитной картине мира материя существует в виде вещества и поля. Они строго разделены, и их превращение друг в друга невозможно. Главным из них является поле, а значит, основным свойством материи является непрерывность в противовес дискретности.

Расширилось также и понятие движения. Оно стало пониматься не только как простое механическое перемещение, но и как распространение колебаний в поле. Соответственно, законы механики Ньютона уступили свое господствующее место законам электродинамики Максвелла.

Электромагнитная картина мира требовала нового решения проблемы физического взаимодействия. Ньютоновский принцип дальнодействия заменялся фарадеевским принципом близкодействия, который утверждал, что любые взаимодействия передаются полем отточки к точке, непрерывно и с конечной скоростью.

Электромагнитная картина мира произвела настоящий переворот в физике. Она базировалась на идеях непрерывности материи, материального электрического поля, неразрывности материи и движения, связи пространства и времени как между собой, так и с движущейся материей. Новое понимание сущности материи поставило ученых перед необходимостью пересмотра и переоценки этих основополагающих качеств материи.

Случайность все еще пытались исключить из физической картины мира. Но в середине XIX в. впервые появилась фундаментальная физическая теория нового типа, которая основывалась на теории вероятности. Это была кинетическая теория газов, или статистическая механика. Случайность, вероятность наконец-то нашли свое место в физике и были отражены в форме так называемых статистических законов. Правда, пока физики не оставляли надежды найти за вероятностными характеристиками четкие однозначные законы, подобные законам Ньютона, и считали вновь созданную теорию промежуточным вариантом, временной мерой. Тем не менее прогресс был налицо: в элект-ромагнитную картину мира вошло понятие вероятности.

Не менялось в электромагнитной картине мира представление о месте и роли человека во Вселенной. Его появление считалось лишь капризом природы.

Электромагнитная картина мира объяснила большой круг физических явлений, непонятных с точки зрения прежнего механического представления о мире. Однако дальнейшее ее развитие показало, что она имеет относительный характер. Поэтому на смену ей пришла новая — квантово-полевая — картина мира, объединившая в себе дискретность механической картины мира и непрерывность электромагнитной картины мира.

5. Становление современной физической картины мира В конце XIX в. и начале ХХ в. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, из которых состоит природа, считались атомы, то в конце XIX в. были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишённых заряда частиц).

Согласно первой модели атома, построенной английским учёным Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов, должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.

В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что все элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путём было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определённых условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля -свойства корпускул. Это явление получило название дуализма волны и частицы — представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля — волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов учёные вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.

Так сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм — наличие у каждого элемента материи свойств волны и частицы. Ушли в прошлое и представления о неизменности материи. Одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц.

Окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.

Эти новые мировоззренческие подходы к исследованию естественнонаучной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы, научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине природы.

Квантово-полевая картина мира и в настоящее время находится в состоянии становления. С каждым годом к ней добавляются новые элементы, выдвигаются новые гипотезы, создаются и развиваются новые теории.

Заключение

Физическая картина мира рассматривается как физическая модель природы, включающая в себя фундаментальные физические и философские идеи, физические теории, наиболее общие понятия, принципы и методы познание, соответствующие определенному историческому этапу развития физики.

В истории естествознания было три последовательно сменявших друг друга физические картины мира: механическая, в рамках которой не могли найти объяснения электромагнитные явления; электромагнитная; квантово-полевая

В физике существует два типа физических законов (теорий): динамические и статистические.

Важной частью современной физической картины мира являются четыре принципа современной физики — наиболее общие законы, влияние которых распространяется на все физические процессы, все формы движения материи: принцип симметрии, принцип дополнительности и соотношения неопределенностей, принцип суперпозиции (наложения), принцип соответствия.

Теории, справедливость которых была экспериментально установлена для определенной группы явлений, с построением новой теории не отбрасываются, но сохраняют свое значение для прежней области явлений как предельное выражение законов новых теорий. Выводы новых теорий в области, где справедлива старая теория, переходят в выводы старых теорий.

Каждая физическая теория — ступень познания — является относительной истиной. Смена физических теорий — это процесс приближения к абсолютной истине, процесс, который не будет никогда полностью завершен из-за бесконечной сложности и разнообразия окружающего нас мира.

Список литературы:

1. Воронов В.К., Гречнева М.В., Сагдеев Р.З. Основы современного естествознания. М., 1999.

2. Концепции современного естествознания: учеб.пособие / А.П. Садохин. — 2-е изд., испр. — Москва: Омега-Л, 2007 — 240с.

3. Мякишев Г.Я. Динамические и статистические закономерности в физике. М., 1973.

4. Николис Г., Пригожин И. Познание сложного. М., 1990.

5. Пахомов Б.Я. Становление современной физической картины мира. М., 1985.

www.ronl.ru

Реферат на тему Физическая картина мира

Реферат ФИЗИЧЕСКАЯ КАРТИНА МИРА.

Содержание: Глава 1. Введение Глава 2. Механистическая картина мира        Глава 3. Электромагнитная картина мира      Глава 4. Становление современной физической картины мира Глава 5. Материальный мир Библиографический список

Глава 1. Введение. История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано долгое время с развитием физики. Именно физика была и остается наиболее развитой и концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она могла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX в. смогли поставить перед собой эту задачу (создание химической и биологической картин мира). Поэтому, начиная разговор о конкретных достижениях естествознания, мы начнем его с физики, с картины мира, созданной этой наукой. Понятие "физическая картина мира" употребляется давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания - самое общее теоретическое знание в физике (система понятий, принципов и гипотез), служащее исходной основой для построения теорий. Физическая картина мира, с одной стороны, обобщает все ранее полученные знания о природе, а с другой - вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы, которых до этого не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы ломаются, новые возникают, картина мира меняется. Ключевым в физической картине мира служит понятие "материя", на которое выходят важнейшие проблемы физической науки. Поэтому смена физической картины мира связана со сменой представлений о материи. В истории физики это происходило два раза. Сначала был совершен переход от атомистических, корпускулярных представлений о материи к полевым - континуальным. Затем, в XX в., континуальные представления были заменены современными квантовыми. Поэтому можно говорить о трех последовательно сменявших друг друга физических картинах мира. Одной из первых возникла механистическая картина мира, поскольку изучение природы началось с анализа простейшей формы движения материи - механического перемещения тел.

Глава 2. Механистическая картина мира Она складывается в результате научной революции XVI-XVII вв. на основе работ Галилео Галилея, который установил законы движения свободно падающих тел и сформулировал механический принцип относительности. Но главная заслуга Галилея в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и математической обработкой результатов измерений. Если эксперименты ставились и раньше, то математический их анализ впервые систематически стал применять именно Галилей. Принципиальное отличие нового метода исследования природы от ранее существовавшего натурфилософского способа состояло, следовательно, в том, что в нем гипотезы систематически проверялись опытом. Эксперимент можно рассматривать как вопрос, обращенный к природе. Чтобы получить на него определенный ответ, необходимо так сформулировать вопрос, чтобы получить на него вполне однозначный и определенный ответ. Для этого следует так построить эксперимент, чтобы по возможности максимально изолироваться от воздействия посторонних факторов, которые мешают наблюдению изучаемого явления в "чистом виде". В свою очередь гипотеза, представляющая собой вопрос к природе, должна допускать эмпирическую проверку выводимых из нее некоторых следствий. В этих целях, начиная с Галилея, стали широко использовать математику для количественной оценки результатов экспериментов. Таким образом, новое экспериментальное естествознание в отличие от натурфилософских догадок и умозрений прошлого стало развиваться в тесном взаимодействии теории и опыта, когда каждая гипотеза или теоретическое предположение систематически проверяются опытом и измерениями. Ключевым понятием механистической картины мира было понятие движения. Именно законы движения Ньютон считал фундаментальными законами мироздания. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Мерой инертности является масса, другое важнейшее понятие классической механики. Универсальным свойством тел является тяготение. Ньютон, как и его предшественники, придавал большое значение наблюдениям и эксперименту, видя в них важнейший критерий для отделения ложных гипотез от истинных. Поэтому, он резко выступал против так называемых скрытых качеств, с помощью которых последователи Аристотеля пытались объяснить многие явления и процессы природы. Ньютон выдвигает совершенно новый принцип исследования природы, согласно которому вывести два или три общих начала движения из явления и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, - было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты. Эти начала движения и представляют собой основные законы механики, которые Ньютон точно формулирует в своем главном труде "Математические начала натуральной философии", опубликованном в 1687г. Первый закон, который часто называют законом инерции, утверждает: всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не нуждается приложенными силами изменить это состояние. Этот закон, как отмечалось выше, был открыт ещё Галилеем, который отказался от прежних наивных представлений, что движение существует лишь тогда, когда на тело действуют силы. Путём мысленных экспериментов он сумел показать, что по мере уменьшения воздействия внешних сил тело будет продолжать своё движение, так что при отсутствии внешних сил оно должно оставаться либо в покое, либо в равномерном и прямолинейном движении. Конечно, в реальных движениях никогда нельзя полностью освободиться от воздействия сил трения, сопротивления воздуха и других внешних сил, и поэтому закон инерции представляет собой идеализацию, в которой отвлекаются от действительно сложной картины движения и воображаютсебе картину идеальную, которую можно получить путём предельного перехода, т.е. посредством непрерывного уменьшения действия на тело внешних сил и перехода к такому состоянию, когда воздействие станет равным нулю. Второй основной закон занимает в механике центральное место: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует. Третий закон Ньютона: действию всегда есть равное и противоположно направленное противодействие, иначе взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны. Возникает вопрос, каким способом были открыты эти основные законы или принципы механики? Нередко говорят, что они получаются путем обобщения ранее установленных частных или даже специальных законов, какими являются, например, законы Галилея и Кеплера. Если рассуждать по законам логики, такой взгляд нельзя признать правильным, ибо не существует никаких индуктивных правил получения общих утверждений из частных. Ньютон считал, что принципы механики устанавливаются с помощью двух противоположных, но в то же время взаимосвязанных методов - анализа и синтеза. Открытие принципов механики действительно означает подлинно революционный переворот, который связан с переходом от натурфилософских догадок и гипотез о "скрытых" качествах и спекулятивных измышлений к точному экспериментальному естествознанию, в котором все предположения, гипотезы и теоретические построения проверялись наблюдениями и опытом. Поскольку в механике отвлекаются от качественных изменений тел, постольку для её анализа можно было широко пользоваться математическими абстракциями и созданным самим Ньютоном и одновременно Лейбницем (1646-1716) анализом бесконечно малых. Благодаря этому изучение механических процессов было сведено к точному математическому их описанию. На основе механистической картины мира в XVIII-начале XIX вв. была разработана земная, небесная и молекулярная механика. Быстрыми темпами шло развитие техники. Это привело к абсолютизации механистической картины мира, к тому, что она стала рассматриваться в качестве универсальной. В это же время в физике начали накапливаться эмпирические данные, противоречащие механистической картине мира. Так, наряду с рассмотрением системы материальных точек, полностью соответствовавшей корпускулярным представлениям о материи, пришлось ввести понятие сплошной среды, связанное по сути дела, уже не с корпускулярными, а с континуальными представлениями о материи. Так, для объяснения световых явлений вводилось понятие эфира - особой тонкой и абсолютно непрерывной световой материи. Эти факты, не укладывающиеся в русло механистической картины мира, свидетельствовали о том, что противоречия между установившейся системой взглядов и данными опыта оказались непримиримыми. Физика нуждалась в существенном изменении представлений о материи, в смене физической картины мира.

Глава 3. Электромагнитная картина мира В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными, непрерывными. Он сделал вывод, что электромагнитное поле сплошь непрерывно, заряды в нем являются точечными силовыми центрами. Тем самым отпал вопрос о построении механистической модели эфира, несовпадении механистических представлений об эфире с реальными опытными данными о свойствах света, электричества и магнетизма. Одним из первых идеи Фарадея оценил Максвелл (1831-1879). При этом он подчеркивал, что Фарадей выдвинул новые философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механистическую картину мира. Взгляды на материю менялись кардинально: совокупность неделимых атомов переставала быть конечным пределом делимости материи, в качестве такового принималось единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами - электрическими зарядами и волновыми движениями в нем. Движение понималось не только как простое механическое перемещение, первичным по отношению к этой форме движения становилось распространение колебаний в поле, которое описывалось не законами механики, а законами электродинамики. Хотя законы электродинамики, как и законы классической механики, однозначно предопределяли события, и случайность все еще пытались исключить из физической картины мира, создание кинетической теории газов ввело в теорию, а затем и в электромагнитную картину мира понятие вероятности. Правда, пока физики не оставляли надежды найти за вероят­ностными характеристиками четкие однозначные законы, подобные законам Ньютона. Новая электромагнитная картина мира объяснила большой круг явлений, непонятных с точки зрения прежней механистической картины мира. Она глубже вскрыла материальное единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов. Однако и на этом пути вскоре стали возникать непреодолимые трудности. Так, согласно электромагнитной картине мира, заряд стал считаться Уточечным центром, а факты свидетельствовали о конечной протяженности частицы-заряда. Поэтому уже в электронной теории Лоренца частица-заряд вопреки новой картине мира рассматривалась в виде твердого заряженного шарика, обладающего массой. Непонятыми оказались результаты опытов Майкельсона 1881-1887 гг., где он пытался обнаружить движение тела по инерции при помощи приборов, находящихся на этом теле. По теории Максвелла, такое движение можно было обнаружить, но опыт не подтверждал этого. К концу XIX в. накапливалось все больше необъяснимых несоответствий теории и опыта. Одни были обусловлены недостроенностью электромагнитной картины мира, другие вообще не согласовывались с континуальными представлениями о материи: трудности в объяснении фотоэффекта, линейчатый спектр атомов, теория теплового излучения. Принимая законы электродинамики в качестве основных законов физической реальности, А. Эйнштейн ввел в электромагнитную картину мира идею относительности пространства и времени и тем самым устранил противоречие между пониманием материи как определенного вида поля и ньютоновскими представлениями о пространстве и времени. Введение в электромагнитную картину мира релятивистских представлений о пространстве и времени открыло новые возможности для ее развития. С конца XIX в. обнаруживалось все больше непримиримых противоречий между электромагнитной теорией и фактами. В 1897г. было открыто явление радиоактивности и установлено, что оно связано с превращением одних химических элементов в другие и сопровождается испусканием альфа- и бета-лучей. На этой основе появились эмпирические модели атома, противоречащие электромагнитной картине мира.

Глава 4. Становление современной физической картины мира В конце XIX в. и начале ХХ в. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, из которых состоит природа, считались атомы, то в конце XIX в. были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишённых заряда частиц). Согласно первой модели атома, построенной английским учёным Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов, должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую. В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что все элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путём было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определённых условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля -свойства корпускул. Это явление получило название дуализма волны и частицы - представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля - волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов учёные вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн. Так сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм - наличие у каждого элемента материи свойств волны и частицы. Ушли в прошлое и представления о неизменности материи. Одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц. Окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме. Эти новые мировоззренческие подходы к исследованию естественно­научной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы, научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине природы. Квантово-полевая картина мира и в настоящее время находится в состоянии становления. С каждым годом к ней добавляются новые элементы, выдвигаются новые гипотезы, создаются и развиваются новые теории.

Глава 5. Материальный мир Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта. Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение. В науке выделяются три уровня строения материи. 1.      Микромир - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10–8 до 10–16 см, а время жизни - от бесконечности до 10–24 с. Основные структурные элементы: молекулы, атомы, элементарные частицы. 2.      Макромир - мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта. Пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах. Основные структурные элементы: тела на Земле, Земля и другие планеты, Звёзды, гравитационные и электромагнитные поля. 3. Мегамир - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет. Основные структурные элементы: Галактики, гравитационные и электромагнитные поля. И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны. Нет жесткой границы, однозначно разделяющей микро-, макро- и мегамиры. При несомненном качественном различии они связаны конкретными процессами взаимопереходов. Наша Земля представляет макромир. Но в качестве одной из планет Солнечной системы она одновременно выступает и как элемент мегамира.

Библиографический список 1. Ахиезер, A.M. Современная физическая картина мира / A.M. Ахиезер, М.П. Рекало. — М.: Мир, 1980. 2. Гейзенберг, В. Физика и философия / В. Гейзенберг. — М.: Мысль, 1989. 3. Гудков, Н.А. Идея "великого синтеза" в физике / Н.А. Гудков. — Киев: Наук. думка, 1990. 4. Зелиг, К.А. А. Эйнштейн / К.А. Зелиг. — М.: Атомиздат, 1964. 5. Пахомов, К.Я. Становление физической картины мира / К.Я. Пахомов. — М.: Знание, 1985.

bukvasha.ru

Реферат - Физическая картина мира

Реферат

ФИЗИЧЕСКАЯ КАРТИНА МИРА.

Содержание:

Глава 1. Введение

Глава 2. Механистическая картина мира

Глава 3. Электромагнитная картина мира

Глава 4. Становление современной физической картины мира

Глава 5. Материальный мир

Библиографический список

Глава 1. Введение.

История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано долгое время с развитием физики. Именно физика была и остается наиболее развитой и концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она могла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX в. смогли поставить перед собой эту задачу (создание химической и биологической картин мира). Поэтому, начиная разговор о конкретных достижениях естествознания, мы начнем его с физики, с картины мира, созданной этой наукой.

Понятие «физическая картина мира» употребляется давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания — самое общее теоретическое знание в физике (система понятий, принципов и гипотез), служащее исходной основой для построения теорий. Физическая картина мира, с одной стороны, обобщает все ранее полученные знания о природе, а с другой — вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы, которых до этого не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы ломаются, новые возникают, картина мира меняется. Ключевым в физической картине мира служит понятие «материя», на которое выходят важнейшие проблемы физической науки. Поэтому смена физической картины мира связана со сменой представлений о материи. В истории физики это происходило два раза. Сначала был совершен переход от атомистических, корпускулярных представлений о материи к полевым — континуальным. Затем, в XX в., континуальные представления были заменены современными квантовыми. Поэтому можно говорить о трех последовательно сменявших друг друга физических картинах мира.

Одной из первых возникла механистическая картина мира, поскольку изучение природы началось с анализа простейшей формы движения материи — механического перемещения тел.

Глава 2. Механистическая картина мира

Она складывается в результате научной революции XVI-XVII вв. на основе работ Галилео Галилея, который установил законы движения свободно падающих тел и сформулировал механический принцип относительности. Но главная заслуга Галилея в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и математической обработкой результатов измерений. Если эксперименты ставились и раньше, то математический их анализ впервые систематически стал применять именно Галилей.

Принципиальное отличие нового метода исследования природы от ранее существовавшего натурфилософского способа состояло, следовательно, в том, что в нем гипотезы систематически проверялись опытом. Эксперимент можно рассматривать как вопрос, обращенный к природе. Чтобы получить на него определенный ответ, необходимо так сформулировать вопрос, чтобы получить на него вполне однозначный и определенный ответ. Для этого следует так построить эксперимент, чтобы по возможности максимально изолироваться от воздействия посторонних факторов, которые мешают наблюдению изучаемого явления в «чистом виде». В свою очередь гипотеза, представляющая собой вопрос к природе, должна допускать эмпирическую проверку выводимых из нее некоторых следствий. В этих целях, начиная с Галилея, стали широко использовать математику для количественной оценки результатов экспериментов.

Таким образом, новое экспериментальное естествознание в отличие от натурфилософских догадок и умозрений прошлого стало развиваться в тесном взаимодействии теории и опыта, когда каждая гипотеза или теоретическое предположение систематически проверяются опытом и измерениями.

Ключевым понятием механистической картины мира было понятие движения. Именно законы движения Ньютон считал фундаментальными законами мироздания. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Мерой инертности является масса, другое важнейшее понятие классической механики. Универсальным свойством тел является тяготение.

Ньютон, как и его предшественники, придавал большое значение наблюдениям и эксперименту, видя в них важнейший критерий для отделения ложных гипотез от истинных. Поэтому, он резко выступал против так называемых скрытых качеств, с помощью которых последователи Аристотеля пытались объяснить многие явления и процессы природы.

Ньютон выдвигает совершенно новый принцип исследования природы, согласно которому вывести два или три общих начала движения из явления и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, — было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты.

Эти начала движения и представляют собой основные законы механики, которые Ньютон точно формулирует в своем главном труде «Математические начала натуральной философии», опубликованном в 1687г.

Первый закон, который часто называют законом инерции, утверждает: всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не нуждается приложенными силами изменить это состояние.

Этот закон, как отмечалось выше, был открыт ещё Галилеем, который отказался от прежних наивных представлений, что движение существует лишь тогда, когда на тело действуют силы. Путём мысленных экспериментов он сумел показать, что по мере уменьшения воздействия внешних сил тело будет продолжать своё движение, так что при отсутствии внешних сил оно должно оставаться либо в покое, либо в равномерном и прямолинейном движении. Конечно, в реальных движениях никогда нельзя полностью освободиться от воздействия сил трения, сопротивления воздуха и других внешних сил, и поэтому закон инерции представляет собой идеализацию, в которой отвлекаются от действительно сложной картины движения и воображаютсебе картину идеальную, которую можно получить путём предельного перехода, т.е. посредством непрерывного уменьшения действия на тело внешних сил и перехода к такому состоянию, когда воздействие станет равным нулю.

Второй основной закон занимает в механике центральное место: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует.

Третий закон Ньютона: действию всегда есть равное и противоположно направленное противодействие, иначе взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Возникает вопрос, каким способом были открыты эти основные законы или принципы механики? Нередко говорят, что они получаются путем обобщения ранее установленных частных или даже специальных законов, какими являются, например, законы Галилея и Кеплера. Если рассуждать по законам логики, такой взгляд нельзя признать правильным, ибо не существует никаких индуктивных правил получения общих утверждений из частных. Ньютон считал, что принципы механики устанавливаются с помощью двух противоположных, но в то же время взаимосвязанных методов — анализа и синтеза.

Открытие принципов механики действительно означает подлинно революционный переворот, который связан с переходом от натурфилософских догадок и гипотез о «скрытых» качествах и спекулятивных измышлений к точному экспериментальному естествознанию, в котором все предположения, гипотезы и теоретические построения проверялись наблюдениями и опытом. Поскольку в механике отвлекаются от качественных изменений тел, постольку для её анализа можно было широко пользоваться математическими абстракциями и созданным самим Ньютоном и одновременно Лейбницем (1646-1716) анализом бесконечно малых. Благодаря этому изучение механических процессов было сведено к точному математическому их описанию.

На основе механистической картины мира в XVIII-начале XIX вв. была разработана земная, небесная и молекулярная механика. Быстрыми темпами шло развитие техники. Это привело к абсолютизации механистической картины мира, к тому, что она стала рассматриваться в качестве универсальной.

В это же время в физике начали накапливаться эмпирические данные, противоречащие механистической картине мира. Так, наряду с рассмотрением системы материальных точек, полностью соответствовавшей корпускулярным представлениям о материи, пришлось ввести понятие сплошной среды, связанное по сути дела, уже не с корпускулярными, а с континуальными представлениями о материи. Так, для объяснения световых явлений вводилось понятие эфира — особой тонкой и абсолютно непрерывной световой материи.

Эти факты, не укладывающиеся в русло механистической картины мира, свидетельствовали о том, что противоречия между установившейся системой взглядов и данными опыта оказались непримиримыми. Физика нуждалась в существенном изменении представлений о материи, в смене физической картины мира.

Глава 3. Электромагнитная картина мира

В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными, непрерывными. Он сделал вывод, что электромагнитное поле сплошь непрерывно, заряды в нем являются точечными силовыми центрами. Тем самым отпал вопрос о построении механистической модели эфира, несовпадении механистических представлений об эфире с реальными опытными данными о свойствах света, электричества и магнетизма.

Одним из первых идеи Фарадея оценил Максвелл (1831-1879). При этом он подчеркивал, что Фарадей выдвинул новые философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механистическую картину мира.

Взгляды на материю менялись кардинально: совокупность неделимых атомов переставала быть конечным пределом делимости материи, в качестве такового принималось единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами — электрическими зарядами и волновыми движениями в нем.

Движение понималось не только как простое механическое перемещение, первичным по отношению к этой форме движения становилось распространение колебаний в поле, которое описывалось не законами механики, а законами электродинамики.

Хотя законы электродинамики, как и законы классической механики, однозначно предопределяли события, и случайность все еще пытались исключить из физической картины мира, создание кинетической теории газов ввело в теорию, а затем и в электромагнитную картину мира понятие вероятности. Правда, пока физики не оставляли надежды найти за вероят­ностными характеристиками четкие однозначные законы, подобные законам Ньютона.

Новая электромагнитная картина мира объяснила большой круг явлений, непонятных с точки зрения прежней механистической картины мира. Она глубже вскрыла материальное единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов.

Однако и на этом пути вскоре стали возникать непреодолимые трудности. Так, согласно электромагнитной картине мира, заряд стал считаться

Уточечным центром, а факты свидетельствовали о конечной протяженности частицы-заряда. Поэтому уже в электронной теории Лоренца частица-заряд вопреки новой картине мира рассматривалась в виде твердого заряженного шарика, обладающего массой. Непонятыми оказались результаты опытов

Майкельсона 1881-1887 гг., где он пытался обнаружить движение тела по инерции при помощи приборов, находящихся на этом теле. По теории Максвелла, такое движение можно было обнаружить, но опыт не подтверждал этого.

К концу XIX в. накапливалось все больше необъяснимых несоответствий теории и опыта. Одни были обусловлены недостроенностью электромагнитной картины мира, другие вообще не согласовывались с континуальными представлениями о материи: трудности в объяснении фотоэффекта, линейчатый спектр атомов, теория теплового излучения.

Принимая законы электродинамики в качестве основных законов физической реальности, А. Эйнштейн ввел в электромагнитную картину мира идею относительности пространства и времени и тем самым устранил противоречие между пониманием материи как определенного вида поля и ньютоновскими представлениями о пространстве и времени. Введение в электромагнитную картину мира релятивистских представлений о пространстве и времени открыло новые возможности для ее развития.

С конца XIX в. обнаруживалось все больше непримиримых противоречий между электромагнитной теорией и фактами. В 1897г. было открыто явление радиоактивности и установлено, что оно связано с превращением одних химических элементов в другие и сопровождается испусканием альфа- и бета-лучей. На этой основе появились эмпирические модели атома, противоречащие электромагнитной картине мира.

Глава 4. Становление современной физической картины мира

В конце XIX в. и начале ХХ в. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, из которых состоит природа, считались атомы, то в конце XIX в. были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишённых заряда частиц).

Согласно первой модели атома, построенной английским учёным Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов, должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.

В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что все элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путём было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определённых условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля -свойства корпускул. Это явление получило название дуализма волны и частицы — представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля — волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов учёные вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.

Так сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм — наличие у каждого элемента материи свойств волны и частицы. Ушли в прошлое и представления о неизменности материи. Одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц.

Окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.

Эти новые мировоззренческие подходы к исследованию естественно­научной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы, научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине природы.

Квантово-полевая картина мира и в настоящее время находится в состоянии становления. С каждым годом к ней добавляются новые элементы, выдвигаются новые гипотезы, создаются и развиваются новые теории.

Глава 5. Материальный мир

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.

Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.

В науке выделяются три уровня строения материи.

1. Микромир — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10–8 до 10–16 см, а время жизни — от бесконечности до 10–24 с.

Основные структурные элементы: молекулы, атомы, элементарные частицы.

2. Макромир — мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта. Пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Основные структурные элементы: тела на Земле, Земля и другие планеты, Звёзды, гравитационные и электромагнитные поля.

3. Мегамир — мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.

Основные структурные элементы: Галактики, гравитационные и электромагнитные поля.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны. Нет жесткой границы, однозначно разделяющей микро-, макро- и мегамиры. При несомненном качественном различии они связаны конкретными процессами взаимопереходов. Наша Земля представляет макромир. Но в качестве одной из планет Солнечной системы она одновременно выступает и как элемент мегамира.

Библиографический список

1. Ахиезер, A.M. Современная физическая картина мира / A.M. Ахиезер, М.П. Рекало. — М.: Мир, 1980.

2. Гейзенберг, В. Физика и философия / В. Гейзенберг. — М.: Мысль, 1989.

3. Гудков, Н.А. Идея «великого синтеза» в физике / Н.А. Гудков. — Киев: Наук. думка, 1990.

4. Зелиг, К.А. А. Эйнштейн / К.А. Зелиг. — М.: Атомиздат, 1964.

5. Пахомов, К.Я. Становление физической картины мира / К.Я. Пахомов. — М.: Знание, 1985.

www.ronl.ru

Доклад - Физическая картина мира 4

Федеральное агенство по образованию

Государственне образовательное учреждение высшего профессионального образования

Санкт-петербургский торгово-экономический институт

Кафедра философии и политологии

Контрольная работа по дисциплине

«Концепция современного естествознания»

На тему: Физическая картина мира

Выполнила Леонова И.В.

Студентка группы 125-с

Проверил

Санкт-Петербург

2011

Содержание:

1. Введение

2. Понятие физической карты мира.

3. Механическая картина мира, ее основное содержание.

4.Электромагнитная картина мира.

5.Становление современной физической картины мира.

6. Заключение.

7. Список литературы.

1.Введение.

Познание единичных вещей и процессов невозможно без одновременного познания всеобщего, а последнее в свою очередь познается только через первое. Сегодня это должно быть ясно каждому образованному уму. Точно также и целое постижимо лишь в органическом единстве с его частями, а часть может быть понята лишь в рамках целого. И любой открытый нами «частный» закон — если он действительно закон, а не эмпирическое правило — есть конкретное проявление всеобщности. Нет такой науки, предметом которой было бы исключительно всеобщее без познания единичного, как невозможна и наука, ограничивающая себя лишь познанием особенного.

Всеобщая связь явлений — наиболее общая закономерность существования мира, представляющая собой результат и проявление универсального взаимодействия всех предметов и явлений и воплощающаяся в качестве научного отражения в единстве и взаимосвязи наук. Она выражает внутреннее единство всех элементов структуры и свойств любой целостной системы, а также бесконечное разнообразие отношений данной системы с другими окружающими ее системами или явлениями. Без понимания принципа всеобщей связи не может быть истинного знания. Осознание универсальной идеи единства всего живого со всем мирозданием входит в науку, хотя уже более полувека назад в своих лекциях, читанных в Сорбонне, В.И.Вернадский отмечал, что ни один живой организм в свободном состоянии на Земле не находится, но неразрывно связан с материально энергетической средой. «В нашем столетии биосфера получает совершенно новое понимание. Она выявляется как планетное явление космического характера».

Естественнонаучное миропонимание (ЕНМП) — система знаний о природе, образующаяся в сознании учащихся в процессе изучения естественнонаучных предметов, и мыслительная деятельность по созданию этой системы.

Понятие «картина мира» является одним из фундаментальных понятий философии и естествознания и выражает общие научные представления об окружающей действительности в их целостности. Понятие «картина мира» отражает мир в целом как единую систему, то есть «связное целое», познание которого предполагает «познание всей природы и истории...»

В основе построения научной картины мира лежит принцип единства природы и принцип единства знания. Общий смысл последнего заключается в том, что знание не только бесконечно многообразно, но оно вместе с тем обладает чертами общности и целостности. Если принцип единства природы выступает в качестве общей философской основы построения картины мира, то принцип единства знаний, реализованный в системности представлений о мире, является методологическим инструментом, способом выражения целостности природы.

Система знаний в научной картине мира не строится как система равноправных партнеров. В результате неравномерного развития отдельных отраслей знания одна из них всегда выдвигается в качестве ведущей, стимулирующей развитие других. В классической научной картине мира такой ведущей дисциплиной являлась физика с ее совершенным теоретическим аппаратом, математической насыщенностью, четкостью принципов и научной строгостью представлений. Эти обстоятельства сделали ее лидером классического естествознания, а методология сведения придала всей научной картине мира явственную физическую окраску.

В соответствии с современным процессом «гуманизации» биологии возрастает ее роль в формировании научной картины мира. Обнаруживаются две«горячие точки» в ее развитии… Это — стык биологии и наук о неживой природе, и стык биологии и общественных наук...

Представляется, что с решением вопроса о соотношении социального и биологического научная картина мира отразит мир в виде целостной системы знаний о неживой природе, живой природе и мире социальных отношений.

2. Физическая картина мира

Понятие «физическая картина мира» употребляется в естествознании давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как самостоятельный вид знания — общее теоретическое знание в физике, система понятий, принципов и гипотез, служащих исходной основой для построения теорий. Физическая картина мира, с одной стороны, обобщает все ранее полученные знания о природе, а с другой стороны, вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы, которых до этого не было и которые коренным образом меняют основы физического теоретического знания. Иными словами, физическая картина мира рассматривается как физическая модель природы, включающая в себя фундаментальные физические и философские идеи, физические теории, наиболее общие понятия, принципы и методы познание, соответствующие определенному историческому этапу развития физики.

Постоянное развитие и замена одних картин мира другими более адекватно отражающими структуру и свойства материи, есть процесс развития самой физической картины мира. Основой для выделения отдельных ее типов служит качественное изменение фундаментальных идей, являющихся базой для физической теории и наших представителей о структуре материи и формах ее существования. С изменением физической картины мира начинается новый этап в развитии физики с иной системой исходных понятий, принципов, гипотез и стиля мышления. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в крушении старой картины мира и появлении новой.

В истории естествознания было три последовательно сменявших друг друга физические картины мира: механическая, в рамках которой не могли найти объяснения электромагнитные явления; электромагнитная; квантово-полевая.

3. Механическая картина мира

Ее основу составили идеи, принципы, законы и теории механики, которые представляли собой совокупность наиболее существенных знаний о физических закономерностях, наиболее полно отражали физические процессы в природе. В широком смысле механика изучает механическое движение материи, тел и происходящее при этом взаимодействие между ними.

Основу механической картины мира составил атомизм — теория, которая весь мир, включая человека, рассматривала как совокупность огромного числа мельчайших, неделимых, абсолютно твердых материальных частиц — атомов. Они перемещаются в пространстве и времени в соответствии с законами механики, которые считались фундаментальными законами мироздания. Поэтому ключевым понятием механической картины мира было понятие движения, которое понималось как механическое перемещение и объяснялось на основе трех законов Ньютона.

В соответствии с механической картиной мира Вселенная представляла собой хорошо отлаженный механизм, действующий по законам строгой необходимости, в котором все предметы и явления связаны между собой жесткими причинно- следственными отношениями. В таком мире нет случайностей, они полностью исключались.

Жизнь и разум в механической картине не обладали никакой качественной спецификой. Человек рассматривался как природное тело в ряду других тел. По сути дела, классическое естествознание не стремилось постичь человека.

Однако развитие науки раскрыло относительный характер механической картины мира. Несостоятельной оказалась не сама механическая картина мира, а ее исходная философская идея — механизм. В результате в XIX в. В физике наступил кризис, который свидетельствовал, что физика нуждалась в существенном изменении своих взглядов на мир. Так, в недрах механической стали складываться элементы новой — электромагнитной картины мира.

4. Электромагнитная картина мира

Наибольший вклад в формирование данного представления о мире внесли работы М. Фарадея и Д. Максвелла. После создания последним на основе открытого Фарадеем явления электромагнитной индукции теории электромагнитного поля стало возможным говорить о появлении электромагнитной картины мира.

Теория электромагнитного поля Максвелла ознаменовала собой начало нового этапа в физике. В соответствии с ней мир стал представляться единой электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля.

Важнейшими понятиями новой теории являются: заряд, который может быть как положительным, так и отрицательным; напряженность поля — сила, которая действовала бы на тело, несущее единичный заряд, если бы оно находилось в рассматриваемой точке.

Когда электрические заряды движутся друг относительно друга, появляется дополнительная магнитная сила. Поэтому общая сила, объединяющая электрическую (покоящиеся заряды) и магнитную (движущиеся заряды) силы, называется электромагнитной. Все многообразие этих сил и. зарядов описывается системой уравнений классической электродинамики. Они известны как уравнения Максвелла. Это — закон Ш. Кулона, который полностью эквивалентен закону всемирного тяготения Ньютона; магнитные силовые линии непрерывны и не имеют ни начала, ни конца, магнитных зарядов не существует; электрическое поле создается переменным магнитным полем; магнитное поле может создаваться как электрическим током, так и переменным электрическим полем.

Таким образом, были выдвинуты новые физические и философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механическую картину мира. Но I нельзя сказать, что эти изменения были кардинальны, так как I они осуществились в рамках классической науки. Поэтому новую электромагнитную картину мира можно считать промежуточной, соединяющей в себе как новые идеи, так и старые механистические представления о мире.

Кардинально изменились представления о материи. Согласно электромагнитной картине мира материя существует в виде вещества и поля. Они строго разделены, и их превращение друг в друга невозможно. Главным из них является поле, а значит, основным свойством материи является непрерывность в противовес дискретности.

Расширилось также и понятие движения. Оно стало пониматься не только как простое механическое перемещение, но и как распространение колебаний в поле. Соответственно, законы механики Ньютона уступили свое господствующее место законам электродинамики Максвелла.

Электромагнитная картина мира требовала нового решения проблемы физического взаимодействия. Ньютоновский принцип дальнодействия заменялся фарадеевским принципом близкодействия, который утверждал, что любые взаимодействия передаются полем отточки к точке, непрерывно и с конечной скоростью.

Электромагнитная картина мира произвела настоящий переворот в физике. Она базировалась на идеях непрерывности материи, материального электрического поля, неразрывности материи и движения, связи пространства и времени как между собой, так и с движущейся материей. Новое понимание сущности материи поставило ученых перед необходимостью пересмотра и переоценки этих основополагающих качеств материи.

Случайность все еще пытались исключить из физической картины мира. Но в середине XIX в. впервые появилась фундаментальная физическая теория нового типа, которая основывалась на теории вероятности. Это была кинетическая теория газов, или статистическая механика. Случайность, вероятность наконец-то нашли свое место в физике и были отражены в форме так называемых статистических законов. Правда, пока физики не оставляли надежды найти за вероятностными характеристиками четкие однозначные законы, подобные законам Ньютона, и считали вновь созданную теорию промежуточным вариантом, временной мерой. Тем не менее прогресс был налицо: в элект-ромагнитную картину мира вошло понятие вероятности.

Не менялось в электромагнитной картине мира представление о месте и роли человека во Вселенной. Его появление считалось лишь капризом природы.

Электромагнитная картина мира объяснила большой круг физических явлений, непонятных с точки зрения прежнего механического представления о мире. Однако дальнейшее ее развитие показало, что она имеет относительный характер. Поэтому на смену ей пришла новая — квантово-полевая — картина мира, объединившая в себе дискретность механической картины мира и непрерывность электромагнитной картины мира.

5. Становление современной физической картины мира В конце XIX в. и начале ХХ в. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, из которых состоит природа, считались атомы, то в конце XIX в. были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишённых заряда частиц).

Согласно первой модели атома, построенной английским учёным Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов, должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.

В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что все элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путём было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определённых условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля -свойства корпускул. Это явление получило название дуализма волны и частицы — представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля — волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов учёные вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.

Так сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм — наличие у каждого элемента материи свойств волны и частицы. Ушли в прошлое и представления о неизменности материи. Одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц.

Окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.

Эти новые мировоззренческие подходы к исследованию естественнонаучной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы, научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине природы.

Квантово-полевая картина мира и в настоящее время находится в состоянии становления. С каждым годом к ней добавляются новые элементы, выдвигаются новые гипотезы, создаются и развиваются новые теории.

Заключение

Физическая картина мира рассматривается как физическая модель природы, включающая в себя фундаментальные физические и философские идеи, физические теории, наиболее общие понятия, принципы и методы познание, соответствующие определенному историческому этапу развития физики.

В истории естествознания было три последовательно сменявших друг друга физические картины мира: механическая, в рамках которой не могли найти объяснения электромагнитные явления; электромагнитная; квантово-полевая

В физике существует два типа физических законов (теорий): динамические и статистические.

Важной частью современной физической картины мира являются четыре принципа современной физики — наиболее общие законы, влияние которых распространяется на все физические процессы, все формы движения материи: принцип симметрии, принцип дополнительности и соотношения неопределенностей, принцип суперпозиции (наложения), принцип соответствия.

Теории, справедливость которых была экспериментально установлена для определенной группы явлений, с построением новой теории не отбрасываются, но сохраняют свое значение для прежней области явлений как предельное выражение законов новых теорий. Выводы новых теорий в области, где справедлива старая теория, переходят в выводы старых теорий.

Каждая физическая теория — ступень познания — является относительной истиной. Смена физических теорий — это процесс приближения к абсолютной истине, процесс, который не будет никогда полностью завершен из-за бесконечной сложности и разнообразия окружающего нас мира.

Список литературы:

1. Воронов В.К., Гречнева М.В., Сагдеев Р.З. Основы современного естествознания. М., 1999.

2. Концепции современного естествознания: учеб.пособие / А.П. Садохин. — 2-е изд., испр. — Москва: Омега-Л, 2007 — 240с.

3. Мякишев Г.Я. Динамические и статистические закономерности в физике. М., 1973.

4. Николис Г., Пригожин И. Познание сложного. М., 1990.

5. Пахомов Б.Я. Становление современной физической картины мира. М., 1985.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.