|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
НЕКРОЗ И АПОПТОЗ. Апоптоз и некроз рефератРеферат - Виды клеточной смерти. Сравнительная характеристика некроза и апоптоза. Последствия нарушения апоптоза.
На сегодняшний день известны 3 вида смерти клеток: некроз, апоптоз и конечное дифференцирование.
Некроз (греч. nekros — мертвый)возникает в результате прямого воздействия патогенного фактора (микроорганизм, ишемия и др.), нарушающего целостность мембраны клетки. Это приводит к массивному выбросу индукторов воспаления и к миграции иммунных клеток к очагу поражения. В результате в зоне поврежденной клетки развивается септическое или асептическое (в зависимости от причины) воспаление. При этом происходят характерные изменения как в ядре, так и в цитоплазме. Ядро сморщивается, наблюдается конденсация хроматина (кар(опикноз), затем он распадается на глыбки (каризрексис) и растворяется (кариолизис). В цитоплазме происходят денатурация и коагуляция белков. Мембранные структуры распадаются. Нарушаются окислительно-восстановительные процессы и синтез АТФ в митохондриях, и вся клетка начинает страдать от нехватки энергии. Постепенно клетка распадается на отдельные глыбки, которые захватываются и поглощаются макрофагами. На месте в прошлом функционально активной клетки формируется соединительная ткань.
Апоптоз (греч. аро — отделение + ptosis — падение) по морфологическим признакам существенно отличается от некроза и имеет ряд специфических особенностей. Факторами, инициирующими апоптоз, являются возрастание экспрессии генов — индукторов апоптоза (или угнетение генов-ингибиторов) либо повышенное поступление кальция внутрь клетки. Клеточная мембрана при этом остается сохранной. Несмотря на внешнюю сохранность мембраны митохондрий, нарушаются окислительно-восстановительные процессы в основном за счет блокирования 1 митохондриального комплекса. Результатом описанных выше процессов является возрастание синтеза протеаз, которые начинают постепенно расщеплять внутриклеточные структуры. От мембраны клетки отщемляются небольшие везикулы, наполненные содержимым цитоплазмы (митохондрий, рибосомы и др.), окруженные мембранным липидным бис(оем. Клетка соответственно уменьшается в объеме и сморщивается. Отщепившиеся везикулы поглощаются соседними клетками. Ядро сморщивается на завершающих стадиях процесса, хроматин частично конденсируется, что говорит о сохранной активности ряда участков ДНК. Оставшиеся от клетки элементы фагоцитируются тканевыми макрофагами без развития воспалительной реакции и формирования соединительной ткани. Конечное дифференцирование, по мнению ряда авторов, является, по-видимому, одной из форм апоптоза.
Основные отличительные черты некроза и апоптоза
Биологическое значение апоптоза
Результатом апоптоза является постепенное и медленное избавление от «ненужных» в функциональном отношении на данный момент клеток. При этом не развивается воспаление и не нарушается нормальное функционирование соседних клеток, а также не происходит соединительнотканного замещения, что позволяет сохранить структуру органа. Функциональные элементы клетки, находящейся в состоянии апоптоза, не разрушаются, а поглощаются другими клетками и могут использоваться дальше. Особенно большую роль апоптоз играет в эмбриогенезе, когда важно постепенно избавляться от выполнивших свою функцию клеток, а активное фагоцитирование с развитием реакции воспаления может нарушить созревание плода.
Апоптоз активно включается в развитие той или иной морфофункциональной системы организма. Наиболее ярко это можно продемонстрировать на примере созревания иммунной системы. На начальном этапе все иммунокомпетентные клетки проходят «обучение» в тимусе и лимфатических узлах, при этом каждый клон клеток приобретает способность распознавать определенный антиген. В ходе этого процесса возможно «патологическое научение» с последующим распознаванием как чужеродных антигенов своего организма и формированием иммунного ответа на них. В данном случае апоптоз является защитным механизмом, уничтожающим ставшие опасными клетки. В то же время лимфоцитарные клоны, распознающие антигены, не встречающиеся в течение жизни человека, не имеют функционального значения и апоптозируют. Апоптоз необходим также для элиминации клеток, выполнивших на определенном этапе развития свое функциональное значение и ставших ненужными. Помимо этого, апоптоз активно включается в процессы уничтожения клеток, подвергшихся мутации; в большей степени это относится к активно делящимся тканям (кроветворная, лимфатическая система и др.).
Реактивность организма, ее роль в патологии. Характеристика основных видов реактивности. Факторы, определяющие неспецифический и специфический типы реактивности. Понятие о саногенезе. Факторы, определяющие общую неспецифическую реактивность в детском возрасте.
Реактивность — эта свойство организма реагировать определенным образом на воздействие окружающей среды [Сиротинин Н. Н., 1966]. Она является таким же свойством организма, как рост, размножение, питание, обмен веществ [Адо А. Д., 1980]. Реактивность формируется в процессе эволюции, в фило- и онтогенезе. Она отражает видовые, групповые и индивидуальные особенности реагирования. Реактивность — одна из основных форм связи и взаимодействия организма как единой системы со средой, главным образом защитного, приспособительного характера.
Первоначальные представления о реактивности возникли еще у врачей древних исторических эпох, отмечавших, что разные люди болеют неодинаково. Однако понятие «реактивность» возникло лишь к началу XX века, когда патологи стали выделять различные типы реагирования организма. Учение о реактивности с позиций общей патологии возникло и разрабатывалось в нашей стране и является достижением отечественных патологов. Большую роль в решении этой проблемы сыграли сравнительно-патологические исследованиям. И. Мечникова о фагоцитозе и его участии в воспалении и иммунитете; работы Н. Н. Сиротинина, установившего общие закономерности эволюции реактивности в фило- и онтогенезе; представления А. А. Богомольца, связавшего конституцию и реактивность со свойствами соединительной ткани.
Понятие реактивности прочно вошло в практическую медицину, способствуя более правильной оценке состояния больного. Реактивность организма является одним из важных факторов патогенеза болезней, поскольку патологическая реактивность характеризуется понижением приспособительных возможностей организма.
Любой патологический процесс в той или иной степени меняет реактивность организма, и в то же время изменение реактивности, превысившее физиологические границы, может стать основой развития заболевания В связи с этим изучение реактивности и ее механизмов имеет важное значение для понимания патогенеза заболеваний и целенаправленннго их лечения.
В клинике внутренних и инфекционных болезней различают гиперэргическое и гипоэргическое течение пневмонии, туберкулеза, дизентерии и других заболеваний. Гиперэргическими называют болезни с быстрым и интенсивным течением, выраженными изменениями в деятельности органов и систем. Под гипоэргическими понимают заболевания с вялым течением, стертыми симптомами, низким уровнем антителообразования и фагоцитоза.
Виды реактивности. Наиболее общей формой реактивности является биологическая, или видовая реактивность, которая определяется прежде всего наследственными факторами и выражает способность всех представителей данного вида реагировать на различные воздействия окружающей среды (токсины, гипоксию, радиальное ускорение и др.) однотипными изменениями жизнедеятельности, как правило, защитно-приспособительного характера. Ее также называют первичной. Видовые особенности реактивности определяют видовой иммунитет к инфекционным заболеваниям. Так, видовым иммунитетом объясняется невосприимчивость человека к возбудителям чумы рогатого скота. Примером видовых изменений реактивности является зимняя спячка животных, сезонная миграция рыб и птиц. При зимней спячке, характеризующейся глубоким угнетением активности нервной, эндокринной систем, обмена веществ и снижением в связи с этим температуры тела (до 3 — 4°С в прямой кишке), значительно снижается реактивность ко многим факторам. Суслики, зараженные в период спячки чумой, туберкулезом, не болеют. Спячка повышает устойчивость к стрихнину и другим ядам.
На основе видовой реактивности формируется групповая и индивидуальная. Групповой реактивностью обладают люди, сходные по каким-либо наследственно-конституциональным особенностям. Например, по конституциональному типу, группе крови, лейкоцитарным антигенам и др. Известно, что люди с I группой крови чаще болеют язвенной болезнью желудка, а имеющие антиген HLA-B8 — сахарным диабетом. Индивидуальная реактивность обусловлена наследственными и приобретенными факторами. Она зависит от тех условий внешней среды, в которых организм развивается, — характера питания, климатического пояса, содержания кислорода в атмосферном воздухе и т. д.
Реактивность зависит от пола. В женском организме реактивность меняется в связи с менструальным циклом, беременностью. Женский организм более устойчив к гипоксии, кровопотере, радиальному ускорению, голоданию.
Известна роль возраста в реактивности. Ранний детский возраст характеризуется простыми формами реагирования и, как правило, низкой реактивностью. Это определяется неполным развитием нервной, эндокринной и иммунной систем, несовершенством внешних и внутренних барьеров. Более сложная и в большинстве случаев высокая реактивность наблюдается в зрелом возрасте, постепенно снижаясь к старости. Лица старческого возраста очень восприимчивы к инфекции, у них часто развиваются воспалительные процессы в легких, гнойничковые поражения кожи, слизистых оболочек. Причина этого заключается в ослаблении иммунных реакций и снижении барьерных функций старого организма.
Индивидуальная реактивность может быть специфической и неспецифической. Специфическая реактивность выражается в способности образовывать антитела на антигенные раздражения. Таким требованиям удовлетворяет иммунная реактивность. Она обеспечивает невосприимчивость к инфекционным болезням, или иммунитет в собственном смысле слова, реакции биологической несовместимости тканей, повышенной чувствительности.
Неспецифическая реактивность проявляется при действии на организм различных факторов внешней среды. Она реализуется с помощью таких механизмов, как стресс, изменение функционального состояния нервной системы, парабиоз, фагоцитоз, биологические барьеры и др.
Специфическая и неспецифическая реактивность может быть физиологической и патологической. Физиологическая реактивность охватывает реакции здорового организма в благоприятных условиях существования. Примером может служить иммунитет (специфическая реактивность), реакция организма на действие различных факторов внешней среды в пределах, не нарушающих гомеостаза (неспецифическая реактивность).
Патологическая реактивность проявляется при воздействии на организм болезнетворных факторов. Примером специфической патологической реактивности являются аллергия, иммунодефицитные и иммунодепрессивные состояния. Проявлением неспецифической патологической реактивности является изменение реактивности при травматическом шоке, наркозе. При шоке угнетается реактивность по отношению к инфекционным и другим болезнетворным воздействиям. Угнетается фагоцитоз, меняется чувствительность к лекарственным препаратам.
По формам проявления различают повышенную (гиперэргия), пониженную (гипоэргия)и извращенную (дизэргия) реактивность.
Реактивность на различных уровнях организации живых систем. Реактивность, формируясь на основе наследственности, конституционального типа, определенного уровня развития нервной, эндокринной и иммунной системы, является свойством организма как целостной системы и в то же время о реактивности можно судить на различных уровнях организации этой системы, начиная с субклеточного. Примером реактивности на молекулярном уровне служит реакция молекулы HbS при серповидно-клеточной анемии на гипоксию, результатом которой является изменение растворимости гемоглобина и образование кристаллов, повреждающих эритроциты.
Клеточная реактивность связана с мембранными процессами, обеспечивающими взаимодействие клетки с окружающей ее средой посредством встроенных в нее белковых структур, выполняющих функцию клеточных рецепторов и ионных каналов.
Реактивность на клеточном уровне наблюдается при осуществлении лейкоцитами фагоцитоза, при дегрануляции тучных клеток комплексом антиген—антитело. Реактивность органа проявляется, например, в спазме гладкомышечных органов в ответ на повторное поступление в организм аллергена.
Примером реактивности системы органов и организма в целом служит перестройка терморегуляции и основных жизнеобеспечивающих систем в ответ на действие пирогена. В развитии многих патологических процессов (аллергия, воспаление) можно проследить изменения реактивности на различных уровнях.
www.ronl.ru НЕКРОЗ И АПОПТОЗ | Бесплатные курсовые, рефераты и дипломные работысвободные радикалы способны отрывать протоны водорода от сульфгидрильных групп, при этом образуются дисульфидные мостики в пределах одной белковой молекулы, нарушается третичная структура белка или перекрёстное связывание между различными белками, в результате может нарушаться функция ферментов, насосов и структурных белков. Повреждение ДНК: наиболее чувствительным основание является тимидин, поэтому под действием свободных радикалов происходят разрывы цепочек ДНК по тимидину, повреждение ДНК (мутации) может быть летальным (если нарушается процесс синтеза белка в клетке) и нелетальным (если синтез белка продолжается). Нелетальное повреждение ДНК может иметь отдалённые последствия: в соматических клетках способствует опухолевым процессам, в генеративных клетках- оно способно вызвать наследственные болезни. Антиоксиданнтная система. Система, защищающая от свободных радикалов. В … ней выделяют: 1)антиоксидантные ферменты — к ним относят супероксиддисмутазу, каталазу, глутатион-пероксидазу, глюкозо-6-фосфат-дегидрогеназу. 2)анатиоксиданты — вещества, способные отдавать протоны свободным радикалам, не превращаясь при этом в них: жирорастворимые витамины (K,A,D,E), витамин С, аминокислоты, содержащие сульфгидридные группы, транспортные белки, переносчики металлов с переменной валентностью (церулоплазмин, трансферрин)
Существует две формы клеточной смерти. Насильственная форма ( убийство) – некроз, который возникает под действием внешних повреждающих факторов. Является патологической формой гибели клеток, охватывает сразу группу клеток (участок ткани), начинается с повреждения клеточных мембран, всегда сопровождается процессом воспаления. Бывает двух видов: коагуляционный – в результате действия термических или химических факторов, вызывающих коагуляцию белка. Колликвационный – в результате активации собственных протеолитических ферментов клетки и аутолиза ( самопереваривания). Апоптоз – запрограммированная клеточная смерть ( самоубийство). Является физиологической формой смерти, протекающей без вреда или с пользой для организма. Захватывает отдельные клетки, ставшие не нужными или опасными. Всегда осуществляется с затратой энергии, через активацию специальных генов апоптоза, начинается изнутри клетки, при этом мембрана не повреждается и содержимое клетки наружу не попадает, никогда не сопровождается реакцией воспаления. С помощью апаптоза регулируются: 1) Гибель клеток в быстро делящихся популяциях ( эпителий) 2) С помощью апоптоза происходит смена этапов эмбриогенеза, 3) Осуществляется гормональная энволюция органов, 4) Апоптозом погибают лимфоциты после прекращения антигенной стимуляции, 5) Погибают вирусные и инфекционные клетки, а также с повреждением ДНК,
МЕХАНИЗМЫ АПОПТОЗА.
В клетке существует молчащая группа генов — гены апоптоза. Их активация возникает если клетка станет ненужной или опасной для организма. Активация возникает: 1. Если клетка перестаёт получать сигналы, регулирующие её работу (гормоны, цитокины, факторы роста). 2. Если на клетку действуют специальные вещества, запускающие апоптоз – фактор некроза опухоли . 3. Если под действием внешних факторов незначительной силы, неспособных вызвать некроз, возникает необратимые повреждения ДНК в процессе клеточного цикла клетка не должна вступать в деление.
Гены апоптоза активирующиеся с помощью ионов кальция через подавление веществ ингибиторов апоптоза и активацию активаторов апоптоза. На основе этих генов синтезируются ферменты каспазы и поверхностные рецепторы — интегрин. Каспазы – ферменты, которые осуществляют все процессы, лежащие в основе апоптоза. Основными являются: þ Эндонуклеаза, которая фрагментирует ядро, разрезая молекулы ДНК на фрагменты, не способному к самосборке. þ После выключения ядра активируется фермент – трансглутаминаза, которая вызывает перекрестное связывание белков цитоскелета, разделяя клетку на отсеки, каждый из которых покрыт мембраной. В дальнейшем эти отсеки отделяются друг от друга с образованием апоптозных телец, на их поверхности рецепторы ( — интегрин) для макрорфагов. Макрофаги взаимодействуя с тельцами, при этом не выделяют медиаторов воспаления и реакция воспаления не запускается. Диалектическая связь повреждения и реакции. Повреждение приводит к возникновению целого ряда защитных реакций, которые возникают на различных уровнях. Эти защитные реакции направлены на устранение патологического фактора и восстановление повреждения. Защитные реакции тесно сплетены с процессами повреждения, они находятся в неразрывном единстве и составляют патологию. Три значения философии:1. единство и борьба противоположностей, 2.переход количества в качества – за0щитные реакции чрезвычайно выражены. Становятся причин6ой повреждения.3. отрицание отрицания.
Лекция № 3.
Дата добавления: 2014-02-26; просмотров: 34; Нарушение авторских прав Поделиться с ДРУЗЬЯМИ:refac.ru Гибель клеток: некроз и апоптозКоличество просмотров публикации Гибель клеток: некроз и апоптоз - 588 Гибель (смерть) отдельных клеток или целых их групп постоянно встречается у многоклеточных организмов, так же как гибель одноклеточных организмов. Причины развития клеточной смерти различны. Но все их разделяют на две категории: некроз (от греч. nekrosis – омертвление) и апоптоз (от греч. корней, означающих "отпадение" или "распадение"), который часто называют программируемой клеточной смертью (ПКС) или даже клеточным самоубийством (рис. 354). Происхождение некроза связывают с нарушением внутриклеточного гомеостаза. Некроз вызывают повреждения плазматической мембраны, подавление активности мембранных насосов под действием многих ядов, а также необратимые изменения энергетики при недостатке кислорода (при ишемии – закупорке кровеносного сосуда) или отравлении митохондриальных ферментов (действие цианидов). При повышении проницаемости плазматической мембраны клетка набухает за счёт ее обводнения, в цитоплазме происходит увеличение концентрации ионов Na+ и Ca2+, закисление цитоплазмы, набухание вакуолярных компонентов и разрыв их мембран, прекращение синтеза белков в цитозоле, освобождение лизосомных гидролаз и лизис клетки. Одновременно с этими изменениями в цитоплазме изменяются и клеточные ядра: вначале они компактизируются (пикноз ядер), но по мере набухания ядра и разрыва его оболочки пограничный слой хроматина распадается на мелкие массы (кариорексис) а затем наступает кариолизис, растворение ядра. К особенности некроза относится то, что гибели могут подвергаться большие группы клеток (к примеру, при инфаркте миокарда из-за прекращения снабжения кислородом участка сердечной мышцы). Обычно некрозный участок атакуют лейкоциты и в зоне некроза развивается воспалительная реакция (рис. ). Апоптоз. В процессе развития организмов постоянно происходит гибель части клеток, без их физического или химического повреждения, происходит как бы их "беспричинная" смерть или апоптоз. Гибель клеток происходит на всех стадиях онтогенеза. Многочисленны примеры отмирания клеток без повреждения при эмбриогенезе. Так отмирают клетки вольфова и мюллерова каналов при развитии мочеполовой системы у позвоночных, погибает часть нейробластов и гонужноцитов, погибают клетки при метаморфозах насекомых и амфибий (резорбция хвоста у головастика и жабер у тритона) и т.д. Во взрослом организме миллионами погибают клетки крови, клетки эпидермиса кожи, клетки тонкого кишечника – энтероциты. Погибают фолликулярные клетки яичника после овуляции, погибают клетки молочной железы после лактации. Множество клеток многоклеточного организма нуждается в сигналах на то, чтобы оставаться живыми. В отсутствии таких сигналов или трофических факторов в клетках развивается программа ʼʼсамоубийстваʼʼ или программируемой смерти. Исследования на разных объектах показали, что апоптоз есть результат реализации генетически запрограммированной клеточной гибели. Первые доказательства наличия генетической программы клеточной смерти (ПКС) были получены при изучении развития небольшого червя нематоды Caenorhabditis elegans, который развивается всего за 3 суток. При развитии нематоды образуется всего 1090 клеток, из которых часть нервных клеток в количестве 131 штуки спонтанно погибает путем апоптоза, и в организме остается 959 клеток. Были обнаружены два гена ced-3 и ced-4, продукты которых вызывают апоптоз 131 клетки. В случае если у мутантных особей эти гены отсутствуют или изменены, то апоптоз не наступает и взрослый организм состоит из 1090 клеток. Был найден и другой ген – ced-9, который является супрессором апоптоза: при мутации ced-9 все 1090 клеток погибают. Аналог этого гена был найден у человека: bcl-2-ген также является супрессором апоптоза различных клеток. Оказалось, что оба белка, кодируемые этими генами, Ced-9 и Bcl-2, имеют один трансмембранный домен и локализуются во внешней мембране митохондрий, ядер и эндоплазматического ретикулума. Система развития апоптоза оказалась сходной у нематоды и позвоночных животных, она состоит из трех звеньев: регулятор, адаптер и эффектор. Размещено на реф.рфУ C.elegans регулятором является Ced-9, который блокирует адаптерный белок Ced-4, который в свою очередь не активирует эффекторный белок Ced-3, протеазу, которая действует на белки цитоскелета и ядра. У позвоночных система ПКС более сложная. Здесь регулятором является белок Bcl-2, который ингибирует адаптерный белок Apaf-1, стимулирующий каскад активации специальных протеиназ – каспаз. Таблица Развитие процесса программированной клеточной смерти (апоптоза) Каспазы – цистеиновые протеазы, которые расщепляют белки по аспарагиновой кислоте. В клетке каспазы синтезируются в форме латентных предшественников – прокаспаз. Существуют инициирующие и эффекторные каспазы. Инициирующие каспазы активируют латентные формы эффекторных каспаз. Субстратами для действия активированных каспаз служат более 60 различных белков. Это, к примеру, киназа фокальных адгезионных структур, инактивация которой приводит к отделению апоптических клеток от соседей; это ламины, которые при действии каспаз разбираются; это цитоскелетные белки (промежуточные филаменты, актин, гельзолин), инактивация которых приводит к изменению формы клетки и к появлению на ее поверхности пузырей, которые дают начало апоптическим тельцам; это активируемая протеаза CAD, которая расщепляет ДНК на олигонуклеотидные нуклеосомные фрагменты; это ферменты репарации ДНК, подавление которых предотвращает восстановление структуры ДНК, и многие другие. Одним из примеров разворачивания апоптозного ответа может являться реакция клетки на отсутствие сигнала от крайне важно го трофического фактора, к примеру, фактора роста нервов (NGF) или андрогена (рис. 355). В цитоплазме клеток в присутствии трофических факторов находится в неактивной форме еще один участник реакции – фосфорилированный белок Bad. В отсутствии трофического фактора данный белок дефосфорилируется и связывается с белком Bcl-2 на внешней митохондриальной мембране и этим ингибирует его антиапоптозные свойства. После этого активируется мембранный проапоптический белок Bax, открывая путь ионам, входящим в митохондрию. В это же время из митохондрий через образовавшиеся в мембране поры в цитоплазму выходит цитохром С, который связывается с адаптерным белком Apaf-1, который в свою очередь активирует прокаспазу 9. Активированная каспаза 9 запускает каскад других прокаспаз, в т.ч. каспазу 3, которые будучи протеиназами, начинают переваривать мешенные белки (ламины, белки цитоскелета и др.), что вызывает апоптическую смерть клетки, ее распад на части, на апоптические тельца. При апоптозе нарушается асимметрия плазматической мембраны и на ее поверхности появляется фосфатидилсерин, негативно заряженный фосфолипид, в норме располагающийся в цитозольной части Апоптические тельца, окруженные плазматической мембраной разрушенной клетки, привлекают отдельные макрофаги, которые их поглощают и переваривают с помощью своих лизосом. Макрофаги не реагируют на соседние нормальные клетки, но узнают апоптические. Таким образом путем избирательного фагоцитоза ткани как бы очищаются от погибших апоптозных клеток. Апоптоз должна быть вызван целым рядом внешних факторов, таких как радиация, действие некоторых токсинов, ингибиторов клеточного метаболизма, необратимые повреждения ДНК также вызывают апоптоз. Это связано с тем, что накапливающийся транскрипционный фактор, белок р53, не только активирует белок р21, который ингибирует зависящую от циклина киназу и останавливает клеточный цикл в G1 или G2 фазе (см. рис. 353), но и активирует экспрессию гена bax, продукт которого запускает апоптоз. Повреждения митохондрий при образовании токсически активных форм кислорода (АТК), под действием которых во внутренней мембране митохондрий образуются каналы с высокой проницаемостью для ионов, благодаря чему матрикс митохондрий набухает, а внешняя мембрана разрывается. При этом растворенные в межмембранном пространстве белки вместе с цитохромом С выходят в цитоплазму. Среди освободившихся белков есть факторы, активирующие апоптоз, и прокаспаза 9. Элиминация или удаление отдельных клеток путем апоптоза наблюдается и у растений. Здесь апоптоз включает в себя, так же как у животных клеток, фазу индукции, эффекторную фазу и фазу деградации. Морфология гибели клеток растений сходна с изменениями клеток животных: конденсация хроматина и фрагментация ядра, олигонуклеотидная деградация ДНК, сжатие протопласта͵ его дробление на везикулы, разрыв плазмодесм и т.д. При этом везикулы протопласта разрушаются гидролазами самих везикул, так как у растений нет клеток, аналогичных фагоцитам. Так ПКС происходит при росте клеток корневого чехлика, при формировании перфораций у листьев, при образовании ксилемы и флоэмы. Опадание листьев связано с избирательной гибелью клеток определенной зоны черенка. Биологическая роль апоптоза состоит в удалении отработавших свое или ненужных на данном этапе развития клеток, в удалении измененных или патологических клеток, особенно мутантных или зараженных вирусами. В многоклеточном организме клетки получают сигналы на выживание, к которым относятся трофические факторы, сигнальные молекулы (гормональная, эндокринная сигнализация). Эти сигналы улавливаются рецепторными молекулами на клетках-мишенях. При отсутствии сигналов на выживание реализуется программа апоптоза. referatwork.ru |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|