2.3 Асимптоты графика функции. Асимптоты функции реферат


Реферат : Асимптота

МОСКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ,

МЕНЕДЖМЕНТА И ПРАВА

РЕФЕРАТ

по дисциплине: Высшая математика

на тему: Асимптоты (определение, виды, правила нахождения)

Выполнила: студентка 1 курса

Экономического факультета

(вечернее отделение)

Козлова М.А.

Проверил: Рошаль А.С.

Москва 2002 год

2

Содержание

Введение 3

2. Нахождение асимптоты 4

2.1 Геометрический смысл асимптоты 5

2.2 Общий метод нахождения асимптоты 6

3. Виды 8

3.1 Горизонтальная асимптота 8

3.2 Вертикальная асимптота 9

3.3 Наклонная асимптота 10

Использованная литература 12

3

Введение

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).

4

2. Нахождение асимптоты

Пусть функция f (x) определена для всех x  а (соответственно для всех

x  а). Если существуют такие числа k и l, что f(x)  kx  l = 0 при х    (соответственно при х   ), то прямая

y = kx + l

называется асимптотой графика функции f (x) при x    (соответственно при х   ).

Существование асимптоты графика функции означает, что при х  + 

(или х   ) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.

x 3x  2

Найдём, например, асимптоту графика функции y = x 1

Разделив числитель на знаменатель по правилу деления многочленов,

2 2

получим y = x  4 + x + 1 Так как x + 1 = 0 при х   , то прямая y = x-4

является асимптотой графика данной функции как при х  + ,

так и при х   .

5

2.1 Геометрический смысл асимптоты

Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) – точка графика функции f, М - проекция этой точки на ось Ох, АВ – асимптота,

 - угол между асимптотой и положительным направлением оси Ох,  ,

MP – перпендикуляр, опущенный из точки М на асимптоту АВ, Q – точка пересечения прямой ММ с асимптотой АВ (рис.1).

(рис.1)

Тогда ММ = f (x), QM = kx + l, MQ = MM QM = f (x) – (kx +l),

MP = MQ cos . Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos , поэтому условия MQ  0 и MP  0 при х    (соответственно при х   ) эквивалентны, то есть lim MQ = 0,

то и lim MP = 0, и наоборот. х   

х   

Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х    или, соответственно, х   ).

6

2.2 Общий метод отыскания асимптоты

Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.

Будем рассматривать для определённости лишь случай х    (при х    рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х   . Тогда, по определению,

f (x) = kx + l + 0

Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х   . Тогда

lim = k.

х   

Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу

l = lim (f (x) – kx).

х   

Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) – kx), то прямая y = kx + l является

х   

асимптотой графика функции f (x). В самом деле, из l = lim (f (x) – kx) имеем

х   

lim f (x)  (kx + l) = 0,

х   

то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim = k. и l = lim (f (x) – kx)

х    х   

сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует

представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim = k. и l = lim (f (x) – kx)

х    х   

Следовательно, если существует представление y = kx + l, то оно единственно.

Найдём по этому правилу асимптоту графика функции f (x) = ,

найденную нами выше другим способом:

7

то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты

y = x – 4, как при х   , так и при х  - .

В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.

8

3. Виды

3.1 Горизонтальная асимптота

Пусть  lim f (x) = b. Тогда говорят, что у функции f (x) имеется горизонтальная асимптота y = b. График функции чаще всего имеет такой вид (при x  +) (рис.2)

(рис.2)

хотя в принципе, может иметь и такой вид (рис.3)

(рис.3)

9

3.2 Вертикальная асимптота

(рис.4)

Пусть при x  a  0 lim f (x) =  . Тогда говорят, что прямая x = a является

х  

вертикальной асимптотой f (x). График функции f (x) при приближении x к а ведёт примерно так (рис.4), хотя, конечно, могут быть разные варианты, связанные с тем, куда уходит f (x) в +  или  .

Чаще всего вертикальная асимптота появляется тогда, когда f (x) имеет вид

.

Тогда вертикальные асимптоты находятся как корни уравнения

10

3.3 Наклонная асимптота

(рис.5)

Пусть уравнение асимптот есть y = ax + b. Значение функции при аргументе х есть d = ax + b – f (x). Неограниченное приближение к асимптоте означает, что величина d = ax + b – f (x) стремится к 0 при х   

lim [f (x) – (ax + b)] = 0.

x  

Если эта величина стремится к нулю, то тем более стремится к нулю величина

Но тогда мы имеем

и так как последний предел равен нулю, то

Зная а, можно найти и b из исходного соотношения

Тем самым параметры асимптоты полностью определяются.

Пример

то есть асимптота при x  + имеет уравнение y=x.

11

Аналогично можно показать, что при x  -  асимптота имеет вид y = - x.

Сам график функции выглядит так (рис.6)

(рис.6)

12

Использованная литература

  1. Р.Б. Райхмист «Графики функций», Москва, 1991г.

  2. Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981

  3. Лекции по математике

topref.ru

Реферат Асимптоты

скачать

Реферат на тему:

Asymptote pis 03.png

План:

Введение

1. Виды асимптот графиков

1.1. Вертикальная

Вертикальная асимптота — прямая вида ~x = a при условии существования предела \lim_{x \to a}f(x)= \infty .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

  1. \lim_{x \to a-0}f(x)= \infty
  2. \lim_{x \to a+0}f(x)= \infty

Замечание: обратите внимание на знаки бесконечностей в этих равенствах.

1.2. Горизонтальная

Горизонтальная асимптота — прямая вида ~y = a при условии существования предела

\lim_{x \to \pm \infty}f(x)=a.

1.3. Наклонная

Наклонная асимптота — прямая вида ~y=kx+b при условии существования пределов

Пример наклонной асимптоты

  1. \lim_{x \to \pm \infty}\frac{f(x)}{x}=k
  2. \lim_{x \to \pm \infty}(f(x)-kx)=b

Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!

Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен \infty), то наклонной асимптоты при x \to + \infty(или x \to - \infty) не существует!

Связь между наклонной и горизонтальной асимптотами

Если при вычислении предела \lim_{x \to \pm \infty}\frac{f(x)}{x}=0, то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот?

Дело в том, что горизонтальная асимптота является частным случаем наклонной при \lim_{x \to \pm \infty}\frac{f(x)}{x}=0, и из выше указанных замечаний следует, что

  1. Функция имеет или только одну наклонную асимптоту, или одну горизонтальную асимптоту, или одну наклонную и одну горизонтальную, или две наклонных, или две горизонтальных, либо же вовсе не имеет асимптот.
  2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.

График функции с двумя горизонтальными асимптотами

2. Нахождение асимптот

2.1. Порядок нахождения асимптот

  1. Нахождение вертикальных асимптот.
  2. Нахождение двух пределов \lim_{x \to \pm \infty}\frac{f(x)}{x}=k
  3. Нахождение двух пределов \lim_{x \to \pm \infty}(f(x)-kx)=b:

если ~k=0 в п. 2.), то ~kx=0, и предел \lim_{x \to \pm \infty}(f(x)-kx)=b ищется по формуле горизонтальной асимптоты, \lim_{x \to \pm \infty}f(x)=a.

2.2. Наклонная асимптота — выделение целой части

Нахождение наклонной асимптоты графика функции путём выделения целой части

Также наклонную асимптоту можно найти, выделив целую часть. Например:

Дана функция ~f(x)=\frac{2x^3+5x^2+1}{x^2+1}.

Разделив нацело числитель на знаменатель, получим:

~f(x)=2x+5+ \frac{-2x-4}{x^2+1}=2x+5+(-2) \cdot \frac{x+2}{x^2+1}.

При   ~ x \to \infty,   \frac{x+2}{x^2+1} \to 0,   то есть:

\lim_{x \to \pm \infty}f(x)=\lim_{x \to \pm \infty}(2x+5)= \pm \infty,

и ~y=2x+5 является искомым уравнением асимптоты.

3. Свойства

Примечания

  1. Математическая энциклопедия (в 5 томах) - eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t1.djvu. — М.: Советская Энциклопедия, 1982. — Т. 1.
  2. Математический энциклопедический словарь - termist.com/bibliot/stud/ma_en_sl/21/080_1.htm — М.: Советская энциклопедия, 1988. — 847 с.

Литература

wreferat.baza-referat.ru

2.3 Асимптоты графика функции. Исследование функций

Похожие главы из других работ:

График и его элементы. Классификация видов графиков

1.4 Элементы статистического графика

Для выполнения вышеперечисленных требований каждый график должен включать ряд основных элементов: графический образ; поле графика; пространственные ориентиры; масштабные ориентиры; экспликацию...

Графики и их функции

4.2.1 Построение графика функции вида y = f(-x)

f(x) => f(-x) Очевидно, что функции y = f(-x) и y = f(x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря...

Графики и их функции

4.2.2 Построение графика функции вида y = - f(x)

f(x) => - f(x) Ординаты графика функции y = - f(x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f(x) при тех же значениях аргумента. Таким образом, получаем следующее правило...

Графики и их функции

4.2.4 Построение графика обратной функции

Как уже отмечалось, прямая и обратная функции выражают одну и ту же зависимость между переменными х и у, с тем только отличием, что в обратной функции переменные поменялись ролями, что равносильно изменению обозначений осей координат...

Графики и их функции

4.3.1 Деформация графика вдоль оси ординат

f(x) => A·f(x) Рассмотрим функцию вида y = A·f(x), где A>0. Нетрудно заметить...

Исследование линий на плоскости, заданных неявно

2.4 Асимптоты

Для отыскания асимптот, параллельных оси координат надо искать предельное значение ординаты y=b при . Если кривая -- алгебраическая и F(x у) -- многочлен, то достаточно приравнять к нулю коэффициент при старшей степени х...

Исследование функций

2.3 Асимптоты графика функции

Асимптотой будем называть прямую, к которой график функции неограниченно близко приближается. Различают вертикальные и наклонные асимптоты. Прямая х = х0 называется вертикальной асимптотой графика функции f (х)...

Исследование функций

2.4 Общая схема построения графика функции

1. Находим область определения функции. 2. Исследуем функцию на периодичность, четность или нечетность. 3. Исследуем функцию на монотонность и экстремум. 4. Находим промежутки выпуклости и точки перегиба. 5. Находим асимптоты графика функции. 6...

Исследование функций

3. Асимптоты графика функции.

...

Исследование функций

4. Общая схема построения графика функции.

Ключевые понятия Асимптота функции. Локальный минимум. Локальный максимум. Ста-ционарная точка. Выпуклость вверх. Выпуклость вниз. Точка перегиба. 1...

Исследование функций

4. Общая схема построения графика функции

1. Находим область определения функции. 2. Исследуем функцию на периодичность, четность или нечетность. 3. Исследуем функцию на монотонность и экстремум. 4. Находим промежутки выпуклости и точки перегиба. 5. Находим асимптоты графика функции. 6...

Математические методы статистики

1.2 Построение графика

Для наглядного изображения интервального ряда распределения построим гистограмму. Она представлена на рисунке 1. Гистограмма распределения банков по величине чистого капитала Рис...

Математические методы статистики

1.5 Нахождение эмпирической функции, построение ее графика

Построим график эмпирического распределения банков в зависимости величины чистого капитала. Для этого по оси абсцисс необходимо откладывать середину интервала значения признака, а по оси ординат, соответствующие ей частоты. Рис...

Производная функции и ее приложения

3. ПОЛНОЕ ИССЛЕДОВАНИЕ ФУНКЦИИ И ПОСТРОЕНИЕ ЭСКИЗА ЕЕ ГРАФИКА

...

Элементы высшей математики

Выпуклость и вогнутость графика функций

Определение: Кривая называется выпуклой в точке , если в некоторой окрестности этой точки она расположена под своей касательной в точке . Кривая называется вогнутой в точке...

math.bobrodobro.ru

Доклад - Асимптота - Математика

МОСКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ,

МЕНЕДЖМЕНТА И ПРАВА

РЕФЕРАТ

по дисциплине: Высшая математика

на тему: Асимптоты (определение, виды, правила нахождения)

Выполнила: студентка 1 курса

Экономического факультета

(вечернее отделение)

Козлова М.А.

Проверил: Рошаль А.С.

Москва 2002 год

2

Содержание

Введение 3

2. Нахождение асимптоты 4

2.1 Геометрический смысл асимптоты 5

2.2 Общий метод нахождения асимптоты 6

3. Виды 8

3.1 Горизонтальная асимптота 8

3.2 Вертикальная асимптота 9

3.3 Наклонная асимптота 10

Использованная литература 12

3

Введение

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).

4

2. Нахождение асимптоты

Пусть функция f (x) определена для всех x > а (соответственно для всех

x <а). Если существуют такие числа k и l, что f(x) — kx — l = 0 при х ®+¥ (соответственно при х ®-¥), то прямая

y = kx + l

называется асимптотой графика функции f (x) при x®+¥ (соответственно при х ®-¥).

Существование асимптоты графика функции означает, что при х ® + ¥

(или х ®-¥) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.

x — 3x — 2

Найдём, например, асимптоту графика функции y = x +1

Разделив числитель на знаменатель по правилу деления многочленов,

2 2

получим y = x — 4 + x + 1 Так как x + 1 = 0 при х ®±¥, то прямая y = x-4

является асимптотой графика данной функции как при х ® + ¥,

так и при х ®-¥.

5

2.1 Геометрический смысл асимптоты

Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) – точка графика функции f, М — проекция этой точки на ось Ох, АВ – асимптота,

q — угол между асимптотой и положительным направлением оси Ох, q¹,

MP – перпендикуляр, опущенный из точки М на асимптоту АВ, Q – точка пересечения прямой ММс асимптотой АВ (рис.1).

(рис.1)

Тогда ММ= f (x), QM= kx + l, MQ = MM — QM= f (x) – (kx +l),

MP = MQ cos q. Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos q, поэтому условия MQ ® 0 и MP ® 0 при х ®+¥ (соответственно при х ®-¥) эквивалентны, то есть lim MQ = 0,

то и lim MP = 0, и наоборот. х ®+¥

х ®+¥

Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х ®+¥ или, соответственно, х ®-¥).

6

2.2 Общий метод отыскания асимптоты

Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.

Будем рассматривать для определённости лишь случай х ®+¥ (при х ®-¥ рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х ®+¥. Тогда, по определению,

f (x) = kx + l + 0

Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х ®+¥. Тогда

lim = k.

х ®+¥

Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу

l = lim (f (x) – kx).

х ® + ¥

Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) – kx), то прямая y = kx + l является

х ®+¥

асимптотой графика функции f (x). В самом деле, из l = lim (f (x) – kx) имеем

х ®+¥

lim [f (x) — (kx + l)] = 0,

х ®+¥

то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim = k. и l = lim (f (x) – kx)

х ®+¥ х ®+¥

сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует

представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim = k. и l = lim (f (x) – kx)

х ®+¥ х ®+¥

Следовательно, если существует представление y = kx + l, то оно единственно.

Найдём по этому правилу асимптоту графика функции f (x) = ,

найденную нами выше другим способом:

7

то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты

y = x – 4, как при х ®+¥, так и при х ® — ¥.

В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.

8

3. Виды

3.1 Горизонтальная асимптота

Пусть $lim f (x) = b. Тогда говорят, что у функции f (x) имеется горизонтальная асимптота y = b. График функции чаще всего имеет такой вид (при x® +¥) (рис.2)

(рис.2)

хотя в принципе, может иметь и такой вид (рис.3)

(рис.3)

9

3.2 Вертикальная асимптота

(рис.4)

Пусть при x ® a ± 0 lim f (x) = ±¥. Тогда говорят, что прямая x = a является

х ®¥

вертикальной асимптотой f (x). График функции f (x) при приближении x к а ведёт примерно так (рис.4), хотя, конечно, могут быть разные варианты, связанные с тем, куда уходит f (x) в + ¥ или -¥.

Чаще всего вертикальная асимптота появляется тогда, когда f (x) имеет вид

.

Тогда вертикальные асимптоты находятся как корни уравнения

10

3.3 Наклонная асимптота

(рис.5)

Пусть уравнение асимптот есть y = ax + b. Значение функции при аргументе х есть d = ax + b – f (x). Неограниченное приближение к асимптоте означает, что величина d = ax + b – f (x) стремится к 0 при х ®±¥

lim [f (x) – (ax + b)] = 0.

x ®¥

Если эта величина стремится к нулю, то тем более стремится к нулю величина

Но тогда мы имеем

и так как последний предел равен нулю, то

Зная а, можно найти и b из исходного соотношения

Тем самым параметры асимптоты полностью определяются.

Пример

то есть асимптота при x ® +¥ имеет уравнение y=x.

11

Аналогично можно показать, что при x ®- ¥ асимптота имеет вид y = — x.

Сам график функции выглядит так (рис.6)

(рис.6)

12

Использованная литература

1. Р.Б. Райхмист «Графики функций», Москва, 1991г.

2. Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981

3. Лекции по математике

www.ronl.ru

Реферат Асимптота

МОСКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ,

МЕНЕДЖМЕНТА И ПРАВАРЕФЕРАТпо дисциплине: Высшая математика

на тему: Асимптоты (определение, виды, правила нахождения)Выполнила: студентка 1 курса

Экономического факультета

(вечернее отделение)

Козлова М.А.

Проверил: Рошаль А.С.

Москва 2002 год

2

Содержание

 Введение                                                                                                         3

2.   Нахождение асимптоты                                                                                 4

   2.1 Геометрический смысл асимптоты                                                               5

   2.2 Общий метод нахождения асимптоты                                                          6

   3.   Виды                                                                                                                 8

    3.1 Горизонтальная асимптота                                                                            8

   3.2 Вертикальная асимптота                                                                                9

   3.3 Наклонная асимптота                                                                                   10                           

         Использованная литература                                                                        12

3

Введение

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).42. Нахождение асимптоты  Пусть функция f (x) определена для всех x > а (соответственно для всех

x < а). Если существуют такие числа k и l, что f(x) - kx - l = 0 при х ® + ¥ (соответственно при х ® - ¥), то прямая

y = kx + l

называется асимптотой графика функции f (x) при x ® + ¥ (соответственно при х ® - ¥).

Существование асимптоты графика функции означает, что при х ® + ¥

(или х ® - ¥) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.                         

                                                                                          x- 3x - 2

Найдём, например, асимптоту графика функции y =       x +1

Разделив числитель на знаменатель по правилу деления многочленов, 

                                      2                         2

получим y = x - 4 +  x + 1   Так как   x + 1   = 0 при х ® ± ¥, то прямая y = x-4

является асимптотой графика данной функции как при х ® + ¥,

так и при х ® - ¥.

5

2.1 Геометрический смысл асимптоты

Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) – точка графика функции f, М - проекция этой точки на ось Ох, АВ – асимптота,

q - угол между асимптотой и положительным направлением оси Ох, q ¹,

MP – перпендикуляр, опущенный из точки М на асимптоту АВ, Q – точка пересечения прямой ММ с асимптотой АВ (рис.1).

                             (рис.1)Тогда ММ = f (x), QM = kx + l, MQ = MM- QM = f (x) – (kx +l),

MP = MQ cos q. Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos q, поэтому условия MQ ® 0 и MP ® 0 при х ® + ¥ (соответственно при х ® - ¥) эквивалентны, то есть lim MQ = 0,

то и lim MP = 0, и наоборот.                                           х ® + ¥

       х ® + ¥                                                                                                 

Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х ® + ¥ или, соответственно, х ® - ¥).

6

2.2 Общий метод отыскания асимптоты

Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.

Будем рассматривать для определённости лишь случай х ® + ¥ (при х ® - ¥ рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х ® + ¥. Тогда, по определению,

f (x) = kx + l + 0

Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х ® + ¥. Тогда

lim  = k.

                                                        х ® + ¥

Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу

l = lim (f (x) – kx).

                                    х ® + ¥

Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) – kx), то прямая y = kx + l является

                                                 х ® + ¥       

асимптотой графика функции f (x). В самом деле, из l = lim (f (x) – kx) имеем

                                                                                             х ® + ¥         

lim [f (x) - (kx + l)] = 0,

                                              х ® + ¥то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim  = k. и l = lim (f (x) – kx)

                                 х ® + ¥                 х ® + ¥          

сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim  = k. и l = lim (f (x) – kx)

                  х ® + ¥                 х ® + ¥          

Следовательно, если существует представление y = kx + l, то оно единственно.

Найдём по этому правилу асимптоту графика функции f (x) = ,

найденную нами выше другим способом:7то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты

y = x – 4, как при х ® + ¥, так и при х ® - ¥.

В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.83. Виды

3.1 Горизонтальная асимптота

Пусть $ lim f (x) = b. Тогда говорят, что у функции f (x) имеется горизонтальная асимптота y = b. График функции чаще всего имеет такой вид (при x ® +¥) (рис.2)

                                                               (рис.2)хотя в принципе, может иметь и такой вид (рис.3)

                             (рис.3)

9

3.2 Вертикальная асимптота

                        

                                (рис.4)Пусть при x ® a ± 0 lim f (x) = ± ¥. Тогда говорят, что прямая x = a является

                                   х ® ¥

вертикальной асимптотой f (x). График функции f (x) при приближении x к а ведёт примерно так (рис.4), хотя, конечно, могут быть разные варианты, связанные с тем, куда уходит f (x) в + ¥ или - ¥.

Чаще всего вертикальная асимптота появляется тогда, когда f (x) имеет вид

.

Тогда вертикальные асимптоты находятся как корни уравнения

  

103.3 Наклонная асимптота

                        (рис.5)Пусть уравнение асимптот есть y = ax + b. Значение функции при аргументе х есть  d = ax + b – f (x). Неограниченное приближение к асимптоте означает, что величина d = ax + b – f (x) стремится к 0 при х ® ± ¥

lim [f (x) – (ax + b)] = 0.

x ® ¥

Если эта величина стремится к нулю, то тем более стремится к нулю величина  

Но тогда мы имеем

и так как последний предел равен нулю, то

Зная а, можно найти и b из исходного соотношения

Тем самым параметры асимптоты полностью определяются.Пример

то есть асимптота при x ® +¥ имеет уравнение y=x.

11Аналогично можно показать, что при x ® - ¥ асимптота имеет вид y = - x.

Сам график функции  выглядит так (рис.6)

                                 (рис.6) 12

Использованная литература

1.     Р.Б. Райхмист «Графики функций», Москва, 1991г.

2.     Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981

3.     Лекции по математике

bukvasha.ru

Реферат: Асимптота

МОСКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ,

МЕНЕДЖМЕНТА И ПРАВА

РЕФЕРАТ

по дисциплине: Высшая математика

на тему: Асимптоты (определение, виды, правила нахождения)

Выполнила:студентка 1 курса

Экономического факультета

(вечернее отделение)

Козлова М.А.

Проверил:Рошаль А.С.

Москва 2002 год

2

Содержание

Введение 3

2. Нахождение асимптоты 4

2.1 Геометрический смысл асимптоты 5

2.2 Общий метод нахождения асимптоты 6

3. Виды 8

3.1 Горизонтальная асимптота 8

3.2 Вертикальная асимптота 9

3.3 Наклонная асимптота 10

Использованная литература 12

3

Введение

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).

4

2. Нахождение асимптоты

Пусть функция f (x) определена для всех x > а (соответственно для всех

x <а). Если существуют такие числа k и l, что f(x) - kx - l = 0 при х ®+¥ (соответственно при х ®-¥), то прямая

y = kx + l

называетсяасимптотой графика функцииf (x) при x®+¥ (соответственно при х ®-¥).

Существование асимптоты графика функции означает, что при х ® + ¥

(или х ®-¥) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.

x- 3x - 2

Найдём, например, асимптоту графика функции y = x +1

Разделив числитель на знаменатель по правилу деления многочленов,

2 2

получим y = x - 4 + x + 1 Так как x + 1 = 0 при х ®±¥, то прямая y = x-4

является асимптотой графика данной функции как при х ® + ¥,

так и при х ®-¥.

5

2.1 Геометрический смысл асимптоты

Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) – точка графика функции f, М- проекция этой точки на ось Ох, АВ – асимптота,

q - угол между асимптотой и положительным направлением оси Ох, q¹,

MP – перпендикуляр, опущенный из точки М на асимптоту АВ, Q – точка пересечения прямой ММс асимптотой АВ (рис.1).

(рис.1)

Тогда ММ= f (x), QM= kx + l, MQ = MM- QM= f (x) – (kx +l),

MP = MQ cos q. Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos q, поэтому условия MQ ® 0 и MP ® 0 при х ®+¥ (соответственно при х ®-¥) эквивалентны, то есть lim MQ = 0,

то и lim MP = 0, и наоборот. х ®+¥

х ®+¥

Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х ®+¥ или, соответственно, х ®-¥).

6

2.2 Общий метод отыскания асимптоты

Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.

Будем рассматривать для определённости лишь случай х ®+¥ (при х ®-¥ рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х ®+¥. Тогда, по определению,

f (x) = kx + l + 0

Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х ®+¥. Тогда

lim= k.

х ®+¥

Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу

l = lim (f (x) – kx).

х®+¥

Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) – kx), то прямая y = kx + l является

х ®+¥

асимптотой графика функции f (x). В самом деле, из l = lim (f (x) – kx) имеем

х ®+¥

lim [f (x) - (kx + l)] = 0,

х ®+¥

то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim= k. и l = lim (f (x) – kx)

х ®+¥ х ®+¥

сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует

представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim= k. и l = lim (f (x) – kx)

х ®+¥ х ®+¥

Следовательно, если существует представление y = kx + l, то оно единственно.

Найдём по этому правилу асимптоту графика функции f (x) =,

найденную нами выше другим способом:

7

то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты

y = x – 4, как при х ®+¥, так и при х ® - ¥.

В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.

8

3. Виды

3.1 Горизонтальная асимптота

Пусть $lim f (x) = b. Тогда говорят, что у функции f (x) имеется горизонтальная асимптота y = b. График функции чаще всего имеет такой вид (при x® +¥) (рис.2)

(рис.2)

хотя в принципе, может иметь и такой вид (рис.3)

(рис.3)

9

3.2 Вертикальная асимптота

(рис.4)

Пусть при x ® a ± 0 lim f (x) = ±¥. Тогда говорят, что прямая x = a является

х ®¥

вертикальной асимптотой f (x). График функции f (x) при приближении x к а ведёт примерно так (рис.4), хотя, конечно, могут быть разные варианты, связанные с тем, куда уходит f (x) в + ¥ или -¥.

Чаще всего вертикальная асимптота появляется тогда, когда f (x) имеет вид

.

Тогда вертикальные асимптоты находятся как корни уравнения

10

3.3 Наклонная асимптота

(рис.5)

Пусть уравнение асимптот есть y = ax + b. Значение функции при аргументе х есть d = ax + b – f (x). Неограниченное приближение к асимптоте означает, что величина d = ax + b – f (x) стремится к 0 при х ®±¥

lim [f (x) – (ax + b)] = 0.

x ®¥

Если эта величина стремится к нулю, то тем более стремится к нулю величина

Но тогда мы имеем

и так как последний предел равен нулю, то

Зная а, можно найти и b из исходного соотношения

Тем самым параметры асимптоты полностью определяются.

Пример

то есть асимптота при x ® +¥ имеет уравнение y=x.

11

Аналогично можно показать, что при x ®- ¥ асимптота имеет вид y = - x.

Сам график функциивыглядит так (рис.6)

(рис.6)

12

Использованная литература

1. Р.Б. Райхмист «Графики функций», Москва, 1991г.

2. Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981

3. Лекции по математике

superbotanik.net

Асимптоты (определение, виды, правила нахождения)

МОСКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ,

МЕНЕДЖМЕНТА И ПРАВА

РЕФЕРАТ

по дисциплине: Высшая математика

на тему: Асимптоты (определение, виды, правила нахождения)

Выполнила: студентка 1 курса

Экономического факультета

(вечернее отделение)

Козлова М.А.

Проверил: Рошаль А.С.

Москва 2002 год2Содержание ВВЕДЕНИЕ 32. Нахождение асимптоты 4 2.1 Геометрический смысл асимптоты 5 2.2 Общий метод нахождения асимптоты 6 3. Виды 8 3.1 Горизонтальная асимптота 8 3.2 Вертикальная асимптота 9 3.3 Наклонная асимптота 10 Использованная литература 123ВВЕДЕНИЕ

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).

4

2. Нахождение асимптоты

Пусть функция f (x) определена для всех x а (соответственно для всех

x а). Если существуют такие числа k и l, что f(x) kx l = 0 при х (соответственно при х ), то прямая

y = kx + l

называется асимптотой графика функции f (x) при x (соответственно при х ).

Существование асимптоты графика функции означает, что при х +

(или х ) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.

x 3x 2

Найдём, например, асимптоту графика функции y = x 1

Разделив числитель на знаменатель по правилу деления многочленов,

2 2

получим y = x 4 + x + 1 Так как x + 1 = 0 при х , то прямая y = x-4

является асимптотой графика данной функции как при х + ,

так и при х .

5

2.1 Геометрический смысл асимптоты

Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) - точка графика функции f, М - проекция этой точки на ось Ох, АВ - асимптота,

- угол между асимптотой и положительным направлением оси Ох, ,

MP - перпендикуляр, опущенный из точки М на асимптоту АВ, Q - точка пересечения прямой ММ с асимптотой АВ (рис.1).

(рис.1)

Тогда ММ = f (x), QM = kx + l, MQ = MM QM = f (x) - (kx +l),

MP = MQ cos . Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos , поэтому условия MQ 0 и MP 0 при х (соответственно при х ) эквивалентны, то есть lim MQ = 0,

то и lim MP = 0, и наоборот. х

х

Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х или, соответственно, х ).

6

2.2 Общий метод отыскания асимптоты

Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.

Будем рассматривать для определённости лишь случай х (при х рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х . Тогда, по определению,

f (x) = kx + l + 0

Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х . Тогда

lim = k.

х

Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу

l = lim (f (x) - kx).

х

Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) - kx), то прямая y = kx + l является

х

асимптотой графика функции f (x). В самом деле, из l = lim (f (x) - kx) имеем

х

lim f (x) (kx + l) = 0,

х

то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim = k. и l = lim (f (x) - kx)

х х

сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует

представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim = k. и l = lim (f (x) - kx)

х х

Следовательно, если существует представление y = kx + l, то оно единственно.

Найдём по этому правилу асимптоту графика функции f (x) = ,

найденную нами выше другим способом:

7

то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты

y = x - 4, как при х , так и при х - .

В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.

8

3. Виды

3.1 Горизонтальная асимптота

Пусть lim f (x) = b. Тогда говорят, что у функции f (x) имеется горизонтальная асимптота y = b. График функции чаще всего имеет такой вид (при x +) (рис.2)

(рис.2)

хотя в принципе, может иметь и такой вид (рис.3)

(рис.3)

9

3.2 Вертикальная асимптота

(рис.4)

Пусть при x a 0 lim f (x) = . Тогда говорят, что прямая x = a является

х

вертикальной асимптотой f (x). График функции f (x) при приближении x к а ведёт примерно так (рис.4), хотя, конечно, могут быть разные варианты, связанные с тем, куда уходит f (x) в + или .

Чаще всего вертикальная асимптота появляется тогда, когда f (x) имеет вид

.

Тогда вертикальные асимптоты находятся как корни уравнения

10

3.3 Наклонная асимптота

(рис.5)

Пусть уравнение асимптот есть y = ax + b. Значение функции при аргументе х есть d = ax + b - f (x). Неограниченное приближение к асимптоте означает, что величина d = ax + b - f (x) стремится к 0 при х

lim [f (x) - (ax + b)] = 0.

x

Если эта величина стремится к нулю, то тем более стремится к нулю величина

Но тогда мы имеем

и так как последний предел равен нулю, то

Зная а, можно найти и b из исходного соотношения

Тем самым параметры асимптоты полностью определяются.

Пример

то есть асимптота при x + имеет уравнение y=x.

11

Аналогично можно показать, что при x - асимптота имеет вид y = - x.

Сам график функции выглядит так (рис.6)

(рис.6)

12

Использованная литература

Р.Б. Райхмист «Графики функций», Москва, 1991г.

Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981

Лекции по математике

referatwork.ru


Смотрите также