Реферат: Альтернативные виды топлив для автомобильных двигателей:. Альтернативные виды топлива для автомобилей реферат


Альтернативные виды топлив для автомобильных двигателей

Содержание

Часть I
1.1 Альтернативные виды топлив для автомобильных двигателей3
1.2 Основные эксплуатационные свойства трансмиссионных масел7
1.3 Улучшение аэродинамики автомобиля – эффективный путь экономии топлива11
Часть II
2.1 Задача 112
2.2 Задача 214
Список литературы18

ЧастьI

1.1 Альтернативные виды топлив для автомобильных двигателей

Чем больше в мире производится автомобилей, тем значительнее интерес к альтернативным бензину видам топлива, при сгорании которых выделяется меньше вредных веществ. Во многих странах все более популярным становится биологическое топливо, изготавливаемое из растительного сырья - рапса, конопли, бананов, бобовых, цитрусовых. В шести государствах ЕС, а также в США, Канаде, Бразилии, Малайзии такое биологическое топливо производят в промышленных масштабах, но все же его доля в топливном балансе не превышает 0,3%.

До конца XX столетия двигатель внутреннего сгорания остаётся основной движущей силой автомобиля. В связи с этим единственный путь решения энергетической проблемы автомобильного транспорта – это создание альтернативных видов топлива. Новое горючее должно удовлетворить очень многим требованиям: иметь необходимые сырьевые ресурсы, низкую стоимость, не ухудшать работу двигателя, как можно меньше выбрасывать вредных веществ, по возможности сочетаться со сложившейся системой снабжения топливом и др.

Нефть сегодня - основной и наиболее востребованный энергоресурс.

В последнее время большое количество зарубежных научно-исследовательских центров моторостроительных фирм проводят исследования, направленные на экономию топлива и замену традиционных жидких углеводородных топлив новыми видами.

Альтернативные виды топлива можно классифицировать следующим образом:

- по составу: углеводородно-кислотные (спирты), эфиры, эстеры, водородные топлива с добавками;

- по агрегатному состоянию: жидкие, газообразные, твердые;

- по объемам использования: целиком, в качестве добавок;

- по источникам сырья: из угля, торфа, сланцев, биомассы, горючего газа, электроэнергии и др.

К альтернативным видам топлива относятся:

1)природный газ

Природный газ в большинстве стран является наиболее распространенным видом альтернативного моторного топлива. Природный газ в качестве моторного топлива может применяться как в виде компримированного, сжатого до давления 200 атмосфер, газа, так и в виде сжиженного, охлажденного до -160°С газа. В настоящее время наиболее перспективным является применение сжиженного газа (пропан-бутан). В Европе это топливо называется LPG (Liquefiedpetroleumgas - сжиженный бензиновый газ). В то время как сжатый газ (метан) находится в баках под давлением 200 бар, что само по себе представляет повышенную опасность, LPG сжиживается при давлении 6-8 бар. В Европе сегодня насчитывается около 2,8 млн машин, работающих на LPG.

2)газовый конденсат

Использование газовых конденсатов в качестве моторного топлива сведено к минимуму из-за следующих недостатков: вредное воздействие на центральную нервную систему, недопустимое искрообразование в процессе работы с топливом, снижение мощности двигателя (на 20%), повышение удельного расхода топлива.

3)диметилэфир

Диметилэфир является производной метанола, который получается в процессе синтетического преобразования газа в жидкое состояние. Существуют разработки по переоборудованию дизельных двигателей под диметилэфир. При этом существенно улучшаются экологические характеристики двигателя.

В отличие от сжиженного природного газа, диметилэфир менее конкурентоспособен, в основном по причине того, что теплотворная способность на тонну диметилэфира на 45% ниже теплотворности на тонну сжиженного природного газа. Также для производства диметилэфира требуется не только более высокий уровень предварительных капиталовложений, но и больший объем сырьевого газа для производства продукта с эквивалентной теплотворной способностью.

4)этанол и метанол

Этанол (питьевой спирт), обладающий высоким октановым числом и энергетической ценностью, добывается из отходов древесины и сахарного тростника, обеспечивает двигателю высокий КПД и низкий уровень выбросов и особо популярен в теплых странах.

Стоимость этанола в среднем гораздо выше себестоимости бензина.

Метанол как моторное топливо имеет высокое октановое число и низкую пожароопасность. Данные обстоятельства обеспечивают его широкое применение на гоночных автомобилях. Метанол может смешиваться с бензином и служить основой для эфирной добавки - метилтретбутилового эфира, который в настоящее время замещает в США большее количество бензина и сырой нефти, чем все другие альтернативные топлива вместе взятые.

5)синтетический бензин

Сырьем для его производства могут быть уголь, природный газ и другие вещества. Наиболее перспективным считается синтезирование бензина из природного газа. Из 1 м3 синтез-газа получают 120-180 г синтетического бензина. За рубежом, в отличие от России, производство синтетических моторных топлив из природного газа освоено в промышленном масштабе. Однако в настоящее время синтетические топлива из природного газа в 1,8-3,7 раза (в зависимости от технологии получения) дороже нефтяных.

6)электрическая энергия

Заслуживает внимания применение электроэнергии в качестве энергоносителя для электромобилей. Кардинально решается вопрос, связанный с токсичностью отработанных газов, появляется возможность использования нефти для получения химических веществ и соединений. К недостаткам электроэнергии как вида электроносителя можно отнести: ограниченный запас хода электромобиля, увеличенные эксплуатационные расходы, высокая первичная стоимость, высокая стоимость энергоемких аккумуляторных батарей.

7)топливные элементы

Топливные элементы - это устройства, генерирующие электроэнергию непосредственно на борту транспортного средства, - в процессе реакции водорода и кислорода образуются вода и электрический ток. В качестве водородосодержащего топлива, как правило, используется либо сжатый

водород, либо метанол. к недостаткам применения топливных элементов следует отнести повышенную взрывоопасность водорода и необходимость выполнения специальных условий его хранения, а также высокую себестоимость получения водорода.

8)биодизельное топливо

Применение биодизельного топлива связано, в первую очередь, со значительным снижением эмиссии вредных веществ в отработанных газах (на 25-50%), улучшением экологической обстановки в регионах интенсивного использования дизелей (города, реки, леса, открытые разработки угля (руды), помещения парников и т.п.) - cодержание серы в биодизельном топливе составляет 0,02%.

9)биогаз

Представляет собой смесь метана и углекислого газа и является продуктом метанового брожения органических веществ растительного и животного происхождения. Биогаз относится к топливам, получаемым из местного сырья. Хотя потенциальных источников для его производства достаточно много, на практике круг их сужается вследствие географических, климатических, экономических и других факторов.

Биогаз как альтернативный энергоноситель может служить высококалорийным топливом. Предназначен для улучшения технико-эксплуатационных и экологических показателей работы двигателя внутреннего сгорания (ДВС) и стационарных энергоустановок. Биогаз, представляющий собой продукты брожения отходов биологической деятельности человека и животных, содержит приблизительно 68% СН4, 2% Н2 и до 30% СО2. После отмывки от углекислоты этот газ является достаточно однородным топливом, содержащим до 80% метана с теплотворной способностью более 25 МДж/м3. Применение биогаза в качестве топлива для ДВС осуществляется путем использования серийно выпускаемой топливной аппаратуры для природного газа с коррекцией соотно-шения “топливо-воздух”.

10)отработанное масло

В настоящее время на ряде предприятий различных стран мира весьма эффективно работают установки, преобразующие отработанное масло (моторное, трансмиссионное, гидравлическое, индустриальное, трансформаторное, синтетическое и т. д.) в состояние, которое позволяет полностью использовать его в качестве дизельного или печного топлива. Установка подмешивает высокоочищенные (в установке) масла в соответствующее топливо, в точно заданной пропорции, с образованием навсегда стабильной, неразделяемой топливной смеси. Полученная смесь имеет более высокие параметры по чистоте, обезвоживанию и теплотворной способности, чем дизельное топливо до его модификации в установке.

11)водород как альтернативное топливо

Водород является эффективным аккумулятором энергии. Применение водорода в качестве топлива возможно в разнообразных условиях, что может дать существенный вклад в мировую энергетику, когда ресурсы ископаемого топлива будут близки к полному истощению. По сравнению с бензином и дизельным топливом водород более эффективен и меньше загрязняет окружающую среду. Взрывоопасность водорода резко снижается с применением специальных присадок (например, добавка 1% пропилена делает Н2безопасным).

12)спирты

Среди альтернативных видов топлива в первую очередь следует отметить спирты, в частности метанол и этанол, которые можно применять не только как добавку к бензину, но и в чистом виде. Их главные достоинства – высокая детонационная стойкость и хороший КПД рабочего процесса, недостаток – пониженная теплотворная способность, что уменьшает пробег между заправками и увеличивает расход топлива в 1,5-2 раза по сравнению с бензином. Кроме того, из-за плохой испаряемости метанола и этанола затруднён запуск двигателя.

Использование спиртов в качестве автомобильного топлива требует незначительной переделки двигателя. Например, для работы на метаноле достаточно перерегулировать карбюратор, установить устройство для стабилизации запуска двигателя и заменить некоторые подверженные коррозии материалы более стойкими. Учитывая ядовитость чистого метанола, необходимо предусмотреть тщательную герметизацию топливоподающей системы автомобиля.

1.2 Основные эксплуатационные свойства трансмиссионных масел

Трансмиссионные масла предназначены для применения в узлах трения агрегатов трансмиссий легковых и грузовых автомобилей, автобусов, тракторов, тепловозов, дорожно-строительных и других машин, а также в различных зубчатых редукторах и червячных передачах промышленного оборудования.

Трансмиссионные масла представляют собой базовые масла, легированные различными функциональными присадками.

В качестве базовых компонентов используют минеральные, частично или полностью синтетические масла.

Общие требования

В агрегатах трансмиссий смазочное масло является неотъемлемым элементом конструкции. Способность масла выполнять и длительно сохранять функции конструкционного материала определяется его эксплуатационными свойствами. Общие требования к трансмиссионным маслам определяются конструкционными особенностями, назначением и условиями эксплуатации агрегата трансмиссии.

Трансмиссионные масла работают в режимах высоких скоростей скольжения, давлений и широком диапазоне температур. Их пусковые свойства и длительная работоспособность должны обеспечиваться в интервале температур от -60 до +150 °С. Поэтому к трансмиссионным маслам предъявляют довольно жесткие требования.

Основные функции трансмиссионных масел:

· предохранение поверхностей трения от износа, заедания, питтинга и других повреждений;

· снижение до минимума потерь энергии на трение;

· отвод тепла от поверхностей трения;

· снижение шума и вибрации зубчатых колес, уменьшение ударных нагрузок;

· масла не должны быть токсичными.

Для обеспечения надежной и длительной работы агрегатов трансмиссий смазочные масла должны обладать определенными характеристиками:

· иметь достаточные противозадирные, противоизносные и противопиттинговые свойства;

· обладать высокой антиокислительной стабильностью;

· иметь хорошие вязкостно-температурные свойства;

· не оказывать коррозионного воздействия на детали трансмиссии;

· иметь хорошие защитные свойства при контакте с водой;

· обладать достаточной совместимостью с резиновыми уплотнениями;

· иметь хорошие антипенные свойства;

· иметь высокую физическую стабильность в условиях длительного хранения.

Все эти свойства трансмиссионного масла могут быть обеспечены путем введения в состав базового масла соответствующих функциональных присадок: депрессорной, противозадирной, противоизносной, антиокислительной, антикоррозионной, противоржавейной, анти-пенной и др.

Название не означает, что любой агрегат, относящийся к автомобильной трансмиссии, смазывается именно трансмиссионным маслом. У большинства переднеприводных легковых машин в коробку передач, совмещенную с главной передачей, изготовители предписывают заливать моторное масло. Шестерни в таких агрегатах только цилиндрические, поэтому опасность задиров невелика. Для автоматических коробок не годится ни трансмиссионное, ни моторное. Эти устройства специфичны, для их работы требуется маловязкая жидкость, которую в международной практике принято называть ATF (Automatic Transmission Fluid). Что же касается обычных легковых и грузовых автомобилей с классической компоновкой, а также полноприводных и некоторых переднеприводных, то в их агрегатах используются исключительно трансмиссионные масла.

В нашей стране характеристики и обозначения этих смазочных материалов прежде диктовались соответствующими советскими стандартами (ГОСТами), но теперь, в условиях широкого проникновения импортных продуктов, преобладающей стала международная классификация.

Вязкость

Сегодня повсюду в мире пользуются классификацией вязкости SAE J306, разработанной в США. Ее нормативы и система индексации представлены в соответствующей таблице 1.1.

Таблица 1.1

Требования к вязкости трансмиссионных масел
Свойства маселКласс вязкости
75W80W85W90140250
Вязкость кинематическая при 100 С, кв.мм/сminmax
Макс. температура ( С) при вязкости 150 000 сПз-40-26-12---
Температура потери подвижности, ( С), не выше*-45-35-20---
* Показатель по американской военной спецификации MIL-L-2105D, ставший ныне общепринятым

Классы вязкости, у которых числовой показатель сопровождается буквой "W" (winter - зима) , относятся к сезонным маслам, применяемым в холодное время года. Без него - к сезонным для теплого летнего времени.

В эксплуатационной практике сезонные трансмиссионные масла неудобны, да и экономически невыгодны. Срок службы масел в коробках и мостах достаточно дорог, а сезонная замена вынуждается избавляться от продукта, который далеко не выработал свой ресурс. Поэтому и преимущественное распространение получили так называемые загущенные (в обиходе - всесезонные) масла.

Такой продукт сочетает в себе свойства двух сортов масла - летнего и зимнего, маркировки которых присутствуют в его индексе. Сам же индекс складывается из этих двух обозначений, написанных через дефис (75W-90, 85W0140 и т.п.).

Эксплуатационные свойства

Разработанная американским институтом API классификация содержит комплексную оценку трансмиссионных масел по эксплуатационным свойствам. Сегодня она принята повсеместно (табл. 1.2). Пять категорий, предусмотренных системой, показывают применяемость и качественный уровень продуктов, помечаемых соответствующим индексом. Классификация ныне действующего отечественного ГОСТа практически заключается только в буквах, стоящих в начале индекса.

Таблица 1.2

Эксплуатационные свойства трансмиссионных масел
Категория по APIТипПрименениеСоответствие ГОСТ
GL-1Минеральное масло без присадокТМ1
GL-2Содержит жирные продутыЧервячные передачи, индустриальное оборудованиеТМ2
GL-3Содержит противозадирные присадкиРучные КПП, спирально-конические передачи (КПП и задние мосты грузовых автомобилей)ТМ3
GL-4Содержит противозадирные, противоизносные и другие присадкиРучные КПП, спирально-конические передачиТМ4
GL-5Содержит противозадирные, противоизносные и другие присадкиГипоидные и другие типы передач (КПП и ведущие мосты легковых автомобилей)ТМ5

1.3 Улучшение аэродинамики автомобиля – эффективный путь экономии топлива

Форма автомобиля играет немаловажную роль в экономии топлива. Но это еще не все. Сопротивлению воздуха помогают загруженный багажник на крыше, различные дополнительно установленные наружные элементы. Открытые окна на скорости уже в 50 км/ч повышают расход. А при скорости в 90 км/ч будьте готовы сжечь дополнительно процентов восемь топлива.

Аэродинамика автомобилей изучается двумя основными методами — испытаниями в аэродинамической трубе и компьютерным моделированием. Аэродинамические трубы для испытания автомобилей иногда оснащаются подвижной дорожкой, имитирующей движущееся дорожное полотно. Кроме того, колеса испытываемого автомобиля могут приводятся во вращение. Эти меры принимаются для того, чтобы учесть влияние дорожного полотна и вращающихся колес на потоки воздуха.

Современная автомобильная аэродинамика решает множество задач, в том числе и задачу экономии топлива. Специалисты должны не только добиться минимального сопротивления воздуха, но и отследить величину и распределение по осям подъемной силы, ведь нынешние автомобили достигают тех скоростей, на которых самолеты уже отрываются от земли. Необходимо предусмотреть и доступ воздуха для охлаждения двигателя и тормозных дисков, продумать вентиляцию салона, расположив в нужных местах отверстия для забора и вытяжки воздуха. Аэродинамика определяет уровень шумов в салоне, заботится о том, чтобы захватывающие грязь воздушные потоки не попадали на стекла, зеркала, фонари и ручки дверей. С ростом скорости не должно меняться и качество очистки лобового стекла.

Зная аэродинамические параметры автомобиля, легко оценить его экономичность на высоких скоростях.

ЧастьII

2.1 Задача 1

Определить требуемое количество топлива и указать марку автомобильного бензина по ГОСТ Р 51105-97 и дизтоплива по ГОСТ 305-82

Таблица 2.1

Марка автомобиляЛинейная форма расхода топлива, л/100 кмПробег, кмРабота, ткм.
Москвич-214110140-

Автомобиль работает в городе с населением свыше 1 млн. человек.

Решение

В общем случае нормативный расход автомобильного бензина, дизельного топлива и газового топлива при расчете с водителями, выполняющими различные виды перевозок, определяются по формуле:

QН= К1* L/100*(1±D) + К2*Р/100 + К3m, л

Где QН– нормативный расход топлива, л;

L- пробег автомобиля или поезда, км;

К1- базовая норма расхода топлива на пробег, л/100 км;

К2- норма расхода топлива на транспортную работу и на дополнительную массу прицепа или прицепа, л/100 м;

К3- норма расхода топлива на ездку с грузом, л/ездка;

P - объем транспортной работы, ткм;

m - количество ездок с грузом;

D - поправочный коэффициент (суммарная относительная надбавка или снижение) к нормам в долях единицы.

Для грузовых таксомоторов, легковых автомобилей, автомобилей, а также грузовых автомобилей, выполняющих транспортную работу не учитываемую в ткм (с почасовой оплатой)

QН= К1*L/100 * (1±D), л

L = 140 км;

К1= 10 л/100 км;

Линейные нормы расхода топлива повышаются при условии работы автотранспорта в черте города, требующей частых остановок – до 10%.

D = 10% = +0,1

Следовательно QН= 10*140/100*(1+0,1) = 15,4 л.

Для данного автомобиля используют автомобильный бензин марки АИ-92.

2.2 Задача 2

Автотранспортное предприятие имеет 1000 автомобилей, в том числе 700 с бензиновыми и 300 с дизельными двигателями. Из 700 бензиновых автомобилей (ГАЗ-302, Газ-3307 и их модификаций) – 200 находятся в эксплуатации менее 3 лет; 300 – от 3 до 8 лет и 200 – свыше 8 лет. Дизельные (МАЗ-5335, МАЗ-53352, МАЗ-504) – соответственно – 50, 200, 50 автомобилей.

Решение

Групповые нормы расхода смазочных материалов рассчитываются на основе индивидуальных норм расхода масла и специальных жидкостей, с учетом состава, структуры парка подвижного состава и времени нахождения автомобилей в эксплуатации отдельно на каждый вид масла (моторные, трансмиссионные, специальные и т.п.) или смазки:

НМ= (K1*NM1*AC1+ K2*NM2*AC2+ K3*NM3*AC3) / (AC1+ AC2+ AC3), л/100 л,

где НМ– групповая норма расхода масла для автопарка, л/100 л расхода топлива;

К1, К2, К3– коэффициенты учитывающие время нахождения в эксплуатации, К1= 0,5, К2= 1, К3= 1,2;

NM1, NM2, NM3– индивидуальная для данной возрастной группы автомобилей норма расхода масла (смазки) по табл.2.2. Примем для всех возрастных групп одинаковую норму;

AC1, AC2, AC3– количество автомобилей данной возрастной группы (до 3 лет, от 3 до 8 лет, свыше 8 лет).

Таблица 2.2

Виды и сорта масел (смазок)Временная норма расхода смазочных материалов в л (смазок в кг) на 100 л общего расхода топлива для:
легковых, грузовых автомобилей и автобусов, работающих на бензине и жиженном газегрузовых автомобилей и автобусов, работающих на дизельном топливевнедорожных автомобилей-самосвалов, работающих на дизтопливе
Моторные2,43,25
Трансмиссионные0,30,40,5
Специальные0,10,11
Пластические смазки0,20,30,3

Для бензиновых автомобилей:

1) моторные

К1= 0,5, К2= 1, К3= 1,2;

NM1= NM2= NM3= 2,4;

AC1= 200, AC2= 300, AC3= 200;

НМ= (0,5*2,4*200 + 1*2,4*300 + 1,2*2,4*200) / (200 + 300 + 200) = 2,2 л/100 л;

2) трансмиссионные

К1= 0,5, К2= 1, К3= 1,2;

NM1= NM2= NM3= 0,3;

AC1= 200, AC2= 300, AC3= 200;

НМ= (0,5*0,3*200 + 1*0,3*300 + 1,2*0,3*200) / (200 + 300 + 200) = 0,28 л/100 л;

3) специальные

К1= 0,5, К2= 1, К3= 1,2;

NM1= NM2= NM3= 0,1;

AC1= 200, AC2= 300, AC3= 200;

НМ= (0,5*0,1*200 + 1*0,1*300 + 1,2*0,1*200) / (200 + 300 + 200) = 0,09 л/100 л;

4) пластические смазки

К1= 0,5, К2= 1, К3= 1,2;

NM1= NM2= NM3= 0,2;

AC1= 200, AC2= 300, AC3= 200;

НМ= (0,5*0,2*200 + 1*0,2*300 + 1,2*0,2*200) / (200 + 300 + 200) = 0,18 л/100 л.

Для дизельных автомобилей:

1) моторные

К1= 0,5, К2= 1, К3= 1,2;

NM1= NM2= NM3= 3,2;

AC1= 50, AC2= 200, AC3= 50;

НМ= (0,5*3,2*50 + 1*3,2*200 + 1,2*3,2*50) / (50 + 200 + 50) = 3,04 л/100 л;

2) трансмиссионные

К1= 0,5, К2= 1, К3= 1,2;

NM1= NM2= NM3= 0,4;

AC1= 50, AC2= 200, AC3= 50;

НМ= (0,5*0,4*50 + 1*0,4*200 + 1,2*0,4*50) / (50 + 200 + 50) = 0,38 л/100 л;

3) специальные

К1= 0,5, К2= 1, К3= 1,2;

NM1= NM2= NM3= 0,1;

AC1= 50, AC2= 200, AC3= 50;

НМ= (0,5*0,1*50 + 1*0,1*200 + 1,2*0,1*50) / (50 + 200 + 50) = 0,095 л/100 л;

4) пластические смазки

К1= 0,5, К2= 1, К3= 1,2;

NM1= NM2= NM3= 0,3;

AC1= 50, AC2= 200, AC3= 50;

НМ= (0,5*0,3*50 + 1*0,3*200 + 1,2*0,3*50) / (50 + 200 + 50) = 0,285 л/100 л.

Всего по автопарку:

1) моторные НМ= 5,24 л/100 л;

2) трансмиссионные НМ= 0,66 л/100 л;

3) специальные НМ= 0,185 л/100 л;

4) пластические смазки НМ= 0,465 л/100 л;

Список литературы

1. Аксёнов И.Я., Аксёнов В.И. Транспорт и охрана окружающей среды. – М.: Транспорт, 1986.

2. http://autogear.ru/toyota_repair/transmission/3882,print/

3. http://www.petroltrade.ru/n_transmmasl.html

4. http://www.autotechnic.su/technology/aero/aero.html

5. Википедия

6. ГОСТ Р 51102-97

superbotanik.net

Альтернативные экологичные виды топлива для автомобилей

Автомобильный транспорт как источник загрязнения окружающей среды. Причины образования токсичных компонентов в отработанных газах ДВС

В последние годы в связи с ростом плотности движения автомобилей в городах резко увеличилось загрязнение атмосферы продуктами сгорания двигателей. Выпускные газы двигателей внутреннего сгорания (ДВС) состоят в основном из безвредных продуктов сгорания топлива – углекислого газа и паров воды. Однако в относительно небольшом количестве в них содержатся вещества, обладающие токсическим и канцерогенным действием. Это окись углерода, углеводороды различного химического состава, окислы азота, образующиеся в основном при высоких температуре и давлении.

При горении углеводородного топлива происходит образование токсичных веществ, связанное с условиями горения, составом и состоянием смеси. В двигателях с принудительным воспламенением концентрация окиси углерода достигает больших значений из-за недостатка кислорода для полного окисления топлива при их работе на богатой топливом смеси.

При движении автомобилей в городе и на дорогах с переменным уклоном и часто меняющимися скоростями с включенной передачей и открытой дроссельной заслонкой двигателям приходится около 1/3 путевого времени работать в режиме принудительного холостого хода. На принудительном холостом ходу двигатель не отдает а, напротив, поглощает энергию, накопленную автомобилем. При этом нерационально расходуется топливо, усиленное всасывание которого приводит к наибольшему выбросу токсичных газов СО и СН в атмосферу.

Автомобильные выхлопные газы — смесь примерно 200 веществ. В них содержатся углеводороды—не сгоревшие или не полностью сгоревшие компоненты топлива, доля которых резко возрастает, если двигатель работает на малых оборотах или в момент увеличения скорости на старте, т.е. во время заторов и у красного сигнала светофора. Именно в этот момент, когда нажимают на акселератор, выделяется больше всего несгоревших частиц: примерно в 10 раз больше, чем при работе двигателя в нормальном режиме. К несгоревшим газам относят и обычную окись углерода, образующуюся в том или ином количестве повсюду, где что-то сжигают. В выхлопных газах двигателя, работающего на нормальном бензине и при нормальном режиме, содержится в среднем 2,7% оксида углерода. При снижении скорости эта доля увеличивается до 3,9%, а на малом ходу—до 6,9%.

Основными эксплуатационными факторами, влияющими на уровень вредных выбросов двигателей, являются факторы, характеризующие состояние деталей цилиндропоршневой группы (ЦПГ). Повышенный износ деталей ЦПГ и отклонения от их правильной геометрической формы являются причиной увеличения концентрации токсичных компонентов в отработавших газах (ОГ) и картерных газах (КГ).

Базовой деталью ЦПГ, от которой зависит работоспособность и экологичность двигателя, является цилиндр, т. к. герметичность камеры сгорания зависит от уплотняющей способности кольца в сопряжении с цилиндром. От технического состояния цилиндров и поршневых колец главным образом зависит интенсивность роста зазоров между кольцами и канавками поршней. Таким образом, контроль и регулировка зазора между кольцом и цилиндром в процессе эксплуатации являются существенным резервом снижения количества вредных примесей в ОГ и КГ посредством улучшения условий сгорания топлива и снижения количества масла, оставшегося в надпоршневом пространстве.

Токсичными выбросами ДВС являются отработавшие и картерные газы. С ними поступает в атмосферу около 40% токсичных примесей от общего выброса. Содержание углеводородов в отработавших газах зависит от технического состояния и регулировок двигателя и на холостом ходу колеблется от 100 до 5000% и более. При общем небольшом количестве картерных газов равном 2-10% отработавших газов в общем загрязнении атмосферы, доля картерных газов составляет около 10% у мало изношенных двигателей и вырастает до 40% при эксплуатации двигателя с изношенной цилиндропоршневой группой, т.к. концентрация углеводородов в картерных газах в 15-10 раз выше, чем в отработавших двигателя. Количество КГ, а так же их химический состав зависят от состояния деталей ЦПГ, осуществляющих уплотнение камеры сгорания. От величины зазоров между трущимися деталями ЦПГ зависит проникновение газов из цилиндра в картер и обратно. При этом увеличивается доля углеводородов с канцерогенными свойствами из-за повышенного угара масла и увеличенного расхода картерных газов через замкнутую систему вентиляции картера.

К достижению предельного износа двигателя выбросы увеличиваются в среднем на 50%. На примере ускоренных испытаний, проведенных в НАМИ, установлено что износ двигателя увеличивает выбросы ОГ углеводородов в 10 раз. Основная масса двигателей с повышенной дымностью ОГ приходится на двигатели, прошедшие капитальный ремонт.

Степень разуплотнения камеры сгорания зависит от износа деталей ЦПГ, отклонения их макрогеометри от правильной геометрической формы. При увеличении неплотностей камеры сгорания происходит возрастание СО и СН и снижение СО2 в результате ухудшения условий сгорания топлива. Кроме снижения качества организации рабочего процесса, зазоры между кольцом и цилиндром, а также зазоры между кольцом и канавкой поршня приводят к увеличению количества масла, попавшего в надпоршневое пространство, к увеличению отклонения от заданной динамики тепловыделения в процессе сгорания, а, следовательно, - к увеличению общей массы токсических выбросов. Масло составляет 30-40% твёрдых частиц ОГ.

Базовой деталью ЦПГ является цилиндр, от которого зависит экономическая и экологическая целесообразность эксплуатации двигателя. Износ гильз цилиндров имеет выраженную форму овала, большая ось которого расположена в плоскости качания шатуна. Причиной образования овальности цилиндров главным образом является увеличенная нагрузка поршней на гильзы именно в плоскости качания шатунов. На овальность цилиндров влияет также несовершенство технологии сборки блока цилиндров. Изменение макрогеометрии цилиндров (овальности и конусности) после сборки двигателя также приводит к ухудшению прилегания поршневых колец к зеркалу цилиндра. Известно, что при установке гильз в блоки различных марок ДВС, овальность в цилиндрах увеличивается в 2-3 раза.

Очень важно отметить, что характер искажения макрогеометрии гильз цилиндров после сборки и в процессе эксплуатации одинаков для большинства конструкций блоков цилиндров с “мокрыми гильзами”. Большая ось овала цилиндра, образующегося при сборке, в зоне остановки верхнего компрессионного кольца в верхней мёртвой точке поршня имеет такую же направленность, как и большая ось овала, образующегося при эксплуатации. Такой характер деформации цилиндров объясняется большей деформацией блока в местах между расточками под гильзы.

Снижение овальности цилиндров способствует снижению интенсивности износа колец и канавок поршней, что в целом способствует улучшению работы поршневых колец и улучшению уплотнения камеры сгорания. Известно, что замена маслосъёмных колец после выработки предельного ресурса в некоторой степени восстанавливает средний уровень токсичности двигателя. Бесспорно, если при замене колец произвести регулировку овальности цилиндров до уровня предельной величины на изготовление новых гильз, то эффект будет намного значительнее.

Разработка новых способов смешения и растворения и математического описания воздействия соответствующих присадок и добавок в нефтяном топливе позволит значительно сократить время на разработку новых составов альтернативных топлив и предсказания их физико-химических свойств, что позволит довести рабочий процесс двигателя при использовании новых альтернативных топлив.

Анализ отечественной и зарубежной литературы показал, что развитие перехода на новые виды топлива будет проходить три основных этапа. На первом этапе будет использоваться стандартное нефтяное топливо, спирты, добавки водорода и водородсодержащих топлив, газовое топливо и различные их сочетания, что позволит решить проблему частичной экономии нефтяного топлива. Второй этап будет базироваться на производстве синтетических топлив, подобных нефтяным, производимых из угля, горючих сланцев и т.д. На этом этапе решатся проблемы долгосрочного снабжения существующего парка двигателей новыми видами топлива. На заключительном, третьем этапе будет характерен переход к новым видам энергоносителей и энергосиловых установок (работа двигателей на водороде, использование атомной энергии).

Перевод ДВС на водород и водородсодержащее топливо представляет собой сложный социально-экономический процесс, для осуществления которого потребуется крупная перестройка ряда отраслей промышленности, поэтому на первом этапе наиболее приемлемым вариантом является работа дизелей с добавками водородсодержащих топлив. Крайне ограниченные сведения в литературе об особенностях горения углеводородного топлива с добавками водорода и аммиака в дизелях не позволяют однозначно ответить на вопрос о влиянии водородсодержащих топлив на показатели рабочего процесса дизеля.

Также крайне слабо исследован вопрос о применении в дизелях синтетического жидкого топлива (СЖТ), вырабатываемого из угля. Различные литературные данные не позволяют дать однозначную оценку влияния СЖТ на рабочий процесс, в связи с тем, что его физико-химические свойства очень сильно зависят от исходного сырья и технологии переработки.

Наиболее вероятным источником моторного топлива могут служить спирты, однако следует учесть их крайне плохие моторные свойства в случае использования их в дизелях. Применяемые способы использования спиртовых топлив требуют дополнительного усложнения конструкции (установка карбюраторов, свечей зажигания или второй топливной системы), либо удорожания топлива (использование добавок, повышающих цетановое число). Наиболее оптимальным в этой ситуации может служить способ использования растворов этанола или метанола с дизельным топливом в дизелях.

Исследование влияния различных типов альтернативных топлив проводилось для нескольких типов быстроходных дизелей с различными способами смесеобразования, поэтому было необходимо получить как можно более полную информацию о протекании процессов топливоподачи, сгорания, сажеобразования, токсичности и т.д. Поэтому была разработана и внедрена автоматизированная система регистрации и обработки информации на базе ПК. Для этого комплекса был разработан пакет прикладных программ, включающий программу сбора информации с различных датчиков во время испытаний, программы обработки полученных данных по анализу индикаторной диаграммы, результатов оптического индицирования, топливоподачи и обсчета параметров режима.

Для одновременной подачи цикловой порции дизельного топлива и газа в цилиндр автором разработана специальная двухтопливная форсунка, которая дополнялась отдельной магистралью, состоящей из штуцера подвода газа и каналов в корпусе форсунки и распылителя. В канале корпуса форсунки выполнен обратный клапан, прижимаемый к седлу пружиной. В канал распылителя запрессована цилиндрическая вставка с винтовой нарезкой на поверхности, которая образует смесительно-аккумулирующую камеру, соединяющуюся с подъигольной полостью распылителя форсунки.

На базе разработанной форсунки была изготовлена топливная система дизеля, позволяющая подавать различные виды газообразных добавок к топливу.

Наиболее эффективно проводить рассмотрение особенностей рабочего процесса при использовании альтернативных топлив, обладая информацией о пространственном распределении полей концентрации сажи и температуры. На сегодняшний день существует в основном двухмерное представление температурно-концентрационной неоднородности в цилиндре дизеля. В результате была поставлена задача экспериментального исследования пространственного распределения полей температуры и концентраций сажи. В работе использовалось оригинальное экспериментальное оборудование для определения массовой концентрации сажи, основанное на оптическом индицировании цилиндров, и программно реализованные методики определения температурных полей.

Расчетные исследования растворимости газа (водорода, аммиака и др.) основывались на следующих предположениях: во-первых -процесс растворения идет в смесительно-аккумулирующей камере и распылителе форсунки; во-вторых - растворение протекает в соответствии с моделью обновления поверхности, т.е. поверхность контакта топлива с газом обновляется с частотой, равной частоте колебания давления топлива в нагнетательном трубопроводе высокого давления.

Одним из путей преодоления трудностей приготовления смесей дизельного топлива с альтернативными является применение третьего компонента - совместного растворителя дизельного топлива и спирта. Совместный растворитель должен иметь свойства дизельного топлива и спирта, т.е. его молекула должна иметь как полярные свойства, так и алифатическую составляющую для образования связей с углеводородами.

Рассчитать полные термодинамические характеристики полученного тройного раствора можно с помощью теорий UNIFAC или UNIQUAC, использующих метод решеток.

Попытки использования водорода в качестве топлива для двигателей внутреннего сгорания известны достаточно давно. Так, например, в двадцатые годы исследовали вариант использования водорода как добавки к основному топливу для двигателей внутреннего сгорания дирижаблей, что давало возможность увеличить дальность их полета.

Использование водорода в качестве топлива для ДВС представляет собой комплексную проблему, которая включает обширный круг вопросов:

- возможность перевода на водород современных двигателей;

- изучение рабочего процесса двигателей при работе на водороде;

-определение оптимальных способов регулирования рабочего процесса обеспечивающих минимальную токсичность и максимальную топливную экономичность;

-разработку системы топливоподачи обеспечивающую организацию эффективного рабочего процесса в цилиндрах ДВС;

- разработку эффективных способов хранения водорода на борту транспорта;

- обеспечение экологической эффективности применения водорода для ДВС;

-обеспечение возможности заправки и аккумулирования водорода для двигателей.

Решение этих вопросов имеет вариантный уровень, однако, общее состояние исследований по этой проблеме можно рассматривать, как реальную базу для практического применения водорода. Подтверждением этому являются практические испытания, исследования вариантных двигателей работающих на водороде. Так, например, фирма "Mazda" делает ставку на водородный роторно-поршневой двигатель.

Исследования в этой области отличаются широким спектром вариантов использования водорода для двигателей внешнего и внутреннего смесеобразования, при использовании водорода в качестве присадки, частично замещая топливо водородом, и работе двигателя только на водороде.

Обширный перечень исследований определяет необходимость их систематизации и критического анализа. Использование водорода известно в двигателях, работающих на традиционных топливах нефтяного происхождения, а также в сочетании с альтернативными топливами. Так, например, со спиртами (этиловый, метиловый) или с природным газом. Возможно использование водорода в сочетании с синтетическими топливами, мазутами и другими топливами.

Исследования этой области известны как для бензиновых двигателей, так и для дизелей, а также для других типов двигателей. Некоторые авторы работ этой тематики считают, что водород является неизбежностью и необходимо лучше подготовиться к встрече с этой неизбежностью.

Отличительной особенностью водорода является его высокие энергетические показатели, уникальные кинетические характеристики, экологическая чистота и практически неограниченная сырьевая база. По массовой энергоемкости водород превосходит традиционные углеводородные топлива в 2,5-3 раза, спирты - в 5-6 раз, аммиак - в 7 раз.

Качественное влияние на рабочий процесс ДВС водорода определяется, прежде всего, его свойствами. Он обладает более высокой диффузионной способностью, большей скоростью сгорания, широкими пределами воспламенения. Энергия воспламенения водорода на порядок меньше, чем у углеводородных топлив. Реальный рабочий цикл определяет более высокую степень совершенства рабочего процесса ДВС, лучшие показатели экономичности и токсичности.

Чтобы приспособить существующие конструкции поршневых ДВС, бензиновых и дизелей к работе на водороде, как основном топливе, необходимы определенные изменения, в первую очередь - конструкции топливоподающей системы. Известно, что применение внешнего смесеобразования приводит к уменьшению наполнения двигателя свежим окислителем, а значит и снижению мощности до 40%, из-за низкой плотности и высокой летучести водорода. При использовании внутреннего смесеобразования картина меняется, энергоемкость заряда водородного дизеля может возрастать до 12%, или может быть обеспечена на уровне, соответствующем работе дизеля на традиционном углеводородном дизельном топливе. Особенности организации рабочего процесса водородного двигателя определяются свойствами водородно-воздушной смеси, а именно: пределами воспламенения, температурой и энергией воспламенения, скоростью распространения фронта пламени, расстоянием гашения пламени.

Практически во всех известных исследованиях рабочего процесса водородного двигателя отмечается трудноконтролируемое воспламенение водородно-воздушной смеси. Воздействие на преждевременное воспламенение путем подачи воды во впускной трубопровод или путем впрыска «холодного» водорода исследованы и дают положительные результаты.

Остаточные газы и горячие точки камеры сгорания интенсифицируют преждевременное воспламенение водородно-воздушной смеси. Это обстоятельство требует дополнительных мероприятий по предупреждению неконтролируемого воспламенения. В то же время, низкая энергия воспламенения в широких пределах коэффициента избытка воздуха позволяет использовать существующие системы зажигания при переводе двигателей на водород.

Самовоспламенение водородно-воздушной смеси в цилиндре двигателя при степени сжатия, соответствующей дизелям, не происходит. Для самовоспламенения этой смеси необходимо обеспечить температуру конца сжатия не менее 1023К. Возможно, воспламенение воздушной смеси от запальной порции углеводородного топлива, за счет увеличения температуры конца сжатия применением наддува или подогревом на впуске воздушного заряда.

Водород в качестве топлива для дизелей характеризуется большой скоростью распространения фронта пламени. Эта скорость может превышать 200 м/с и вызывать возникновение волны давления, перемещающейся в камере сгорания со скоростью свыше 600 м/с. Высокая скорость сгорания водородно-воздушных смесей, с одной стороны, должна оказывать положительное влияние на повышение эффективности рабочего процесса, с другой стороны, этим предопределяются высокие значения максимального давления и температуры цикла, более высокая жесткость рабочего процесса водородного двигателя. Повышение максимального давления цикла влечет снижение моторесурса двигателя, а повышение максимальной температуры приводит к интенсивному образованию окислов азота. Возможно снижение максимального давления за счет дефорсирования двигателя или сжигания водорода по мере его подачи в цилиндр на такте рабочего хода. Снижение эмисси окислов азота до незначительного уровня возможно путем обеднения рабочей смеси или путем использования воды, подаваемой во впускной трубопровод. Так, при а>1,8 эмиссия окислов азота практически отсутствует. При подаче воды по массе в 8 раз больше, чем водорода, эмиссия окислов азота снижается в 8… 10 раз.

Список литературы

  1. http://www.sciteclibrary.ru

  2. Вагнер В.А., Матиевский «Осуществление добавки водорода к топливу и ее влияние на показатели работы дизеля» // Двигателестроение.-1985.- №2.- С. 11-13.

  3. Вагнер В.А., Синицын В.А., Батурин С.А. «Снижение сажевыделения и радиационной теплоотдачи» // Двигателестроение.-1985, №8.-С. 11-13.

  4. Вагнер В.А., Новоселов А.Л., Лоскутов А.С. Снижение дымности дизелей / Алт. краев, правление Союза НИО СССР,-Барнаул: Б.и., 1991-140 с.

  5. Магидович Л.Е., Румянцев В.В., Шабанов А.Ю. особенности тепловыделения и рабочего процесса дизеля, работающего с добавками водорода: Двигателестроение.-1983.- №9.- с.7-9.

topref.ru

Дипломная работа - Альтернативные виды топлив для автомобильных двигателей

Содержание

Часть I
1.1 Альтернативные виды топлив для автомобильных двигателей 3
1.2 Основные эксплуатационные свойства трансмиссионных масел 7
1.3 Улучшение аэродинамики автомобиля – эффективный путь экономии топлива 11
Часть II
2.1 Задача 1 12
2.2 Задача 2 14
Список литературы 18

Часть I

1.1 Альтернативные виды топлив для автомобильных двигателей

Чем больше в мире производится автомобилей, тем значительнее интерес к альтернативным бензину видам топлива, при сгорании которых выделяется меньше вредных веществ. Во многих странах все более популярным становится биологическое топливо, изготавливаемое из растительного сырья — рапса, конопли, бананов, бобовых, цитрусовых. В шести государствах ЕС, а также в США, Канаде, Бразилии, Малайзии такое биологическое топливо производят в промышленных масштабах, но все же его доля в топливном балансе не превышает 0,3%.

До конца XX столетия двигатель внутреннего сгорания остаётся основной движущей силой автомобиля. В связи с этим единственный путь решения энергетической проблемы автомобильного транспорта – это создание альтернативных видов топлива. Новое горючее должно удовлетворить очень многим требованиям: иметь необходимые сырьевые ресурсы, низкую стоимость, не ухудшать работу двигателя, как можно меньше выбрасывать вредных веществ, по возможности сочетаться со сложившейся системой снабжения топливом и др.

Нефть сегодня — основной и наиболее востребованный энергоресурс.

В последнее время большое количество зарубежных научно-исследовательских центров моторостроительных фирм проводят исследования, направленные на экономию топлива и замену традиционных жидких углеводородных топлив новыми видами.

Альтернативные виды топлива можно классифицировать следующим образом:

— по составу: углеводородно-кислотные (спирты), эфиры, эстеры, водородные топлива с добавками;

— по агрегатному состоянию: жидкие, газообразные, твердые;

— по объемам использования: целиком, в качестве добавок;

— по источникам сырья: из угля, торфа, сланцев, биомассы, горючего газа, электроэнергии и др.

К альтернативным видам топлива относятся:

1) природный газ

Природный газ в большинстве стран является наиболее распространенным видом альтернативного моторного топлива. Природный газ в качестве моторного топлива может применяться как в виде компримированного, сжатого до давления 200 атмосфер, газа, так и в виде сжиженного, охлажденного до -160°С газа. В настоящее время наиболее перспективным является применение сжиженного газа (пропан-бутан). В Европе это топливо называется LPG (Liquefiedpetroleumgas — сжиженный бензиновый газ). В то время как сжатый газ (метан) находится в баках под давлением 200 бар, что само по себе представляет повышенную опасность, LPG сжиживается при давлении 6-8 бар. В Европе сегодня насчитывается около 2,8 млн машин, работающих на LPG.

2) газовый конденсат

Использование газовых конденсатов в качестве моторного топлива сведено к минимуму из-за следующих недостатков: вредное воздействие на центральную нервную систему, недопустимое искрообразование в процессе работы с топливом, снижение мощности двигателя (на 20%), повышение удельного расхода топлива.

3) диметилэфир

Диметилэфир является производной метанола, который получается в процессе синтетического преобразования газа в жидкое состояние. Существуют разработки по переоборудованию дизельных двигателей под диметилэфир. При этом существенно улучшаются экологические характеристики двигателя.

В отличие от сжиженного природного газа, диметилэфир менее конкурентоспособен, в основном по причине того, что теплотворная способность на тонну диметилэфира на 45% ниже теплотворности на тонну сжиженного природного газа. Также для производства диметилэфира требуется не только более высокий уровень предварительных капиталовложений, но и больший объем сырьевого газа для производства продукта с эквивалентной теплотворной способностью.

4) э танол и метанол

Этанол (питьевой спирт), обладающий высоким октановым числом и энергетической ценностью, добывается из отходов древесины и сахарного тростника, обеспечивает двигателю высокий КПД и низкий уровень выбросов и особо популярен в теплых странах.

Стоимость этанола в среднем гораздо выше себестоимости бензина.

Метанол как моторное топливо имеет высокое октановое число и низкую пожароопасность. Данные обстоятельства обеспечивают его широкое применение на гоночных автомобилях. Метанол может смешиваться с бензином и служить основой для эфирной добавки — метилтретбутилового эфира, который в настоящее время замещает в США большее количество бензина и сырой нефти, чем все другие альтернативные топлива вместе взятые.

5) с интетический бензин

Сырьем для его производства могут быть уголь, природный газ и другие вещества. Наиболее перспективным считается синтезирование бензина из природного газа. Из 1 м3 синтез-газа получают 120-180 г синтетического бензина. За рубежом, в отличие от России, производство синтетических моторных топлив из природного газа освоено в промышленном масштабе. Однако в настоящее время синтетические топлива из природного газа в 1,8-3,7 раза (в зависимости от технологии получения) дороже нефтяных.

6) э лектрическая энергия

Заслуживает внимания применение электроэнергии в качестве энергоносителя для электромобилей. Кардинально решается вопрос, связанный с токсичностью отработанных газов, появляется возможность использования нефти для получения химических веществ и соединений. К недостаткам электроэнергии как вида электроносителя можно отнести: ограниченный запас хода электромобиля, увеличенные эксплуатационные расходы, высокая первичная стоимость, высокая стоимость энергоемких аккумуляторных батарей.

7) топливные элементы

Топливные элементы — это устройства, генерирующие электроэнергию непосредственно на борту транспортного средства, — в процессе реакции водорода и кислорода образуются вода и электрический ток. В качестве водородосодержащего топлива, как правило, используется либо сжатый

водород, либо метанол. к недостаткам применения топливных элементов следует отнести повышенную взрывоопасность водорода и необходимость выполнения специальных условий его хранения, а также высокую себестоимость получения водорода.

8) биодизельное топливо

Применение биодизельного топлива связано, в первую очередь, со значительным снижением эмиссии вредных веществ в отработанных газах (на 25-50%), улучшением экологической обстановки в регионах интенсивного использования дизелей (города, реки, леса, открытые разработки угля (руды), помещения парников и т.п.) — cодержание серы в биодизельном топливе составляет 0,02%.

9) биогаз

Представляет собой смесь метана и углекислого газа и является продуктом метанового брожения органических веществ растительного и животного происхождения. Биогаз относится к топливам, получаемым из местного сырья. Хотя потенциальных источников для его производства достаточно много, на практике круг их сужается вследствие географических, климатических, экономических и других факторов.

Биогаз как альтернативный энергоноситель может служить высококалорийным топливом. Предназначен для улучшения технико-эксплуатационных и экологических показателей работы двигателя внутреннего сгорания (ДВС) и стационарных энергоустановок. Биогаз, представляющий собой продукты брожения отходов биологической деятельности человека и животных, содержит приблизительно 68% СН4, 2% Н2 и до 30% СО2. После отмывки от углекислоты этот газ является достаточно однородным топливом, содержащим до 80% метана с теплотворной способностью более 25 МДж/м3. Применение биогаза в качестве топлива для ДВС осуществляется путем использования серийно выпускаемой топливной аппаратуры для природного газа с коррекцией соотно-шения “топливо-воздух”.

10) отработанное масло

В настоящее время на ряде предприятий различных стран мира весьма эффективно работают установки, преобразующие отработанное масло (моторное, трансмиссионное, гидравлическое, индустриальное, трансформаторное, синтетическое и т. д.) в состояние, которое позволяет полностью использовать его в качестве дизельного или печного топлива. Установка подмешивает высокоочищенные (в установке) масла в соответствующее топливо, в точно заданной пропорции, с образованием навсегда стабильной, неразделяемой топливной смеси. Полученная смесь имеет более высокие параметры по чистоте, обезвоживанию и теплотворной способности, чем дизельное топливо до его модификации в установке.

11) в одород как альтернативное топливо

Водород является эффективным аккумулятором энергии. Применение водорода в качестве топлива возможно в разнообразных условиях, что может дать существенный вклад в мировую энергетику, когда ресурсы ископаемого топлива будут близки к полному истощению. По сравнению с бензином и дизельным топливом водород более эффективен и меньше загрязняет окружающую среду. Взрывоопасность водорода резко снижается с применением специальных присадок (например, добавка 1% пропилена делает Н2 безопасным).

12) с пирты

Среди альтернативных видов топлива в первую очередь следует отметить спирты, в частности метанол и этанол, которые можно применять не только как добавку к бензину, но и в чистом виде. Их главные достоинства – высокая детонационная стойкость и хороший КПД рабочего процесса, недостаток – пониженная теплотворная способность, что уменьшает пробег между заправками и увеличивает расход топлива в 1,5-2 раза по сравнению с бензином. Кроме того, из-за плохой испаряемости метанола и этанола затруднён запуск двигателя.

Использование спиртов в качестве автомобильного топлива требует незначительной переделки двигателя. Например, для работы на метаноле достаточно перерегулировать карбюратор, установить устройство для стабилизации запуска двигателя и заменить некоторые подверженные коррозии материалы более стойкими. Учитывая ядовитость чистого метанола, необходимо предусмотреть тщательную герметизацию топливоподающей системы автомобиля.

1.2 Основные эксплуатационные свойства трансмиссионных масел

Трансмиссионные масла предназначены для применения в узлах трения агрегатов трансмиссий легковых и грузовых автомобилей, автобусов, тракторов, тепловозов, дорожно-строительных и других машин, а также в различных зубчатых редукторах и червячных передачах промышленного оборудования.

Трансмиссионные масла представляют собой базовые масла, легированные различными функциональными присадками.

В качестве базовых компонентов используют минеральные, частично или полностью синтетические масла.

Общие требования

В агрегатах трансмиссий смазочное масло является неотъемлемым элементом конструкции. Способность масла выполнять и длительно сохранять функции конструкционного материала определяется его эксплуатационными свойствами. Общие требования к трансмиссионным маслам определяются конструкционными особенностями, назначением и условиями эксплуатации агрегата трансмиссии.

Трансмиссионные масла работают в режимах высоких скоростей скольжения, давлений и широком диапазоне температур. Их пусковые свойства и длительная работоспособность должны обеспечиваться в интервале температур от -60 до +150 °С. Поэтому к трансмиссионным маслам предъявляют довольно жесткие требования.

Основные функции трансмиссионных масел:

· предохранение поверхностей трения от износа, заедания, питтинга и других повреждений;

· снижение до минимума потерь энергии на трение;

· отвод тепла от поверхностей трения;

· снижение шума и вибрации зубчатых колес, уменьшение ударных нагрузок;

· масла не должны быть токсичными.

Для обеспечения надежной и длительной работы агрегатов трансмиссий смазочные масла должны обладать определенными характеристиками:

· иметь достаточные противозадирные, противоизносные и противопиттинговые свойства;

· обладать высокой антиокислительной стабильностью;

· иметь хорошие вязкостно-температурные свойства;

· не оказывать коррозионного воздействия на детали трансмиссии;

· иметь хорошие защитные свойства при контакте с водой;

· обладать достаточной совместимостью с резиновыми уплотнениями;

· иметь хорошие антипенные свойства;

· иметь высокую физическую стабильность в условиях длительного хранения.

Все эти свойства трансмиссионного масла могут быть обеспечены путем введения в состав базового масла соответствующих функциональных присадок: депрессорной, противозадирной, противоизносной, антиокислительной, антикоррозионной, противоржавейной, анти-пенной и др.

Название не означает, что любой агрегат, относящийся к автомобильной трансмиссии, смазывается именно трансмиссионным маслом. У большинства переднеприводных легковых машин в коробку передач, совмещенную с главной передачей, изготовители предписывают заливать моторное масло. Шестерни в таких агрегатах только цилиндрические, поэтому опасность задиров невелика. Для автоматических коробок не годится ни трансмиссионное, ни моторное. Эти устройства специфичны, для их работы требуется маловязкая жидкость, которую в международной практике принято называть ATF (Automatic Transmission Fluid). Что же касается обычных легковых и грузовых автомобилей с классической компоновкой, а также полноприводных и некоторых переднеприводных, то в их агрегатах используются исключительно трансмиссионные масла.

В нашей стране характеристики и обозначения этих смазочных материалов прежде диктовались соответствующими советскими стандартами (ГОСТами), но теперь, в условиях широкого проникновения импортных продуктов, преобладающей стала международная классификация.

Вязкость

Сегодня повсюду в мире пользуются классификацией вязкости SAE J306, разработанной в США. Ее нормативы и система индексации представлены в соответствующей таблице 1.1.

Таблица 1.1

Требования к вязкости трансмиссионных масел
Свойства масел Класс вязкости
75W 80W 85W 90 140 250
Вязкость кинематическая при 100 С, кв.мм/сmin max
Макс. температура ( С) при вязкости 150 000 сПз -40 -26 -12 - - -
Температура потери подвижности, ( С), не выше * -45 -35 -20 - - -
* Показатель по американской военной спецификации MIL-L-2105D, ставший ныне общепринятым

Классы вязкости, у которых числовой показатель сопровождается буквой «W» (winter — зима), относятся к сезонным маслам, применяемым в холодное время года. Без него — к сезонным для теплого летнего времени.

В эксплуатационной практике сезонные трансмиссионные масла неудобны, да и экономически невыгодны. Срок службы масел в коробках и мостах достаточно дорог, а сезонная замена вынуждается избавляться от продукта, который далеко не выработал свой ресурс. Поэтому и преимущественное распространение получили так называемые загущенные (в обиходе — всесезонные) масла.

Такой продукт сочетает в себе свойства двух сортов масла — летнего и зимнего, маркировки которых присутствуют в его индексе. Сам же индекс складывается из этих двух обозначений, написанных через дефис (75W-90, 85W0140 и т.п.).

Эксплуатационные свойства

Разработанная американским институтом API классификация содержит комплексную оценку трансмиссионных масел по эксплуатационным свойствам. Сегодня она принята повсеместно (табл. 1.2). Пять категорий, предусмотренных системой, показывают применяемость и качественный уровень продуктов, помечаемых соответствующим индексом. Классификация ныне действующего отечественного ГОСТа практически заключается только в буквах, стоящих в начале индекса.

Таблица 1.2

Эксплуатационные свойства трансмиссионных масел
Категория по API Тип Применение Соответствие ГОСТ
GL-1 Минеральное масло без присадок ТМ1
GL-2 Содержит жирные продуты Червячные передачи, индустриальное оборудование ТМ2
GL-3 Содержит противозадирные присадки Ручные КПП, спирально-конические передачи (КПП и задние мосты грузовых автомобилей) ТМ3
GL-4 Содержит противозадирные, противоизносные и другие присадки Ручные КПП, спирально-конические передачи ТМ4
GL-5 Содержит противозадирные, противоизносные и другие присадки Гипоидные и другие типы передач (КПП и ведущие мосты легковых автомобилей) ТМ5

1.3 Улучшение аэродинамики автомобиля – эффективный путь экономии топлива

Форма автомобиля играет немаловажную роль в экономии топлива. Но это еще не все. Сопротивлению воздуха помогают загруженный багажник на крыше, различные дополнительно установленные наружные элементы. Открытые окна на скорости уже в 50 км/ч повышают расход. А при скорости в 90 км/ч будьте готовы сжечь дополнительно процентов восемь топлива.

Аэродинамика автомобилей изучается двумя основными методами — испытаниями в аэродинамической трубе и компьютерным моделированием. Аэродинамические трубы для испытания автомобилей иногда оснащаются подвижной дорожкой, имитирующей движущееся дорожное полотно. Кроме того, колеса испытываемого автомобиля могут приводятся во вращение. Эти меры принимаются для того, чтобы учесть влияние дорожного полотна и вращающихся колес на потоки воздуха.

Современная автомобильная аэродинамика решает множество задач, в том числе и задачу экономии топлива. Специалисты должны не только добиться минимального сопротивления воздуха, но и отследить величину и распределение по осям подъемной силы, ведь нынешние автомобили достигают тех скоростей, на которых самолеты уже отрываются от земли. Необходимо предусмотреть и доступ воздуха для охлаждения двигателя и тормозных дисков, продумать вентиляцию салона, расположив в нужных местах отверстия для забора и вытяжки воздуха. Аэродинамика определяет уровень шумов в салоне, заботится о том, чтобы захватывающие грязь воздушные потоки не попадали на стекла, зеркала, фонари и ручки дверей. С ростом скорости не должно меняться и качество очистки лобового стекла.

Зная аэродинамические параметры автомобиля, легко оценить его экономичность на высоких скоростях.

Часть II

2.1 Задача 1

Определить требуемое количество топлива и указать марку автомобильного бензина по ГОСТ Р 51105-97 и дизтоплива по ГОСТ 305-82

Таблица 2.1

Марка автомобиля Линейная форма расхода топлива, л/100 км Пробег, км Работа, ткм.
Москвич-2141 10 140 -

Автомобиль работает в городе с населением свыше 1 млн. человек.

Решение

В общем случае нормативный расход автомобильного бензина, дизельного топлива и газового топлива при расчете с водителями, выполняющими различные виды перевозок, определяются по формуле:

QН = К1 * L/100*(1±D) + К2 *Р/100 + К3 m, л

Где QН – нормативный расход топлива, л;

L- пробег автомобиля или поезда, км;

К1 — базовая норма расхода топлива на пробег, л/100 км;

К2 — норма расхода топлива на транспортную работу и на дополнительную массу прицепа или прицепа, л/100 м;

К3 — норма расхода топлива на ездку с грузом, л/ездка;

P — объем транспортной работы, ткм;

m — количество ездок с грузом;

D — поправочный коэффициент (суммарная относительная надбавка или снижение) к нормам в долях единицы.

Для грузовых таксомоторов, легковых автомобилей, автомобилей, а также грузовых автомобилей, выполняющих транспортную работу не учитываемую в ткм (с почасовой оплатой)

QН = К1 *L/100 * (1±D), л

L = 140 км;

К1 = 10 л/100 км;

Линейные нормы расхода топлива повышаются при условии работы автотранспорта в черте города, требующей частых остановок – до 10%.

D = 10% = +0,1

Следовательно QН = 10*140/100*(1+0,1) = 15,4 л.

Для данного автомобиля используют автомобильный бензин марки АИ-92.

2.2 Задача 2

Автотранспортное предприятие имеет 1000 автомобилей, в том числе 700 с бензиновыми и 300 с дизельными двигателями. Из 700 бензиновых автомобилей (ГАЗ-302, Газ-3307 и их модификаций) – 200 находятся в эксплуатации менее 3 лет; 300 – от 3 до 8 лет и 200 – свыше 8 лет. Дизельные (МАЗ-5335, МАЗ-53352, МАЗ-504) – соответственно – 50, 200, 50 автомобилей.

Решение

Групповые нормы расхода смазочных материалов рассчитываются на основе индивидуальных норм расхода масла и специальных жидкостей, с учетом состава, структуры парка подвижного состава и времени нахождения автомобилей в эксплуатации отдельно на каждый вид масла (моторные, трансмиссионные, специальные и т.п.) или смазки:

НМ = (K1 *NM1 *AC1 + K2 *NM2 *AC2 + K3 *NM3 *AC3 ) / (AC1 + AC2 + AC3 ), л/100 л,

где НМ – групповая норма расхода масла для автопарка, л/100 л расхода топлива;

К1, К2, К3 – коэффициенты учитывающие время нахождения в эксплуатации, К1 = 0,5, К2 = 1, К3 = 1,2;

NM1, NM2, NM3 – индивидуальная для данной возрастной группы автомобилей норма расхода масла (смазки) по табл.2.2. Примем для всех возрастных групп одинаковую норму;

AC1, AC2, AC3 – количество автомобилей данной возрастной группы (до 3 лет, от 3 до 8 лет, свыше 8 лет).

Таблица 2.2

Виды и сорта масел (смазок) Временная норма расхода смазочных материалов в л (смазок в кг) на 100 л общего расхода топлива для:
легковых, грузовых автомобилей и автобусов, работающих на бензине и жиженном газе грузовых автомобилей и автобусов, работающих на дизельном топливе внедорожных автомобилей-самосвалов, работающих на дизтопливе
Моторные 2,4 3,2 5
Трансмиссионные 0,3 0,4 0,5
Специальные 0,1 0,1 1
Пластические смазки 0,2 0,3 0,3

Для бензиновых автомобилей:

1) моторные

К1 = 0,5, К2 = 1, К3 = 1,2;

NM1 = NM2 = NM3 = 2,4;

AC1 = 200, AC2 = 300, AC3 = 200;

НМ = (0,5*2,4*200 + 1*2,4*300 + 1,2*2,4*200) / (200 + 300 + 200) = 2,2 л/100 л;

2) трансмиссионные

К1 = 0,5, К2 = 1, К3 = 1,2;

NM1 = NM2 = NM3 = 0,3;

AC1 = 200, AC2 = 300, AC3 = 200;

НМ = (0,5*0,3*200 + 1*0,3*300 + 1,2*0,3*200) / (200 + 300 + 200) = 0,28 л/100 л;

3) специальные

К1 = 0,5, К2 = 1, К3 = 1,2;

NM1 = NM2 = NM3 = 0,1;

AC1 = 200, AC2 = 300, AC3 = 200;

НМ = (0,5*0,1*200 + 1*0,1*300 + 1,2*0,1*200) / (200 + 300 + 200) = 0,09 л/100 л;

4) пластические смазки

К1 = 0,5, К2 = 1, К3 = 1,2;

NM1 = NM2 = NM3 = 0,2;

AC1 = 200, AC2 = 300, AC3 = 200;

НМ = (0,5*0,2*200 + 1*0,2*300 + 1,2*0,2*200) / (200 + 300 + 200) = 0,18 л/100 л.

Для дизельных автомобилей:

1) моторные

К1 = 0,5, К2 = 1, К3 = 1,2;

NM1 = NM2 = NM3 = 3,2;

AC1 = 50, AC2 = 200, AC3 = 50;

НМ = (0,5*3,2*50 + 1*3,2*200 + 1,2*3,2*50) / (50 + 200 + 50) = 3,04 л/100 л;

2) трансмиссионные

К1 = 0,5, К2 = 1, К3 = 1,2;

NM1 = NM2 = NM3 = 0,4;

AC1 = 50, AC2 = 200, AC3 = 50;

НМ = (0,5*0,4*50 + 1*0,4*200 + 1,2*0,4*50) / (50 + 200 + 50) = 0,38 л/100 л;

3) специальные

К1 = 0,5, К2 = 1, К3 = 1,2;

NM1 = NM2 = NM3 = 0,1;

AC1 = 50, AC2 = 200, AC3 = 50;

НМ = (0,5*0,1*50 + 1*0,1*200 + 1,2*0,1*50) / (50 + 200 + 50) = 0,095 л/100 л;

4) пластические смазки

К1 = 0,5, К2 = 1, К3 = 1,2;

NM1 = NM2 = NM3 = 0,3;

AC1 = 50, AC2 = 200, AC3 = 50;

НМ = (0,5*0,3*50 + 1*0,3*200 + 1,2*0,3*50) / (50 + 200 + 50) = 0,285 л/100 л.

Всего по автопарку:

1) моторные НМ = 5,24 л/100 л;

2) трансмиссионные НМ = 0,66 л/100 л;

3) специальные НМ = 0,185 л/100 л;

4) пластические смазки НМ = 0,465 л/100 л;

Список литературы

1. Аксёнов И.Я., Аксёнов В.И. Транспорт и охрана окружающей среды. – М.: Транспорт, 1986.

2. autogear.ru/toyota_repair/transmission/3882,print/

3. www.petroltrade.ru/n_transmmasl.html

4. www.autotechnic.su/technology/aero/aero.html

5. Википедия

6. ГОСТ Р 51102-97

www.ronl.ru


Смотрите также