Курсовая работа: Происхождение вселенной. Большой взрыв. Большой взрыв и происхождение вселенной реферат


Происхождение вселенной. Большой взрыв | Рефераты KM.RU

Курсовая работа по предмету «Теоретические основы прогрессивных технологий»

Выполнила: Белозерская Лариса Мирзоджоновна, Курс I

Московский государственный открытый университет, филиал

г. Сафоново 2005 г.

1. Введение .

Космология  - это физическое учение о Вселенной, включающее в себя теорию всего охваченного астрономическими наблюдениями мира как части Вселенной.

Величайшим достижением современной космологии стала модель расширяющейся Вселенной, названная теорией Большого взрыва.

Согласно этой теории, всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто - спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность - её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, - и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью.

В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил - трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности "первовещества"!

Этому моменту учёные дали название "Большой взрыв". Вселенная начала расширяться и остывать.

Следует отметить, что вопрос о том, каким же было рождение Вселенной - "горячим" или "холодным", - не сразу был решён однозначно и занимал умы астрономов долгое время. Интерес к проблеме был далеко не праздным - ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной. Кроме того, при высоких температурах могут протекать термоядерные реакции. Следовательно, химический состав "горячей" Вселенной должен отличаться от состава "холодной". А от этого в свою очередь зависят размеры и темпы развития небесных тел...

На протяжении нескольких десятилетий обе версии - "горячего" и "холодного" рождения Вселенной - существовали в космологии на равных, имея и сторонников, и критиков. Дело оставалось "за малым" - следовало подтвердить их наблюдениями.

2. Реликтовое излучение .

Современная астрономия на вопрос о том, существуют ли доказательства гипотезы горячей Вселенной и Большого взрыва, может дать утвердительный ответ. В 1965 г. было сделано открытие, которое, как считают учёные, прямо подтверждает то, что в прошлом вещество Вселенной было очень плотным и горячим. Оказалось, что в космическом пространстве встречаются электромагнитные волны, которые родились в ту далёкую эпоху, когда не было ещё ни звёзд, ни галактик, ни нашей Солнечной системы.

Возможность существования такого излучения была предсказана астрономами гораздо раньше. В середине 1940гг. американский физик Джордж Гамов (1904-1968) занялся проблемами возникновения Вселенной и происхождения химических элементов. Расчёты, выполненные Гамовым и его учениками, позволили представить, что во Вселенной в первые секунды её существования была очень высокая температура. Нагретое вещество "светилось" - испускало электромагнитные волны. Гамов предположил, что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, и даже предсказал температуру этого излучения - примерно 5-6 К.

В 1965 г. американские учёные радиоинженеры Арно Пензиас и Роберт Уилсон зарегистрировали космическое излучение, которое нельзя было приписать никакому известному тогда космическому источнику. Астрономы пришли к выводу, что это излучение, имеющее температуру около 3 К, - реликт (от лат. "остаток", отсюда и название излучения - "реликтовое") тех далёких времён, когда Вселенная была фантастически горяча. Теперь астрономы смогли сделать выбор в пользу "горячего" рождения Вселенной. А. Пензиас и Р. Вильсон, получили в 1978 г. Нобелевскую Премию за открытие космического микроволнового фона (такового официальное название реликтового излучения) на волне 7,35 см.

3. Сценарий далекого прошлого.

Большим взрывом называется явление возникновения Вселенной. В рамках этой концепции полагается, что начальным состоянием Вселенной была точка, называемая точкой сингулярности, в которой были сосредоточены все вещество и энергия. Она характеризовалась бесконечно большой плотностью материи. Конкретные свойства точки сингулярности неизвестны, как неизвестно и то, что предшествовало состоянию сингулярности.

Приблизительная хронология событий, последовавших с нулевого момента времени - начала расширения, представлена ниже:

Время с начала взрыва

Температура

(градусы Кельвина)

Событие

Следствия

0 - 5*10-44 секунды

1,3*1032

Никаких достоверных сведений нет

5*10-44 - 10-36 секунды

1,3*1032 – 1028

Начало действия известных физических законов, эра инфляционного расширения

Расширение Вселенной продолжающееся и поныне

10-36 - 10-4 секунды

1028 – 1012

Эра промежуточных бозонов, а затем – адронная эра, существование свободных кварков

10-4 - 10-3 секунд

1012 – 1010

Возникновение частиц и античастиц из свободных кварков, а также их аннигиляция, возникновение прозрачности вещества для нейтрино

Возникновение барионной асимметрии, появление нейтринного реликтового излучения

10-3 - 10-120 секунд

1010 – 109

Протекание ядерных реакций синтеза ядер гелия и некоторых других легких химических элементов

Установление первичного соотношения химических элементов

Между 300 тысячами - 1 миллионом лет

3000 – 4500

Завершение эры рекомбинации

Появление Реликтового излучения и нейтрального газа

1 миллион - 1 миллиард лет

4500 – 10

Развитие гравитационных неоднородностей газа

Образование звезд и галактик

Относительно условий и событий, происходивших до наступления момента 5·10-44 секунды - окончания первого кванта времени - никаких достоверных сведений нет. О физических параметрах той эры можно лишь сказать, что тогда температура была 1,3·1032 К, а плотность материи около 1096 кг/м3. Приведенные значения являются предельными для применения существующих теорий. Они вытекают из соотношений скорости света, гравитационной постоянной, постоянных Планка и Больцмана и называются “планковскими”.

События периода с 5·10-44 по 10-36 секунды отражает модель “инфляционной Вселенной”, описание, которой затруднительно и не может быть дано в рамках этого изложения. Однако следует отметить, что согласно этой модели расширение Вселенной происходило без уменьшения объемной концентрации энергии и при отрицательном давлении первичной смеси вещества и энергии, т.е., как бы, отталкивании материальных объектов друг от друга, вызвавшем расширение Вселенной, продолжающееся и поныне.

Далее, начиная с момента 10-36 секунды от начала взрыва, события описываются в рамках модели “горячей Вселенной”.

Для понимания процессов, протекавших в период 10-36-10-4 секунд с начала взрыва, требуется глубокое знание физики элементарных частиц. В этот период электромагнитное излучение и элементарные частицы - различные виды мезонов, гипероны, протоны и антипротоны, нейтроны и антинейтроны, нейтрино и антинейтрино и т.п. существовали в равновесии, т.е. их объемные концентрации были равны. Очень важную роль в это время играли вначале поля сильных, а затем слабых взаимодействий.

 В период 10-4 - 10-3 секунды происходило формирование всего множества элементарных частиц, которые, преобразуясь одни в другие, и составляют ныне всю Вселенную. Произошла аннигиляция подавляющего большинства элементарных частиц и античастиц, существовавших ранее. Именно в этот период появилась барионная асимметрия, которая оказалась следствием очень малого, всего на одну миллиардную долю, превышения количества барионов над антибарионами. Оно возникло, судя по всему, сразу после эры инфляционного расширения Вселенной. При температуре 1011 градусов плотность Вселенной уже снизилась до величины, характерной для атомных ядер, В этот период уменьшение температуры вдвое происходило за тысячные доли секунды. В это же время родилось существующее и ныне реликтовое нейтринное излучение. Однако, несмотря на его значительную плотность, составляющую не менее чем 400 штук/см3, и возможность получить с его помощью важнейшую информацию о том периоде формирования Вселенной, его регистрация пока не реализуема.

В период с 10-3 по 10-120 секунд в результате термоядерных реакций образовались ядра гелия и очень малое количество ядер некоторых других легких химических элементов, а значительная часть протонов - ядер водорода - объединению в атомные ядра не подверглась. Все они остались погруженными в “океан” свободных электронов и фотонов электромагнитного излучения. С этого момента в первичном газе установилось соотношение: 75- 78% водорода и 25-22% гелия - по массам этих газов.

В период между 300 тысячами и 1 миллионом лет температура Вселенной понизилась до 3000 - 45000 К и наступила эра рекомбинации. Свободные прежде электроны объединились с легкими атомными ядрами и протонами. Образовались атомы водорода, гелия и некоторое количество атомов лития. Вещество стало прозрачным и реликтовое излучение, наблюдаемое до сих пор, “отделилось” от него. Все наблюдаемые ныне особенности реликтового излучения, например, флуктуации температуры его потоков приходящих от разных участков на небесной сфере или их поляризация отражают картину свойств и распределения вещества в то время.

В течение последующего - первого миллиарда лет существования Вселенной ее температура снизилась от 3000 - 45000 К до 300 К. В связи с тем, что к этому периоду времени во Вселенной еще не образовалось источников электромагнитного излучения – звезд, квазаров и т.п., а реликтовое излучение уже остыло, эту эпоху называют “Темным возрастом” Вселенной.

Тогда же неоднородности плотности смеси первичных газов, возникшие, вероятно, еще на этапе “инфляционного расширения” Вселенной, уплотнялись под действием гравитационных сил. Компьютерное моделирование этих процессов показывает, что это должно было приводить к образованию гигантских звезд с массами в миллионы масс Солнца. По причине таких огромных масс, эти звезды разогревались до очень высоких температур и потому проходили весь свой путь эволюции в течение нескольких десятков миллионов лет, а затем взрывались как сверхновые.

Нагретые до огромных температур поверхностей этих звезд порождали мощные потоки ультрафиолетового излучения, которые произвели повторную ионизацию атомов находящихся в свободном от звезд космическом пространстве. Наступила, так называемая, эпоха переионизация. Образовавшаяся плазма сильно рассеивала электромагнитное излучение в его коротковолновых спектральных диапазонах. Вселенная, как бы погрузилась в густой туман. Только для длинноволнового реликтового излучения эта среда оказалась прозрачной.

Эти гигантские звезды послужили первыми во Вселенной источниками более тяжелых, чем литий химических элементов. Вслед за тем появилась возможность формирования космических объектов второго поколения, содержащих ядра этих атомов. Звезды второго поколения начали формироваться из смеси тяжелых атомов, а также атомов первичных водорода и гелия. Они и звезды последующих поколений уже не были столь массивными и горячими, как звезды первого поколения, поэтому потоки ультрафиолетового ионизирующего излучения от них были значительно меньше. Произошла повторная рекомбинация большинства атомов межзвездного и межгалактического газов и пространство вновь стало, в основном, прозрачным для электромагнитного излучения во всех  его спектральных диапазонах. Картина Вселенной стала, практически такой, какой мы ее наблюдаем сегодня.

Итак,  в результате Большого взрыва 13-20 млрд. лет назад начал действовать уникальный ускоритель частиц, в ходе работы которого непрерывно и стремительно сменяли друг друга процессы рождения и гибели (аннигиляции) разнообразных частиц.

4. Большой Взрыв .

Предыдущая вселенная перед взрывом состояла из небольшого количества почти полностью выгоревших галактик. Основным элементом в этих галактиках было железо. Вселенную освещали только жёлтые и красные звёзды, но горели они значительно ярче, чем сейчас.Если во вселенной и существовала жизнь, то она была сосредоточена вокруг этих звёзд и была обречена на гибель. В центре вселенной находилась "ЧЁРНАЯ ДЫРА", в которую и падали все эти галактики. А в центре "ЧЁРНОЙ ДЫРЫ" находилась гигантская звезда, размерами превосходящая самую большую галактику. Эта звезда под действием гравитации сжималась, и сначала кванты энергии начали входить друг в друга, образуя единый квант энергии, имеющий положительный заряд. При дальнейшем сжатии начался мгновенный переход вакуума в энергию. Стоит более подробно остановиться на природе вакуума. Распадаться могут не только элементарные частицы, но и сам квант. При этом образуются кванты с дробным зарядом. Кванты энергии, имеющие дробный заряд, меньше единицы, не могут иметь полей. Из этих квантов энергии, не имеющих полей, и ничто-пустоты и состоит вакуум. Эти неполноценные кванты называются "Снарками". Для того чтобы несколько снарков превратились в полноценный квант, необходимо, чтобы они вошли друг в друга. Для этого надо огромное давление. Такое давление и создала первичная звезда.

 Как только давление достигло критического уровня, весь вакуум внутри первичного тела мгновенно превратился в энергию. Все поля являются энергиями, а энергии возникают в результате взаимодействия двух объектов, имеющих разный энергетический уровень. Если одного из составляющих нет, то и создание энергии, а значит и полей, невозможно. Вакуум, игравший роль объекта, имеющего низкий энергетический уровень, превратился в энергию, и кванту стало не с чем взаимодействовать, для создания полей. Гравитационное поле мгновенно уменьшилось, и звезда вышла из коллапса. Сжатие ядра гигантской звезды уменьшилось, и она сбросила наружную оболочку. Произошел эффект сжатой пружины, которая, при уменьшении сжатия, распрямляется. Кванты подобной энергетической плотности в природе существовать не могут. Для уменьшения своей энергетической плотности он должен был увеличить длину волны, а, значит, увеличиваться в объёме. При взаимодействии протокванта и внешнего вакуума, образовалось гигантское электрическое поле. Именно из этого электрического поля и вакуума и стали образовываться протоны. Энергию электрического поля поддерживал протоквант, теряя энергию на его поддержание. Этот суперфотон увеличивался в объёме со скоростью света, и протоны оказывались внутри этого кванта, так как двигаться со "скоростью света" протоны не могли. Это запрещено теорией относительности. Любая элементарная частица состоит из кванта энергии и вакуума. Плотность вакуума внутри элементарной значительно выше, чем в окружающем пространстве. Количество вакуума в природе ограничено, а так как на создания вещества тратилось большое количество вакуума, это привело к резкому уменьшению вселенной. Вселенная стала сжиматься.

Сжатие вселенной происходило так быстро, что вещество внешней оболочки звезды, оказалось перемешанным с вновь созданным веществом. Каждая новая вселенная наследует часть вещества от старой вселенной. Когда энергия протокванта была израсходована на создание протонов, нечем стало поддерживать энергию электрического поля, и электрическое поле должно было начать уменьшаться. Электрическое поле стремится любой ценой сохранить свой потенциал, даже ценой изменения своего заряда, на противоположный. На спаде потенциала, из энергии поля, стали создаваться электроны. Когда энергетическая плотность поля, стала не достаточна для создания электронов, оно разбилось на фотоны, и по периметру взрыва образовалась гигантская вспышка, состоящая из фотонов. Фотоны, продолжая двигаться в том же направлении, прошли через второй центр, (наша вселенная относится к двухцентовым объектам) и толкнули внешние электроны в центр вселенной. Из центра вселенной двигались протоны и некоторое количество вещества от предыдущей вселенной, а навстречу им электроны, получившие момент импульса от фотонов, и образовалось два встречных потока. Образовались гигантские вихри аналогичные земным циклонам.

Циклоны не просто внешне напоминают спиральные галактики, у них и природа одинаковая. В центре такого вихря высокая плотность вещества, а вот момент импульса равен нулю. На периферии наоборот плотность вещества низкая, а момент импульса большой. В результате взаимодействия электронного и протонного потока образовалось большое количество спиральных галактик. Поскольку в центре галактики вещество не имело момента импульса, то протоны сразу же собрались в гигантские звёзды, и сразу начались термоядерные реакции. Большой Взрыв был не таким эффектным, как считают физики, но очень эффективным. Большая часть энергии превратилась в вещество. Фактически взрыва, как такового, и не было. Было превращение энергии в вещество по всему объёму вселенной. Доказательством этого является то, что наша вселенная однородна и изотропна. Это означает, что в любой сфере, с диаметром ~ равным 300 световых лет, количество галактик приблизительно равно. Однородность и изотропность вселенной, принято называть Космологическим Принципом. При взрыве, который предложен физиками, такого эффекта быть не может. Это возможно только в случае, когда вещество равномерно возникло во всём объёме вселенной.

При термоядерной реакции выделяется не только энергия, но и вакуум. Расстояние между пунктом "А" и "Б" зависит от количества вакуума находящегося между ними. Чем активнее происходили термоядерные процессы в галактике, тем больше выбрасывалось вакуума, и тем быстрее она удалялась от остальных галактик. Вселенная начала расширяться. Вселенная расширялась не за счёт энергии первичного взрыва, а благодаря термоядерным реакциям звёзд. Как сохраняли галактики свою структуру можно найти в статье "Геометрия галактик". Вакуум, освободившийся после термоядерных реакций, постепенно покидает пределы метагалактики, но пока термоядерная активность звёзд велика, и количество вакуума, излучаемое звёздами больше, чем покидающее метагалактику, она будет расширяться.

Как только термоядерная активность галактик уменьшится, вселенная продолжит увеличиваться, а вот метагалактика начнёт уменьшаться. Это произойдёт тогда, когда количество вакуума, покидающее метагалактику, будет больше, чем получаемую при термояде. Галактики начнут движение к общему центру, цикл замкнётся, и всё повторится с начала.

Мы выяснили, что Вселенная постоянно расширяется; тот момент с которого Вселенная начала расширятся, принято считать ее началом. Его называют  “Большим Взрывом” или английским термином Big Bang.

Под расширением Вселенной подразумевается такой процесс, когда тоже самое  количество элементарных частиц и фотонов занимают постоянно возрастающий объём.

Кратко изложим все те умозаключения о возможных параметрах Вселенной на стадии Большого Взрыва, к которым мы пришли.

Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой.

Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “Большого Взрыва” вся материя была сильно раскаленной  и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но  возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

 Подробный анализ показывает, что температура вещества Т понижалась во времени в соответствии с простым соотношением формула (1) :

           (1)                          

Зависимость температуры Т от времени t дает нам возможность определить, что например, в момент, когда возраст Вселенной исчислялся всего одной десятитысячной секунды,  её температура представляла  один  биллион  Кельвинов.

5. Эволюция вещества

   Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT . Согласно соотношению hkT понижалась и энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота Понижение энергии фотонов во времени имело для возникновения частиц и античастиц путем материализации важные последствия. Для того чтобы фотон превратился(материализовался) в частицу и античастицу с массой mo и энергией покоя moc ему необходимо обладать энергией 2 mocили большей формула(2).

      (2)

Со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2moc), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой mo. Так, например, фотон, обладающий энергией меньшей, чем 2*938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.

   В предыдущем соотношении можно заменить энергию фотонов h кинетической энергией частиц kT формула (3)

                       (3)

то есть

  (4)

Знак неравенства формула (4) означает следующее: частицы и соответствующие им античастицы возникали при материализации в раскаленном веществе до тех пор, пока температура вещества T не упала ниже указанного значения.                          

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс

частица + античастица гамма-фотона

при условии соприкосновения вещества с антивеществом. Процесс материализации

гамма-фотон частица + античастица

мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся  температуры раскаленного вещества приостановилась,

эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

5.1.   Адронная эра.   

Длилась примерно от t=10-6с до  t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(10K. Средняя кинетическая энергия частиц kT и фотонов h составляла около миллиарда эв (10Мэвчто соответствует энергии покоя барионов.

В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 10K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10 до 10 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10 с), температура ее понизилась до 10K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10 с, в ней исчезли все мезоны.

На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

5.2.  Лептонная эра.

Длилась примерно от t=10-4с до  t=101с. К концу эры плотность порядка 107 кг/м3 при T=109К.

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10K, когда энергия  фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем  “реликтовыми”.

Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

5.3.  Фотонная эра или эра излучения.

Длилась примерно от t=10-6с до  t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10K , а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.

Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по  энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была  введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hвсех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз.  Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают” со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em).

Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er = Em). Кончается эра излучения и вместе с этим период “Большого Взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную  нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции.

Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

5.4. Звездная эра.

После “Большого  Взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “Большого  Взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “Большого  Взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.

6. Критика современной теории "Большого Взрыва".

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла около 15 миллиардов лет назад из некоторого начального "сингулярного" состояния с бесконечно большими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается.

Наша вселенная является реально существующим объектом, а не философским понятием, и не может быть создана из объекта, находящегося в сингулярном состоянии. Это противоречит здравому смыслу. Объект может сжиматься в сторону бесконечности, но как только сжатие закончится, у любого объекта будут реально существующие параметры.

Такое понятие, как температура, вообще неприемлемо к такому объекту. Мы ведь не считаем элементарные частицы горячими, если они не разогнаны до высоких скоростей. А элементарные частицы имеют более высокую энергию, чем фотоны. Температура - это броуновское движение молекул. Этих самых молекул у данного объекта и не было.

Согласно этой теории Большого Взрыва, дальнейшая эволюция зависит от измеримого экспериментально параметра r - средней плотности вещества в современной Вселенной. Если r меньше некоторого (известного из теории) критического значения rc, Вселенная будет расширяться вечно; если же r > rc , то процесс расширения когда-нибудь остановится и начнется обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Если и сейчас вселенная расширяется, а значит плотность материи недостаточна для создания такого мощного гравитационного поля, которое заставило бы нашу вселенную сжиматься, то в будущем плотность материи станет ещё меньше, а, соответственно уменьшится и гравитационное поле. И вообще, никакого влияния гравитационного поля, на структуру вселенной не заметно. Под влиянием гравитационного поля, движение галактик, должно быть искривлено. Физики преувеличивают значение гравитации на эволюцию вселенной.

Разбегание галактик происходит равномерно по всем сторонам. Это возможно только в том случае, если наша вселенная не имеет общего центра вращения. Иначе с разных сторон, галактики бы удалялись и приближались с разной скоростью. Из закона Хаббла можно сделать вывод: «Наша вселенная не имеет общей точки вращения, а, значит, гравитационное поле не сможет заставить вселенную сжаться. Это сделают другие силы».

Все нужные сведения и закономерности из этих разделов являются надежно установленными, поэтому получаемую с их помощью информацию относительно эволюции системы можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к "началу мира", т.е. внутрь первой сотой доли секунды.

Здесь явное желание выдать желаемое за действительное. Физики не только не знают первые минуты Большого Взрыва, но не могут объяснить и современное состояние вселенной. Они не знают как возникли спиральные галактики, как сохраняют свою структуру, как эти галактики эволюционируют и как становятся шаровыми галактиками. Да и какие силы могут заставить вселенную сжаться, тоже не знают. И какие силы, заставляют вселенную, расширяется, для физиков тоже тёмный лес.

По данным современной наблюдательной астрономии звезды во Вселенной группируются в галактики, которые, в свою очередь, также образуют скопления. Представление о порядках величин дают следующие цифры: наша Галактика содержит ~ 1011 звезд и имеет форму линзы диаметром 80 тысяч световых лет и толщиной ~ 30 тысяч световых лет.

Да все спиральные галактики имеют форму линзы, а вот толщина этих "линз" прямопропорциональна термоядерным процессам, происходящим в галактиках. Этот феномен современная физика объяснить не может, так как считает, что элементарные частицы состоят из кварков. На самом деле элементарные частицы состоят из кванта энергии и вакуума, имеющего сложное строение. Именно вакуум превращает волну в корпускулу. При термояде выделяется не только энергия, но и вакуум, со всеми его структурами, в том числе и с носителем гравитационного поля. Этот тип гравитации называется «Линейным». Именно Линейная гравитация притягивает звёзды к плоскости спиральных галактик. Уменьшатся термоядерные реакции в галактике, и галактики, из спиральных, будут превращаться в шаровые.

Данные наблюдений показывают, что в крупных масштабах Вселенная однородна и изотропна. Грубо говоря, это означает, что в любой сфере с фиксированным достаточно большим диаметром (достаточным считается число ~ 300 миллионов световых лет) содержится приблизительно одинаковое число галактик. Утверждение об однородности и изотропности Вселенной в больших масштабах принято называть Космологическим Принципом.

Однородность и изотропность вселенной никак не вяжется с взрывным процессом. Ни при одном взрыве, такого быть не может. Это возможно только в том случае, когда всё вещество вселенной, возникло по всему объёму вселенной, а не из одной точки.

Количественным итогом этих наблюдений является сформулированный в 1929 году Хабблом "закон разбегания" (формула 5), согласно которому, все галактики (в среднем) удаляются от нас, и скорость этого разбегания u приблизительно пропорциональна расстоянию R до рассматриваемой галактики.

u = RH                    (5)

Если бы галактики удалялись от нас, то никакого Космологического Принципа не могло бы быть. Галактики удаляются не от нас, а друг от друга

Наглядной моделью такого разбегания может послужить надуваемый резиновый шарик с нанесенными хаотически на его поверхность точками - "галактиками": при надувании все эти точки будут удаляться друг от друга в точном соответствии с законом Хаббла.

В резиновый шарик надувают газ, а что надувается в нашу вселенную, что бы она расширялась? Точки "разбегаются на поверхности шарика (на плоскости), а наша вселенная увеличивается во всём объёме. Это хороший образ, но он не объясняет природы данного явления. К образным примерам прибегают тогда, когда нет реальных знаний. Наша вселенная увеличивается в объёме за счёт термоядерных реакций, происходящих в звёздах. Как только термоядерные реакции замедлятся, вселенная начнёт сжиматься.

Это модель "двумерного замкнутого мира". Аналогичный "открытый мир" можно представить в виде резиновой плоскости с нанесенными точками, равномерно растягивающейся во всех направлениях.

И опять это плоскость. И опять это образ. Никакое образное сравнение, не может заменить знание природы расширения вселенной. Удаление галактик связано не только с расстоянием, но и с термоядерными процессами, происходящими в галактиках.

Но уже в конце сороковых годов появились первые работы физиков-теоретиков, в которых предсказывалось, что в настоящий момент вся Вселенная должна быть заполнена равновесным электромагнитным излучением с эффективной температурой в несколько градусов Кельвина.

Это означает, что взрыв был не точечным, а равномерным по всему объёму вселенной.

Вследствие того же эффекта Доплера излучение прямо по направлению движения должно казаться немного более горячим, а в обратном направлении - более холодным. Эти небольшие (порядка 10- 3 от основной величины) вариации температуры были обнаружены экспериментально, и они имеют характерную угловую зависимость. По этим данным можно вычислить скорость движения Земли относительно этого "нового эфира", образованного фоном реликтового излучения. В итоге получается значение порядка 600 км/с.

Это уже доказательство ошибочности теории относительности Эйнштейна. Значит, в природе есть единая система отсчёта, относительно которой можно вести все измерения. Мы можем определить и скорость нашего перемещения во вселенной, и направление движения. Всё это отрицает Т О.

7. Выводы.

В пользу теории «Большого взрыва» говорят: реликтовое излучение, характер распространения химических элементов во Вселенной. Но все же остаются много неразрешенных вопросов на которые мы пока не в состоянии дать ответ.

Во-первых, теория не  дает ответа на следующие вопросы:

Что заставило вещество Вселенной расширяться?

Что происходило до начала расширения, до момента сингулярности?

Конечны ли пространство и масса? Откуда они берутся.

Во-вторых, несмотря на то, что теория «Большого Взрыва» основывается на ТО, допускается разбегание некоторых частиц со скоростями, в несколько раз превышающими скорость света. Так же в теории указываются ограничения на возможную плотность вещества (не более 1097), хотя с другой стороны выдвигается гипотеза о первоначальной точечности Вселенной, а следовательно и все-таки о бесконечной плотности (т.к. масса бесконечна).

В-третьих, довольно абстрактно, альтернативно рассматриваются такие вопросы, плотно примыкающие к теории «Большого взрыва», как границы и открытость Вселенной, евклидова и неевклидова модель Вселенной.

Наконец, не находят веского фактического  подтверждения (хотя по теоретическим выкладкам все получается хорошо и главное – «удобно» ) существование таких частиц как гипероны, мезоны.

То есть все методы анализа полученных данных, исследования, выдвижения гипотез осуществляются при довольно высокой степени допущений. Такая степень не позволительна для гипотезы, хотя может быть и подходит для столь глобальной теории.

Остается только верить или надеяться, что космология когда-либо заполнит эти «белые дыры», сделает свои выводы обоснованными и по возможности фактически подтвержденными.

Кстати, о «белых дырах». Вероятнее всего, именно их изучение позволит нам узнать ответы на многие вопросы, потому что существует гипотеза: именно белые дыры являются кусками первозданной сингулярности, первозданного ядра расширения.

В этом направлении, по-видимому, и стоит ждать новых открытий в данной области, т.к. данный вопрос в целом является еще не полностью изученным и требует серьёзных исследований.

8. Глоссарий.

Адроны – общее название элементарных частиц (барионов, включая все резонансы и мезоны), подверженных сильному взаимодействию (это взаимодействие ответственно за устойчивость атомных ядер).

Античастицы – электрические частицы, масса и спин которых точно равен массе и спину данной частицы, а электрический заряд, магнитный момент и другие подобные характеристики равны по величине и противоположны по знаку тем же характеристикам частицы. Характерным свойством таких пар (частица-античастица) является их аннигиляция при столкновении и рождение их в процессах взаимодействия частиц высоких энергий.

Аннигиляция – превращение частиц и античастиц при их столкновении в другие частицы (например, протон + антипротон = np–мезонов; электрон + позитрон = nФотонов).

Барионы – «тяжёлые» элементарные частицы с массой меньше протона и спином, равным ½. К ним относят,  например нуклоны (протоны и нейтроны), а так же много других частиц  /см. кварки/.

Бозоны – большой класс элементарных частиц с целочисленным спином (например, фотоны со спином 1). К этому классу принадлежат мезоны, промежуточные векторные бозоны и др. частицы.

Векторные нуклоны – см. барионы.

Гамма-излучение – излучение, возникающее при торможении заряженных частиц большой энергии в веществе, аннигиляции пар и т.д.

Глюоны – гипотетические элементарные частицы (спин равен 1, масса покоя 0), обеспечивающие взаимодействие между кварками.

Лептоны – физически наиболее легкие элементарные частицы со спином ½, не имеющие барионного заряда, но обладающие лептонным зарядом; к лептонам относятся электрон, тяжелый лептон, позитрон, нейтрино, мюон, несущий электрический заряд и их античастицы.

Мезоны – нестабильные элементарные частицы с массами, промежуточными между массами протона и электрона.

Мюон - нестабильные положительно  и отрицательно заряженные элементарные частицы со спином ½  и массой~207 электронных масс и временем жизни ~ 10-6С; относятся к лептонам.

Нейтрино – физически нестабильная нейтральная элементарная частица с массой, равной, по-видимому 0, и спином ½. Относится к лептонам. Возникает при бета-распаде атомных ядер и при распаде элементарных частиц; чрезвычайно слабо взаимодействуют с веществом.

Нейтроны – физически -  электрически нейтральный элемент частицы с массой, почти равной массе протона и спином ½; входит в состав атомных ядер; в свободном состоянии нестабилен; время жизни 16 минут.

Пионы -  p–мезоны – группа трех нестабильных элементарных частиц (адронов) с нулевым спином и массой около 270 электронных масс; 2 пиона (p+ и p-)несут элементарный заряд, третий (p0) электрически нейтрален; являются переносчиками ядерных сил.

Протон - стабильная элементарная частица со спином ½  и массой в 1836 электронных масс (~10-24 г), относящаяся к барионам; ядро легкого изотопа атома водорода (протия). Вместе с нейтронами протоны образуют все атомные ядра.

Электрон - стабильная отрицательно заряженная элементарная частица со спином ½, массой ~ 9·10-28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях. Электрон один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.

Список литературы

Васильев А. Н. "Эволюция вселенной", интернетовский адрес: www.pereplet.ru/obrazovanie/stsoro. s/44.html

Горелов А.А. «Концепции современного естествознания» - М.:«Центр», 1998 г.

Кесарев В.В. Эволюция вещества во вселенной. - М.: Атомиздат, 1989.

Левитан Е.П. Эволюционирующая Вселенная. – М.: Просвещение, 1993.

Новиков И.Д. Эволюция Вселенной – 3-е изд., переработанное. – М.: Наука, 1993.

Ройзен И. Вселенная между мгновением и вечностью. –«Наука и жизнь», №№ 11 и 12, 1996 г.

Самсонов А.Л. «Концепция эволюционизма и теория Большого взрыва» - «Экология и жизнь», №1,2000г.

Шишлова А. «В лаборатории - десять микросекунд после Большого взрыва». - «Наука и жизнь», № 3, 2000 г.

http://spacescience.com/

www.astrolabe.ru

www.astronomynow.com/breaking.html

www.rambler.ru/sites/217000/217217.html

www.rambler.ru/sites/21792/189324.html

www.eso.org/outreach/press-rel/

10. Расчетная часть.

Задача.

При соударении α-частицы с ядром бора  произошла ядерная реакция, в результате которой образовалось два новых ядра. Одним из этих ядер было ядро атома водорода . Определить порядковый номер и массовое число второго ядра, дать символическую запись ядерной реакции и определить её энергетический эффект.

Решение.

Обозначим неизвестное ядро символом . Так как α-частица представляет собой ядро гелия , запись реакции имеет вид

                                   +               +.

Применив закон сохранения числа нуклонов, получим уравнение

                            4+10=1+А

                                              А=13.

Применив закон сохранения заряда, получим уравнение

                                          2+5=1+Z

                                              Z=6.

Следовательно, неизвестное ядро является ядром атома изотопа углерода .

Теперь мы можем записать реакцию в окончательном виде:

                                   +             +.

Энергетический эффект Q ядерной реакции определяется по формуле

                         Q=931[(m He + m B) - (m H + m C)].

Здесь в первых круглых скобках указаны массы исходных ядер, во вторых скобках – массы ядер – продуктов реакции. При числовых подсчетах по этой формуле массы ядер заменяют массами нейтральных атомов. Возможность такой замены вытекает из следующих соображений.

Число электронов в электронной оболочке нейтрального атома равно его зарядовому числу Z. Сумма зарядовых чисел исходных ядер равна сумме зарядовых чисел ядер – продуктов реакции. Следовательно, электронные оболочки ядер гелия и бора содержат вместе столько же электронов, сколько их содержат электронные оболочки ядер углерода и водорода.

Очевидно, что при вычитании суммы масс нейтральных атомов углерода и водорода из суммы масс атомов гелия и бора массы электронов выпадут и мы получим тот же результат, как если бы брали массы ядер. Подставив массы атомов в расчетную формулу, получим

Q = 931[(4,00260 + 10,01294) - (1,00783 + 13,00335)] = 4,06 МэВ.

Ответ:

Второе ядро – ядро атома изотопа углерода .

Символическая запись ядерной реакции:

                                   +             +.

Энергетический эффект Q ядерной реакции 4,06 МэВ.

Дата добавления: 26.04.2005

www.km.ru

Реферат - по дисциплине Концепции современного естествознания на тему «Большой взрыв и происхождение Вселенной.»

Департамент образования

Московский городской педагогический университет

Экономический факультет

РЕФЕРАТ по дисциплине

Концепции современного естествознания

на тему « Большой взрыв и происхождение Вселенной .»

Студентки 4 курса 1 группы

Айнетдиновой Татьяны Николаевны

Отделение – экстернат

Специальность 061000 «Государственное и муниципальное управление»

1 полугодие

Москва 2009

Содержание:

Содержание: 2

Введение. 3

Модель Большого Взрыва. 5

Эволюция Вселенной. 8

1) Адронная эра. 9

2) Лептонная эра. 10

3) Фотонная эра или эра излучения. 10

4) Звездная эра. 12

Модели будущего вселенной ………………………………………………………………………12

Заключение...........................................16

Список использованной литературы: 18

Введение.

Исследованием Вселенной стал заниматься еще самый древний Человек. Небо было доступно для его обозрения – оно было для него интересным. Недаром астрономия – самая древняя из наук о природе – и, по сути, почти самая древняя наука вообще.

Не потерял интереса к изучению проблем космоса и Современный Человек. Но он смотрит уже немного глубже: ему не просто интересно что есть Вселенная сейчас – он жаждет знаний о том:

что было когда Вселенная рождалась?

рождалась ли она вообще или она глобально стационарна?

как давно это было и как происходило?

Для поиска ответа на все эти Непростые ответы была отведена специальная ниша в астрономии – космология.

Космология [1] — это физическое учение[2] о Вселенной как в целом, включающее в себя теорию всего охваченного астрономическими наблюдениями мира как части Вселенной.

Космология попыталась дать ответы[3] на эти вопросы. Была создана теория Большого Взрыва, а так же теории, описывающие первые мгновения рождения Вселенной, ее появление и структуризаци..

Всё это позволяет нам понять сущность физических процессов, показывает источники, создающие современные законы физики, даёт возможность прогнозировать дальнейшую судьбу Вселенной.

Поэтому космология, как и любая другая наука живет и бурно развивается, принося все новые и новые фундаментальные знания об окружающем нас мире. Хотя и не так стремительно, как например, компьютерные технологии, и в большей мере за счет «альтернативных» теорий, но все-таки развивается.

Данная работа посвящена эволюции Вселенной: в ней рассматриваются первый мгновения жизни Вселенной, её дальнейшая эволюция и модели будушего развития Вселенной.

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое. Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был на столько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.

На протяжении десяти миллиардов лет после “большого взрыва” простейшее бесформенное вещество постепенно превращалось в атомы, молекулы, кристаллы, породы, планеты. Рождались звезды, системы, состоящие из огромного количества элементарных частиц с весьма простой организацией. На некоторых планетах могли возникнуть формы жизни.

Модель Большого Взрыва.

Планеты, звёзды, галактики поражают нас удивительным разнообразием своих свойств, сложностью строения. А как устроена вся Вселенная в целом ?

Её главное свойство — однородность. Она предстаёт перед нами всюду одинаковой — «сплошной». Указывая из соображений максимальной простоты устройства на общую однородность мира, замечательный мыслитель Паскаль (1623-1662) говорил, что мир — это круг, центр которого везде, а окружность нигде. Так с помощью наглядного геометрического образа он утверждал однородность мира.

У Вселенной есть и ещё одно важнейшее свойство. Она находится в движении, расширяется. Расстояние между скоплениями и сверхскоплениями постоянно возрастает. Они как бы разбегаются друг от друга. А сеть ячеистой структуры растягивается.

Во все времена люди предпочитали считать Вселенную вечной и неизменной. Эта точка зрения господствовала вплоть до 20-х годов нашего века. В то время считалось, что она ограничена размерами нашей Галактики. Настоящий переворот в науке о Вселенной произвели в 1922 — 1924 годах работы ленинградского математика и физика А. Фридмана. Опираясь на только что созданную тогда А. Эйнштейном общую теорию относительности, он математически доказал, что мир — это не нечто застывшее и неизменное. Как единое целое он живет своей динамической жизнью, изменяется во времени, расширяясь или сжимаясь по строго определённым законам.

Фридман открыл подвижность звёздной Вселенной. Это было теоретическое предсказание, а выбор между расширением и сжатием нужно сделать на основании астрономических наблюдений. Такие наблюдения в 1928 — 1929 годах удалось проделать Хабблу, известному уже нам исследователю галактик.

Он обнаружил, что далёкие галактики и целые их коллективы движутся, удаляясь от нас во все стороны. Но так и должно выглядеть, в соответствии с предсказаниями Фридмана, общее расширение Вселенной.

Конечно, это не означает, что галактики разбегаются именно от нас. В действительности общее расширение Вселенной происходит так, что все они удаляются друг от друга, и из любого места картина этого разбегания выглядит так, как мы видим её с нашей планеты.

Предполагаемый возраст Вселенной во много раз превышает те временные отрезки, которыми мы оперируем, описывая историю человечества или даже историю нашей планеты. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной, а с точки зрения человека, процесс эволюции Вселенной происходит очень медленно.

Согласно общепринятой сегодня эволюционной теории Вселенной, началом ее был гигантский, раскаленный и плотный огненный шар. Это было около десяти миллиардов лет назад. Предполагаемый состав этого первичного яйца был весьма прост: огненный шар был настолько раскален, что, вероятнее всего, состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом, хотя, скорее всего, это были не те элементарные частицы, которые современные ученые привыкли наблюдать сегодня.

Какое-то время шар находился в покое, а затем произошел Большой Взрыв, и на протяжении десяти миллиардов лет после этого события, грандиозной вселенской катастрофы, простейшее бесформенное вещество постепенно превращалось в атомы, молекулы, кристаллы, породы, планеты. Рождались звезды, системы, состоящие из огромного количества элементарных частиц с весьма простой организацией, и, вероятно, на некоторых планетах могли возникнуть формы жизни, подобные земным или же радикально отличающиеся от них.

Итак, произошел Взрыв, по-английски Big Bang, и с этой секунды началось расширение Вселенной, продолжающееся до сих пор, а момент, с которого Вселенная начала расширятся, принято считать ее началом, хотя, возможно, Мировое Яйцо, огненный шар, бесконечно долго пребывал в стабильном состоянии. Под расширением Вселенной подразумевается такой процесс, когда одно и то же количество элементарных частиц и фотонов занимают постоянно возрастающий объём, а, следовательно, средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в начале времен (примерно десять миллиардов лет назад) плотность Вселенной была очень большой, ведь в относительно небольшом объеме содержалось все существующее сегодня вещество. Кроме того, высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря, энергия всех фотонов, содержащихся в 1 куб. см, была больше суммы общей энергии частиц, содержащихся в 1 куб. см.

На самом раннем этапе, в первые мгновения “большого взрыва”, вся материя была фантастически раскаленной густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы, а энергия превращалась в вещество.

Подробный анализ показывает, что температура вещества Т понижалась во времени в соответствии с простым соотношением :

T = 1010 / Ö t K .

Зависимость температуры Т от времени t дает нам возможность определить, что например, в момент, когда возраст вселенной исчислялся всего одной десятитысячной секунды, её температура представляла один биллион Кельвинов.

Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT. Согласно соотношению h n= kT понижалась и энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота n.

Понижение энергии фотонов во времени имело для возникновения частиц и античастиц путем материализации важные последствия. Для того, чтобы фотон превратился (материализовался) в частицу и античастицу с массой m o и энергией покоя m oc 2, ему необходимо обладать энергией 2m oc 2 или большей. Эта зависимость выражается так:

h n >=2m oc 2

Со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2m oc 2 ), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой m o. Так, например, фотон, обладающий энергией меньшей, чем 2.938 Мэв = 938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.

В предыдущем соотношении можно заменить энергию фотонов h n кинетической энергией частицkT ,

kT >= 2 m oc 2

то есть

T >= 2 m oc 2 /k

Знак неравенства означает следующее: частицы и соответствующие им античастицы возникали при материализации в раскаленном веществе до тех пор, пока температура вещества T не упала ниже значения

2 m oc 2 /k

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс

частица + античастица Þ 2 гамма-фотона

при условии соприкосновения вещества с антивеществом. Процесс материализации

гамма-фотон Þ частица + античастица

мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейсятемпературы раскаленного вещества приостановилась. Эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

Эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную .

Длилась примерно от [4] t =10-6 до t =10-4. Плотность порядка 1017 кг/м3 при T =1012 …1013 .

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(1013 K). Средняя кинетическая энергия частиц kT и фотонов hn составляла около миллиарда эв (103 Мэв), что соответствует энергии покоя барионов. В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 1013 K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов — гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10-6 до 10-4 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10-4 с.), температура ее понизилась до 1012 K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов — пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10-4 с., в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

2) Лептонная эра.

Длилась примерно от [5] t =10-4 до t =101. К концу эры плотность порядка 107 кг/м3 при T =109 .

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов — пионов — в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010 K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

Длилась примерно от t =10-6 до t =10-4. Плотность порядка 1017 кг/м3 при T =1012 …1013 .

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 1010 K, а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hn всех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения E r. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают” со временем. Вследствие этого плотность энергии фотонов (E r ) падает быстрее, чем плотность энергии частиц (E m ). Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть E r =E m ). Кончается эра излучения и вместе с этим период “большого взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. Не следует забывать, что в столь короткое время (всего лишь несколько секунд ) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

После “большого взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “большого взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “большим взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры. Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики — ничтожные явления в сравнении с большим взрывом.

Модели будущего вселенной.

Каково же будущее Вселенной? Многие выдающиеся ученые ХХ века неоднократно задавались этим вопросом.

В 1917г. А. Эйнштейн выступил с гипотезой о конечной, но безграничной Вселенной. Суть данной гипотезы была в следующем: предположим, что вещество, составляющее планеты, звез­ды и звездные системы, равномерно рассеяно по всему миро­вому пространству. Тем самым мы допускаем, что Вселенная всюду однородна и к тому же изотропна, то есть во всех на­правлениях имеет одинаковые свойства. Будем считать, что средняя плотность вещества во Вселенной выше так называе­мой критической плотности. Если все эти требования соблю­дены, мировое пространство, как это доказал Эйнштейн, замк­нуто и представляет собой четырехмерную сферу. Объем та­кой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе возможно облететь всю замкнутую Вселенную, двигаясь все время в од­ном и том же направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная по Эйнштейну, содержит хотя и большое, но все-таки конечное число звезд и звездных систем, а поэтому к ней фотометрический и гравита­ционный парадоксы просто неприменимы. В то же время при­зрак тепловой смерти тяготеет и над Вселенной Эйнштейна — такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Пять лет спустя, в 1922 г., советский физик Александр Фридман на основании строгих расчетов показал, что Вселен­ная Эйнштейна никак не может быть стационарной, неизмен­ной, как это считал Эйнштейн. Вселенная непременно должна расширяться, причем речь идет о расширении самого про­странства, то есть об увеличении всех расстояний мира. Все­ленная Фридмана напоминала раздувающийся мыльный пу­зырь, у которого и радиус, и площадь поверхности непрерыв­но увеличиваются.

Идея Фридмана поначалу показалась Эйнштейну слишком смелой и необоснованной. Он даже заподозрил ошибку в вы­числениях. Но, ознакомившись с ними, он публично признал, что мы живем в расширяющейся Вселенной.

Из расчетов Фридмана вытекали три возможных следствия:

Вселенная и ее пространство расширяются с течением времени;

Вселенная сжимается;

во Вселенной чередуются через большие промежутки времени циклы сжатия и расширения.

Доказательства в пользу модели расширяющейся Вселен­ной были получены в 1926 г., когда американский астроном Э. Хаббл открыл при исследовании спектров далеких галактик (существование которых было доказано в 1923 г. тем же Хабблом) красное смещение спектральных линий (смещение линий к красному концу спектра), что было истолковано как следст­вие эффекта Доплера (изменение частоты колебаний или дли­ны волн из-за движения источника излучения и наблюдателя по отношению друг к другу) — удаление этих галактик друг от друга со скоростью, которая возрастает с расстоянием. По по­следним измерениям, это увеличение скорости расширения со­ставляет примерно 55 км/с на каждый миллион парсек. После этого открытия вывод Фридмана о нестационарности Вселен­ной получил подтверждение и в космологии утвердилась мо­дель расширяющейся Вселенной.

Наблюдаемое нами разбегание галактик есть следствие расширения всего пространства замкнутой конечной Вселен­ной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстоя­ния между пылинками на поверхности раздувающего­ся мыльного пузыря. Каждую из таких пылинок, как и каж­дую из галактик, можно с полным правом считать центром расширения.

Дальнейшее развитие модель расширяющейся Вселенной получила в послевоенные годы и особенно в последние десяти­летия благодаря исследованиям известных отечественных кос­мологов Зельдовича и Новикова. Уточнены величины, харак­теризующие скорость расширения Вселенной, рассмотрены различные варианты моделей Вселенной в зависимости от средней плотности вещества в мировом пространстве, доста­точно подробно намечен ход эволюции Вселенной от момента начала ее расширения.

Какое же будущее ждет нашу Вселенную? Мы уже упоми­нали, что расчеты Фридмана допускали три варианта развития событий. По какому из них идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энер­гии разлетающегося вещества. Это отношение можно свести к отношению плотности вещества во Вселенной к критической плотности вещества, которую мы уже упоминали.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик и расшире­ние Вселенной носит необратимый характер. Это выражается условием

(где р - плотность вещества во Вселен­ной, рк — критическая плотность вещества). Этот вариант динамичной модели Вселенной называют «открытой Вселен­ной ».

Если же преобладает гравитационное взаимодействие, чему соответствует условие

то темп расширения со временем замедлится до полной остановки, после чего начнет­ся сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно боль­шой плотностью), затем произойдет новый взрыв.

Для наблюдателя сигналом перехода от расширения к сжатию станет смена красного смещения линий химических элементов в спектрах удаленных галактик на фио­летовое смещение. Такой вариант модели назван «закрытой Вселенной ».

В случае, когда силы гравитации точно равны ки­нетическим силам, то есть когда

расширение не пре­кратится, но его скорость со временем будет стремиться к ну­лю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным.

Теоретически возможна и пуль­сация Вселенной.

Возникает естественный вопрос: какой из трех вариантов реализуется в нашей Вселенной? Ответ на него остается за наблюдательной астрономией, которая должна оценить со­временную среднюю плотность вещества во Вселенной и уточнить значение постоянной Хаббла (скорость расширения галактик). Пока надежные оценки этих величин отсутствуют. На основании современных данных создается впечатление, что средняя плотность вещества во Вселенной близка к кри­тическому значению, она либо немного больше, либо немно­го меньше. Но от этого «немного» зависит будущее Вселен­ной, правда, весьма отдаленное. Постоянная Хаббла поз­воляет оценить время, в течение которого продолжается про­цесс расширения Вселенной. Получается, что оно не мень­ше 10 млрд. и не более 19 млрд. лет. Наиболее вероятным вре­менем существования расширяющейся Вселенной считают 15 млрд. лет.

Из всех вышеперечисленных и тех доказательств, которые не вошли в мой реферат из-за своей громоздкости и математическо-физической сложности можно с уверенностью сделать вывод: Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас и будут происходить в будущем.

Заключение.

Вселенная развивается и в наше время. В спиральных галактиках рождаются и умирают звезды. Вселенная продолжает расширятся…

Мы знаем строение Вселенной в огромном объеме пространства, для пересечения которого свету требуются миллиарды лет. Но пытливая мысль человека стремится проникнуть дальше. Что лежит за границами наблюдаемой области мира? Бесконечна ли Вселенная по объему? И её расширение — почему оно началось и будет ли оно всегда продолжаться в будущем? А каково происхождение «скрытой» массы? И наконец, как зародилась разумная жизнь во Вселенной?

Есть ли она ещё где-нибудь кроме нашей планеты? Окончательные и полные ответы на эти вопросы пока отсутствуют.

Вселенная неисчерпаема. Неутомима и жажда знания, заставляющая людей задавать всё новые и новые вопросы о мире и настойчиво искать ответы на них.

Наши дни с полным основанием называют золотым веком астрофизики — замечательные и чаще всего неожиданные открытия в мире звезд следуют сейчас одно за другим. Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали разгадать тайны Галактик, разбросанных в беспредельных просторах Вселенной. Приходится только поражаться, как быстро наука выдвигает различные гипотезы и тут же их опровергает. Однако астрономия не стоит на месте: появляются новые способы наблюдения, модернизируются старые. С изобретением радиотелескопов, например, астрономы могут «заглянуть» на расстояния, которые еще в 40-x. годах ХХ столетия казались недоступными. Однако надо себе ясно представить огромную величину этого пути и те колоссальные трудности, с которыми еще предстоит встретиться на пути к звездам.

Изучение Вселенной, даже только известной нам её части является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

Вселенная бесконечна во времени и пространстве. Каждая частичка Вселенной имеет свое начало и конец, как во времени, так и в пространстве, но вся Вселенная бесконечна и вечна так, как она является вечно самодвижущейся материей.

Вселенная — это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем.

Вайнберг С. Первые три минуты.М., 1991.

Воронцов-Вельяминов Б.А. Очерки о Вселенной. М., 1990.

Казютинский В.В. «Вселенная Астрономия, Философия», М.,«Знание» 1972г.

Кесарев В.В . Эволюция вещества во вселенной. М., 1986.

Климишин И.А. «Астрономия наших дней» — М.: Наука,1976.

Левитан Е.П. Эволюционирующая Вселенная. М., 1993.

Новиков И.Д. Эволюция Вселенной, 1990.

Новиков И.Д. Как взорвалась Вселенная. — М., Наука. 1988.

Левитан С.П. «Астрономия», М., «Просвещение» 1994 г.

Энциклопедический словарь юного физика. М., 1994.

[1] Определение А.Л. Зельманова (1913-1987).

[2] Здесь: совокупность накопленных теорретических положений о строении вещества и структуре Вселенной.

[3] Точнее сказать, возможные варианты ответов, гипотезы.

[4] t=0 соответствует моменту отсчёта времени начала расширения и начала отсчета времени существования Метагалактики.

[5] t=0 соответствует моменту отсчёта времени начала расширения и начала отсчета времени существования Метагалактики.

www.ronl.ru

Реферат - Происхождение вселенной. Большой взрыв

Курсовая работа по предмету «Теоретические основы прогрессивных технологий»

Выполнила: Белозерская Лариса Мирзоджоновна, Курс I

Московский государственный открытый университет, филиал

г. Сафоново 2005 г.

1. Введение .

Космология — это физическое учение о Вселенной, включающее в себя теорию всего охваченного астрономическими наблюдениями мира как части Вселенной.

Величайшим достижением современной космологии стала модель расширяющейся Вселенной, названная теорией Большого взрыва.

Согласно этой теории, всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто — спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность — её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, — и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью.

В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил — трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности «первовещества»!

Этому моменту учёные дали название «Большой взрыв». Вселенная начала расширяться и остывать.

Следует отметить, что вопрос о том, каким же было рождение Вселенной — «горячим» или «холодным», — не сразу был решён однозначно и занимал умы астрономов долгое время. Интерес к проблеме был далеко не праздным — ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной. Кроме того, при высоких температурах могут протекать термоядерные реакции. Следовательно, химический состав «горячей» Вселенной должен отличаться от состава «холодной». А от этого в свою очередь зависят размеры и темпы развития небесных тел...

На протяжении нескольких десятилетий обе версии — «горячего» и «холодного» рождения Вселенной — существовали в космологии на равных, имея и сторонников, и критиков. Дело оставалось «за малым» — следовало подтвердить их наблюдениями.

2. Реликтовое излучение .

Современная астрономия на вопрос о том, существуют ли доказательства гипотезы горячей Вселенной и Большого взрыва, может дать утвердительный ответ. В 1965 г. было сделано открытие, которое, как считают учёные, прямо подтверждает то, что в прошлом вещество Вселенной было очень плотным и горячим. Оказалось, что в космическом пространстве встречаются электромагнитные волны, которые родились в ту далёкую эпоху, когда не было ещё ни звёзд, ни галактик, ни нашей Солнечной системы.

Возможность существования такого излучения была предсказана астрономами гораздо раньше. В середине 1940гг. американский физик Джордж Гамов (1904-1968) занялся проблемами возникновения Вселенной и происхождения химических элементов. Расчёты, выполненные Гамовым и его учениками, позволили представить, что во Вселенной в первые секунды её существования была очень высокая температура. Нагретое вещество «светилось» — испускало электромагнитные волны. Гамов предположил, что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, и даже предсказал температуру этого излучения — примерно 5-6 К.

В 1965 г. американские учёные радиоинженеры Арно Пензиас и Роберт Уилсон зарегистрировали космическое излучение, которое нельзя было приписать никакому известному тогда космическому источнику. Астрономы пришли к выводу, что это излучение, имеющее температуру около 3 К, — реликт (от лат. «остаток», отсюда и название излучения — «реликтовое») тех далёких времён, когда Вселенная была фантастически горяча. Теперь астрономы смогли сделать выбор в пользу «горячего» рождения Вселенной. А. Пензиас и Р. Вильсон, получили в 1978 г. Нобелевскую Премию за открытие космического микроволнового фона (такового официальное название реликтового излучения) на волне 7,35 см.

3. Сценарий далекого прошлого.

Большим взрывом называется явление возникновения Вселенной. В рамках этой концепции полагается, что начальным состоянием Вселенной была точка, называемая точкой сингулярности, в которой были сосредоточены все вещество и энергия. Она характеризовалась бесконечно большой плотностью материи. Конкретные свойства точки сингулярности неизвестны, как неизвестно и то, что предшествовало состоянию сингулярности.

Приблизительная хронология событий, последовавших с нулевого момента времени — начала расширения, представлена ниже:

Время с начала взрыва

Температура

(градусы Кельвина)

Событие Следствия
0 — 5*10-44 секунды 1,3*1032 Никаких достоверных сведений нет
5*10-44 — 10-36 секунды 1,3*1032 – 1028 Начало действия известных физических законов, эра инфляционного расширения Расширение Вселенной продолжающееся и поныне
10-36 — 10-4 секунды 1028 – 1012 Эра промежуточных бозонов, а затем – адронная эра, существование свободных кварков
10-4 — 10-3 секунд 1012 – 1010 Возникновение частиц и античастиц из свободных кварков, а также их аннигиляция, возникновение прозрачности вещества для нейтрино Возникновение барионной асимметрии, появление нейтринного реликтового излучения
10-3 — 10-120 секунд 1010 – 109 Протекание ядерных реакций синтеза ядер гелия и некоторых других легких химических элементов Установление первичного соотношения химических элементов
Между 300 тысячами — 1 миллионом лет 3000 – 4500 Завершение эры рекомбинации Появление Реликтового излучения и нейтрального газа
1 миллион — 1 миллиард лет 4500 – 10 Развитие гравитационных неоднородностей газа Образование звезд и галактик

Относительно условий и событий, происходивших до наступления момента 5·10-44 секунды — окончания первого кванта времени — никаких достоверных сведений нет. О физических параметрах той эры можно лишь сказать, что тогда температура была 1,3·1032 К, а плотность материи около 1096 кг/м3. Приведенные значения являются предельными для применения существующих теорий. Они вытекают из соотношений скорости света, гравитационной постоянной, постоянных Планка и Больцмана и называются “планковскими”.

События периода с 5·10-44 по 10-36 секунды отражает модель “инфляционной Вселенной”, описание, которой затруднительно и не может быть дано в рамках этого изложения. Однако следует отметить, что согласно этой модели расширение Вселенной происходило без уменьшения объемной концентрации энергии и при отрицательном давлении первичной смеси вещества и энергии, т.е., как бы, отталкивании материальных объектов друг от друга, вызвавшем расширение Вселенной, продолжающееся и поныне.

Далее, начиная с момента 10-36 секунды от начала взрыва, события описываются в рамках модели “горячей Вселенной”.

Для понимания процессов, протекавших в период 10-36-10-4 секунд с начала взрыва, требуется глубокое знание физики элементарных частиц. В этот период электромагнитное излучение и элементарные частицы — различные виды мезонов, гипероны, протоны и антипротоны, нейтроны и антинейтроны, нейтрино и антинейтрино и т.п. существовали в равновесии, т.е. их объемные концентрации были равны. Очень важную роль в это время играли вначале поля сильных, а затем слабых взаимодействий.

В период 10-4 — 10-3 секунды происходило формирование всего множества элементарных частиц, которые, преобразуясь одни в другие, и составляют ныне всю Вселенную. Произошла аннигиляция подавляющего большинства элементарных частиц и античастиц, существовавших ранее. Именно в этот период появилась барионная асимметрия, которая оказалась следствием очень малого, всего на одну миллиардную долю, превышения количества барионов над антибарионами. Оно возникло, судя по всему, сразу после эры инфляционного расширения Вселенной. При температуре 1011 градусов плотность Вселенной уже снизилась до величины, характерной для атомных ядер, В этот период уменьшение температуры вдвое происходило за тысячные доли секунды. В это же время родилось существующее и ныне реликтовое нейтринное излучение. Однако, несмотря на его значительную плотность, составляющую не менее чем 400 штук/см3, и возможность получить с его помощью важнейшую информацию о том периоде формирования Вселенной, его регистрация пока не реализуема.

В период с 10-3 по 10-120 секунд в результате термоядерных реакций образовались ядра гелия и очень малое количество ядер некоторых других легких химических элементов, а значительная часть протонов — ядер водорода — объединению в атомные ядра не подверглась. Все они остались погруженными в “океан” свободных электронов и фотонов электромагнитного излучения. С этого момента в первичном газе установилось соотношение: 75- 78% водорода и 25-22% гелия — по массам этих газов.

В период между 300 тысячами и 1 миллионом лет температура Вселенной понизилась до 3000 — 45000 К и наступила эра рекомбинации. Свободные прежде электроны объединились с легкими атомными ядрами и протонами. Образовались атомы водорода, гелия и некоторое количество атомов лития. Вещество стало прозрачным и реликтовое излучение, наблюдаемое до сих пор, “отделилось” от него. Все наблюдаемые ныне особенности реликтового излучения, например, флуктуации температуры его потоков приходящих от разных участков на небесной сфере или их поляризация отражают картину свойств и распределения вещества в то время.

В течение последующего — первого миллиарда лет существования Вселенной ее температура снизилась от 3000 — 45000 К до 300 К. В связи с тем, что к этому периоду времени во Вселенной еще не образовалось источников электромагнитного излучения – звезд, квазаров и т.п., а реликтовое излучение уже остыло, эту эпоху называют “Темным возрастом” Вселенной.

Тогда же неоднородности плотности смеси первичных газов, возникшие, вероятно, еще на этапе “инфляционного расширения” Вселенной, уплотнялись под действием гравитационных сил. Компьютерное моделирование этих процессов показывает, что это должно было приводить к образованию гигантских звезд с массами в миллионы масс Солнца. По причине таких огромных масс, эти звезды разогревались до очень высоких температур и потому проходили весь свой путь эволюции в течение нескольких десятков миллионов лет, а затем взрывались как сверхновые.

Нагретые до огромных температур поверхностей этих звезд порождали мощные потоки ультрафиолетового излучения, которые произвели повторную ионизацию атомов находящихся в свободном от звезд космическом пространстве. Наступила, так называемая, эпоха переионизация. Образовавшаяся плазма сильно рассеивала электромагнитное излучение в его коротковолновых спектральных диапазонах. Вселенная, как бы погрузилась в густой туман. Только для длинноволнового реликтового излучения эта среда оказалась прозрачной.

Эти гигантские звезды послужили первыми во Вселенной источниками более тяжелых, чем литий химических элементов. Вслед за тем появилась возможность формирования космических объектов второго поколения, содержащих ядра этих атомов. Звезды второго поколения начали формироваться из смеси тяжелых атомов, а также атомов первичных водорода и гелия. Они и звезды последующих поколений уже не были столь массивными и горячими, как звезды первого поколения, поэтому потоки ультрафиолетового ионизирующего излучения от них были значительно меньше. Произошла повторная рекомбинация большинства атомов межзвездного и межгалактического газов и пространство вновь стало, в основном, прозрачным для электромагнитного излучения во всех его спектральных диапазонах. Картина Вселенной стала, практически такой, какой мы ее наблюдаем сегодня.

Итак, в результате Большого взрыва 13-20 млрд. лет назад начал действовать уникальный ускоритель частиц, в ходе работы которого непрерывно и стремительно сменяли друг друга процессы рождения и гибели (аннигиляции) разнообразных частиц.

4. Большой Взрыв .

Предыдущая вселенная перед взрывом состояла из небольшого количества почти полностью выгоревших галактик. Основным элементом в этих галактиках было железо. Вселенную освещали только жёлтые и красные звёзды, но горели они значительно ярче, чем сейчас.Если во вселенной и существовала жизнь, то она была сосредоточена вокруг этих звёзд и была обречена на гибель. В центре вселенной находилась «ЧЁРНАЯ ДЫРА», в которую и падали все эти галактики. А в центре «ЧЁРНОЙ ДЫРЫ» находилась гигантская звезда, размерами превосходящая самую большую галактику. Эта звезда под действием гравитации сжималась, и сначала кванты энергии начали входить друг в друга, образуя единый квант энергии, имеющий положительный заряд. При дальнейшем сжатии начался мгновенный переход вакуума в энергию. Стоит более подробно остановиться на природе вакуума. Распадаться могут не только элементарные частицы, но и сам квант. При этом образуются кванты с дробным зарядом. Кванты энергии, имеющие дробный заряд, меньше единицы, не могут иметь полей. Из этих квантов энергии, не имеющих полей, и ничто-пустоты и состоит вакуум. Эти неполноценные кванты называются «Снарками». Для того чтобы несколько снарков превратились в полноценный квант, необходимо, чтобы они вошли друг в друга. Для этого надо огромное давление. Такое давление и создала первичная звезда.

Как только давление достигло критического уровня, весь вакуум внутри первичного тела мгновенно превратился в энергию. Все поля являются энергиями, а энергии возникают в результате взаимодействия двух объектов, имеющих разный энергетический уровень. Если одного из составляющих нет, то и создание энергии, а значит и полей, невозможно. Вакуум, игравший роль объекта, имеющего низкий энергетический уровень, превратился в энергию, и кванту стало не с чем взаимодействовать, для создания полей. Гравитационное поле мгновенно уменьшилось, и звезда вышла из коллапса. Сжатие ядра гигантской звезды уменьшилось, и она сбросила наружную оболочку. Произошел эффект сжатой пружины, которая, при уменьшении сжатия, распрямляется. Кванты подобной энергетической плотности в природе существовать не могут. Для уменьшения своей энергетической плотности он должен был увеличить длину волны, а, значит, увеличиваться в объёме. При взаимодействии протокванта и внешнего вакуума, образовалось гигантское электрическое поле. Именно из этого электрического поля и вакуума и стали образовываться протоны. Энергию электрического поля поддерживал протоквант, теряя энергию на его поддержание. Этот суперфотон увеличивался в объёме со скоростью света, и протоны оказывались внутри этого кванта, так как двигаться со «скоростью света» протоны не могли. Это запрещено теорией относительности. Любая элементарная частица состоит из кванта энергии и вакуума. Плотность вакуума внутри элементарной значительно выше, чем в окружающем пространстве. Количество вакуума в природе ограничено, а так как на создания вещества тратилось большое количество вакуума, это привело к резкому уменьшению вселенной. Вселенная стала сжиматься.

Сжатие вселенной происходило так быстро, что вещество внешней оболочки звезды, оказалось перемешанным с вновь созданным веществом. Каждая новая вселенная наследует часть вещества от старой вселенной. Когда энергия протокванта была израсходована на создание протонов, нечем стало поддерживать энергию электрического поля, и электрическое поле должно было начать уменьшаться. Электрическое поле стремится любой ценой сохранить свой потенциал, даже ценой изменения своего заряда, на противоположный. На спаде потенциала, из энергии поля, стали создаваться электроны. Когда энергетическая плотность поля, стала не достаточна для создания электронов, оно разбилось на фотоны, и по периметру взрыва образовалась гигантская вспышка, состоящая из фотонов. Фотоны, продолжая двигаться в том же направлении, прошли через второй центр, (наша вселенная относится к двухцентовым объектам) и толкнули внешние электроны в центр вселенной. Из центра вселенной двигались протоны и некоторое количество вещества от предыдущей вселенной, а навстречу им электроны, получившие момент импульса от фотонов, и образовалось два встречных потока. Образовались гигантские вихри аналогичные земным циклонам.

Циклоны не просто внешне напоминают спиральные галактики, у них и природа одинаковая. В центре такого вихря высокая плотность вещества, а вот момент импульса равен нулю. На периферии наоборот плотность вещества низкая, а момент импульса большой. В результате взаимодействия электронного и протонного потока образовалось большое количество спиральных галактик. Поскольку в центре галактики вещество не имело момента импульса, то протоны сразу же собрались в гигантские звёзды, и сразу начались термоядерные реакции. Большой Взрыв был не таким эффектным, как считают физики, но очень эффективным. Большая часть энергии превратилась в вещество. Фактически взрыва, как такового, и не было. Было превращение энергии в вещество по всему объёму вселенной. Доказательством этого является то, что наша вселенная однородна и изотропна. Это означает, что в любой сфере, с диаметром ~ равным 300 световых лет, количество галактик приблизительно равно. Однородность и изотропность вселенной, принято называть Космологическим Принципом. При взрыве, который предложен физиками, такого эффекта быть не может. Это возможно только в случае, когда вещество равномерно возникло во всём объёме вселенной.

При термоядерной реакции выделяется не только энергия, но и вакуум. Расстояние между пунктом «А» и «Б» зависит от количества вакуума находящегося между ними. Чем активнее происходили термоядерные процессы в галактике, тем больше выбрасывалось вакуума, и тем быстрее она удалялась от остальных галактик. Вселенная начала расширяться. Вселенная расширялась не за счёт энергии первичного взрыва, а благодаря термоядерным реакциям звёзд. Как сохраняли галактики свою структуру можно найти в статье «Геометрия галактик». Вакуум, освободившийся после термоядерных реакций, постепенно покидает пределы метагалактики, но пока термоядерная активность звёзд велика, и количество вакуума, излучаемое звёздами больше, чем покидающее метагалактику, она будет расширяться.

Как только термоядерная активность галактик уменьшится, вселенная продолжит увеличиваться, а вот метагалактика начнёт уменьшаться. Это произойдёт тогда, когда количество вакуума, покидающее метагалактику, будет больше, чем получаемую при термояде. Галактики начнут движение к общему центру, цикл замкнётся, и всё повторится с начала.

Мы выяснили, что Вселенная постоянно расширяется; тот момент с которого Вселенная начала расширятся, принято считать ее началом. Его называют “Большим Взрывом” или английским термином Big Bang.

Под расширением Вселенной подразумевается такой процесс, когда тоже самое количество элементарных частиц и фотонов занимают постоянно возрастающий объём.

Кратко изложим все те умозаключения о возможных параметрах Вселенной на стадии Большого Взрыва, к которым мы пришли.

Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой.

Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “Большого Взрыва” вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

Подробный анализ показывает, что температура вещества Т понижалась во времени в соответствии с простым соотношением формула (1) :

(1)

Зависимость температуры Т от времени t дает нам возможность определить, что например, в момент, когда возраст Вселенной исчислялся всего одной десятитысячной секунды, её температура представляла один биллион Кельвинов.

5. Эволюция вещества

Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT. Согласно соотношению hkT понижалась и энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота Понижение энергии фотонов во времени имело для возникновения частиц и античастиц путем материализации важные последствия. Для того чтобы фотон превратился(материализовался) в частицу и античастицу с массой mo и энергией покоя moc ему необходимо обладать энергией 2 mocили большей формула(2).

(2)

Со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2moc), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой mo. Так, например, фотон, обладающий энергией меньшей, чем 2*938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.

В предыдущем соотношении можно заменить энергию фотонов h кинетической энергией частиц kT формула (3)

(3)

то есть

(4)

Знак неравенства формула (4) означает следующее: частицы и соответствующие им античастицы возникали при материализации в раскаленном веществе до тех пор, пока температура вещества T не упала ниже указанного значения.

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс

частица + античастица гамма-фотона

при условии соприкосновения вещества с антивеществом. Процесс материализации

гамма-фотон частица + античастица

мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась,

эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

5.1. Адронная эра.

Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(10K. Средняя кинетическая энергия частиц kT и фотонов h составляла около миллиарда эв (10Мэвчто соответствует энергии покоя барионов.

В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 10K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов — гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10 до 10 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10 с), температура ее понизилась до 10K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов — пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10 с, в ней исчезли все мезоны.

На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

5.2. Лептонная эра.

Длилась примерно от t=10-4с до t=101с. К концу эры плотность порядка 107 кг/м3 при T=109К.

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов — пионов — в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”.

Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

5.3. Фотонная эра или эра излучения.

Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10K, а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.

Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hвсех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают” со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em).

Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er = Em). Кончается эра излучения и вместе с этим период “Большого Взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции.

Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

5.4. Звездная эра.

После “Большого Взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “Большого Взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “Большого Взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики — ничтожные явления в сравнении с большим взрывом.

6. Критика современной теории «Большого Взрыва».

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла около 15 миллиардов лет назад из некоторого начального «сингулярного» состояния с бесконечно большими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается.

Наша вселенная является реально существующим объектом, а не философским понятием, и не может быть создана из объекта, находящегося в сингулярном состоянии. Это противоречит здравому смыслу. Объект может сжиматься в сторону бесконечности, но как только сжатие закончится, у любого объекта будут реально существующие параметры.

Такое понятие, как температура, вообще неприемлемо к такому объекту. Мы ведь не считаем элементарные частицы горячими, если они не разогнаны до высоких скоростей. А элементарные частицы имеют более высокую энергию, чем фотоны. Температура — это броуновское движение молекул. Этих самых молекул у данного объекта и не было.

Согласно этой теории Большого Взрыва, дальнейшая эволюция зависит от измеримого экспериментально параметра r — средней плотности вещества в современной Вселенной. Если r меньше некоторого (известного из теории) критического значения rc, Вселенная будет расширяться вечно; если же r > rc, то процесс расширения когда-нибудь остановится и начнется обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Если и сейчас вселенная расширяется, а значит плотность материи недостаточна для создания такого мощного гравитационного поля, которое заставило бы нашу вселенную сжиматься, то в будущем плотность материи станет ещё меньше, а, соответственно уменьшится и гравитационное поле. И вообще, никакого влияния гравитационного поля, на структуру вселенной не заметно. Под влиянием гравитационного поля, движение галактик, должно быть искривлено. Физики преувеличивают значение гравитации на эволюцию вселенной.

Разбегание галактик происходит равномерно по всем сторонам. Это возможно только в том случае, если наша вселенная не имеет общего центра вращения. Иначе с разных сторон, галактики бы удалялись и приближались с разной скоростью. Из закона Хаббла можно сделать вывод: «Наша вселенная не имеет общей точки вращения, а, значит, гравитационное поле не сможет заставить вселенную сжаться. Это сделают другие силы».

Все нужные сведения и закономерности из этих разделов являются надежно установленными, поэтому получаемую с их помощью информацию относительно эволюции системы можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к «началу мира», т.е. внутрь первой сотой доли секунды.

Здесь явное желание выдать желаемое за действительное. Физики не только не знают первые минуты Большого Взрыва, но не могут объяснить и современное состояние вселенной. Они не знают как возникли спиральные галактики, как сохраняют свою структуру, как эти галактики эволюционируют и как становятся шаровыми галактиками. Да и какие силы могут заставить вселенную сжаться, тоже не знают. И какие силы, заставляют вселенную, расширяется, для физиков тоже тёмный лес.

По данным современной наблюдательной астрономии звезды во Вселенной группируются в галактики, которые, в свою очередь, также образуют скопления. Представление о порядках величин дают следующие цифры: наша Галактика содержит ~ 1011 звезд и имеет форму линзы диаметром 80 тысяч световых лет и толщиной ~ 30 тысяч световых лет.

Да все спиральные галактики имеют форму линзы, а вот толщина этих «линз» прямопропорциональна термоядерным процессам, происходящим в галактиках. Этот феномен современная физика объяснить не может, так как считает, что элементарные частицы состоят из кварков. На самом деле элементарные частицы состоят из кванта энергии и вакуума, имеющего сложное строение. Именно вакуум превращает волну в корпускулу. При термояде выделяется не только энергия, но и вакуум, со всеми его структурами, в том числе и с носителем гравитационного поля. Этот тип гравитации называется «Линейным». Именно Линейная гравитация притягивает звёзды к плоскости спиральных галактик. Уменьшатся термоядерные реакции в галактике, и галактики, из спиральных, будут превращаться в шаровые.

Данные наблюдений показывают, что в крупных масштабах Вселенная однородна и изотропна. Грубо говоря, это означает, что в любой сфере с фиксированным достаточно большим диаметром (достаточным считается число ~ 300 миллионов световых лет) содержится приблизительно одинаковое число галактик. Утверждение об однородности и изотропности Вселенной в больших масштабах принято называть Космологическим Принципом.

Однородность и изотропность вселенной никак не вяжется с взрывным процессом. Ни при одном взрыве, такого быть не может. Это возможно только в том случае, когда всё вещество вселенной, возникло по всему объёму вселенной, а не из одной точки.

Количественным итогом этих наблюдений является сформулированный в 1929 году Хабблом «закон разбегания» (формула 5), согласно которому, все галактики (в среднем) удаляются от нас, и скорость этого разбегания u приблизительно пропорциональна расстоянию R до рассматриваемой галактики.

u = RH (5)

Если бы галактики удалялись от нас, то никакого Космологического Принципа не могло бы быть. Галактики удаляются не от нас, а друг от друга

Наглядной моделью такого разбегания может послужить надуваемый резиновый шарик с нанесенными хаотически на его поверхность точками — «галактиками»: при надувании все эти точки будут удаляться друг от друга в точном соответствии с законом Хаббла.

В резиновый шарик надувают газ, а что надувается в нашу вселенную, что бы она расширялась? Точки «разбегаются на поверхности шарика (на плоскости), а наша вселенная увеличивается во всём объёме. Это хороший образ, но он не объясняет природы данного явления. К образным примерам прибегают тогда, когда нет реальных знаний. Наша вселенная увеличивается в объёме за счёт термоядерных реакций, происходящих в звёздах. Как только термоядерные реакции замедлятся, вселенная начнёт сжиматься.

Это модель „двумерного замкнутого мира“. Аналогичный „открытый мир“ можно представить в виде резиновой плоскости с нанесенными точками, равномерно растягивающейся во всех направлениях.

И опять это плоскость. И опять это образ. Никакое образное сравнение, не может заменить знание природы расширения вселенной. Удаление галактик связано не только с расстоянием, но и с термоядерными процессами, происходящими в галактиках.

Но уже в конце сороковых годов появились первые работы физиков-теоретиков, в которых предсказывалось, что в настоящий момент вся Вселенная должна быть заполнена равновесным электромагнитным излучением с эффективной температурой в несколько градусов Кельвина.

Это означает, что взрыв был не точечным, а равномерным по всему объёму вселенной.

Вследствие того же эффекта Доплера излучение прямо по направлению движения должно казаться немного более горячим, а в обратном направлении — более холодным. Эти небольшие (порядка 10- 3 от основной величины) вариации температуры были обнаружены экспериментально, и они имеют характерную угловую зависимость. По этим данным можно вычислить скорость движения Земли относительно этого „нового эфира“, образованного фоном реликтового излучения. В итоге получается значение порядка 600 км/с.

Это уже доказательство ошибочности теории относительности Эйнштейна. Значит, в природе есть единая система отсчёта, относительно которой можно вести все измерения. Мы можем определить и скорость нашего перемещения во вселенной, и направление движения. Всё это отрицает Т О.

7. Выводы.

В пользу теории «Большого взрыва» говорят: реликтовое излучение, характер распространения химических элементов во Вселенной. Но все же остаются много неразрешенных вопросов на которые мы пока не в состоянии дать ответ.

Во-первых, теория не дает ответа на следующие вопросы:

Что заставило вещество Вселенной расширяться?

Что происходило до начала расширения, до момента сингулярности?

Конечны ли пространство и масса? Откуда они берутся.

Во-вторых, несмотря на то, что теория «Большого Взрыва» основывается на ТО, допускается разбегание некоторых частиц со скоростями, в несколько раз превышающими скорость света. Так же в теории указываются ограничения на возможную плотность вещества (не более 1097), хотя с другой стороны выдвигается гипотеза о первоначальной точечности Вселенной, а следовательно и все-таки о бесконечной плотности (т.к. масса бесконечна).

В-третьих, довольно абстрактно, альтернативно рассматриваются такие вопросы, плотно примыкающие к теории «Большого взрыва», как границы и открытость Вселенной, евклидова и неевклидова модель Вселенной.

Наконец, не находят веского фактического подтверждения (хотя по теоретическим выкладкам все получается хорошо и главное – «удобно» ) существование таких частиц как гипероны, мезоны.

То есть все методы анализа полученных данных, исследования, выдвижения гипотез осуществляются при довольно высокой степени допущений. Такая степень не позволительна для гипотезы, хотя может быть и подходит для столь глобальной теории.

Остается только верить или надеяться, что космология когда-либо заполнит эти «белые дыры», сделает свои выводы обоснованными и по возможности фактически подтвержденными.

Кстати, о «белых дырах». Вероятнее всего, именно их изучение позволит нам узнать ответы на многие вопросы, потому что существует гипотеза: именно белые дыры являются кусками первозданной сингулярности, первозданного ядра расширения.

В этом направлении, по-видимому, и стоит ждать новых открытий в данной области, т.к. данный вопрос в целом является еще не полностью изученным и требует серьёзных исследований.

8. Глоссарий.

Адроны – общее название элементарных частиц (барионов, включая все резонансы и мезоны), подверженных сильному взаимодействию (это взаимодействие ответственно за устойчивость атомных ядер).

Античастицы – электрические частицы, масса и спин которых точно равен массе и спину данной частицы, а электрический заряд, магнитный момент и другие подобные характеристики равны по величине и противоположны по знаку тем же характеристикам частицы. Характерным свойством таких пар (частица-античастица) является их аннигиляция при столкновении и рождение их в процессах взаимодействия частиц высоких энергий.

Аннигиляция – превращение частиц и античастиц при их столкновении в другие частицы (например, протон + антипротон = np–мезонов; электрон + позитрон = nФотонов).

Барионы – «тяжёлые» элементарные частицы с массой меньше протона и спином, равным ½. К ним относят, например нуклоны (протоны и нейтроны), а так же много других частиц /см. кварки/.

Бозоны – большой класс элементарных частиц с целочисленным спином (например, фотоны со спином 1). К этому классу принадлежат мезоны, промежуточные векторные бозоны и др. частицы.

Векторные нуклоны – см. барионы.

Гамма-излучение – излучение, возникающее при торможении заряженных частиц большой энергии в веществе, аннигиляции пар и т.д.

Глюоны – гипотетические элементарные частицы (спин равен 1, масса покоя 0), обеспечивающие взаимодействие между кварками.

Лептоны – физически наиболее легкие элементарные частицы со спином ½, не имеющие барионного заряда, но обладающие лептонным зарядом; к лептонам относятся электрон, тяжелый лептон, позитрон, нейтрино, мюон, несущий электрический заряд и их античастицы.

Мезоны – нестабильные элементарные частицы с массами, промежуточными между массами протона и электрона.

Мюон — нестабильные положительно и отрицательно заряженные элементарные частицы со спином ½ и массой~207 электронных масс и временем жизни ~ 10-6С; относятся к лептонам.

Нейтрино – физически нестабильная нейтральная элементарная частица с массой, равной, по-видимому 0, и спином ½. Относится к лептонам. Возникает при бета-распаде атомных ядер и при распаде элементарных частиц; чрезвычайно слабо взаимодействуют с веществом.

Нейтроны – физически — электрически нейтральный элемент частицы с массой, почти равной массе протона и спином ½; входит в состав атомных ядер; в свободном состоянии нестабилен; время жизни 16 минут.

Пионы — p–мезоны – группа трех нестабильных элементарных частиц (адронов) с нулевым спином и массой около 270 электронных масс; 2 пиона (p+ и p-)несут элементарный заряд, третий (p0) электрически нейтрален; являются переносчиками ядерных сил.

Протон — стабильная элементарная частица со спином ½ и массой в 1836 электронных масс (~10-24 г), относящаяся к барионам; ядро легкого изотопа атома водорода (протия). Вместе с нейтронами протоны образуют все атомные ядра.

Электрон — стабильная отрицательно заряженная элементарная частица со спином ½, массой ~ 9·10-28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях. Электрон один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.

Список литературы

Васильев А. Н. „Эволюция вселенной“, интернетовский адрес: www.pereplet.ru/obrazovanie/stsoro. s/44.html

Горелов А.А. «Концепции современного естествознания» — М.:«Центр», 1998 г.

Кесарев В.В. Эволюция вещества во вселенной. — М.: Атомиздат, 1989.

Левитан Е.П. Эволюционирующая Вселенная. – М.: Просвещение, 1993.

Новиков И.Д. Эволюция Вселенной – 3-е изд., переработанное. – М.: Наука, 1993.

Ройзен И. Вселенная между мгновением и вечностью. –«Наука и жизнь», №№ 11 и 12, 1996 г.

Самсонов А.Л. «Концепция эволюционизма и теория Большого взрыва» — «Экология и жизнь», №1,2000г.

Шишлова А. «В лаборатории — десять микросекунд после Большого взрыва». — «Наука и жизнь», № 3, 2000 г.

spacescience.com/

www.astrolabe.ru

www.astronomynow.com/breaking.html

www.rambler.ru/sites/217000/217217.html

www.rambler.ru/sites/21792/189324.html

www.eso.org/outreach/press-rel/

10. Расчетная часть.

Задача.

При соударении α-частицы с ядром бора произошла ядерная реакция, в результате которой образовалось два новых ядра. Одним из этих ядер было ядро атома водорода . Определить порядковый номер и массовое число второго ядра, дать символическую запись ядерной реакции и определить её энергетический эффект.

Решение.

Обозначим неизвестное ядро символом . Так как α-частица представляет собой ядро гелия , запись реакции имеет вид

++.

Применив закон сохранения числа нуклонов, получим уравнение

4+10=1+А

А=13.

Применив закон сохранения заряда, получим уравнение

2+5=1+Z

Z=6.

Следовательно, неизвестное ядро является ядром атома изотопа углерода .

Теперь мы можем записать реакцию в окончательном виде:

++.

Энергетический эффект Q ядерной реакции определяется по формуле

Q=931[(m He + m B) — (m H + m C)].

Здесь в первых круглых скобках указаны массы исходных ядер, во вторых скобках – массы ядер – продуктов реакции. При числовых подсчетах по этой формуле массы ядер заменяют массами нейтральных атомов. Возможность такой замены вытекает из следующих соображений.

Число электронов в электронной оболочке нейтрального атома равно его зарядовому числу Z. Сумма зарядовых чисел исходных ядер равна сумме зарядовых чисел ядер – продуктов реакции. Следовательно, электронные оболочки ядер гелия и бора содержат вместе столько же электронов, сколько их содержат электронные оболочки ядер углерода и водорода.

Очевидно, что при вычитании суммы масс нейтральных атомов углерода и водорода из суммы масс атомов гелия и бора массы электронов выпадут и мы получим тот же результат, как если бы брали массы ядер. Подставив массы атомов в расчетную формулу, получим

Q = 931[(4,00260 + 10,01294) — (1,00783 + 13,00335)] = 4,06 МэВ.

Ответ:

Второе ядро – ядро атома изотопа углерода .

Символическая запись ядерной реакции:

++.

Энергетический эффект Q ядерной реакции 4,06 МэВ.

www.ronl.ru

Реферат - Происхождение вселенной Большой взрыв

Курсовая работа по предмету «Теоретические основы прогрессивных технологий»

Выполнила: Белозерская Лариса Мирзоджоновна, Курс I

Московский государственный открытый университет, филиал

г. Сафоново 2005 г.

1. Введение .

Космология  — это физическое учение о Вселенной, включающее в себя теорию всего охваченного астрономическими наблюдениями мира как части Вселенной.

Величайшим достижением современной космологии стала модель расширяющейся Вселенной, названная теорией Большого взрыва.

Согласно этой теории, всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто — спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность — её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, — и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью.

В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил — трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности «первовещества»!

Этому моменту учёные дали название «Большой взрыв». Вселенная начала расширяться и остывать.

Следует отметить, что вопрос о том, каким же было рождение Вселенной — «горячим» или «холодным», — не сразу был решён однозначно и занимал умы астрономов долгое время. Интерес к проблеме был далеко не праздным — ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной. Кроме того, при высоких температурах могут протекать термоядерные реакции. Следовательно, химический состав «горячей» Вселенной должен отличаться от состава «холодной». А от этого в свою очередь зависят размеры и темпы развития небесных тел...

На протяжении нескольких десятилетий обе версии — «горячего» и «холодного» рождения Вселенной — существовали в космологии на равных, имея и сторонников, и критиков. Дело оставалось «за малым» — следовало подтвердить их наблюдениями.

2. Реликтовое излучение .

Современная астрономия на вопрос о том, существуют ли доказательства гипотезы горячей Вселенной и Большого взрыва, может дать утвердительный ответ. В 1965 г. было сделано открытие, которое, как считают учёные, прямо подтверждает то, что в прошлом вещество Вселенной было очень плотным и горячим. Оказалось, что в космическом пространстве встречаются электромагнитные волны, которые родились в ту далёкую эпоху, когда не было ещё ни звёзд, ни галактик, ни нашей Солнечной системы.

Возможность существования такого излучения была предсказана астрономами гораздо раньше. В середине 1940гг. американский физик Джордж Гамов (1904-1968) занялся проблемами возникновения Вселенной и происхождения химических элементов. Расчёты, выполненные Гамовым и его учениками, позволили представить, что во Вселенной в первые секунды её существования была очень высокая температура. Нагретое вещество «светилось» — испускало электромагнитные волны. Гамов предположил, что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, и даже предсказал температуру этого излучения — примерно 5-6 К.

В 1965 г. американские учёные радиоинженеры Арно Пензиас и Роберт Уилсон зарегистрировали космическое излучение, которое нельзя было приписать никакому известному тогда космическому источнику. Астрономы пришли к выводу, что это излучение, имеющее температуру около 3 К, — реликт (от лат. «остаток», отсюда и название излучения — «реликтовое») тех далёких времён, когда Вселенная была фантастически горяча. Теперь астрономы смогли сделать выбор в пользу «горячего» рождения Вселенной. А. Пензиас и Р. Вильсон, получили в 1978 г. Нобелевскую Премию за открытие космического микроволнового фона (такового официальное название реликтового излучения) на волне 7,35 см.

3. Сценарий далекого прошлого.

Большим взрывом называется явление возникновения Вселенной. В рамках этой концепции полагается, что начальным состоянием Вселенной была точка, называемая точкой сингулярности, в которой были сосредоточены все вещество и энергия. Она характеризовалась бесконечно большой плотностью материи. Конкретные свойства точки сингулярности неизвестны, как неизвестно и то, что предшествовало состоянию сингулярности.

Приблизительная хронология событий, последовавших с нулевого момента времени — начала расширения, представлена ниже:

Время с начала взрыва

Температура

(градусы Кельвина)

Событие Следствия 0 — 5*10-44 секунды 1,3*1032 Никаких достоверных сведений нет 5*10-44 — 10-36 секунды 1,3*1032 – 1028 Начало действия известных физических законов, эра инфляционного расширения Расширение Вселенной продолжающееся и поныне 10-36 — 10-4 секунды 1028 – 1012 Эра промежуточных бозонов, а затем – адронная эра, существование свободных кварков 10-4 — 10-3 секунд 1012 – 1010 Возникновение частиц и античастиц из свободных кварков, а также их аннигиляция, возникновение прозрачности вещества для нейтрино Возникновение барионной асимметрии, появление нейтринного реликтового излучения 10-3 — 10-120 секунд 1010 – 109 Протекание ядерных реакций синтеза ядер гелия и некоторых других легких химических элементов Установление первичного соотношения химических элементов Между 300 тысячами — 1 миллионом лет 3000 – 4500 Завершение эры рекомбинации Появление Реликтового излучения и нейтрального газа 1 миллион — 1 миллиард лет 4500 – 10 Развитие гравитационных неоднородностей газа Образование звезд и галактик

Относительно условий и событий, происходивших до наступления момента 5·10-44 секунды — окончания первого кванта времени — никаких достоверных сведений нет. О физических параметрах той эры можно лишь сказать, что тогда температура была 1,3·1032 К, а плотность материи около 1096 кг/м3. Приведенные значения являются предельными для применения существующих теорий. Они вытекают из соотношений скорости света, гравитационной постоянной, постоянных Планка и Больцмана и называются “планковскими”.

События периода с 5·10-44 по 10-36 секунды отражает модель “инфляционной Вселенной”, описание, которой затруднительно и не может быть дано в рамках этого изложения. Однако следует отметить, что согласно этой модели расширение Вселенной происходило без уменьшения объемной концентрации энергии и при отрицательном давлении первичной смеси вещества и энергии, т.е., как бы, отталкивании материальных объектов друг от друга, вызвавшем расширение Вселенной, продолжающееся и поныне.

Далее, начиная с момента 10-36 секунды от начала взрыва, события описываются в рамках модели “горячей Вселенной”.

Для понимания процессов, протекавших в период 10-36-10-4 секунд с начала взрыва, требуется глубокое знание физики элементарных частиц. В этот период электромагнитное излучение и элементарные частицы — различные виды мезонов, гипероны, протоны и антипротоны, нейтроны и антинейтроны, нейтрино и антинейтрино и т.п. существовали в равновесии, т.е. их объемные концентрации были равны. Очень важную роль в это время играли вначале поля сильных, а затем слабых взаимодействий.

 В период 10-4 — 10-3 секунды происходило формирование всего множества элементарных частиц, которые, преобразуясь одни в другие, и составляют ныне всю Вселенную. Произошла аннигиляция подавляющего большинства элементарных частиц и античастиц, существовавших ранее. Именно в этот период появилась барионная асимметрия, которая оказалась следствием очень малого, всего на одну миллиардную долю, превышения количества барионов над антибарионами. Оно возникло, судя по всему, сразу после эры инфляционного расширения Вселенной. При температуре 1011 градусов плотность Вселенной уже снизилась до величины, характерной для атомных ядер, В этот период уменьшение температуры вдвое происходило за тысячные доли секунды. В это же время родилось существующее и ныне реликтовое нейтринное излучение. Однако, несмотря на его значительную плотность, составляющую не менее чем 400 штук/см3, и возможность получить с его помощью важнейшую информацию о том периоде формирования Вселенной, его регистрация пока не реализуема.

В период с 10-3 по 10-120 секунд в результате термоядерных реакций образовались ядра гелия и очень малое количество ядер некоторых других легких химических элементов, а значительная часть протонов — ядер водорода — объединению в атомные ядра не подверглась. Все они остались погруженными в “океан” свободных электронов и фотонов электромагнитного излучения. С этого момента в первичном газе установилось соотношение: 75- 78% водорода и 25-22% гелия — по массам этих газов.

В период между 300 тысячами и 1 миллионом лет температура Вселенной понизилась до 3000 — 45000 К и наступила эра рекомбинации. Свободные прежде электроны объединились с легкими атомными ядрами и протонами. Образовались атомы водорода, гелия и некоторое количество атомов лития. Вещество стало прозрачным и реликтовое излучение, наблюдаемое до сих пор, “отделилось” от него. Все наблюдаемые ныне особенности реликтового излучения, например, флуктуации температуры его потоков приходящих от разных участков на небесной сфере или их поляризация отражают картину свойств и распределения вещества в то время.

В течение последующего — первого миллиарда лет существования Вселенной ее температура снизилась от 3000 — 45000 К до 300 К. В связи с тем, что к этому периоду времени во Вселенной еще не образовалось источников электромагнитного излучения – звезд, квазаров и т.п., а реликтовое излучение уже остыло, эту эпоху называют “Темным возрастом” Вселенной.

Тогда же неоднородности плотности смеси первичных газов, возникшие, вероятно, еще на этапе “инфляционного расширения” Вселенной, уплотнялись под действием гравитационных сил. Компьютерное моделирование этих процессов показывает, что это должно было приводить к образованию гигантских звезд с массами в миллионы масс Солнца. По причине таких огромных масс, эти звезды разогревались до очень высоких температур и потому проходили весь свой путь эволюции в течение нескольких десятков миллионов лет, а затем взрывались как сверхновые.

Нагретые до огромных температур поверхностей этих звезд порождали мощные потоки ультрафиолетового излучения, которые произвели повторную ионизацию атомов находящихся в свободном от звезд космическом пространстве. Наступила, так называемая, эпоха переионизация. Образовавшаяся плазма сильно рассеивала электромагнитное излучение в его коротковолновых спектральных диапазонах. Вселенная, как бы погрузилась в густой туман. Только для длинноволнового реликтового излучения эта среда оказалась прозрачной.

Эти гигантские звезды послужили первыми во Вселенной источниками более тяжелых, чем литий химических элементов. Вслед за тем появилась возможность формирования космических объектов второго поколения, содержащих ядра этих атомов. Звезды второго поколения начали формироваться из смеси тяжелых атомов, а также атомов первичных водорода и гелия. Они и звезды последующих поколений уже не были столь массивными и горячими, как звезды первого поколения, поэтому потоки ультрафиолетового ионизирующего излучения от них были значительно меньше. Произошла повторная рекомбинация большинства атомов межзвездного и межгалактического газов и пространство вновь стало, в основном, прозрачным для электромагнитного излучения во всех  его спектральных диапазонах. Картина Вселенной стала, практически такой, какой мы ее наблюдаем сегодня.

Итак,  в результате Большого взрыва 13-20 млрд. лет назад начал действовать уникальный ускоритель частиц, в ходе работы которого непрерывно и стремительно сменяли друг друга процессы рождения и гибели (аннигиляции) разнообразных частиц.

4. Большой Взрыв .

Предыдущая вселенная перед взрывом состояла из небольшого количества почти полностью выгоревших галактик. Основным элементом в этих галактиках было железо. Вселенную освещали только жёлтые и красные звёзды, но горели они значительно ярче, чем сейчас.Если во вселенной и существовала жизнь, то она была сосредоточена вокруг этих звёзд и была обречена на гибель. В центре вселенной находилась «ЧЁРНАЯ ДЫРА», в которую и падали все эти галактики. А в центре «ЧЁРНОЙ ДЫРЫ» находилась гигантская звезда, размерами превосходящая самую большую галактику. Эта звезда под действием гравитации сжималась, и сначала кванты энергии начали входить друг в друга, образуя единый квант энергии, имеющий положительный заряд. При дальнейшем сжатии начался мгновенный переход вакуума в энергию. Стоит более подробно остановиться на природе вакуума. Распадаться могут не только элементарные частицы, но и сам квант. При этом образуются кванты с дробным зарядом. Кванты энергии, имеющие дробный заряд, меньше единицы, не могут иметь полей. Из этих квантов энергии, не имеющих полей, и ничто-пустоты и состоит вакуум. Эти неполноценные кванты называются «Снарками». Для того чтобы несколько снарков превратились в полноценный квант, необходимо, чтобы они вошли друг в друга. Для этого надо огромное давление. Такое давление и создала первичная звезда.

 Как только давление достигло критического уровня, весь вакуум внутри первичного тела мгновенно превратился в энергию. Все поля являются энергиями, а энергии возникают в результате взаимодействия двух объектов, имеющих разный энергетический уровень. Если одного из составляющих нет, то и создание энергии, а значит и полей, невозможно. Вакуум, игравший роль объекта, имеющего низкий энергетический уровень, превратился в энергию, и кванту стало не с чем взаимодействовать, для создания полей. Гравитационное поле мгновенно уменьшилось, и звезда вышла из коллапса. Сжатие ядра гигантской звезды уменьшилось, и она сбросила наружную оболочку. Произошел эффект сжатой пружины, которая, при уменьшении сжатия, распрямляется. Кванты подобной энергетической плотности в природе существовать не могут. Для уменьшения своей энергетической плотности он должен был увеличить длину волны, а, значит, увеличиваться в объёме. При взаимодействии протокванта и внешнего вакуума, образовалось гигантское электрическое поле. Именно из этого электрического поля и вакуума и стали образовываться протоны. Энергию электрического поля поддерживал протоквант, теряя энергию на его поддержание. Этот суперфотон увеличивался в объёме со скоростью света, и протоны оказывались внутри этого кванта, так как двигаться со «скоростью света» протоны не могли. Это запрещено теорией относительности. Любая элементарная частица состоит из кванта энергии и вакуума. Плотность вакуума внутри элементарной значительно выше, чем в окружающем пространстве. Количество вакуума в природе ограничено, а так как на создания вещества тратилось большое количество вакуума, это привело к резкому уменьшению вселенной. Вселенная стала сжиматься.

Сжатие вселенной происходило так быстро, что вещество внешней оболочки звезды, оказалось перемешанным с вновь созданным веществом. Каждая новая вселенная наследует часть вещества от старой вселенной. Когда энергия протокванта была израсходована на создание протонов, нечем стало поддерживать энергию электрического поля, и электрическое поле должно было начать уменьшаться. Электрическое поле стремится любой ценой сохранить свой потенциал, даже ценой изменения своего заряда, на противоположный. На спаде потенциала, из энергии поля, стали создаваться электроны. Когда энергетическая плотность поля, стала не достаточна для создания электронов, оно разбилось на фотоны, и по периметру взрыва образовалась гигантская вспышка, состоящая из фотонов. Фотоны, продолжая двигаться в том же направлении, прошли через второй центр, (наша вселенная относится к двухцентовым объектам) и толкнули внешние электроны в центр вселенной. Из центра вселенной двигались протоны и некоторое количество вещества от предыдущей вселенной, а навстречу им электроны, получившие момент импульса от фотонов, и образовалось два встречных потока. Образовались гигантские вихри аналогичные земным циклонам.

Циклоны не просто внешне напоминают спиральные галактики, у них и природа одинаковая. В центре такого вихря высокая плотность вещества, а вот момент импульса равен нулю. На периферии наоборот плотность вещества низкая, а момент импульса большой. В результате взаимодействия электронного и протонного потока образовалось большое количество спиральных галактик. Поскольку в центре галактики вещество не имело момента импульса, то протоны сразу же собрались в гигантские звёзды, и сразу начались термоядерные реакции. Большой Взрыв был не таким эффектным, как считают физики, но очень эффективным. Большая часть энергии превратилась в вещество. Фактически взрыва, как такового, и не было. Было превращение энергии в вещество по всему объёму вселенной. Доказательством этого является то, что наша вселенная однородна и изотропна. Это означает, что в любой сфере, с диаметром ~ равным 300 световых лет, количество галактик приблизительно равно. Однородность и изотропность вселенной, принято называть Космологическим Принципом. При взрыве, который предложен физиками, такого эффекта быть не может. Это возможно только в случае, когда вещество равномерно возникло во всём объёме вселенной.

При термоядерной реакции выделяется не только энергия, но и вакуум. Расстояние между пунктом «А» и «Б» зависит от количества вакуума находящегося между ними. Чем активнее происходили термоядерные процессы в галактике, тем больше выбрасывалось вакуума, и тем быстрее она удалялась от остальных галактик. Вселенная начала расширяться. Вселенная расширялась не за счёт энергии первичного взрыва, а благодаря термоядерным реакциям звёзд. Как сохраняли галактики свою структуру можно найти в статье «Геометрия галактик». Вакуум, освободившийся после термоядерных реакций, постепенно покидает пределы метагалактики, но пока термоядерная активность звёзд велика, и количество вакуума, излучаемое звёздами больше, чем покидающее метагалактику, она будет расширяться.

Как только термоядерная активность галактик уменьшится, вселенная продолжит увеличиваться, а вот метагалактика начнёт уменьшаться. Это произойдёт тогда, когда количество вакуума, покидающее метагалактику, будет больше, чем получаемую при термояде. Галактики начнут движение к общему центру, цикл замкнётся, и всё повторится с начала.

Мы выяснили, что Вселенная постоянно расширяется; тот момент с которого Вселенная начала расширятся, принято считать ее началом. Его называют  “Большим Взрывом” или английским термином Big Bang.

Под расширением Вселенной подразумевается такой процесс, когда тоже самое  количество элементарных частиц и фотонов занимают постоянно возрастающий объём.

Кратко изложим все те умозаключения о возможных параметрах Вселенной на стадии Большого Взрыва, к которым мы пришли.

Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой.

Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “Большого Взрыва” вся материя была сильно раскаленной  и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но  возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

 Подробный анализ показывает, что температура вещества Т понижалась во времени в соответствии с простым соотношением формула (1) :

           (1)                          

Зависимость температуры Т от времени t дает нам возможность определить, что например, в момент, когда возраст Вселенной исчислялся всего одной десятитысячной секунды,  её температура представляла  один  биллион  Кельвинов.

5. Эволюция вещества

   Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT. Согласно соотношению hkT понижалась и энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота Понижение энергии фотонов во времени имело для возникновения частиц и античастиц путем материализации важные последствия. Для того чтобы фотон превратился(материализовался) в частицу и античастицу с массой mo и энергией покоя moc ему необходимо обладать энергией 2 mocили большей формула(2).

      (2)

Со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2moc), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой mo. Так, например, фотон, обладающий энергией меньшей, чем 2*938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.

   В предыдущем соотношении можно заменить энергию фотонов h кинетической энергией частиц kT формула (3)

                       (3)

то есть

  (4)

Знак неравенства формула (4) означает следующее: частицы и соответствующие им античастицы возникали при материализации в раскаленном веществе до тех пор, пока температура вещества T не упала ниже указанного значения.                          

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс

частица + античастица гамма-фотона

при условии соприкосновения вещества с антивеществом. Процесс материализации

гамма-фотон частица + античастица

мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся  температуры раскаленного вещества приостановилась,

эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

5.1.   Адронная эра.   

Длилась примерно от t=10-6с до  t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(10K. Средняя кинетическая энергия частиц kT и фотонов h составляла около миллиарда эв (10Мэвчто соответствует энергии покоя барионов.

В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 10K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов — гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10 до 10 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10 с), температура ее понизилась до 10K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов — пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10 с, в ней исчезли все мезоны.

На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

5.2.  Лептонная эра.

Длилась примерно от t=10-4с до  t=101с. К концу эры плотность порядка 107 кг/м3 при T=109К.

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов — пионов — в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10K, когда энергия  фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем  “реликтовыми”.

Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

5.3.  Фотонная эра или эра излучения.

Длилась примерно от t=10-6с до  t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10K, а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.

Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по  энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была  введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hвсех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз.  Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают” со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em).

Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er = Em). Кончается эра излучения и вместе с этим период “Большого Взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную  нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции.

Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

5.4. Звездная эра.

После “Большого  Взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “Большого  Взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “Большого  Взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики — ничтожные явления в сравнении с большим взрывом.

6. Критика современной теории «Большого Взрыва».

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла около 15 миллиардов лет назад из некоторого начального «сингулярного» состояния с бесконечно большими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается.

Наша вселенная является реально существующим объектом, а не философским понятием, и не может быть создана из объекта, находящегося в сингулярном состоянии. Это противоречит здравому смыслу. Объект может сжиматься в сторону бесконечности, но как только сжатие закончится, у любого объекта будут реально существующие параметры.

Такое понятие, как температура, вообще неприемлемо к такому объекту. Мы ведь не считаем элементарные частицы горячими, если они не разогнаны до высоких скоростей. А элементарные частицы имеют более высокую энергию, чем фотоны. Температура — это броуновское движение молекул. Этих самых молекул у данного объекта и не было.

Согласно этой теории Большого Взрыва, дальнейшая эволюция зависит от измеримого экспериментально параметра r — средней плотности вещества в современной Вселенной. Если r меньше некоторого (известного из теории) критического значения rc, Вселенная будет расширяться вечно; если же r > rc, то процесс расширения когда-нибудь остановится и начнется обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Если и сейчас вселенная расширяется, а значит плотность материи недостаточна для создания такого мощного гравитационного поля, которое заставило бы нашу вселенную сжиматься, то в будущем плотность материи станет ещё меньше, а, соответственно уменьшится и гравитационное поле. И вообще, никакого влияния гравитационного поля, на структуру вселенной не заметно. Под влиянием гравитационного поля, движение галактик, должно быть искривлено. Физики преувеличивают значение гравитации на эволюцию вселенной.

Разбегание галактик происходит равномерно по всем сторонам. Это возможно только в том случае, если наша вселенная не имеет общего центра вращения. Иначе с разных сторон, галактики бы удалялись и приближались с разной скоростью. Из закона Хаббла можно сделать вывод: «Наша вселенная не имеет общей точки вращения, а, значит, гравитационное поле не сможет заставить вселенную сжаться. Это сделают другие силы».

Все нужные сведения и закономерности из этих разделов являются надежно установленными, поэтому получаемую с их помощью информацию относительно эволюции системы можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к «началу мира», т.е. внутрь первой сотой доли секунды.

Здесь явное желание выдать желаемое за действительное. Физики не только не знают первые минуты Большого Взрыва, но не могут объяснить и современное состояние вселенной. Они не знают как возникли спиральные галактики, как сохраняют свою структуру, как эти галактики эволюционируют и как становятся шаровыми галактиками. Да и какие силы могут заставить вселенную сжаться, тоже не знают. И какие силы, заставляют вселенную, расширяется, для физиков тоже тёмный лес.

По данным современной наблюдательной астрономии звезды во Вселенной группируются в галактики, которые, в свою очередь, также образуют скопления. Представление о порядках величин дают следующие цифры: наша Галактика содержит ~ 1011 звезд и имеет форму линзы диаметром 80 тысяч световых лет и толщиной ~ 30 тысяч световых лет.

Да все спиральные галактики имеют форму линзы, а вот толщина этих «линз» прямопропорциональна термоядерным процессам, происходящим в галактиках. Этот феномен современная физика объяснить не может, так как считает, что элементарные частицы состоят из кварков. На самом деле элементарные частицы состоят из кванта энергии и вакуума, имеющего сложное строение. Именно вакуум превращает волну в корпускулу. При термояде выделяется не только энергия, но и вакуум, со всеми его структурами, в том числе и с носителем гравитационного поля. Этот тип гравитации называется «Линейным». Именно Линейная гравитация притягивает звёзды к плоскости спиральных галактик. Уменьшатся термоядерные реакции в галактике, и галактики, из спиральных, будут превращаться в шаровые.

Данные наблюдений показывают, что в крупных масштабах Вселенная однородна и изотропна. Грубо говоря, это означает, что в любой сфере с фиксированным достаточно большим диаметром (достаточным считается число ~ 300 миллионов световых лет) содержится приблизительно одинаковое число галактик. Утверждение об однородности и изотропности Вселенной в больших масштабах принято называть Космологическим Принципом.

Однородность и изотропность вселенной никак не вяжется с взрывным процессом. Ни при одном взрыве, такого быть не может. Это возможно только в том случае, когда всё вещество вселенной, возникло по всему объёму вселенной, а не из одной точки.

Количественным итогом этих наблюдений является сформулированный в 1929 году Хабблом «закон разбегания» (формула 5), согласно которому, все галактики (в среднем) удаляются от нас, и скорость этого разбегания u приблизительно пропорциональна расстоянию R до рассматриваемой галактики.

u = RH                    (5)

Если бы галактики удалялись от нас, то никакого Космологического Принципа не могло бы быть. Галактики удаляются не от нас, а друг от друга

Наглядной моделью такого разбегания может послужить надуваемый резиновый шарик с нанесенными хаотически на его поверхность точками — «галактиками»: при надувании все эти точки будут удаляться друг от друга в точном соответствии с законом Хаббла.

В резиновый шарик надувают газ, а что надувается в нашу вселенную, что бы она расширялась? Точки «разбегаются на поверхности шарика (на плоскости), а наша вселенная увеличивается во всём объёме. Это хороший образ, но он не объясняет природы данного явления. К образным примерам прибегают тогда, когда нет реальных знаний. Наша вселенная увеличивается в объёме за счёт термоядерных реакций, происходящих в звёздах. Как только термоядерные реакции замедлятся, вселенная начнёт сжиматься.

Это модель „двумерного замкнутого мира“. Аналогичный „открытый мир“ можно представить в виде резиновой плоскости с нанесенными точками, равномерно растягивающейся во всех направлениях.

И опять это плоскость. И опять это образ. Никакое образное сравнение, не может заменить знание природы расширения вселенной. Удаление галактик связано не только с расстоянием, но и с термоядерными процессами, происходящими в галактиках.

Но уже в конце сороковых годов появились первые работы физиков-теоретиков, в которых предсказывалось, что в настоящий момент вся Вселенная должна быть заполнена равновесным электромагнитным излучением с эффективной температурой в несколько градусов Кельвина.

Это означает, что взрыв был не точечным, а равномерным по всему объёму вселенной.

Вследствие того же эффекта Доплера излучение прямо по направлению движения должно казаться немного более горячим, а в обратном направлении — более холодным. Эти небольшие (порядка 10- 3 от основной величины) вариации температуры были обнаружены экспериментально, и они имеют характерную угловую зависимость. По этим данным можно вычислить скорость движения Земли относительно этого „нового эфира“, образованного фоном реликтового излучения. В итоге получается значение порядка 600 км/с.

Это уже доказательство ошибочности теории относительности Эйнштейна. Значит, в природе есть единая система отсчёта, относительно которой можно вести все измерения. Мы можем определить и скорость нашего перемещения во вселенной, и направление движения. Всё это отрицает Т О.

7. Выводы.

В пользу теории «Большого взрыва» говорят: реликтовое излучение, характер распространения химических элементов во Вселенной. Но все же остаются много неразрешенных вопросов на которые мы пока не в состоянии дать ответ.

Во-первых, теория не  дает ответа на следующие вопросы:

Что заставило вещество Вселенной расширяться?

Что происходило до начала расширения, до момента сингулярности?

Конечны ли пространство и масса? Откуда они берутся.

Во-вторых, несмотря на то, что теория «Большого Взрыва» основывается на ТО, допускается разбегание некоторых частиц со скоростями, в несколько раз превышающими скорость света. Так же в теории указываются ограничения на возможную плотность вещества (не более 1097), хотя с другой стороны выдвигается гипотеза о первоначальной точечности Вселенной, а следовательно и все-таки о бесконечной плотности (т.к. масса бесконечна).

В-третьих, довольно абстрактно, альтернативно рассматриваются такие вопросы, плотно примыкающие к теории «Большого взрыва», как границы и открытость Вселенной, евклидова и неевклидова модель Вселенной.

Наконец, не находят веского фактического  подтверждения (хотя по теоретическим выкладкам все получается хорошо и главное – «удобно» ) существование таких частиц как гипероны, мезоны.

То есть все методы анализа полученных данных, исследования, выдвижения гипотез осуществляются при довольно высокой степени допущений. Такая степень не позволительна для гипотезы, хотя может быть и подходит для столь глобальной теории.

Остается только верить или надеяться, что космология когда-либо заполнит эти «белые дыры», сделает свои выводы обоснованными и по возможности фактически подтвержденными.

Кстати, о «белых дырах». Вероятнее всего, именно их изучение позволит нам узнать ответы на многие вопросы, потому что существует гипотеза: именно белые дыры являются кусками первозданной сингулярности, первозданного ядра расширения.

В этом направлении, по-видимому, и стоит ждать новых открытий в данной области, т.к. данный вопрос в целом является еще не полностью изученным и требует серьёзных исследований.

8. Глоссарий.

Адроны – общее название элементарных частиц (барионов, включая все резонансы и мезоны), подверженных сильному взаимодействию (это взаимодействие ответственно за устойчивость атомных ядер).

Античастицы – электрические частицы, масса и спин которых точно равен массе и спину данной частицы, а электрический заряд, магнитный момент и другие подобные характеристики равны по величине и противоположны по знаку тем же характеристикам частицы. Характерным свойством таких пар (частица-античастица) является их аннигиляция при столкновении и рождение их в процессах взаимодействия частиц высоких энергий.

Аннигиляция – превращение частиц и античастиц при их столкновении в другие частицы (например, протон + антипротон = np–мезонов; электрон + позитрон = nФотонов).

Барионы – «тяжёлые» элементарные частицы с массой меньше протона и спином, равным ½. К ним относят,  например нуклоны (протоны и нейтроны), а так же много других частиц  /см. кварки/.

Бозоны – большой класс элементарных частиц с целочисленным спином (например, фотоны со спином 1). К этому классу принадлежат мезоны, промежуточные векторные бозоны и др. частицы.

Векторные нуклоны – см. барионы.

Гамма-излучение – излучение, возникающее при торможении заряженных частиц большой энергии в веществе, аннигиляции пар и т.д.

Глюоны – гипотетические элементарные частицы (спин равен 1, масса покоя 0), обеспечивающие взаимодействие между кварками.

Лептоны – физически наиболее легкие элементарные частицы со спином ½, не имеющие барионного заряда, но обладающие лептонным зарядом; к лептонам относятся электрон, тяжелый лептон, позитрон, нейтрино, мюон, несущий электрический заряд и их античастицы.

Мезоны – нестабильные элементарные частицы с массами, промежуточными между массами протона и электрона.

Мюон — нестабильные положительно  и отрицательно заряженные элементарные частицы со спином ½  и массой~207 электронных масс и временем жизни ~ 10-6С; относятся к лептонам.

Нейтрино – физически нестабильная нейтральная элементарная частица с массой, равной, по-видимому 0, и спином ½. Относится к лептонам. Возникает при бета-распаде атомных ядер и при распаде элементарных частиц; чрезвычайно слабо взаимодействуют с веществом.

Нейтроны – физически -  электрически нейтральный элемент частицы с массой, почти равной массе протона и спином ½; входит в состав атомных ядер; в свободном состоянии нестабилен; время жизни 16 минут.

Пионы -  p–мезоны – группа трех нестабильных элементарных частиц (адронов) с нулевым спином и массой около 270 электронных масс; 2 пиона (p+ и p-)несут элементарный заряд, третий (p0) электрически нейтрален; являются переносчиками ядерных сил.

Протон — стабильная элементарная частица со спином ½  и массой в 1836 электронных масс (~10-24 г), относящаяся к барионам; ядро легкого изотопа атома водорода (протия). Вместе с нейтронами протоны образуют все атомные ядра.

Электрон — стабильная отрицательно заряженная элементарная частица со спином ½, массой ~ 9·10-28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях. Электрон один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.

Список литературы

Васильев А. Н. „Эволюция вселенной“, интернетовский адрес: www.pereplet.ru/obrazovanie/stsoro. s/44.html

Горелов А.А. «Концепции современного естествознания» — М.:«Центр», 1998 г.

Кесарев В.В. Эволюция вещества во вселенной. — М.: Атомиздат, 1989.

Левитан Е.П. Эволюционирующая Вселенная. – М.: Просвещение, 1993.

Новиков И.Д. Эволюция Вселенной – 3-е изд., переработанное. – М.: Наука, 1993.

Ройзен И. Вселенная между мгновением и вечностью. –«Наука и жизнь», №№ 11 и 12, 1996 г.

Самсонов А.Л. «Концепция эволюционизма и теория Большого взрыва» — «Экология и жизнь», №1,2000г.

Шишлова А. «В лаборатории — десять микросекунд после Большого взрыва». — «Наука и жизнь», № 3, 2000 г.

spacescience.com/

www.astrolabe.ru

www.astronomynow.com/breaking.html

www.rambler.ru/sites/217000/217217.html

www.rambler.ru/sites/21792/189324.html

www.eso.org/outreach/divss-rel/

10. Расчетная часть.

Задача.

При соударении α-частицы с ядром бора  произошла ядерная реакция, в результате которой образовалось два новых ядра. Одним из этих ядер было ядро атома водорода. Определить порядковый номер и массовое число второго ядра, дать символическую запись ядерной реакции и определить её энергетический эффект.

Решение.

Обозначим неизвестное ядро символом. Так как α-частица представляет собой ядро гелия, запись реакции имеет вид

                                   +               +.

Применив закон сохранения числа нуклонов, получим уравнение

                            4+10=1+А

                                              А=13.

Применив закон сохранения заряда, получим уравнение

                                          2+5=1+Z

                                              Z=6.

Следовательно, неизвестное ядро является ядром атома изотопа углерода .

Теперь мы можем записать реакцию в окончательном виде:

                                   +             +.

Энергетический эффект Q ядерной реакции определяется по формуле

                         Q=931[(m He + m B) — (m H + m C)].

Здесь в первых круглых скобках указаны массы исходных ядер, во вторых скобках – массы ядер – продуктов реакции. При числовых подсчетах по этой формуле массы ядер заменяют массами нейтральных атомов. Возможность такой замены вытекает из следующих соображений.

Число электронов в электронной оболочке нейтрального атома равно его зарядовому числу Z. Сумма зарядовых чисел исходных ядер равна сумме зарядовых чисел ядер – продуктов реакции. Следовательно, электронные оболочки ядер гелия и бора содержат вместе столько же электронов, сколько их содержат электронные оболочки ядер углерода и водорода.

Очевидно, что при вычитании суммы масс нейтральных атомов углерода и водорода из суммы масс атомов гелия и бора массы электронов выпадут и мы получим тот же результат, как если бы брали массы ядер. Подставив массы атомов в расчетную формулу, получим

Q = 931[(4,00260 + 10,01294) — (1,00783 + 13,00335)] = 4,06 МэВ.

Ответ:

Второе ядро – ядро атома изотопа углерода .

Символическая запись ядерной реакции:

                                   +             +.

Энергетический эффект Q ядерной реакции 4,06 МэВ.

www.ronl.ru

Доклад - Происхождение Вселенной. Большой взрыв

Московский государственный

открытый университет

филиал г. Сафоново

Курсовая работа

По предмету

«Теоретические основыпрогрессивных технологий»

 

Тема:

«Происхождение вселенной.

Большой взрыв»

Выполнила: Белозерская

Лариса Мирзоджоновна

 Специальность060800 П

                                                                                      КурсI

 Шифр зачетки3041662

                    Проверил:ст. преподаватель

                    СкрипкаМ.В.

г. Сафоново 2005 г. 

Содержание:

 TOC o «1-3»

Содержание:____________________________________________ PAGEREF _Toc467959005 h 2

1. Введение_____________________________________________ PAGEREF _Toc467959006 h 3

2. Реликтовое излучение__________________________________ 4

3. Сценарий далекого прошлого.__________________________ PAGEREF _Toc467959009 h 4

4. Большой Взрыв_______________________________________ 8

5. Эволюция вещества___________________________________ 11

5.1. Адронная эра.____________________________________ 12

5.2.  Лептонная эра.____________________________________ 13

5.3.  Фотоннаяэра или эра излучения.___________________ 14

5.4.  Звезднаяэра._____________________________________ 16

6. Критикасовременной теории Большого Взрыва__________ 16

7. Вывод______________________________________________ 19

8. Глоссарий __________________________________________ 21

9. Список используемойлитературы______________________ 23

10. Расчетнаячасть_____________________________________ 24

1.Введение.

Космология  — это физическое учение оВселенной, включающее в себя теорию всего охваченного астрономическиминаблюдениями мира как части Вселенной.

Величайшим достижениемсовременной космологии стала модель расширяющейся Вселенной, названная теориейБольшого взрыва.

Согласно этой теории,всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всёвещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто- спрессовано в одну-единственную точку. Оно имело фантастически огромнуюплотность — её практически невозможно себе представить, она выражается числом,в котором после единицы стоят 96 нулей, — и столь же невообразимо высокуютемпературу. Астрономы назвали такое состояние сингулярностью.

В силу каких-то причинэто удивительное равновесие было внезапно разрушено действием гравитационныхсил — трудно даже вообразить, какими они должны были быть при бесконечноогромной плотности «первовещества»!

Этому моменту учёныедали название «Большой взрыв». Вселенная начала расширяться иостывать.

Следует отметить, чтовопрос о том, каким же было рождение Вселенной — «горячим» или«холодным», — не сразу был решён однозначно и занимал умы астрономовдолгое время. Интерес к проблеме был далеко не праздным — ведь от физическогосостояния вещества в начальный момент зависит, например, возраст Вселенной.Кроме того, при высоких температурах могут протекать термоядерные реакции.Следовательно, химический состав «горячей» Вселенной долженотличаться от состава «холодной». А от этого в свою очередь зависятразмеры и темпы развития небесных тел...

На протяжениинескольких десятилетий обе версии — «горячего» и«холодного» рождения Вселенной — существовали в космологии на равных,имея и сторонников, и критиков. Дело оставалось «за малым» — следовало подтвердить их наблюдениями.

2.Реликтовое излучение.

Современная астрономия на вопрос о том, существуют лидоказательства гипотезы горячей Вселенной и Большого взрыва, может датьутвердительный ответ. В 1965 г. было сделано открытие, которое, как считаютучёные, прямо подтверждает то, что в прошлом вещество Вселенной было оченьплотным и горячим. Оказалось, что в космическом пространстве встречаютсяэлектромагнитные волны, которые родились в ту далёкую эпоху, когда не было ещёни звёзд, ни галактик, ни нашей Солнечной системы.

Возможность существования такого излучения былапредсказана астрономами гораздо раньше. В середине 1940гг. американский физикДжордж Гамов (1904-1968) занялся проблемами возникновения Вселенной ипроисхождения химических элементов. Расчёты, выполненные Гамовым и егоучениками, позволили представить, что во Вселенной в первые секунды еёсуществования была очень высокая температура. Нагретое вещество«светилось» — испускало электромагнитные волны. Гамов предположил,что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, идаже предсказал температуру этого излучения — примерно 5-6 К.

В 1965 г. американские учёные радиоинженеры Арно Пензиас иРоберт Уилсон зарегистрировали космическое излучение, которое нельзя былоприписать никакому известному тогда космическому источнику. Астрономы пришли квыводу, что это излучение, имеющее температуру около 3 К, — реликт (от лат.«остаток», отсюда и название излучения — «реликтовое») техдалёких времён, когда Вселенная была фантастически горяча. Теперь астрономысмогли сделать выбор в пользу «горячего» рождения Вселенной. А.Пензиас и Р. Вильсон, получили в 1978 г. Нобелевскую Премию за открытиекосмического микроволнового фона (такового официальное название реликтовогоизлучения) на волне 7,35 см.

3.Сценарий далекого прошлого.

Большим взрывом называется явление возникновения Вселенной.В рамках этой концепции полагается, что начальным состоянием Вселенной былаточка, называемая точкой сингулярности, в которой были сосредоточены все вещество и энергия.Она характеризовалась бесконечно большой плотностью материи. Конкретные свойства точкисингулярности неизвестны, как неизвестно и то, что предшествовало состояниюсингулярности.

Приблизительнаяхронология событий, последовавших с нулевого момента времени — начала расширения,представлена ниже:

Время с начала взрыва

Температура

(градусы Кельвина)

Событие

Следствия

0 — 5*10-44 секунды 

1,3*1032  

Никаких достоверных сведений нет

5*10-44 — 10-36 секунды 

1,3*1032 – 1028

Начало действия известных физических законов, эра инфляционного расширения  

Расширение Вселенной продолжающееся и поныне

10-36 — 10-4 секунды

1028– 1012

Эра промежуточных бозонов, а затем – адронная эра, существование свободных кварков

10-4 — 10-3 секунд

1012 – 1010

Возникновение частиц и античастиц из свободных кварков, а также их аннигиляция, возникновение прозрачности вещества для нейтрино

Возникновение барионной асимметрии, появление нейтринного реликтового излучения

10-3 — 10-120 секунд

1010 – 109

Протекание ядерных реакций синтеза ядер гелия и некоторых других легких химических элементов

Установление первичного соотношения химических элементов

Между 300 тысячами — 1 миллионом лет

3000 – 4500

Завершение эры рекомбинации

Появление Реликтового излучения и нейтрального газа

1 миллион — 1 миллиард лет

4500 – 10

Развитие гравитационных неоднородностей газа

Образование звезд и галактик

Относительно условий и событий, происходивших донаступления момента 5·10-44секунды — окончания первого кванта времени — никаких достоверных сведений нет.О физических параметрах той эры можно лишь сказать, что тогда температура была 1,3·1032К, аплотность материи около 1096кг/м3. Приведенные значения являются предельными для применениясуществующих теорий. Они вытекают из соотношений скорости света, гравитационнойпостоянной, постоянных Планка и Больцмана и называются “планковскими”.

События периода с 5·10-44по 10-36 секунды отражаетмодель “инфляционной Вселенной”, описание, которой затруднительно и не можетбыть дано в рамках этого изложения. Однако следует отметить, что согласно этоймодели расширение Вселенной происходило без уменьшения объемной концентрацииэнергии и при отрицательном давлении первичной смеси вещества и энергии, т.е.,как бы, отталкивании материальных объектов друг от друга, вызвавшем расширениеВселенной, продолжающееся и поныне.

Далее, начиная с момента 10-36 секунды от начала взрыва, события описываются врамках модели “горячей Вселенной”.

Для понимания процессов, протекавших в период 10-36-10-4 секундс начала взрыва, требуется глубокое знание физики элементарных частиц. В этотпериод электромагнитное излучение и элементарные частицы — различные видымезонов, гипероны, протоны и антипротоны, нейтроны и антинейтроны, нейтрино иантинейтрино и т.п. существовали в равновесии, т.е. их объемные концентрациибыли равны. Очень важную роль в это время играли вначале поля сильных, а затемслабых взаимодействий.

 В период 10-4 — 10-3секунды происходило формирование всего множества элементарных частиц, которые,преобразуясь одни в другие, и составляют ныне всю Вселенную. Произошлааннигиляция подавляющего большинства элементарных частиц и античастиц,существовавших ранее. Именно в этот период появилась барионная асимметрия,которая оказалась следствием очень малого, всего на одну миллиардную долю,превышения количества барионов над антибарионами. Оно возникло, судя по всему,сразу после эры инфляционного расширения Вселенной. При температуре 1011градусовплотность Вселенной уже снизилась до величины, характерной для атомных ядер, Вэтот период уменьшение температуры вдвое происходило за тысячные доли секунды.В это же время родилось существующее и ныне реликтовое нейтринное излучение.Однако, несмотря на его значительную плотность, составляющую не менее чем 400 штук/см3, и возможностьполучить с его помощью важнейшую информацию о том периоде формированияВселенной, его регистрация пока не реализуема.

В период с 10-3по 10-120 секунд в результате термоядерных реакций образовалисьядра гелия и очень малое количество ядер некоторых других легких химическихэлементов, а значительная часть протонов — ядер водорода — объединению ватомные ядра не подверглась. Все они остались погруженными в “океан” свободныхэлектронов и фотонов электромагнитного излучения. С этого момента в первичномгазе установилось соотношение: 75- 78%водорода и 25-22% гелия — по массам этих газов.

В период между 300тысячами и 1 миллионом лет температура Вселенной понизилась до 3000 — 45000 К и наступила эрарекомбинации. Свободные прежде электроны объединились с легкими атомными ядрамии протонами. Образовались атомы водорода, гелия и некоторое количество атомовлития. Вещество стало прозрачным и реликтовое излучение, наблюдаемое до сихпор, “отделилось” от него. Все наблюдаемые ныне особенности реликтовогоизлучения, например, флуктуации температуры его потоков приходящих от разныхучастков на небесной сфере или их поляризация отражают картину свойств ираспределения вещества в то время.

В течение последующего — первого миллиарда летсуществования Вселенной ее температура снизилась от 3000 — 45000 К до 300 К. В связи с тем, что к этому периоду времениво Вселенной еще не образовалось источников электромагнитного излучения –звезд, квазаров и т.п., а реликтовое излучение уже остыло, эту эпоху называют“Темным возрастом” Вселенной.

Тогда же неоднородности плотности смеси первичных газов,возникшие, вероятно, еще на этапе “инфляционного расширения” Вселенной,уплотнялись под действием гравитационных сил. Компьютерное моделирование этихпроцессов показывает, что это должно было приводить к образованию гигантскихзвезд с массами в миллионы масс Солнца. По причине таких огромных масс, этизвезды разогревались до очень высоких температур и потому проходили весь свойпуть эволюции в течение нескольких десятков миллионов лет, а затем взрывалиськак сверхновые.

Нагретые до огромных температур поверхностей этих звездпорождали мощные потоки ультрафиолетового излучения, которые произвелиповторную ионизацию атомов находящихся в свободном от звезд космическомпространстве. Наступила, так называемая, эпоха переионизация. Образовавшаясяплазма сильно рассеивала электромагнитное излучение в его коротковолновыхспектральных диапазонах. Вселенная, как бы погрузилась в густой туман. Толькодля длинноволнового реликтового излучения эта среда оказалась прозрачной.

Эти гигантские звезды послужили первыми во Вселеннойисточниками более тяжелых, чем литий химических элементов. Вслед за темпоявилась возможность формирования космических объектов второго поколения,содержащих ядра этих атомов. Звезды второго поколения начали формироваться изсмеси тяжелых атомов, а также атомов первичных водорода и гелия. Они и звездыпоследующих поколений уже не были столь массивными и горячими, как звездыпервого поколения, поэтому потоки ультрафиолетового ионизирующего излучения отних были значительно меньше. Произошла повторная рекомбинация большинстваатомов межзвездного и межгалактического газов и пространство вновь стало, восновном, прозрачным для электромагнитного излучения во всех  его спектральных диапазонах. КартинаВселенной стала, практически такой, какой мы ее наблюдаем сегодня.

Итак,  в результатеБольшого взрыва 13-20 млрд. лет назад начал действовать уникальный ускорительчастиц, в ходе работы которого непрерывно и стремительно сменяли друг другапроцессы рождения и гибели (аннигиляции) разнообразных частиц.

4. Большой Взрыв.

Предыдущаявселенная перед взрывом состояла из небольшого количества почти полностьювыгоревших галактик. Основным элементом в этих галактиках было железо.Вселенную освещали только жёлтые и красные звёзды, но горели они значительноярче, чем сейчас.Если во вселенной и существовала жизнь, то она быласосредоточена вокруг этих звёзд и была обречена на гибель. В центре вселеннойнаходилась «ЧЁРНАЯ ДЫРА», в которую и падали все эти галактики. А вцентре «ЧЁРНОЙ ДЫРЫ» находилась гигантская звезда, размерамипревосходящая самую большую галактику. Эта звезда под действием гравитациисжималась, и сначала кванты энергии начали входить друг в друга, образуя единыйквант энергии, имеющий положительный заряд. При дальнейшем сжатии началсямгновенный переход вакуума в энергию. Стоит более подробно остановиться наприроде вакуума. Распадаться могут не только элементарные частицы, но и самквант. При этом образуются кванты с дробным зарядом. Кванты энергии, имеющиедробный заряд, меньше единицы, не могут иметь полей. Из этих квантов энергии,не имеющих полей, и ничто-пустоты и состоит вакуум. Эти неполноценные квантыназываются «Снарками». Для того чтобы несколько снарков превратилисьв полноценный квант, необходимо, чтобы они вошли друг в друга. Для этого надоогромное давление. Такое давление и создала первичная звезда.

 Как только давление достигло критическогоуровня, весь вакуум внутри первичного тела мгновенно превратился в энергию. Всеполя являются энергиями, а энергии возникают в результате взаимодействия двухобъектов, имеющих разный энергетический уровень. Если одного из составляющихнет, то и создание энергии, а значит и полей, невозможно. Вакуум, игравший рольобъекта, имеющего низкий энергетический уровень, превратился в энергию, икванту стало не с чем взаимодействовать, для создания полей. Гравитационноеполе мгновенно уменьшилось, и звезда вышла из коллапса. Сжатие ядра гигантскойзвезды уменьшилось, и она сбросила наружную оболочку. Произошел эффект сжатойпружины, которая, при уменьшении сжатия, распрямляется. Кванты подобнойэнергетической плотности в природе существовать не могут. Для уменьшения своейэнергетической плотности он должен был увеличить длину волны, а, значит,увеличиваться в объёме. При взаимодействии протокванта и внешнего вакуума,образовалось гигантское электрическое поле. Именно из этого электрического поляи вакуума и стали образовываться протоны. Энергию электрического поляподдерживал протоквант, теряя энергию на его поддержание. Этот суперфотонувеличивался в объёме со скоростью света, и протоны оказывались внутри этогокванта, так как двигаться со «скоростью света» протоны не могли. Этозапрещено теорией относительности. Любая элементарная частица состоит из квантаэнергии и вакуума. Плотность вакуума внутри элементарной значительно выше, чемв окружающем пространстве. Количество вакуума в природе ограничено, а так какна создания вещества тратилось большое количество вакуума, это привело крезкому уменьшению вселенной. Вселенная стала сжиматься.

Сжатиевселенной происходило так быстро, что вещество внешней оболочки звезды,оказалось перемешанным с вновь созданным веществом. Каждая новая вселеннаянаследует часть вещества от старой вселенной. Когда энергия протокванта былаизрасходована на создание протонов, нечем стало поддерживать энергию электрическогополя, и электрическое поле должно было начать уменьшаться. Электрическое полестремится любой ценой сохранить свой потенциал, даже ценой изменения своегозаряда, на противоположный. На спаде потенциала, из энергии поля, сталисоздаваться электроны. Когда энергетическая плотность поля, стала не достаточнадля создания электронов, оно разбилось на фотоны, и по периметру взрываобразовалась гигантская вспышка, состоящая из фотонов. Фотоны, продолжаядвигаться в том же направлении, прошли через второй центр, (наша вселеннаяотносится к двухцентовым объектам) и толкнули внешние электроны в центрвселенной. Из центра вселенной двигались протоны и некоторое количествовещества от предыдущей вселенной, а навстречу им электроны, получившие моментимпульса от фотонов, и образовалось два встречных потока. Образовалисьгигантские вихри аналогичные земным циклонам.

Циклоныне просто внешне напоминают спиральные галактики, у них и природа одинаковая. Вцентре такого вихря высокая плотность вещества, а вот момент импульса равеннулю. На периферии наоборот плотность вещества низкая, а момент импульсабольшой. В результате взаимодействия электронного и протонного потокаобразовалось большое количество спиральных галактик. Поскольку в центрегалактики вещество не имело момента импульса, то протоны сразу же собрались вгигантские звёзды, и сразу начались термоядерные реакции. Большой Взрыв был нетаким эффектным, как считают физики, но очень эффективным. Большая частьэнергии превратилась в вещество. Фактически взрыва, как такового, и не было.Было превращение энергии в вещество по всему объёму вселенной. Доказательствомэтого является то, что наша вселенная однородна и изотропна. Это означает, чтов любой сфере, с диаметром ~ равным 300 световых лет, количество галактикприблизительно равно. Однородность и изотропность вселенной, принято называтьКосмологическим Принципом. При взрыве, который предложен физиками, такогоэффекта быть не может. Это возможно только в случае, когда вещество равномерновозникло во всём объёме вселенной.

Притермоядерной реакции выделяется не только энергия, но и вакуум. Расстояниемежду пунктом «А» и «Б» зависит от количества вакууманаходящегося между ними. Чем активнее происходили термоядерные процессы вгалактике, тем больше выбрасывалось вакуума, и тем быстрее она удалялась отостальных галактик. Вселенная начала расширяться. Вселенная расширялась не засчёт энергии первичного взрыва, а благодаря термоядерным реакциям звёзд. Каксохраняли галактики свою структуру можно найти в статье «Геометриягалактик». Вакуум, освободившийся после термоядерных реакций, постепеннопокидает пределы метагалактики, но пока термоядерная активность звёзд велика, иколичество вакуума, излучаемое звёздами больше, чем покидающее метагалактику,она будет расширяться.

Кактолько термоядерная активность галактик уменьшится, вселенная продолжитувеличиваться, а вот метагалактика начнёт уменьшаться. Это произойдёт тогда,когда количество вакуума, покидающее метагалактику, будет больше, чемполучаемую при термояде. Галактики начнут движение к общему центру, циклзамкнётся, и всё повторится с начала.

Мывыяснили, что Вселенная постоянно расширяется; тот момент с которого Вселеннаяначала расширятся, принято считать ее началом. Его называют  “Большим Взрывом” или английским термином BigBang.

Под расширениемВселенной подразумевается такой процесс, когда тоже самое  количество элементарных частиц и фотоновзанимают постоянно возрастающий объём.

Кратко изложим все те умозаключения о возможныхпараметрах Вселенной на стадии Большого Взрыва, к которым мы пришли.

Средняяплотность Вселенной в результате расширения постепенно понижается. Из этогоследует, что в прошлом плотность Вселенной была больше, чем в настоящее время.Можно предположить, что в глубокой древности (примерно десять миллиардов летназад) плотность Вселенной была очень большой.

Крометого высокой должна была быть и температура, настолько высокой, что плотностьизлучения превышала плотность вещества. Иначе говоря энергия всех фотоновсодержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в1 куб. см. На самом раннем этапе, в первые мгновения “Большого Взрыва” всяматерия была сильно раскаленной  и густойсмесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы пристолкновении с соответствующими античастицами аннигилировали, но  возникающие гамма-фотоны моментальноматериализовались в частицы и античастицы.

   Подробный анализ показывает, что температуравещества Т понижалась во времени всоответствии с простым соотношением формула (1) :

<span Arial",«sans-serif»;mso-bidi-font-family:«Times New Roman»; letter-spacing:1.0pt"> 

          (1)                          

<span Arial",«sans-serif»;mso-bidi-font-family:«Times New Roman»;letter-spacing: 1.0pt">

<span Arial",«sans-serif»;mso-bidi-font-family:«Times New Roman»;letter-spacing: 1.0pt"> 

   Зависимостьтемпературы Т от времени t дает нам возможность определить, что например,в момент, когда возраст Вселенной исчислялся всего одной десятитысячнойсекунды,  её температурапредставляла  один  биллион Кельвинов. 5.Эволюция вещества

   Температура раскаленной плотной материи наначальном этапе Вселенной со временем понижалась, что и отражается всоотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT. Согласно соотношению hn=kT понижаласьи энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота  n. Понижение энергии фотонов во

времени имело для возникновениячастиц и античастиц путем материализации важные последствия. Для того чтобыфотон превратился(материализовался) в частицу и античастицу смассой mo и энергиейпокоя moc2,  емунеобходимо обладать энергией 2 moc2или большей формула(2).

   <img src="/cache/referats/19439/image004.gif" v:shapes="_x0000_i1026">   (2)

Современем энергия фотонов понижалась, и как только она упала ниже произведенияэнергии частицы и античастицы (2moc2),фотоны уже не способны были обеспечить возникновение частиц и античастиц смассой mo. Так, например,фотон, обладающий энергией меньшей, чем 2*938 Мэв, не способен материализоватьсяв протон и антипротон, потому что энергия покоя протона равна 938 мэв.

   В предыдущем соотношении можно заменитьэнергию фотонов hnкинетической энергией частиц kT формула (3)

                     <img src="/cache/referats/19439/image006.gif" v:shapes="_x0000_i1027">  (3)

то есть

<img src="/cache/referats/19439/image008.gif" v:shapes="_x0000_i1028">  (4)

Знакнеравенства формула (4) означает следующее: частицы и соответствующие имантичастицы возникали при материализации в раскаленном веществе до тех пор,пока температура вещества T не упаланиже указанного значения.                          

    На начальном этапе расширения Вселенной изфотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, чтопривело к вымиранию частиц и античастиц. Поскольку аннигиляция можетпроисходить при любой температуре, постоянно осуществляется процесс

частица + античастица Þ 2гамма-фотона

при условии соприкосновениявещества с антивеществом. Процесс материализации

гамма-фотон Þ частица + античастица

мог протекать лишь придостаточно высокой температуре. Согласно тому, как материализация в результатепонижающейся  температурыраскаленного вещества приостановилась,

эволюцию Вселенной приняторазделять на четыре эры: адронную, лептонную, фотонную и звездную.

5.1.   Адронная эра.  

Длиласьпримерно от t=10-6с до  t=10-4с.Плотность порядка 1017 кг/м3 при T=1012…1013К.

Приочень высоких температурах и плотности в самом начале существования Вселеннойматерия состояла из элементарных частиц. Вещество на самом раннем этапесостояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселеннойназывается адронной, несмотря на то, что в то время существовали и лептоны.

Черезмиллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(1013K). Средняя кинетическая энергия частиц kT и фотонов hnсоставлялаоколо миллиарда эв (103Мэв), чтосоответствует энергии покоя барионов.

Впервую миллионную долю секунды эволюции Вселенной происходила материализациявсех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этоговремени материализация барионов прекратилась, так как при температуре ниже 1013 K фотоны не обладали ужедостаточной энергией для ее осуществления. Процесс аннигиляции барионов иантибарионов продолжался до тех пор, пока давление излучения не отделиловещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) впроцессе самопроизвольного распада превратились в самые легкие из барионов(протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов — гипероны. Нейтроны могли дальше распадаться в протоны, которые далее нераспадались, иначе бы нарушился закон сохранения барионного заряда. Распадгиперонов происходил на этапе с 10-6до 10-4секунды.

Кмоменту, когда возраст Вселенной достиг одной десятитысячной секунды (10-4с),температура ее понизилась до 1012K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже длявозникновения самых легких адронов — пионов. Пионы, существовавшие ранее,распадались, а новые не могли возникнуть. Это означает, что к тому моменту,когда возраст Вселенной достиг 10-4с, в ней исчезли все мезоны.

На этоми кончается адронная эра, потому что пионы являются не только самыми легкимимезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие(ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру,длившуюся всего лишь одну десятитысячную долю секунды.

5.2.  Лептонная эра.

Длиласьпримерно от t=10-4сдо  t=101с. К концу эры плотность порядка 107кг/м3 при T=109К.

Когдаэнергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв ввеществе было много лептонов. Температура была достаточно высокой, чтобыобеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы(протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами ифотонами встречаться гораздо реже.

Лептоннаяэра начинается с распада последних адронов — пионов — в мюоны и мюонноенейтрино, а кончается через несколько секунд при температуре 1010K, когдаэнергия  фотонов уменьшилась до 1 Мэв и материализация электронов ипозитронов прекратилась. Во время этого этапа начинается независимоесуществование электронного и мюонного нейтрино, которые мы называем  “реликтовыми”.

Всёпространство Вселенной наполнилось огромным количеством реликтовых электронныхи мюонных нейтрино. Возникает нейтринное море.

5.3.  Фотонная эра или эра излучения.

Длиласьпримерно от t=10-6сдо  t=10-4с. Плотность порядка 1017кг/м3 при T=1012…1013К.

На смену лептонной эры пришлаэра излучения, как только температура Вселенной понизилась до 1010K , аэнергия гамма фотонов достигла 1 Мэв,произошла только аннигиляция электронов и позитронов. Новыеэлектронно-позитронные пары не могли возникать вследствие материализации,потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронови позитронов продолжалась дальше, пока давление излучения полностью не отделиловещество от антивещества.

Современи адронной и лептонной эры Вселенная была заполнена фотонами. К концулептонной эры фотонов было в два миллиарда раз больше, чем протонов иэлектронов. Важнейшей составной Вселенной после лептонной эры становятсяфотоны, причем не только по количеству, но и по энергии.

Длятого чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была  введена величина плотности энергии. Этоколичество энергии в 1 куб.см,точнее, среднее количество (исходя из предпосылки, что вещество во Вселеннойраспределено равномерно). Если сложить вместе энергию hn всех фотонов, присутствующих в 1 куб.см, то мы получим плотностьэнергии излучения Er. Сумма энергии покоя всехчастиц в 1 куб.см является среднейэнергией вещества Emво Вселенной.

Вследствиерасширения Вселенной понижалась плотность энергии фотонов и частиц. Сувеличением расстояния во Вселенной в два раза, объём увеличился в восемьраз.  Иными словами, плотность частиц ифотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себяиначе, чем частицы. В то время как энергия покоя во время расширения Вселеннойне меняется, энергия фотонов при расширении уменьшается. Фотоны понижают своючастоту колебания, словно “устают” со временем. Вследствие этого плотностьэнергии фотонов (Er)падает быстрее, чем плотность энергии частиц (Em).

Преобладаниево вселенной фотонной составной над составной частиц (имеется в виду плотностьэнергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезлополностью. К этому моменту обе составные пришли в равновесие (то есть Er= Em).Кончается эра излучения и вместе с этим период “Большого Взрыва”. Так выгляделаВселенная в возрасте примерно 300 000 лет. Расстояния в тот период были втысячу раз короче, чем в настоящее время.

“Большойвзрыв” продолжался сравнительнонедолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё жебыла самая славная эра Вселенной. Никогда после этого эволюция Вселенной небыла столь стремительна, как в самом её начале, во время “большого взрыва”. Всесобытия во Вселенной в тот период касались свободных элементарных частиц, ихпревращений, рождения, распада, аннигиляции.

Неследует забывать, что в столь короткое время (всего лишь несколько секунд) избогатого разнообразия видов элементарных частиц исчезли почти все: одни путеманнигиляции (превращение в гамма-фотоны), иные путем распада на самые легкиебарионы (протоны) и на самые легкие заряженные лептоны (электроны).

5.4.Звездная эра.

После “Большого  Взрыва” наступила продолжительная эравещества, эпоха преобладания частиц. Мы называем её звездной эрой. Онапродолжается со времени завершения “Большого Взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с

www.ronl.ru

Курсовая работа : Происхождение вселенной. Большой взрыв

Происхождение вселенной. Большой взрыв

Курсовая работа по предмету «Теоретические основы прогрессивных технологий»

Выполнила: Белозерская Лариса Мирзоджоновна, Курс I

Московский государственный открытый университет, филиал

г. Сафоново 2005 г.

1. Введение.

Космология - это физическое учение о Вселенной, включающее в себя теорию всего охваченного астрономическими наблюдениями мира как части Вселенной.

Величайшим достижением современной космологии стала модель расширяющейся Вселенной, названная теорией Большого взрыва.

Согласно этой теории, всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто - спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность - её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, - и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью.

В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил - трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности "первовещества"!

Этому моменту учёные дали название "Большой взрыв". Вселенная начала расширяться и остывать.

Следует отметить, что вопрос о том, каким же было рождение Вселенной - "горячим" или "холодным", - не сразу был решён однозначно и занимал умы астрономов долгое время. Интерес к проблеме был далеко не праздным - ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной. Кроме того, при высоких температурах могут протекать термоядерные реакции. Следовательно, химический состав "горячей" Вселенной должен отличаться от состава "холодной". А от этого в свою очередь зависят размеры и темпы развития небесных тел...

На протяжении нескольких десятилетий обе версии - "горячего" и "холодного" рождения Вселенной - существовали в космологии на равных, имея и сторонников, и критиков. Дело оставалось "за малым" - следовало подтвердить их наблюдениями.

2. Реликтовое излучение.

Современная астрономия на вопрос о том, существуют ли доказательства гипотезы горячей Вселенной и Большого взрыва, может дать утвердительный ответ. В 1965 г. было сделано открытие, которое, как считают учёные, прямо подтверждает то, что в прошлом вещество Вселенной было очень плотным и горячим. Оказалось, что в космическом пространстве встречаются электромагнитные волны, которые родились в ту далёкую эпоху, когда не было ещё ни звёзд, ни галактик, ни нашей Солнечной системы.

Возможность существования такого излучения была предсказана астрономами гораздо раньше. В середине 1940гг. американский физик Джордж Гамов (1904-1968) занялся проблемами возникновения Вселенной и происхождения химических элементов. Расчёты, выполненные Гамовым и его учениками, позволили представить, что во Вселенной в первые секунды её существования была очень высокая температура. Нагретое вещество "светилось" - испускало электромагнитные волны. Гамов предположил, что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, и даже предсказал температуру этого излучения - примерно 5-6 К.

В 1965 г. американские учёные радиоинженеры Арно Пензиас и Роберт Уилсон зарегистрировали космическое излучение, которое нельзя было приписать никакому известному тогда космическому источнику. Астрономы пришли к выводу, что это излучение, имеющее температуру около 3 К, - реликт (от лат. "остаток", отсюда и название излучения - "реликтовое") тех далёких времён, когда Вселенная была фантастически горяча. Теперь астрономы смогли сделать выбор в пользу "горячего" рождения Вселенной. А. Пензиас и Р. Вильсон, получили в 1978 г. Нобелевскую Премию за открытие космического микроволнового фона (такового официальное название реликтового излучения) на волне 7,35 см.

3. Сценарий далекого прошлого.

Большим взрывом называется явление возникновения Вселенной. В рамках этой концепции полагается, что начальным состоянием Вселенной была точка, называемая точкой сингулярности, в которой были сосредоточены все вещество и энергия. Она характеризовалась бесконечно большой плотностью материи. Конкретные свойства точки сингулярности неизвестны, как неизвестно и то, что предшествовало состоянию сингулярности.

Приблизительная хронология событий, последовавших с нулевого момента времени - начала расширения, представлена ниже:

Время с начала взрыва

Температура

(градусы Кельвина)

Событие

Следствия

0 - 5*10-44 секунды 

1,3*1032  

Никаких достоверных сведений нет

5*10-44 - 10-36 секунды 

1,3*1032 – 1028

Начало действия известных физических законов, эра инфляционного расширения  

Расширение Вселенной продолжающееся и поныне

10-36 - 10-4 секунды

1028 – 1012

Эра промежуточных бозонов, а затем – адронная эра, существование свободных кварков

10-4 - 10-3 секунд

1012 – 1010

Возникновение частиц и античастиц из свободных кварков, а также их аннигиляция, возникновение прозрачности вещества для нейтрино

Возникновение барионной асимметрии, появление нейтринного реликтового излучения

10-3 - 10-120 секунд

1010 – 109

Протекание ядерных реакций синтеза ядер гелия и некоторых других легких химических элементов

Установление первичного соотношения химических элементов

Между 300 тысячами - 1 миллионом лет

3000 – 4500

Завершение эры рекомбинации

Появление Реликтового излучения и нейтрального газа

1 миллион - 1 миллиард лет

4500 – 10

Развитие гравитационных неоднородностей газа

Образование звезд и галактик

Относительно условий и событий, происходивших до наступления момента 5·10-44 секунды - окончания первого кванта времени - никаких достоверных сведений нет. О физических параметрах той эры можно лишь сказать, что тогда температура была 1,3·1032 К, а плотность материи около 1096 кг/м3. Приведенные значения являются предельными для применения существующих теорий. Они вытекают из соотношений скорости света, гравитационной постоянной, постоянных Планка и Больцмана и называются “планковскими”.

События периода с 5·10-44 по 10-36 секунды отражает модель “инфляционной Вселенной”, описание, которой затруднительно и не может быть дано в рамках этого изложения. Однако следует отметить, что согласно этой модели расширение Вселенной происходило без уменьшения объемной концентрации энергии и при отрицательном давлении первичной смеси вещества и энергии, т.е., как бы, отталкивании материальных объектов друг от друга, вызвавшем расширение Вселенной, продолжающееся и поныне.

Далее, начиная с момента 10-36 секунды от начала взрыва, события описываются в рамках модели “горячей Вселенной”.

Для понимания процессов, протекавших в период 10-36-10-4 секунд с начала взрыва, требуется глубокое знание физики элементарных частиц. В этот период электромагнитное излучение и элементарные частицы - различные виды мезонов, гипероны, протоны и антипротоны, нейтроны и антинейтроны, нейтрино и антинейтрино и т.п. существовали в равновесии, т.е. их объемные концентрации были равны. Очень важную роль в это время играли вначале поля сильных, а затем слабых взаимодействий.

В период 10-4 - 10-3 секунды происходило формирование всего множества элементарных частиц, которые, преобразуясь одни в другие, и составляют ныне всю Вселенную. Произошла аннигиляция подавляющего большинства элементарных частиц и античастиц, существовавших ранее. Именно в этот период появилась барионная асимметрия, которая оказалась следствием очень малого, всего на одну миллиардную долю, превышения количества барионов над антибарионами. Оно возникло, судя по всему, сразу после эры инфляционного расширения Вселенной. При температуре 1011 градусов плотность Вселенной уже снизилась до величины, характерной для атомных ядер, В этот период уменьшение температуры вдвое происходило за тысячные доли секунды. В это же время родилось существующее и ныне реликтовое нейтринное излучение. Однако, несмотря на его значительную плотность, составляющую не менее чем 400 штук/см3, и возможность получить с его помощью важнейшую информацию о том периоде формирования Вселенной, его регистрация пока не реализуема.

В период с 10-3 по 10-120 секунд в результате термоядерных реакций образовались ядра гелия и очень малое количество ядер некоторых других легких химических элементов, а значительная часть протонов - ядер водорода - объединению в атомные ядра не подверглась. Все они остались погруженными в “океан” свободных электронов и фотонов электромагнитного излучения. С этого момента в первичном газе установилось соотношение: 75- 78% водорода и 25-22% гелия - по массам этих газов.

В период между 300 тысячами и 1 миллионом лет температура Вселенной понизилась до 3000 - 45000 К и наступила эра рекомбинации. Свободные прежде электроны объединились с легкими атомными ядрами и протонами. Образовались атомы водорода, гелия и некоторое количество атомов лития. Вещество стало прозрачным и реликтовое излучение, наблюдаемое до сих пор, “отделилось” от него. Все наблюдаемые ныне особенности реликтового излучения, например, флуктуации температуры его потоков приходящих от разных участков на небесной сфере или их поляризация отражают картину свойств и распределения вещества в то время.

В течение последующего - первого миллиарда лет существования Вселенной ее температура снизилась от 3000 - 45000 К до 300 К. В связи с тем, что к этому периоду времени во Вселенной еще не образовалось источников электромагнитного излучения – звезд, квазаров и т.п., а реликтовое излучение уже остыло, эту эпоху называют “Темным возрастом” Вселенной.

Тогда же неоднородности плотности смеси первичных газов, возникшие, вероятно, еще на этапе “инфляционного расширения” Вселенной, уплотнялись под действием гравитационных сил. Компьютерное моделирование этих процессов показывает, что это должно было приводить к образованию гигантских звезд с массами в миллионы масс Солнца. По причине таких огромных масс, эти звезды разогревались до очень высоких температур и потому проходили весь свой путь эволюции в течение нескольких десятков миллионов лет, а затем взрывались как сверхновые.

Нагретые до огромных температур поверхностей этих звезд порождали мощные потоки ультрафиолетового излучения, которые произвели повторную ионизацию атомов находящихся в свободном от звезд космическом пространстве. Наступила, так называемая, эпоха переионизация. Образовавшаяся плазма сильно рассеивала электромагнитное излучение в его коротковолновых спектральных диапазонах. Вселенная, как бы погрузилась в густой туман. Только для длинноволнового реликтового излучения эта среда оказалась прозрачной.

Эти гигантские звезды послужили первыми во Вселенной источниками более тяжелых, чем литий химических элементов. Вслед за тем появилась возможность формирования космических объектов второго поколения, содержащих ядра этих атомов. Звезды второго поколения начали формироваться из смеси тяжелых атомов, а также атомов первичных водорода и гелия. Они и звезды последующих поколений уже не были столь массивными и горячими, как звезды первого поколения, поэтому потоки ультрафиолетового ионизирующего излучения от них были значительно меньше. Произошла повторная рекомбинация большинства атомов межзвездного и межгалактического газов и пространство вновь стало, в основном, прозрачным для электромагнитного излучения во всех его спектральных диапазонах. Картина Вселенной стала, практически такой, какой мы ее наблюдаем сегодня.

Итак, в результате Большого взрыва 13-20 млрд. лет назад начал действовать уникальный ускоритель частиц, в ходе работы которого непрерывно и стремительно сменяли друг друга процессы рождения и гибели (аннигиляции) разнообразных частиц.

4. Большой Взрыв.

Предыдущая вселенная перед взрывом состояла из небольшого количества почти полностью выгоревших галактик. Основным элементом в этих галактиках было железо. Вселенную освещали только жёлтые и красные звёзды, но горели они значительно ярче, чем сейчас.Если во вселенной и существовала жизнь, то она была сосредоточена вокруг этих звёзд и была обречена на гибель. В центре вселенной находилась "ЧЁРНАЯ ДЫРА", в которую и падали все эти галактики. А в центре "ЧЁРНОЙ ДЫРЫ" находилась гигантская звезда, размерами превосходящая самую большую галактику. Эта звезда под действием гравитации сжималась, и сначала кванты энергии начали входить друг в друга, образуя единый квант энергии, имеющий положительный заряд. При дальнейшем сжатии начался мгновенный переход вакуума в энергию. Стоит более подробно остановиться на природе вакуума. Распадаться могут не только элементарные частицы, но и сам квант. При этом образуются кванты с дробным зарядом. Кванты энергии, имеющие дробный заряд, меньше единицы, не могут иметь полей. Из этих квантов энергии, не имеющих полей, и ничто-пустоты и состоит вакуум. Эти неполноценные кванты называются "Снарками". Для того чтобы несколько снарков превратились в полноценный квант, необходимо, чтобы они вошли друг в друга. Для этого надо огромное давление. Такое давление и создала первичная звезда.

Как только давление достигло критического уровня, весь вакуум внутри первичного тела мгновенно превратился в энергию. Все поля являются энергиями, а энергии возникают в результате взаимодействия двух объектов, имеющих разный энергетический уровень. Если одного из составляющих нет, то и создание энергии, а значит и полей, невозможно. Вакуум, игравший роль объекта, имеющего низкий энергетический уровень, превратился в энергию, и кванту стало не с чем взаимодействовать, для создания полей. Гравитационное поле мгновенно уменьшилось, и звезда вышла из коллапса. Сжатие ядра гигантской звезды уменьшилось, и она сбросила наружную оболочку. Произошел эффект сжатой пружины, которая, при уменьшении сжатия, распрямляется. Кванты подобной энергетической плотности в природе существовать не могут. Для уменьшения своей энергетической плотности он должен был увеличить длину волны, а, значит, увеличиваться в объёме. При взаимодействии протокванта и внешнего вакуума, образовалось гигантское электрическое поле. Именно из этого электрического поля и вакуума и стали образовываться протоны. Энергию электрического поля поддерживал протоквант, теряя энергию на его поддержание. Этот суперфотон увеличивался в объёме со скоростью света, и протоны оказывались внутри этого кванта, так как двигаться со "скоростью света" протоны не могли. Это запрещено теорией относительности. Любая элементарная частица состоит из кванта энергии и вакуума. Плотность вакуума внутри элементарной значительно выше, чем в окружающем пространстве. Количество вакуума в природе ограничено, а так как на создания вещества тратилось большое количество вакуума, это привело к резкому уменьшению вселенной. Вселенная стала сжиматься.

Сжатие вселенной происходило так быстро, что вещество внешней оболочки звезды, оказалось перемешанным с вновь созданным веществом. Каждая новая вселенная наследует часть вещества от старой вселенной. Когда энергия протокванта была израсходована на создание протонов, нечем стало поддерживать энергию электрического поля, и электрическое поле должно было начать уменьшаться. Электрическое поле стремится любой ценой сохранить свой потенциал, даже ценой изменения своего заряда, на противоположный. На спаде потенциала, из энергии поля, стали создаваться электроны. Когда энергетическая плотность поля, стала не достаточна для создания электронов, оно разбилось на фотоны, и по периметру взрыва образовалась гигантская вспышка, состоящая из фотонов. Фотоны, продолжая двигаться в том же направлении, прошли через второй центр, (наша вселенная относится к двухцентовым объектам) и толкнули внешние электроны в центр вселенной. Из центра вселенной двигались протоны и некоторое количество вещества от предыдущей вселенной, а навстречу им электроны, получившие момент импульса от фотонов, и образовалось два встречных потока. Образовались гигантские вихри аналогичные земным циклонам.

Циклоны не просто внешне напоминают спиральные галактики, у них и природа одинаковая. В центре такого вихря высокая плотность вещества, а вот момент импульса равен нулю. На периферии наоборот плотность вещества низкая, а момент импульса большой. В результате взаимодействия электронного и протонного потока образовалось большое количество спиральных галактик. Поскольку в центре галактики вещество не имело момента импульса, то протоны сразу же собрались в гигантские звёзды, и сразу начались термоядерные реакции. Большой Взрыв был не таким эффектным, как считают физики, но очень эффективным. Большая часть энергии превратилась в вещество. Фактически взрыва, как такового, и не было. Было превращение энергии в вещество по всему объёму вселенной. Доказательством этого является то, что наша вселенная однородна и изотропна. Это означает, что в любой сфере, с диаметром ~ равным 300 световых лет, количество галактик приблизительно равно. Однородность и изотропность вселенной, принято называть Космологическим Принципом. При взрыве, который предложен физиками, такого эффекта быть не может. Это возможно только в случае, когда вещество равномерно возникло во всём объёме вселенной.

При термоядерной реакции выделяется не только энергия, но и вакуум. Расстояние между пунктом "А" и "Б" зависит от количества вакуума находящегося между ними. Чем активнее происходили термоядерные процессы в галактике, тем больше выбрасывалось вакуума, и тем быстрее она удалялась от остальных галактик. Вселенная начала расширяться. Вселенная расширялась не за счёт энергии первичного взрыва, а благодаря термоядерным реакциям звёзд. Как сохраняли галактики свою структуру можно найти в статье "Геометрия галактик". Вакуум, освободившийся после термоядерных реакций, постепенно покидает пределы метагалактики, но пока термоядерная активность звёзд велика, и количество вакуума, излучаемое звёздами больше, чем покидающее метагалактику, она будет расширяться.

Как только термоядерная активность галактик уменьшится, вселенная продолжит увеличиваться, а вот метагалактика начнёт уменьшаться. Это произойдёт тогда, когда количество вакуума, покидающее метагалактику, будет больше, чем получаемую при термояде. Галактики начнут движение к общему центру, цикл замкнётся, и всё повторится с начала.

Мы выяснили, что Вселенная постоянно расширяется; тот момент с которого Вселенная начала расширятся, принято считать ее началом. Его называют “Большим Взрывом” или английским термином Big Bang.

Под расширением Вселенной подразумевается такой процесс, когда тоже самое количество элементарных частиц и фотонов занимают постоянно возрастающий объём.

Кратко изложим все те умозаключения о возможных параметрах Вселенной на стадии Большого Взрыва, к которым мы пришли.

Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой.

Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “Большого Взрыва” вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

Подробный анализ показывает, что температура вещества Т понижалась во времени в соответствии с простым соотношением формула (1) :

(1)

Зависимость температуры Т от времени t дает нам возможность определить, что например, в момент, когда возраст Вселенной исчислялся всего одной десятитысячной секунды, её температура представляла один биллион Кельвинов.

5. Эволюция вещества

Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT . Согласно соотношению hkT понижалась и энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота Понижение энергии фотонов во времени имело для возникновения частиц и античастиц путем материализации важные последствия. Для того чтобы фотон превратился(материализовался) в частицу и античастицу с массой mo и энергией покоя moc ему необходимо обладать энергией 2 mocили большей формула(2).

(2)

Со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2moc), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой mo. Так, например, фотон, обладающий энергией меньшей, чем 2*938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.

В предыдущем соотношении можно заменить энергию фотонов h кинетической энергией частиц kT формула (3)

(3)

то есть

(4)

Знак неравенства формула (4) означает следующее: частицы и соответствующие им античастицы возникали при материализации в раскаленном веществе до тех пор, пока температура вещества T не упала ниже указанного значения.

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс

частица + античастица гамма-фотона

при условии соприкосновения вещества с антивеществом. Процесс материализации

гамма-фотон частица + античастица

мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась,

эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

5.1. Адронная эра.

Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(10K. Средняя кинетическая энергия частиц kT и фотонов h составляла около миллиарда эв (10Мэвчто соответствует энергии покоя барионов.

В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 10K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10 до 10 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10 с), температура ее понизилась до 10K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10 с, в ней исчезли все мезоны.

На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

5.2. Лептонная эра.

Длилась примерно от t=10-4с до t=101с. К концу эры плотность порядка 107 кг/м3 при T=109К.

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”.

Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

5.3. Фотонная эра или эра излучения.

Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10K , а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.

Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hвсех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают” со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em).

Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er = Em). Кончается эра излучения и вместе с этим период “Большого Взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции.

Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

5.4. Звездная эра.

После “Большого Взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “Большого Взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “Большого Взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.

6. Критика современной теории "Большого Взрыва".

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла около 15 миллиардов лет назад из некоторого начального "сингулярного" состояния с бесконечно большими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается.

Наша вселенная является реально существующим объектом, а не философским понятием, и не может быть создана из объекта, находящегося в сингулярном состоянии. Это противоречит здравому смыслу. Объект может сжиматься в сторону бесконечности, но как только сжатие закончится, у любого объекта будут реально существующие параметры.

Такое понятие, как температура, вообще неприемлемо к такому объекту. Мы ведь не считаем элементарные частицы горячими, если они не разогнаны до высоких скоростей. А элементарные частицы имеют более высокую энергию, чем фотоны. Температура - это броуновское движение молекул. Этих самых молекул у данного объекта и не было.

Согласно этой теории Большого Взрыва, дальнейшая эволюция зависит от измеримого экспериментально параметра r - средней плотности вещества в современной Вселенной. Если r меньше некоторого (известного из теории) критического значения rc, Вселенная будет расширяться вечно; если же r > rc , то процесс расширения когда-нибудь остановится и начнется обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Если и сейчас вселенная расширяется, а значит плотность материи недостаточна для создания такого мощного гравитационного поля, которое заставило бы нашу вселенную сжиматься, то в будущем плотность материи станет ещё меньше, а, соответственно уменьшится и гравитационное поле. И вообще, никакого влияния гравитационного поля, на структуру вселенной не заметно. Под влиянием гравитационного поля, движение галактик, должно быть искривлено. Физики преувеличивают значение гравитации на эволюцию вселенной.

Разбегание галактик происходит равномерно по всем сторонам. Это возможно только в том случае, если наша вселенная не имеет общего центра вращения. Иначе с разных сторон, галактики бы удалялись и приближались с разной скоростью. Из закона Хаббла можно сделать вывод: «Наша вселенная не имеет общей точки вращения, а, значит, гравитационное поле не сможет заставить вселенную сжаться. Это сделают другие силы».

Все нужные сведения и закономерности из этих разделов являются надежно установленными, поэтому получаемую с их помощью информацию относительно эволюции системы можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к "началу мира", т.е. внутрь первой сотой доли секунды.

Здесь явное желание выдать желаемое за действительное. Физики не только не знают первые минуты Большого Взрыва, но не могут объяснить и современное состояние вселенной. Они не знают как возникли спиральные галактики, как сохраняют свою структуру, как эти галактики эволюционируют и как становятся шаровыми галактиками. Да и какие силы могут заставить вселенную сжаться, тоже не знают. И какие силы, заставляют вселенную, расширяется, для физиков тоже тёмный лес.

По данным современной наблюдательной астрономии звезды во Вселенной группируются в галактики, которые, в свою очередь, также образуют скопления. Представление о порядках величин дают следующие цифры: наша Галактика содержит ~ 1011 звезд и имеет форму линзы диаметром 80 тысяч световых лет и толщиной ~ 30 тысяч световых лет.

Да все спиральные галактики имеют форму линзы, а вот толщина этих "линз" прямопропорциональна термоядерным процессам, происходящим в галактиках. Этот феномен современная физика объяснить не может, так как считает, что элементарные частицы состоят из кварков. На самом деле элементарные частицы состоят из кванта энергии и вакуума, имеющего сложное строение. Именно вакуум превращает волну в корпускулу. При термояде выделяется не только энергия, но и вакуум, со всеми его структурами, в том числе и с носителем гравитационного поля. Этот тип гравитации называется «Линейным». Именно Линейная гравитация притягивает звёзды к плоскости спиральных галактик. Уменьшатся термоядерные реакции в галактике, и галактики, из спиральных, будут превращаться в шаровые.

Данные наблюдений показывают, что в крупных масштабах Вселенная однородна и изотропна. Грубо говоря, это означает, что в любой сфере с фиксированным достаточно большим диаметром (достаточным считается число ~ 300 миллионов световых лет) содержится приблизительно одинаковое число галактик. Утверждение об однородности и изотропности Вселенной в больших масштабах принято называть Космологическим Принципом.

Однородность и изотропность вселенной никак не вяжется с взрывным процессом. Ни при одном взрыве, такого быть не может. Это возможно только в том случае, когда всё вещество вселенной, возникло по всему объёму вселенной, а не из одной точки.

Количественным итогом этих наблюдений является сформулированный в 1929 году Хабблом "закон разбегания" (формула 5), согласно которому, все галактики (в среднем) удаляются от нас, и скорость этого разбегания u приблизительно пропорциональна расстоянию R до рассматриваемой галактики.

u = RH (5)

Если бы галактики удалялись от нас, то никакого Космологического Принципа не могло бы быть. Галактики удаляются не от нас, а друг от друга

Наглядной моделью такого разбегания может послужить надуваемый резиновый шарик с нанесенными хаотически на его поверхность точками - "галактиками": при надувании все эти точки будут удаляться друг от друга в точном соответствии с законом Хаббла.

В резиновый шарик надувают газ, а что надувается в нашу вселенную, что бы она расширялась? Точки "разбегаются на поверхности шарика (на плоскости), а наша вселенная увеличивается во всём объёме. Это хороший образ, но он не объясняет природы данного явления. К образным примерам прибегают тогда, когда нет реальных знаний. Наша вселенная увеличивается в объёме за счёт термоядерных реакций, происходящих в звёздах. Как только термоядерные реакции замедлятся, вселенная начнёт сжиматься.

Это модель "двумерного замкнутого мира". Аналогичный "открытый мир" можно представить в виде резиновой плоскости с нанесенными точками, равномерно растягивающейся во всех направлениях.

И опять это плоскость. И опять это образ. Никакое образное сравнение, не может заменить знание природы расширения вселенной. Удаление галактик связано не только с расстоянием, но и с термоядерными процессами, происходящими в галактиках.

Но уже в конце сороковых годов появились первые работы физиков-теоретиков, в которых предсказывалось, что в настоящий момент вся Вселенная должна быть заполнена равновесным электромагнитным излучением с эффективной температурой в несколько градусов Кельвина.

Это означает, что взрыв был не точечным, а равномерным по всему объёму вселенной.

Вследствие того же эффекта Доплера излучение прямо по направлению движения должно казаться немного более горячим, а в обратном направлении - более холодным. Эти небольшие (порядка 10- 3 от основной величины) вариации температуры были обнаружены экспериментально, и они имеют характерную угловую зависимость. По этим данным можно вычислить скорость движения Земли относительно этого "нового эфира", образованного фоном реликтового излучения. В итоге получается значение порядка 600 км/с.

Это уже доказательство ошибочности теории относительности Эйнштейна. Значит, в природе есть единая система отсчёта, относительно которой можно вести все измерения. Мы можем определить и скорость нашего перемещения во вселенной, и направление движения. Всё это отрицает Т О.

7. Выводы.

В пользу теории «Большого взрыва» говорят: реликтовое излучение, характер распространения химических элементов во Вселенной. Но все же остаются много неразрешенных вопросов на которые мы пока не в состоянии дать ответ.

Во-первых, теория не дает ответа на следующие вопросы:

Что заставило вещество Вселенной расширяться?

Что происходило до начала расширения, до момента сингулярности?

Конечны ли пространство и масса? Откуда они берутся.

Во-вторых, несмотря на то, что теория «Большого Взрыва» основывается на ТО, допускается разбегание некоторых частиц со скоростями, в несколько раз превышающими скорость света. Так же в теории указываются ограничения на возможную плотность вещества (не более 1097), хотя с другой стороны выдвигается гипотеза о первоначальной точечности Вселенной, а следовательно и все-таки о бесконечной плотности (т.к. масса бесконечна).

В-третьих, довольно абстрактно, альтернативно рассматриваются такие вопросы, плотно примыкающие к теории «Большого взрыва», как границы и открытость Вселенной, евклидова и неевклидова модель Вселенной.

Наконец, не находят веского фактического подтверждения (хотя по теоретическим выкладкам все получается хорошо и главное – «удобно» ) существование таких частиц как гипероны, мезоны.

То есть все методы анализа полученных данных, исследования, выдвижения гипотез осуществляются при довольно высокой степени допущений. Такая степень не позволительна для гипотезы, хотя может быть и подходит для столь глобальной теории.

Остается только верить или надеяться, что космология когда-либо заполнит эти «белые дыры», сделает свои выводы обоснованными и по возможности фактически подтвержденными.

Кстати, о «белых дырах». Вероятнее всего, именно их изучение позволит нам узнать ответы на многие вопросы, потому что существует гипотеза: именно белые дыры являются кусками первозданной сингулярности, первозданного ядра расширения.

В этом направлении, по-видимому, и стоит ждать новых открытий в данной области, т.к. данный вопрос в целом является еще не полностью изученным и требует серьёзных исследований.

8. Глоссарий.

Адроны – общее название элементарных частиц (барионов, включая все резонансы и мезоны), подверженных сильному взаимодействию (это взаимодействие ответственно за устойчивость атомных ядер).

Античастицы – электрические частицы, масса и спин которых точно равен массе и спину данной частицы, а электрический заряд, магнитный момент и другие подобные характеристики равны по величине и противоположны по знаку тем же характеристикам частицы. Характерным свойством таких пар (частица-античастица) является их аннигиляция при столкновении и рождение их в процессах взаимодействия частиц высоких энергий.

Аннигиляция – превращение частиц и античастиц при их столкновении в другие частицы (например, протон + антипротон = np–мезонов; электрон + позитрон = nФотонов).

Барионы – «тяжёлые» элементарные частицы с массой меньше протона и спином, равным ½. К ним относят, например нуклоны (протоны и нейтроны), а так же много других частиц /см. кварки/.

Бозоны – большой класс элементарных частиц с целочисленным спином (например, фотоны со спином 1). К этому классу принадлежат мезоны, промежуточные векторные бозоны и др. частицы.

Векторные нуклоны – см. барионы.

Гамма-излучение – излучение, возникающее при торможении заряженных частиц большой энергии в веществе, аннигиляции пар и т.д.

Глюоны – гипотетические элементарные частицы (спин равен 1, масса покоя 0), обеспечивающие взаимодействие между кварками.

Лептоны – физически наиболее легкие элементарные частицы со спином ½, не имеющие барионного заряда, но обладающие лептонным зарядом; к лептонам относятся электрон, тяжелый лептон, позитрон, нейтрино, мюон, несущий электрический заряд и их античастицы.

Мезоны – нестабильные элементарные частицы с массами, промежуточными между массами протона и электрона.

Мюон - нестабильные положительно и отрицательно заряженные элементарные частицы со спином ½ и массой~207 электронных масс и временем жизни ~ 10-6С; относятся к лептонам.

Нейтрино – физически нестабильная нейтральная элементарная частица с массой, равной, по-видимому 0, и спином ½. Относится к лептонам. Возникает при бета-распаде атомных ядер и при распаде элементарных частиц; чрезвычайно слабо взаимодействуют с веществом.

Нейтроны – физически - электрически нейтральный элемент частицы с массой, почти равной массе протона и спином ½; входит в состав атомных ядер; в свободном состоянии нестабилен; время жизни 16 минут.

Пионы - p–мезоны – группа трех нестабильных элементарных частиц (адронов) с нулевым спином и массой около 270 электронных масс; 2 пиона (p+ и p-)несут элементарный заряд, третий (p0) электрически нейтрален; являются переносчиками ядерных сил.

Протон - стабильная элементарная частица со спином ½ и массой в 1836 электронных масс (~10-24 г), относящаяся к барионам; ядро легкого изотопа атома водорода (протия). Вместе с нейтронами протоны образуют все атомные ядра.

Электрон - стабильная отрицательно заряженная элементарная частица со спином ½, массой ~ 9·10-28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях. Электрон один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.

Список литературы

Васильев А. Н. "Эволюция вселенной", интернетовский адрес: www.pereplet.ru/obrazovanie/stsoro. s/44.html

Горелов А.А. «Концепции современного естествознания» - М.:«Центр», 1998 г.

Кесарев В.В. Эволюция вещества во вселенной. - М.: Атомиздат, 1989.

Левитан Е.П. Эволюционирующая Вселенная. – М.: Просвещение, 1993.

Новиков И.Д. Эволюция Вселенной – 3-е изд., переработанное. – М.: Наука, 1993.

Ройзен И. Вселенная между мгновением и вечностью. –«Наука и жизнь», №№ 11 и 12, 1996 г.

Самсонов А.Л. «Концепция эволюционизма и теория Большого взрыва» - «Экология и жизнь», №1,2000г.

Шишлова А. «В лаборатории - десять микросекунд после Большого взрыва». - «Наука и жизнь», № 3, 2000 г.

http://spacescience.com/

www.astrolabe.ru

www.astronomynow.com/breaking.html

www.rambler.ru/sites/217000/217217.html

www.rambler.ru/sites/21792/189324.html

www.eso.org/outreach/press-rel/

10. Расчетная часть.

Задача.

При соударении α-частицы с ядром бора произошла ядерная реакция, в результате которой образовалось два новых ядра. Одним из этих ядер было ядро атома водорода . Определить порядковый номер и массовое число второго ядра, дать символическую запись ядерной реакции и определить её энергетический эффект.

Решение.

0100090000037800000002001c00000000000400000003010800050000000b0200000000050000000c02d8047907040000002e0118001c000000fb021000070000000000bc02000000cc0102022253797374656d000479070000d12809a3e85d110004ee8339189c07060c020000040000002d01000004000000020101001c000000fb02ceff0000000000009001000000cc0440001254696d6573204e657720526f6d616e0000000000000000000000000000000000040000002d010100050000000902000000020d000000320a2d00000001000400000000007907d60420fa1600040000002d010000030000000000

Обозначим неизвестное ядро символом . Так как α-частица представляет собой ядро гелия , запись реакции имеет вид

++.

Применив закон сохранения числа нуклонов, получим уравнение

4+10=1+А

А=13.

Применив закон сохранения заряда, получим уравнение

2+5=1+Z

Z=6.

Следовательно, неизвестное ядро является ядром атома изотопа углерода .

Теперь мы можем записать реакцию в окончательном виде:

++.

Энергетический эффект Q ядерной реакции определяется по формуле

Q=931[(m He + m B) - (m H + m C)].

Здесь в первых круглых скобках указаны массы исходных ядер, во вторых скобках – массы ядер – продуктов реакции. При числовых подсчетах по этой формуле массы ядер заменяют массами нейтральных атомов. Возможность такой замены вытекает из следующих соображений.

Число электронов в электронной оболочке нейтрального атома равно его зарядовому числу Z. Сумма зарядовых чисел исходных ядер равна сумме зарядовых чисел ядер – продуктов реакции. Следовательно, электронные оболочки ядер гелия и бора содержат вместе столько же электронов, сколько их содержат электронные оболочки ядер углерода и водорода.

Очевидно, что при вычитании суммы масс нейтральных атомов углерода и водорода из суммы масс атомов гелия и бора массы электронов выпадут и мы получим тот же результат, как если бы брали массы ядер. Подставив массы атомов в расчетную формулу, получим

Q = 931[(4,00260 + 10,01294) - (1,00783 + 13,00335)] = 4,06 МэВ.

Ответ:

Второе ядро – ядро атома изотопа углерода .

Символическая запись ядерной реакции:

++.

Энергетический эффект Q ядерной реакции 4,06 МэВ.

topref.ru

Курсовая работа - Происхождение вселенной. Большой взрыв

Курсовая работа по предмету «Теоретические основы прогрессивных технологий»

Выполнила: Белозерская Лариса Мирзоджоновна, Курс I

Московский государственный открытый университет, филиал

г. Сафоново 2005 г.

1. Введение .

Космология — это физическое учение о Вселенной, включающее в себя теорию всего охваченного астрономическими наблюдениями мира как части Вселенной.

Величайшим достижением современной космологии стала модель расширяющейся Вселенной, названная теорией Большого взрыва.

Согласно этой теории, всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто — спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность — её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, — и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью.

В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил — трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности «первовещества»!

Этому моменту учёные дали название «Большой взрыв». Вселенная начала расширяться и остывать.

Следует отметить, что вопрос о том, каким же было рождение Вселенной — «горячим» или «холодным», — не сразу был решён однозначно и занимал умы астрономов долгое время. Интерес к проблеме был далеко не праздным — ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной. Кроме того, при высоких температурах могут протекать термоядерные реакции. Следовательно, химический состав «горячей» Вселенной должен отличаться от состава «холодной». А от этого в свою очередь зависят размеры и темпы развития небесных тел...

На протяжении нескольких десятилетий обе версии — «горячего» и «холодного» рождения Вселенной — существовали в космологии на равных, имея и сторонников, и критиков. Дело оставалось «за малым» — следовало подтвердить их наблюдениями.

2. Реликтовое излучение .

Современная астрономия на вопрос о том, существуют ли доказательства гипотезы горячей Вселенной и Большого взрыва, может дать утвердительный ответ. В 1965 г. было сделано открытие, которое, как считают учёные, прямо подтверждает то, что в прошлом вещество Вселенной было очень плотным и горячим. Оказалось, что в космическом пространстве встречаются электромагнитные волны, которые родились в ту далёкую эпоху, когда не было ещё ни звёзд, ни галактик, ни нашей Солнечной системы.

Возможность существования такого излучения была предсказана астрономами гораздо раньше. В середине 1940гг. американский физик Джордж Гамов (1904-1968) занялся проблемами возникновения Вселенной и происхождения химических элементов. Расчёты, выполненные Гамовым и его учениками, позволили представить, что во Вселенной в первые секунды её существования была очень высокая температура. Нагретое вещество «светилось» — испускало электромагнитные волны. Гамов предположил, что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, и даже предсказал температуру этого излучения — примерно 5-6 К.

В 1965 г. американские учёные радиоинженеры Арно Пензиас и Роберт Уилсон зарегистрировали космическое излучение, которое нельзя было приписать никакому известному тогда космическому источнику. Астрономы пришли к выводу, что это излучение, имеющее температуру около 3 К, — реликт (от лат. «остаток», отсюда и название излучения — «реликтовое») тех далёких времён, когда Вселенная была фантастически горяча. Теперь астрономы смогли сделать выбор в пользу «горячего» рождения Вселенной. А. Пензиас и Р. Вильсон, получили в 1978 г. Нобелевскую Премию за открытие космического микроволнового фона (такового официальное название реликтового излучения) на волне 7,35 см.

3. Сценарий далекого прошлого.

Большим взрывом называется явление возникновения Вселенной. В рамках этой концепции полагается, что начальным состоянием Вселенной была точка, называемая точкой сингулярности, в которой были сосредоточены все вещество и энергия. Она характеризовалась бесконечно большой плотностью материи. Конкретные свойства точки сингулярности неизвестны, как неизвестно и то, что предшествовало состоянию сингулярности.

Приблизительная хронология событий, последовавших с нулевого момента времени — начала расширения, представлена ниже:

Время с начала взрыва

Температура

(градусы Кельвина)

Событие Следствия
0 — 5*10-44 секунды 1,3*1032 Никаких достоверных сведений нет
5*10-44 — 10-36 секунды 1,3*1032 – 1028 Начало действия известных физических законов, эра инфляционного расширения Расширение Вселенной продолжающееся и поныне
10-36 — 10-4 секунды 1028 – 1012 Эра промежуточных бозонов, а затем – адронная эра, существование свободных кварков
10-4 — 10-3 секунд 1012 – 1010 Возникновение частиц и античастиц из свободных кварков, а также их аннигиляция, возникновение прозрачности вещества для нейтрино Возникновение барионной асимметрии, появление нейтринного реликтового излучения
10-3 — 10-120 секунд 1010 – 109 Протекание ядерных реакций синтеза ядер гелия и некоторых других легких химических элементов Установление первичного соотношения химических элементов
Между 300 тысячами — 1 миллионом лет 3000 – 4500 Завершение эры рекомбинации Появление Реликтового излучения и нейтрального газа
1 миллион — 1 миллиард лет 4500 – 10 Развитие гравитационных неоднородностей газа Образование звезд и галактик

Относительно условий и событий, происходивших до наступления момента 5·10-44 секунды — окончания первого кванта времени — никаких достоверных сведений нет. О физических параметрах той эры можно лишь сказать, что тогда температура была 1,3·1032 К, а плотность материи около 1096 кг/м3. Приведенные значения являются предельными для применения существующих теорий. Они вытекают из соотношений скорости света, гравитационной постоянной, постоянных Планка и Больцмана и называются “планковскими”.

События периода с 5·10-44 по 10-36 секунды отражает модель “инфляционной Вселенной”, описание, которой затруднительно и не может быть дано в рамках этого изложения. Однако следует отметить, что согласно этой модели расширение Вселенной происходило без уменьшения объемной концентрации энергии и при отрицательном давлении первичной смеси вещества и энергии, т.е., как бы, отталкивании материальных объектов друг от друга, вызвавшем расширение Вселенной, продолжающееся и поныне.

Далее, начиная с момента 10-36 секунды от начала взрыва, события описываются в рамках модели “горячей Вселенной”.

Для понимания процессов, протекавших в период 10-36-10-4 секунд с начала взрыва, требуется глубокое знание физики элементарных частиц. В этот период электромагнитное излучение и элементарные частицы — различные виды мезонов, гипероны, протоны и антипротоны, нейтроны и антинейтроны, нейтрино и антинейтрино и т.п. существовали в равновесии, т.е. их объемные концентрации были равны. Очень важную роль в это время играли вначале поля сильных, а затем слабых взаимодействий.

В период 10-4 — 10-3 секунды происходило формирование всего множества элементарных частиц, которые, преобразуясь одни в другие, и составляют ныне всю Вселенную. Произошла аннигиляция подавляющего большинства элементарных частиц и античастиц, существовавших ранее. Именно в этот период появилась барионная асимметрия, которая оказалась следствием очень малого, всего на одну миллиардную долю, превышения количества барионов над антибарионами. Оно возникло, судя по всему, сразу после эры инфляционного расширения Вселенной. При температуре 1011 градусов плотность Вселенной уже снизилась до величины, характерной для атомных ядер, В этот период уменьшение температуры вдвое происходило за тысячные доли секунды. В это же время родилось существующее и ныне реликтовое нейтринное излучение. Однако, несмотря на его значительную плотность, составляющую не менее чем 400 штук/см3, и возможность получить с его помощью важнейшую информацию о том периоде формирования Вселенной, его регистрация пока не реализуема.

В период с 10-3 по 10-120 секунд в результате термоядерных реакций образовались ядра гелия и очень малое количество ядер некоторых других легких химических элементов, а значительная часть протонов — ядер водорода — объединению в атомные ядра не подверглась. Все они остались погруженными в “океан” свободных электронов и фотонов электромагнитного излучения. С этого момента в первичном газе установилось соотношение: 75- 78% водорода и 25-22% гелия — по массам этих газов.

В период между 300 тысячами и 1 миллионом лет температура Вселенной понизилась до 3000 — 45000 К и наступила эра рекомбинации. Свободные прежде электроны объединились с легкими атомными ядрами и протонами. Образовались атомы водорода, гелия и некоторое количество атомов лития. Вещество стало прозрачным и реликтовое излучение, наблюдаемое до сих пор, “отделилось” от него. Все наблюдаемые ныне особенности реликтового излучения, например, флуктуации температуры его потоков приходящих от разных участков на небесной сфере или их поляризация отражают картину свойств и распределения вещества в то время.

В течение последующего — первого миллиарда лет существования Вселенной ее температура снизилась от 3000 — 45000 К до 300 К. В связи с тем, что к этому периоду времени во Вселенной еще не образовалось источников электромагнитного излучения – звезд, квазаров и т.п., а реликтовое излучение уже остыло, эту эпоху называют “Темным возрастом” Вселенной.

Тогда же неоднородности плотности смеси первичных газов, возникшие, вероятно, еще на этапе “инфляционного расширения” Вселенной, уплотнялись под действием гравитационных сил. Компьютерное моделирование этих процессов показывает, что это должно было приводить к образованию гигантских звезд с массами в миллионы масс Солнца. По причине таких огромных масс, эти звезды разогревались до очень высоких температур и потому проходили весь свой путь эволюции в течение нескольких десятков миллионов лет, а затем взрывались как сверхновые.

Нагретые до огромных температур поверхностей этих звезд порождали мощные потоки ультрафиолетового излучения, которые произвели повторную ионизацию атомов находящихся в свободном от звезд космическом пространстве. Наступила, так называемая, эпоха переионизация. Образовавшаяся плазма сильно рассеивала электромагнитное излучение в его коротковолновых спектральных диапазонах. Вселенная, как бы погрузилась в густой туман. Только для длинноволнового реликтового излучения эта среда оказалась прозрачной.

Эти гигантские звезды послужили первыми во Вселенной источниками более тяжелых, чем литий химических элементов. Вслед за тем появилась возможность формирования космических объектов второго поколения, содержащих ядра этих атомов. Звезды второго поколения начали формироваться из смеси тяжелых атомов, а также атомов первичных водорода и гелия. Они и звезды последующих поколений уже не были столь массивными и горячими, как звезды первого поколения, поэтому потоки ультрафиолетового ионизирующего излучения от них были значительно меньше. Произошла повторная рекомбинация большинства атомов межзвездного и межгалактического газов и пространство вновь стало, в основном, прозрачным для электромагнитного излучения во всех его спектральных диапазонах. Картина Вселенной стала, практически такой, какой мы ее наблюдаем сегодня.

Итак, в результате Большого взрыва 13-20 млрд. лет назад начал действовать уникальный ускоритель частиц, в ходе работы которого непрерывно и стремительно сменяли друг друга процессы рождения и гибели (аннигиляции) разнообразных частиц.

4. Большой Взрыв .

Предыдущая вселенная перед взрывом состояла из небольшого количества почти полностью выгоревших галактик. Основным элементом в этих галактиках было железо. Вселенную освещали только жёлтые и красные звёзды, но горели они значительно ярче, чем сейчас.Если во вселенной и существовала жизнь, то она была сосредоточена вокруг этих звёзд и была обречена на гибель. В центре вселенной находилась «ЧЁРНАЯ ДЫРА», в которую и падали все эти галактики. А в центре «ЧЁРНОЙ ДЫРЫ» находилась гигантская звезда, размерами превосходящая самую большую галактику. Эта звезда под действием гравитации сжималась, и сначала кванты энергии начали входить друг в друга, образуя единый квант энергии, имеющий положительный заряд. При дальнейшем сжатии начался мгновенный переход вакуума в энергию. Стоит более подробно остановиться на природе вакуума. Распадаться могут не только элементарные частицы, но и сам квант. При этом образуются кванты с дробным зарядом. Кванты энергии, имеющие дробный заряд, меньше единицы, не могут иметь полей. Из этих квантов энергии, не имеющих полей, и ничто-пустоты и состоит вакуум. Эти неполноценные кванты называются «Снарками». Для того чтобы несколько снарков превратились в полноценный квант, необходимо, чтобы они вошли друг в друга. Для этого надо огромное давление. Такое давление и создала первичная звезда.

Как только давление достигло критического уровня, весь вакуум внутри первичного тела мгновенно превратился в энергию. Все поля являются энергиями, а энергии возникают в результате взаимодействия двух объектов, имеющих разный энергетический уровень. Если одного из составляющих нет, то и создание энергии, а значит и полей, невозможно. Вакуум, игравший роль объекта, имеющего низкий энергетический уровень, превратился в энергию, и кванту стало не с чем взаимодействовать, для создания полей. Гравитационное поле мгновенно уменьшилось, и звезда вышла из коллапса. Сжатие ядра гигантской звезды уменьшилось, и она сбросила наружную оболочку. Произошел эффект сжатой пружины, которая, при уменьшении сжатия, распрямляется. Кванты подобной энергетической плотности в природе существовать не могут. Для уменьшения своей энергетической плотности он должен был увеличить длину волны, а, значит, увеличиваться в объёме. При взаимодействии протокванта и внешнего вакуума, образовалось гигантское электрическое поле. Именно из этого электрического поля и вакуума и стали образовываться протоны. Энергию электрического поля поддерживал протоквант, теряя энергию на его поддержание. Этот суперфотон увеличивался в объёме со скоростью света, и протоны оказывались внутри этого кванта, так как двигаться со «скоростью света» протоны не могли. Это запрещено теорией относительности. Любая элементарная частица состоит из кванта энергии и вакуума. Плотность вакуума внутри элементарной значительно выше, чем в окружающем пространстве. Количество вакуума в природе ограничено, а так как на создания вещества тратилось большое количество вакуума, это привело к резкому уменьшению вселенной. Вселенная стала сжиматься.

Сжатие вселенной происходило так быстро, что вещество внешней оболочки звезды, оказалось перемешанным с вновь созданным веществом. Каждая новая вселенная наследует часть вещества от старой вселенной. Когда энергия протокванта была израсходована на создание протонов, нечем стало поддерживать энергию электрического поля, и электрическое поле должно было начать уменьшаться. Электрическое поле стремится любой ценой сохранить свой потенциал, даже ценой изменения своего заряда, на противоположный. На спаде потенциала, из энергии поля, стали создаваться электроны. Когда энергетическая плотность поля, стала не достаточна для создания электронов, оно разбилось на фотоны, и по периметру взрыва образовалась гигантская вспышка, состоящая из фотонов. Фотоны, продолжая двигаться в том же направлении, прошли через второй центр, (наша вселенная относится к двухцентовым объектам) и толкнули внешние электроны в центр вселенной. Из центра вселенной двигались протоны и некоторое количество вещества от предыдущей вселенной, а навстречу им электроны, получившие момент импульса от фотонов, и образовалось два встречных потока. Образовались гигантские вихри аналогичные земным циклонам.

Циклоны не просто внешне напоминают спиральные галактики, у них и природа одинаковая. В центре такого вихря высокая плотность вещества, а вот момент импульса равен нулю. На периферии наоборот плотность вещества низкая, а момент импульса большой. В результате взаимодействия электронного и протонного потока образовалось большое количество спиральных галактик. Поскольку в центре галактики вещество не имело момента импульса, то протоны сразу же собрались в гигантские звёзды, и сразу начались термоядерные реакции. Большой Взрыв был не таким эффектным, как считают физики, но очень эффективным. Большая часть энергии превратилась в вещество. Фактически взрыва, как такового, и не было. Было превращение энергии в вещество по всему объёму вселенной. Доказательством этого является то, что наша вселенная однородна и изотропна. Это означает, что в любой сфере, с диаметром ~ равным 300 световых лет, количество галактик приблизительно равно. Однородность и изотропность вселенной, принято называть Космологическим Принципом. При взрыве, который предложен физиками, такого эффекта быть не может. Это возможно только в случае, когда вещество равномерно возникло во всём объёме вселенной.

При термоядерной реакции выделяется не только энергия, но и вакуум. Расстояние между пунктом «А» и «Б» зависит от количества вакуума находящегося между ними. Чем активнее происходили термоядерные процессы в галактике, тем больше выбрасывалось вакуума, и тем быстрее она удалялась от остальных галактик. Вселенная начала расширяться. Вселенная расширялась не за счёт энергии первичного взрыва, а благодаря термоядерным реакциям звёзд. Как сохраняли галактики свою структуру можно найти в статье «Геометрия галактик». Вакуум, освободившийся после термоядерных реакций, постепенно покидает пределы метагалактики, но пока термоядерная активность звёзд велика, и количество вакуума, излучаемое звёздами больше, чем покидающее метагалактику, она будет расширяться.

Как только термоядерная активность галактик уменьшится, вселенная продолжит увеличиваться, а вот метагалактика начнёт уменьшаться. Это произойдёт тогда, когда количество вакуума, покидающее метагалактику, будет больше, чем получаемую при термояде. Галактики начнут движение к общему центру, цикл замкнётся, и всё повторится с начала.

Мы выяснили, что Вселенная постоянно расширяется; тот момент с которого Вселенная начала расширятся, принято считать ее началом. Его называют “Большим Взрывом” или английским термином Big Bang.

Под расширением Вселенной подразумевается такой процесс, когда тоже самое количество элементарных частиц и фотонов занимают постоянно возрастающий объём.

Кратко изложим все те умозаключения о возможных параметрах Вселенной на стадии Большого Взрыва, к которым мы пришли.

Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой.

Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “Большого Взрыва” вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

Подробный анализ показывает, что температура вещества Т понижалась во времени в соответствии с простым соотношением формула (1) :

(1)

Зависимость температуры Т от времени t дает нам возможность определить, что например, в момент, когда возраст Вселенной исчислялся всего одной десятитысячной секунды, её температура представляла один биллион Кельвинов.

5. Эволюция вещества

Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT. Согласно соотношению hkT понижалась и энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота Понижение энергии фотонов во времени имело для возникновения частиц и античастиц путем материализации важные последствия. Для того чтобы фотон превратился(материализовался) в частицу и античастицу с массой mo и энергией покоя moc ему необходимо обладать энергией 2 mocили большей формула(2).

(2)

Со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2moc), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой mo. Так, например, фотон, обладающий энергией меньшей, чем 2*938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.

В предыдущем соотношении можно заменить энергию фотонов h кинетической энергией частиц kT формула (3)

(3)

то есть

(4)

Знак неравенства формула (4) означает следующее: частицы и соответствующие им античастицы возникали при материализации в раскаленном веществе до тех пор, пока температура вещества T не упала ниже указанного значения.

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс

частица + античастица гамма-фотона

при условии соприкосновения вещества с антивеществом. Процесс материализации

гамма-фотон частица + античастица

мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась,

эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

5.1. Адронная эра.

Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(10K. Средняя кинетическая энергия частиц kT и фотонов h составляла около миллиарда эв (10Мэвчто соответствует энергии покоя барионов.

В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 10K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов — гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10 до 10 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10 с), температура ее понизилась до 10K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов — пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10 с, в ней исчезли все мезоны.

На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

5.2. Лептонная эра.

Длилась примерно от t=10-4с до t=101с. К концу эры плотность порядка 107 кг/м3 при T=109К.

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов — пионов — в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”.

Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

5.3. Фотонная эра или эра излучения.

Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10K, а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.

Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hвсех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают” со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em).

Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er = Em). Кончается эра излучения и вместе с этим период “Большого Взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции.

Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

5.4. Звездная эра.

После “Большого Взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “Большого Взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “Большого Взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики — ничтожные явления в сравнении с большим взрывом.

6. Критика современной теории «Большого Взрыва».

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла около 15 миллиардов лет назад из некоторого начального «сингулярного» состояния с бесконечно большими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается.

Наша вселенная является реально существующим объектом, а не философским понятием, и не может быть создана из объекта, находящегося в сингулярном состоянии. Это противоречит здравому смыслу. Объект может сжиматься в сторону бесконечности, но как только сжатие закончится, у любого объекта будут реально существующие параметры.

Такое понятие, как температура, вообще неприемлемо к такому объекту. Мы ведь не считаем элементарные частицы горячими, если они не разогнаны до высоких скоростей. А элементарные частицы имеют более высокую энергию, чем фотоны. Температура — это броуновское движение молекул. Этих самых молекул у данного объекта и не было.

Согласно этой теории Большого Взрыва, дальнейшая эволюция зависит от измеримого экспериментально параметра r — средней плотности вещества в современной Вселенной. Если r меньше некоторого (известного из теории) критического значения rc, Вселенная будет расширяться вечно; если же r > rc, то процесс расширения когда-нибудь остановится и начнется обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Если и сейчас вселенная расширяется, а значит плотность материи недостаточна для создания такого мощного гравитационного поля, которое заставило бы нашу вселенную сжиматься, то в будущем плотность материи станет ещё меньше, а, соответственно уменьшится и гравитационное поле. И вообще, никакого влияния гравитационного поля, на структуру вселенной не заметно. Под влиянием гравитационного поля, движение галактик, должно быть искривлено. Физики преувеличивают значение гравитации на эволюцию вселенной.

Разбегание галактик происходит равномерно по всем сторонам. Это возможно только в том случае, если наша вселенная не имеет общего центра вращения. Иначе с разных сторон, галактики бы удалялись и приближались с разной скоростью. Из закона Хаббла можно сделать вывод: «Наша вселенная не имеет общей точки вращения, а, значит, гравитационное поле не сможет заставить вселенную сжаться. Это сделают другие силы».

Все нужные сведения и закономерности из этих разделов являются надежно установленными, поэтому получаемую с их помощью информацию относительно эволюции системы можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к «началу мира», т.е. внутрь первой сотой доли секунды.

Здесь явное желание выдать желаемое за действительное. Физики не только не знают первые минуты Большого Взрыва, но не могут объяснить и современное состояние вселенной. Они не знают как возникли спиральные галактики, как сохраняют свою структуру, как эти галактики эволюционируют и как становятся шаровыми галактиками. Да и какие силы могут заставить вселенную сжаться, тоже не знают. И какие силы, заставляют вселенную, расширяется, для физиков тоже тёмный лес.

По данным современной наблюдательной астрономии звезды во Вселенной группируются в галактики, которые, в свою очередь, также образуют скопления. Представление о порядках величин дают следующие цифры: наша Галактика содержит ~ 1011 звезд и имеет форму линзы диаметром 80 тысяч световых лет и толщиной ~ 30 тысяч световых лет.

Да все спиральные галактики имеют форму линзы, а вот толщина этих «линз» прямопропорциональна термоядерным процессам, происходящим в галактиках. Этот феномен современная физика объяснить не может, так как считает, что элементарные частицы состоят из кварков. На самом деле элементарные частицы состоят из кванта энергии и вакуума, имеющего сложное строение. Именно вакуум превращает волну в корпускулу. При термояде выделяется не только энергия, но и вакуум, со всеми его структурами, в том числе и с носителем гравитационного поля. Этот тип гравитации называется «Линейным». Именно Линейная гравитация притягивает звёзды к плоскости спиральных галактик. Уменьшатся термоядерные реакции в галактике, и галактики, из спиральных, будут превращаться в шаровые.

Данные наблюдений показывают, что в крупных масштабах Вселенная однородна и изотропна. Грубо говоря, это означает, что в любой сфере с фиксированным достаточно большим диаметром (достаточным считается число ~ 300 миллионов световых лет) содержится приблизительно одинаковое число галактик. Утверждение об однородности и изотропности Вселенной в больших масштабах принято называть Космологическим Принципом.

Однородность и изотропность вселенной никак не вяжется с взрывным процессом. Ни при одном взрыве, такого быть не может. Это возможно только в том случае, когда всё вещество вселенной, возникло по всему объёму вселенной, а не из одной точки.

Количественным итогом этих наблюдений является сформулированный в 1929 году Хабблом «закон разбегания» (формула 5), согласно которому, все галактики (в среднем) удаляются от нас, и скорость этого разбегания u приблизительно пропорциональна расстоянию R до рассматриваемой галактики.

u = RH (5)

Если бы галактики удалялись от нас, то никакого Космологического Принципа не могло бы быть. Галактики удаляются не от нас, а друг от друга

Наглядной моделью такого разбегания может послужить надуваемый резиновый шарик с нанесенными хаотически на его поверхность точками — «галактиками»: при надувании все эти точки будут удаляться друг от друга в точном соответствии с законом Хаббла.

В резиновый шарик надувают газ, а что надувается в нашу вселенную, что бы она расширялась? Точки «разбегаются на поверхности шарика (на плоскости), а наша вселенная увеличивается во всём объёме. Это хороший образ, но он не объясняет природы данного явления. К образным примерам прибегают тогда, когда нет реальных знаний. Наша вселенная увеличивается в объёме за счёт термоядерных реакций, происходящих в звёздах. Как только термоядерные реакции замедлятся, вселенная начнёт сжиматься.

Это модель „двумерного замкнутого мира“. Аналогичный „открытый мир“ можно представить в виде резиновой плоскости с нанесенными точками, равномерно растягивающейся во всех направлениях.

И опять это плоскость. И опять это образ. Никакое образное сравнение, не может заменить знание природы расширения вселенной. Удаление галактик связано не только с расстоянием, но и с термоядерными процессами, происходящими в галактиках.

Но уже в конце сороковых годов появились первые работы физиков-теоретиков, в которых предсказывалось, что в настоящий момент вся Вселенная должна быть заполнена равновесным электромагнитным излучением с эффективной температурой в несколько градусов Кельвина.

Это означает, что взрыв был не точечным, а равномерным по всему объёму вселенной.

Вследствие того же эффекта Доплера излучение прямо по направлению движения должно казаться немного более горячим, а в обратном направлении — более холодным. Эти небольшие (порядка 10- 3 от основной величины) вариации температуры были обнаружены экспериментально, и они имеют характерную угловую зависимость. По этим данным можно вычислить скорость движения Земли относительно этого „нового эфира“, образованного фоном реликтового излучения. В итоге получается значение порядка 600 км/с.

Это уже доказательство ошибочности теории относительности Эйнштейна. Значит, в природе есть единая система отсчёта, относительно которой можно вести все измерения. Мы можем определить и скорость нашего перемещения во вселенной, и направление движения. Всё это отрицает Т О.

7. Выводы.

В пользу теории «Большого взрыва» говорят: реликтовое излучение, характер распространения химических элементов во Вселенной. Но все же остаются много неразрешенных вопросов на которые мы пока не в состоянии дать ответ.

Во-первых, теория не дает ответа на следующие вопросы:

Что заставило вещество Вселенной расширяться?

Что происходило до начала расширения, до момента сингулярности?

Конечны ли пространство и масса? Откуда они берутся.

Во-вторых, несмотря на то, что теория «Большого Взрыва» основывается на ТО, допускается разбегание некоторых частиц со скоростями, в несколько раз превышающими скорость света. Так же в теории указываются ограничения на возможную плотность вещества (не более 1097), хотя с другой стороны выдвигается гипотеза о первоначальной точечности Вселенной, а следовательно и все-таки о бесконечной плотности (т.к. масса бесконечна).

В-третьих, довольно абстрактно, альтернативно рассматриваются такие вопросы, плотно примыкающие к теории «Большого взрыва», как границы и открытость Вселенной, евклидова и неевклидова модель Вселенной.

Наконец, не находят веского фактического подтверждения (хотя по теоретическим выкладкам все получается хорошо и главное – «удобно» ) существование таких частиц как гипероны, мезоны.

То есть все методы анализа полученных данных, исследования, выдвижения гипотез осуществляются при довольно высокой степени допущений. Такая степень не позволительна для гипотезы, хотя может быть и подходит для столь глобальной теории.

Остается только верить или надеяться, что космология когда-либо заполнит эти «белые дыры», сделает свои выводы обоснованными и по возможности фактически подтвержденными.

Кстати, о «белых дырах». Вероятнее всего, именно их изучение позволит нам узнать ответы на многие вопросы, потому что существует гипотеза: именно белые дыры являются кусками первозданной сингулярности, первозданного ядра расширения.

В этом направлении, по-видимому, и стоит ждать новых открытий в данной области, т.к. данный вопрос в целом является еще не полностью изученным и требует серьёзных исследований.

8. Глоссарий.

Адроны – общее название элементарных частиц (барионов, включая все резонансы и мезоны), подверженных сильному взаимодействию (это взаимодействие ответственно за устойчивость атомных ядер).

Античастицы – электрические частицы, масса и спин которых точно равен массе и спину данной частицы, а электрический заряд, магнитный момент и другие подобные характеристики равны по величине и противоположны по знаку тем же характеристикам частицы. Характерным свойством таких пар (частица-античастица) является их аннигиляция при столкновении и рождение их в процессах взаимодействия частиц высоких энергий.

Аннигиляция – превращение частиц и античастиц при их столкновении в другие частицы (например, протон + антипротон = np–мезонов; электрон + позитрон = nФотонов).

Барионы – «тяжёлые» элементарные частицы с массой меньше протона и спином, равным ½. К ним относят, например нуклоны (протоны и нейтроны), а так же много других частиц /см. кварки/.

Бозоны – большой класс элементарных частиц с целочисленным спином (например, фотоны со спином 1). К этому классу принадлежат мезоны, промежуточные векторные бозоны и др. частицы.

Векторные нуклоны – см. барионы.

Гамма-излучение – излучение, возникающее при торможении заряженных частиц большой энергии в веществе, аннигиляции пар и т.д.

Глюоны – гипотетические элементарные частицы (спин равен 1, масса покоя 0), обеспечивающие взаимодействие между кварками.

Лептоны – физически наиболее легкие элементарные частицы со спином ½, не имеющие барионного заряда, но обладающие лептонным зарядом; к лептонам относятся электрон, тяжелый лептон, позитрон, нейтрино, мюон, несущий электрический заряд и их античастицы.

Мезоны – нестабильные элементарные частицы с массами, промежуточными между массами протона и электрона.

Мюон — нестабильные положительно и отрицательно заряженные элементарные частицы со спином ½ и массой~207 электронных масс и временем жизни ~ 10-6С; относятся к лептонам.

Нейтрино – физически нестабильная нейтральная элементарная частица с массой, равной, по-видимому 0, и спином ½. Относится к лептонам. Возникает при бета-распаде атомных ядер и при распаде элементарных частиц; чрезвычайно слабо взаимодействуют с веществом.

Нейтроны – физически — электрически нейтральный элемент частицы с массой, почти равной массе протона и спином ½; входит в состав атомных ядер; в свободном состоянии нестабилен; время жизни 16 минут.

Пионы — p–мезоны – группа трех нестабильных элементарных частиц (адронов) с нулевым спином и массой около 270 электронных масс; 2 пиона (p+ и p-)несут элементарный заряд, третий (p0) электрически нейтрален; являются переносчиками ядерных сил.

Протон — стабильная элементарная частица со спином ½ и массой в 1836 электронных масс (~10-24 г), относящаяся к барионам; ядро легкого изотопа атома водорода (протия). Вместе с нейтронами протоны образуют все атомные ядра.

Электрон — стабильная отрицательно заряженная элементарная частица со спином ½, массой ~ 9·10-28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях. Электрон один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.

Список литературы

Васильев А. Н. „Эволюция вселенной“, интернетовский адрес: www.pereplet.ru/obrazovanie/stsoro. s/44.html

Горелов А.А. «Концепции современного естествознания» — М.:«Центр», 1998 г.

Кесарев В.В. Эволюция вещества во вселенной. — М.: Атомиздат, 1989.

Левитан Е.П. Эволюционирующая Вселенная. – М.: Просвещение, 1993.

Новиков И.Д. Эволюция Вселенной – 3-е изд., переработанное. – М.: Наука, 1993.

Ройзен И. Вселенная между мгновением и вечностью. –«Наука и жизнь», №№ 11 и 12, 1996 г.

Самсонов А.Л. «Концепция эволюционизма и теория Большого взрыва» — «Экология и жизнь», №1,2000г.

Шишлова А. «В лаборатории — десять микросекунд после Большого взрыва». — «Наука и жизнь», № 3, 2000 г.

spacescience.com/

www.astrolabe.ru

www.astronomynow.com/breaking.html

www.rambler.ru/sites/217000/217217.html

www.rambler.ru/sites/21792/189324.html

www.eso.org/outreach/press-rel/

10. Расчетная часть.

Задача.

При соударении α-частицы с ядром бора произошла ядерная реакция, в результате которой образовалось два новых ядра. Одним из этих ядер было ядро атома водорода . Определить порядковый номер и массовое число второго ядра, дать символическую запись ядерной реакции и определить её энергетический эффект.

Решение.

Обозначим неизвестное ядро символом . Так как α-частица представляет собой ядро гелия , запись реакции имеет вид

++.

Применив закон сохранения числа нуклонов, получим уравнение

4+10=1+А

А=13.

Применив закон сохранения заряда, получим уравнение

2+5=1+Z

Z=6.

Следовательно, неизвестное ядро является ядром атома изотопа углерода .

Теперь мы можем записать реакцию в окончательном виде:

++.

Энергетический эффект Q ядерной реакции определяется по формуле

Q=931[(m He + m B) — (m H + m C)].

Здесь в первых круглых скобках указаны массы исходных ядер, во вторых скобках – массы ядер – продуктов реакции. При числовых подсчетах по этой формуле массы ядер заменяют массами нейтральных атомов. Возможность такой замены вытекает из следующих соображений.

Число электронов в электронной оболочке нейтрального атома равно его зарядовому числу Z. Сумма зарядовых чисел исходных ядер равна сумме зарядовых чисел ядер – продуктов реакции. Следовательно, электронные оболочки ядер гелия и бора содержат вместе столько же электронов, сколько их содержат электронные оболочки ядер углерода и водорода.

Очевидно, что при вычитании суммы масс нейтральных атомов углерода и водорода из суммы масс атомов гелия и бора массы электронов выпадут и мы получим тот же результат, как если бы брали массы ядер. Подставив массы атомов в расчетную формулу, получим

Q = 931[(4,00260 + 10,01294) — (1,00783 + 13,00335)] = 4,06 МэВ.

Ответ:

Второе ядро – ядро атома изотопа углерода .

Символическая запись ядерной реакции:

++.

Энергетический эффект Q ядерной реакции 4,06 МэВ.

www.ronl.ru


Смотрите также