66. Норма контрольной опрессовки наружных газопроводов всех давлений:
В данной инструкции изложены основные функции сайта, и как ими пользоваться
Здравствуйте,
Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете функции каждой кнопки.
Мы начнем сверху, продвигаясь вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии все кнопки располагаются, исключительно сверху вниз.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» — отправит вас на первую страницу.
«Разделы сайта» — выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.
На странице билетов добавляется кнопка «Билеты», нажимая — разворачивается список билетов, где выбираете интересующий вас билет.
«Полезные ссылки» — нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.
В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.
- Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
- Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
- Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
- Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.
Следующая функция «Поиск по сайту» — для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.
С уважением команда Тестсмарт.
82. Норма контрольной опрессовки наружных газопроводов всех давлений:
В данной инструкции изложены основные функции сайта, и как ими пользоваться
Здравствуйте,
Вы находитесь на странице инструкции сайта Тестсмарт.
Мы начнем сверху, продвигаясь вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии все кнопки располагаются, исключительно сверху вниз.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» — отправит вас на первую страницу.
«Разделы сайта» — выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.
На странице билетов добавляется кнопка «Билеты», нажимая — разворачивается список билетов, где выбираете интересующий вас билет.
«Полезные ссылки» — нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.
В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.
- Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
- Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
- Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
- Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.
Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.
На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.
С уважением команда Тестсмарт.
Норма контрольной опрессовки наружных газопроводов всех давлений:
Ответы Ростехнадзора по промышленной безопасности на тестовые задания к аттестационным вопросам по курсу — Б.7.1. Эксплуатация систем газораспределения и газопотребления. Вопросы с правильными ответами подтверждаются выдержкой из нормативной документации по которым составлены тесты Олимпокс.
Норма контрольной опрессовки наружных газопроводов всех давлений:
• Величина давления воздуха (инертного газа) при опрессовке 0,01 МПа. падение давления не должно превышать 0,0006 МПа за 1 час
• Величина давления воздуха (инертного газа) при опрессовке 0,02 МПа. падение давления не должно превышать 0,0001 МПа за 1 час
• Величина давления воздуха (инертного газа) при опрессовке 0,02 МПа. падение давления не должно превышать 0,0006 МПа за 1 час
• Величина давления воздуха (инертного газа) при опрессовке 0,01 МПа. падение давления не должно превышать 0,0001 МПа за 1 час
Выдержка из нормативной документации:
Приказ Ростехнадзора от 15.11.2013 N 542 «Об утверждении федеральных норм и правил в области промышленной безопасности «Правила безопасности сетей газораспределения и газопотребления»
159. Наружные газопроводы всех давлений подлежат контрольной опрессовке давлением 0,02 мегапаскаля. Падение давления не должно превышать 0,0001 мегапаскаля за один час.
Наружные газопроводы с давлением природного газа до 0,005 мегапаскаля включительно с гидрозатворами подлежат контрольной опрессовке давлением 0,004 мегапаскаля. Падение давления не должно превышать 0,00005 мегапаскаля за десять минут.
Внутренние газопроводы промышленных, сельскохозяйственных и других производств, котельных, а также оборудование и газопроводы ГРП (ГРПБ), ШРП и ГРУ подлежат контрольной опрессовке давлением 0,01 мегапаскаля. Падение давления не должно превышать 0,0006 мегапаскаля за один час.
Результаты контрольной опрессовки должны записываться в нарядах-допусках на выполнение газоопасных работ.
На сайте Тест24.ру подготовлены и размещены тесты по промышленной безопасности актуальные на 2020 год. Вы можете пройти онлайн тестирование по курсам Б7.1, Б 7.2., Б 7.6, Б 7.8, Б 7.9, для подготовки к сдаче экзамена на едином портале тестирования Ростехнадзора, для руководителей и специалистов по блоку — Б.7. Требования промышленной безопасности на объектах газораспределения и газопотребления.
82. Норма контрольной опрессовки наружных газопроводов всех давлений:
В данной инструкции изложены основные функции сайта, и как ими пользоваться
Здравствуйте,
Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете функции каждой кнопки.
Мы начнем сверху, продвигаясь вниз, слева направо.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» — отправит вас на первую страницу.
«Разделы сайта» — выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.
На странице билетов добавляется кнопка «Билеты», нажимая — разворачивается список билетов, где выбираете интересующий вас билет.
«Полезные ссылки» — нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.
В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.
- Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
- Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
- Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
- Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.
Следующая функция «Поиск по сайту» — для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.
На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.
С уважением команда Тестсмарт.
99. Какова норма контрольной опрессовки наружных и внутренних газопроводов паровой и жидкой фазы СУГ ГНС и ГНП, резервуаров СУГ, газопроводов обвязки?
В данной инструкции изложены основные функции сайта, и как ими пользоваться
Здравствуйте,
Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете функции каждой кнопки.
Мы начнем сверху, продвигаясь вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии все кнопки располагаются, исключительно сверху вниз.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» — отправит вас на первую страницу.
«Разделы сайта» — выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.
На странице билетов добавляется кнопка «Билеты», нажимая — разворачивается список билетов, где выбираете интересующий вас билет.
«Полезные ссылки» — нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.
В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.
- Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
- Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
- Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
- Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.
Следующая функция «Поиск по сайту» — для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.
На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.
С уважением команда Тестсмарт.
81. Норма контрольной опрессовки внутренних газопроводов промышленных, сельскохозяйственных и других производств, котельных, оборудования и газопроводов газорегуляторных пунктов (ГРП), блочных газорегуляторных пунктов (ГРПБ), шкафных регуляторных пунктов (ШРП), газорегуляторных установок (ГРУ):
В данной инструкции изложены основные функции сайта, и как ими пользоваться
Здравствуйте,
Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете функции каждой кнопки.
Мы начнем сверху, продвигаясь вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии все кнопки располагаются, исключительно сверху вниз.
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы, попадете на главную страницу.
«Главная» — отправит вас на первую страницу.
«Разделы сайта» — выпадет список разделов, нажав на один из них, попадете в раздел интересующий Вас.
На странице билетов добавляется кнопка «Билеты», нажимая — разворачивается список билетов, где выбираете интересующий вас билет.
«Полезные ссылки» — нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.
В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.
- Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
- Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
- Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
- Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.
Следующая функция «Поиск по сайту» — для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.
На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.
С уважением команда Тестсмарт.
контрольные работы по испытанию герметичности
Один из самых важных этапов в организации газификации частного дома – опрессовка газопровода, позволяющая убедиться, что система сделана правильно еще до ее подключения к основной газовой магистрали.
Контрольные испытания проводят представители газовой службы. Однако собственнику дома не помешает знать порядок и правила проведения работ, согласны? Информация поможет лучше понять особенности конструкции газопровода, своевременно выявить слабые места и возможные сбои в работе магистрали.
В статье подробно описан порядок проведения технической проверки, требования к документальному оформлению подключения газопровода и нюансы опрессовки частной газовой сети.
Содержание статьи:
Выполнение технической проверки
Контрольная опрессовка газовых сетей выполняется не только перед запуском новой ветки, но также и после ее ремонта. Плановую опрессовку выполняют перед тем, как ввести газопровод в эксплуатацию.
Эту же процедуру повторяют при плановых проверках состояния системы. В ходе ее проведения можно обнаружить дефекты, которые уже имелись в трубах и огрехи, допущенные при выполнении сварочных работ. Только после полного устранения всех недостатков допускается использование газовой системы.
Перед началом процедуры рекомендуется выполнить техническую проверку состояния газопровода. Существуют инструкции и приборы, позволяющие провести такое обследование с помощью технических средств.
Проверка осуществляется бригадой, два оператора исследуют и оценивают состояние изоляционного покрытия, еще один специалист фиксирует места возможного нарушения герметичности.
При этом необходимо обследовать не только трубы и арматуру, но также колодцы и газовые трубки, убедиться в отсутствии загазованности. Если выявлена хотя бы малейшая утечка, состояние конструкции объявляют аварийным и немедленно приступают к устранению проблемы.
Операторы, которые проводят обследование труб магистрали, должны соблюдать определенные правила безопасности:
- проверяющим следует надевать специальные жилеты, особенно при работе рядом с автомагистралями;
- плановые проверки рядом с дорогами осуществляют в периоды, когда интенсивность движения минимальная;
- если обнаружено разрушение изоляционного слоя, поврежденное место следует сразу же осмотреть, обратив внимание не только на состояние изоляции, но и на целостность газовой трубы.
Для подробного обследования может понадобиться рытье шурфа. В некоторых местах из-за наличия инфраструктуры использование исследовательской техники может быть затруднено. В такой ситуации создание шурфа понадобится обязательно, чтобы убедиться в целостности изоляционного покрытия или для выявления мест его разрушения.
Перед началом опрессовки необходимо выполнить проверку состояния газопровода и оборудования с помощью технических средств, чтобы предварительно выявить места возможных повреждений
Еще один способ исследования состояния газопровода – бурение скважины. В такое отверстие вводят приборы, которые анализируют состояние воздуха и позволяют выявить возможную утечку газа.
Во время проведения такого рода процедур следует помнить, что использование открытого огня ближе, чем на расстоянии в три метра от заполненных газом коммуникаций, недопустимо.
Подготовительные работы и мероприятия
Опрессовка участка газовой сети считается наиболее технологичным методом выявления недостатков конструкции. Перед началом этой процедуры необходимо выполнить подготовительные мероприятия. Это требуется в соответствии с требованиями техники безопасности.
Перед тем, как приступить к опрессовке газовой системы, ответственный за выполнение работ должен изучить техническую документацию и сверить ее с фактическим расположением газопровода (+)
Сначала следует подробно изучить техническую документацию, относящуюся к обследуемому объекту.
На основании этой информации определяется место расположения таких элементов, как:
- заглушка;
- набор контрольно-измерительных приборов;
- набор специальных датчиков;
- компрессор.
С сотрудниками, выполняющими работы по опрессовке, проводится обсуждение регламента предстоящих процедур, а также инструктаж по соблюдению необходимых правил безопасности. Проведение всех контрольных мероприятий перед пуском новой газопроводной системы в эксплуатацию осуществляется сотрудниками местного газового хозяйства.
Основанием для выполнения опрессовки перед пуском нового газопровода является соответствующее заявление владельца частного дома или иного газифицируемого объекта. Все остальные работы по также выполняются работниками газовой службы.
Перед началом опрессовочных работ газовую систему сначала продувают струей воздуха под давлением, чтобы удалить из труб скопившиеся загрязнения
Опрессовочные работы следует проводить в присутствии сотрудников газового хозяйства, а также представителей предприятий, выполнявших монтажные работы по обустройству наружной и внутренней газовой сети.
У специалистов при этом должен быть исполнительный чертеж конструкции. Все мероприятия выполняются в соответствии с инструкцией по эксплуатации газопровода. Перед опрессовкой необходимо продуть газопровод воздухом, чтобы очистить его от возможных загрязнений.
Разрешение на пуск новой газовой сети может быть получено только после успешной опрессовки. Всей процедурой должен руководить только один человек, на которого возлагается ответственность за безопасное проведение работ. Этот специалист должен обладать соответствующей квалификацией.
За установку и снятие газовых заглушек ответственность обычно несёт мастер газового участка, а выполняют эти операции сотрудники с соответствующим допуском и квалификацией не ниже четвёртого разряда.
Ответственный за проведение опрессовочных работ специалист сначала выполняет сверку предоставленных исполнительных чертежей и фактическое расположение элементов сети, всех устройств и . Данные должны совпадать.
Затем выполняется контрольный осмотр газового оборудования, проверяется, насколько корректно работают .
После этого следует убедиться в том, что защитные устройства работают нормально, сигнализация правильно подключена, блокировка системы выполняется в соответствии с настройками. Также проверяется состояние и функционирование ПЗК котла, горелок и т.п.
Все операции по контрольной опрессовке газопровода должны быть оформлены путем выдачи допуска-наряда, который оформляется дополнительно. Такой документ может быть выдан только квалифицированным специалистам.
Контроль герметичности газопровода
Только после получения удовлетворительного результата по описанным выше процедурам можно приступать к выполнению опрессовочных работ. Для этого систему подключают к специальному компрессору и заполняют трубы воздухом под давлением. Затем конструкция обследуется на предмет выявления недостатков.
Для выполнения опрессовочных работ в систему нагнетают воздух. Если необходимый уровень давления удерживается в течение определенного времени, результат проверки можно считать положительным
Если недостатки выявлены, их устраняют, если же система полностью герметична, её подключают к общей газовой магистрали. В процессе подготовки придётся снимать и устанавливать специальные заглушки, поворотные элементы могут быть заменены резьбовыми соединениями.
В целом порядок проведения опрессовочных работ должен состоять из следующих операций:
- Для отключения от магистрали участка, который будет подвергнут процедуре, нужно перекрыть вентиль высокого давления и кран сети низкого давления.
- После этого вставляются заглушки.
- При разрыве фланца используются шунтирующие перемычки.
- Для стравливания имеющегося внутри системы газа необходимо использовать специальный рукав из прорезиненной ткани или выполнить эту операцию через свечу, которая обычно установлена на конденсатосборнике.
- Газ сжигается, а если нет возможности сделать это безопасно, перемещается для безопасного хранения.
- Теперь нужно установить переходники для присоединения манометров и компрессора.
- Для опрессовки систем повышенной протяженности рекомендуется дополнительно использовать ручные насосы.
Обычно выполнение контрольной опрессовки производят под рабочим давлением 0,2 мПа. Рекомендуемый предел давления при этом составляет 10 даПа/ч. На некоторых производствах для опрессовки внутреннего газопровода рекомендуется использовать давление 0,1 мПа, а допустимый уровень падения показателя составляет 60 даПа/ч или менее.
Опрессовку газовых труб внутри дома производят по всей протяженности системы от вентиля на входе в дом, до подключения к потребителям газа, например, к котлу
На объектах непроизводственного назначения, в том числе и при обустройстве газопроводов в жилых помещениях, контрольную опрессовку выполняют под давлением 500 даПа/ч. Допустимое снижение давления в этих случаях составляет 20 даПа за пять минут. Резервуары, предназначенные для хранения сжиженного газа, опрессовывают при 0,3 МПа/ч.
Если остается стабильным в течение контрольного времени, то результат опрессовки считается положительным. Если такая ситуация достигнута, то специалисты снимают шланги, соединяющие систему с воздуховодом.
При этом необходимо проконтролировать состояние запорных коммуникаций, установленных на участке между воздуховодом и газопровода. После этого устанавливают заглушки на штуцерах.
Если же во время опрессовки достичь стабильных показателей давления в системе не удалось, результат процедуры считают отрицательным. В этом случае выполняют техническое обследование системы, чтобы выявить недостатки и устранить их. После этого процедуру повторяют, чтобы убедиться в качестве проведённых работ.
Для опрессовки рекомендуется использовать манометры с достаточно высокой степенью точности, чтобы получить корректные результаты во время проверки газопровода на герметичность
Только после того, как в системе установится стабильное давление, опрессовку можно считать завершенной. Если проверка состояния системы оказалась неудовлетворительной, разрешение на подключение к магистрали не будет выдано.
Причиной для отказа во вводе газопровода в эксплуатацию могут стать и нарушения, допущенные в ходе проведения опрессовки.
После того, как опрессовка завершена, давление внутри конструкции снижают до уровня атмосферного. Затем устанавливают необходимую арматуру и оборудование, после чего нужно еще 10 минут продержать систему под рабочим давлением. Для проверки герметичности в местах разъемных соединений на этом этапе используют мыльную эмульсию.
Для устранения выявленных дефектов, в соответствии с правилами, нужно сначала снизить давление в системе до атмосферного. Если после неудачной опрессовки были выполнены сварочные работы, следует проверить их качество физическими методами.
После выполнения опрессовочных работ выдается соответствующий акт, на основании которого специалисты газового хозяйства выполняют подключение к магистральному газопроводу
Процедуру регистрируют в журнале с оперативной документацией. По окончании проверки и опрессовки итоги работ отражаются в акте приема. Этот документ следует хранить вместе с другой технической документацией, относящейся к газопроводу. Кроме того, результаты опрессовки заносятся в строительный паспорт.
Пример опрессовки частного газопровода
В рабочей документации указан диаметр и особенности конструкции газопровода, в соответствии с которой подбираются фитинги необходимые для врезки контрольного оборудования. Расположенную под землей часть трубы обрезают таким образом, чтобы оставался некоторый запас.
После этого к трубе подключают компрессор и сначала продувают газопровод. Мощный поток воздуха выдувает из системы частички мусора, остатки воды и другое постороннее содержимое.
После этого нужно установить на концах газовой системы заглушки. На одном конце трубы, где имеется цокольный ввод, следует поставить специальный переходник, который позволяет присоединять к пластиковой конструкции металлическое оборудование.
Опрессовочные работы дают возможность убедиться в герметичности газопроводной системы и обеспечивают ее безаварийную работу в течение долгого времени
Здесь устанавливается манометр и кран. После того, как все необходимые устройства смонтированы, в систему подается воздух таким образом, чтобы внутри давление достигло нужного предела. Теперь нужно выдержать контрольное время, чтобы удостовериться, что давление остается стабильным. Показания манометра фиксируются.
Это самый простой вариант процедуры проверки частного газопровода на герметичность. Для выполнения подобных операций на коммуникациях высокого и среднего давления требуется использовать специальное высокоточное оборудование, и приглашать специалистов с соответствующей квалификацией.
Несколько значимых моментов
Давление воздуха в газовой системе должно сохраняться постоянным до момента подключения системы к магистральном газопроводу. Для опрессовки обычно используется воздух, но провести процедуру можно также с помощью инертного газа.
Если выполняется подключение газопровода на предприятии, процедура должна быть оформлена соответствующими документами, такими как акт приемки, приказ о назначении ответственного за процедуру лица, инструкция по эксплуатации сети и оборудования, инструкция по технике безопасности и т.п.
Газопровод, который подвергается опрессовке, в отдельных случаях считается целесообразным разбить на несколько участков, которые проверяют по отдельности. Для этого устанавливают специальные заглушки. Можно для этих же целей использовать линейную арматуру в сочетании с запорными устройствами.
Хотя порядок выполнения работ при опрессовке выглядит не слишком сложным, для выполнения всех необходимых процедур может понадобиться несколько дней
При этом необходимо соотнести тип выбранной арматуры и перепад давления, который для нее допустим. Если этот показатель оказался ниже, чем необходимо для испытаний, следует использовать заглушки.
Сеть в зданиях жилого фонда, а также в административных помещениях, котельных, бытовках и на других подобных объектах проверяется по всей протяженности: от запорного устройства на входе сети здание до места подключения к оборудованию, для работы которого используется газ.
Для выполнения работ по испытанию на герметичность газопроводов оптимальной считается точность манометров 0,15, хотя допускается использование устройств с точностью 0,4-0,6. Если испытание нужно проводить при давлении менее 0,01 МПа, рекомендуется использовать жидкостные устройства V-образного типа.
Часть газопровода, расположенную под землей, следует опрессовывать после того, как конструкции уложены в траншею и заспаны. Если полная засыпка считается по каким-то причинам нецелесообразной, то следует укрыть трубы слоем грунта не менее 20 см. Сварные соединения стальных коммуникаций следует тщательно заизолировать.
Опрессовку газовых труб, расположенных под землей, выполняют только после того, как траншея будет полностью засыпана, или если слой грунта составляет хотя бы 20 см
Перед началом опрессовки нужно подождать, пока воздух, находящийся внутри конструкции под испытательным давлением, приобретет такую же температуру, что и окружающий грунт.
Если необходимо проверить герметичность сети, проложенной в футлярах через преграды различного происхождения, то это нужно сделать трижды: непосредственно после сварки коммуникаций, после его укладки в футляр и полной засыпки грунтом, а также после того, как этот отрезок будет подключен к общей газопроводной системе.
Если после неудачной опрессовки газопровода выполнялась сварка металлических труб, то все места таких соединений следует проверить на герметичность с помощью мыльной эмульсии
Иногда от последнего этапа можно отказаться, если нет возражений со стороны эксплуатационного предприятия. Если же переход был выполнен с помощью наклонно-направленного бурения, или если сварные швы под переходом отсутствуют, можно проводить опрессовку этого участка уже после подключения к основному газопроводу.
Таким же образом выполняют опрессовку, если для на участке перехода использовалось высокоточное автоматическое оборудование или система закладных нагревателей.
Дополнительные требования, особенности, способы и порядок врезки в газопровод описаны в статьях:
Выводы и полезное видео по теме
Подробная информация по проведению процедуры этого типа представлена здесь:
Опрессовка – необходимое мероприятие перед запуском газопроводной системы, а также после ее ремонта. Она должна быть выполнена в соответствии с инструкциями и требованиями, чтобы обеспечить достаточный уровень безопасности и надежности газопровода.
Есть, что дополнить, или возникли вопросы по теме опрессовки газопровода? Пожалуйста, оставляйте комментарии к публикации и участвуйте в обсуждениях. Форма для связи находится в нижнем блоке.
Неразрушающий контроль — Испытание под давлением — это неразрушающий контроль, выполняемый для проверки целостности корпуса высокого давления на новом оборудовании, работающем под давлением.
Что подразумевается под давлением?
Испытание под давлением — это неразрушающий контроль, выполняемый для проверки целостности корпуса, работающего под давлением, на новом оборудовании, работающем под давлением, или на ранее установленном оборудовании, работающем под давлением, и трубопроводном оборудовании, которое подвергалось изменениям или ремонту на своих границах.
Испытания под давлением требуются большинством кодов трубопроводов для проверки того, что новая, модифицированная или отремонтированная система трубопроводов способна безопасно выдерживать номинальное давление и герметична.Соблюдение правил трубопроводов может быть предписано регулирующими и правоохранительными органами, страховыми компаниями или условиями контракта на строительство системы. Испытания под давлением, требуемые по закону или нет, служат полезной цели защиты рабочих и населения.
Испытание давлением может также использоваться для определения номинального давления для компонента или специальной системы, для которых невозможно определить безопасное значение расчетным путем. Прототип компонента или системы подвергается воздействию постепенно увеличивающегося давления до тех пор, пока не произойдет измеримая текучесть, или, альтернативно, до точки разрыва.Затем, используя коэффициенты снижения номинальных характеристик, указанные в коде или стандарте, подходящем для компонента или системы, можно установить номинальное расчетное давление на основе экспериментальных данных.
Коды трубопроводов
Существует множество норм и стандартов, касающихся трубопроводных систем. Два правила, имеющих большое значение для испытаний под давлением и герметичности, — это Кодекс ASME B31 для трубопроводов, работающих под давлением, и Кодекс ASME по котлам и сосудам высокого давления. Хотя эти два правила применимы ко многим трубопроводным системам, другие нормы и стандарты могут быть соблюдены в соответствии с требованиями властей, страховых компаний или владельца системы.Примерами могут служить стандарты AWWA для трубопроводов систем передачи и распределения воды. Кодекс ASME B31 для напорных трубопроводов состоит из нескольких разделов. Их:
- ASME B31.1 для силовых трубопроводов
- ASME B31.2 для трубопровода топливного газа
- ASME B31.3 для технологических трубопроводов
- ASME B31.4 для систем транспортировки жидкости для углеводородов, сжиженного нефтяного газа, безводного аммиака и спиртов
- ASME B31.5 для холодильных трубопроводов
- ASME B31.8 для газотранспортных и газораспределительных систем
- ASME B31.9 для строительных трубопроводов
- ASME B31.11 для трубопроводных систем транспортировки жидкого навоза
В Кодексе ASME по котлам и сосудам высокого давления также есть несколько разделов, в которых содержатся требования к испытаниям под давлением и испытаниям на герметичность для трубопроводных систем, сосудов высокого давления и других устройств, удерживающих давление. Это:
- Раздел I для энергетических котлов
- Раздел III для компонентов атомной электростанции
- Раздел V неразрушающего контроля
- Раздел VIII для сосудов под давлением
- Раздел X для сосудов под давлением из армированного стекловолокном пластика
- Раздел XI по проверке компонентов атомной электростанции в процессе эксплуатации
Существует большое сходство требований и процедур тестирования среди многих кодексов.В этой главе будут обсуждаться различные методы испытаний на герметичность, планирование, подготовка, выполнение, документация и стандарты приемки для испытаний под давлением. Оборудование, полезное для опрессовки, также будет включено в обсуждение. Приведенный ниже материал не следует рассматривать как замену полному знанию или тщательному изучению конкретных требований кодов, которые должны использоваться для тестирования конкретной системы трубопроводов.
Методы проверки герметичности
Существует множество различных методов испытаний под давлением и испытаний на герметичность в полевых условиях.Семь из них:
- Гидростатические испытания с использованием воды или другой жидкости под давлением
- Пневматические или газожидкостные испытания с использованием воздуха или другого газа под давлением
- Комбинация пневматических и гидростатических испытаний, при которых сначала используется воздух низкого давления для обнаружения утечек
- Первоначальное сервисное испытание, которое включает проверку на герметичность при первом запуске системы
- Испытание на вакуум, при котором используется отрицательное давление для проверки наличия утечки
- Испытание статическим напором, которое обычно проводится для дренажного трубопровода с водой, оставшейся в стояке на установленный период времени
- Обнаружение утечек галогена и гелия
Гидростатические испытания на герметичность
Гидростатические испытания — это предпочтительный и, возможно, наиболее часто используемый метод проверки на герметичность.Наиболее важной причиной этого является относительная безопасность гидростатических испытаний по сравнению с пневматическими испытаниями. Вода — гораздо более безопасная жидкая среда для испытаний, чем воздух, потому что она почти несжимаема. Следовательно, объем работы, необходимый для сжатия воды до заданного давления в системе трубопроводов, существенно меньше работы, необходимой для сжатия воздуха или любого другого газа до того же давления. Работа сжатия сохраняется в жидкости в виде потенциальной энергии, которая может быть высвобождена внезапно в случае отказа во время испытания под давлением.
Расчет потенциальной энергии воздуха, сжатого до давления 1000 фунтов на квадратный дюйм (6900 кПа), по сравнению с потенциальной энергией того же конечного объема воды при 1000 фунтов на квадратный дюйм (6900 кПа) показывает соотношение более 2500 к 1. Следовательно, Потенциальное повреждение окружающего оборудования и персонала в результате отказа во время испытания под давлением намного серьезнее при использовании газообразной испытательной среды. Это не означает, что гидростатические испытания на герметичность не представляют никакой опасности. При гидростатическом испытании может возникнуть значительная опасность из-за попадания воздуха в трубопровод.Даже если весь воздух выпущен из трубопровода перед подачей давления, рабочим рекомендуется проводить любые испытания под высоким давлением с учетом требований безопасности.
Пневматические испытания на герметичность
Жидкость, обычно используемая для пневматических испытаний, — это сжатый воздух или азот, если источником является газ в баллонах. Не следует использовать азот в закрытом помещении, если существует вероятность того, что выходящий азот может вытеснить воздух в ограниченном пространстве. Известно, что люди теряли сознание при таких обстоятельствах, прежде чем осознавали, что им не хватает кислорода.Из-за большей опасности травмирования газообразной испытательной средой давление, которое может использоваться для визуального осмотра на предмет утечек, для некоторых норм трубопроводов ниже, чем в случае гидростатических испытаний. Например, для пневматических испытаний ASME B31.1 позволяет снизить давление до 100 фунтов на кв. Дюйм (690 кПа) или расчетного давления во время проверки на утечку.
Комбинированные пневматические и гидростатические испытания
Низкое давление воздуха, чаще всего 25 фунтов на кв. Дюйм (175 кПа), сначала используется для определения наличия серьезных утечек.Такое низкое давление снижает опасность травм, но все же позволяет быстро обнаруживать крупные утечки. При необходимости ремонт можно провести до гидростатических испытаний. Этот метод может быть очень эффективным для экономии времени, особенно если требуется много времени, чтобы заполнить систему водой только для обнаружения утечек с первой попытки. Если утечки будут обнаружены при гидростатическом испытании, потребуется больше времени, чтобы удалить воду и высушить трубопровод в достаточной степени для ремонта.
Гидростатико-пневматическое испытание на герметичность отличается от двухэтапного испытания, описанного в предыдущем абзаце.В этом случае испытание под давлением проводится с использованием воздуха и воды. Например, сосуд высокого давления, предназначенный для содержания технологической жидкости с паровой фазой или воздухом над жидкостью, может быть спроектирован так, чтобы выдерживать вес жидкости до определенной максимальной ожидаемой высоты жидкости. Если сосуд не был спроектирован так, чтобы выдерживать вес при полном заполнении жидкостью, можно было бы испытать этот сосуд только в том случае, если он был частично заполнен технологической жидкостью до уровня, дублирующего эффект максимально ожидаемого уровня.
Первоначальное тестирование на утечку при обслуживании
Эта категория тестирования ограничена кодами определенными ситуациями. Например, ASME B31.3 ограничивает использование этого метода для работы с жидкостями категории D. Гидравлические системы категории D определены как неопасные для человека и должны работать при давлении ниже 150 фунтов на квадратный дюйм (1035 кПа) и при температуре от -20 до 366 ° F (от -29 до 185 ° C). Код ASME B31.1, раздел 137.7.1, не разрешает начальные эксплуатационные испытания внешних трубопроводов котла. Однако тот же раздел ASME B31.1 позволяет проводить первоначальные эксплуатационные испытания других систем трубопроводов, если другие типы испытаний на герметичность нецелесообразны. Первоначальные эксплуатационные испытания также применимы к проверке компонентов атомной электростанции в соответствии с Разделом XI Кодекса ASME по котлам и сосудам высокого давления. Как указано, этот тест обычно выполняется при первом запуске системы. В системе постепенно повышается до нормального рабочего давления, как требуется в ASME B31.1, или до расчетного давления, как требуется в ASME B31.3. Затем давление поддерживается на этом уровне, пока проводится проверка на утечки.
Проверка на герметичность в вакууме
Проверка на герметичность в вакууме — это эффективный способ определить, есть ли утечка где-либо в системе. Обычно это делается путем создания вакуума в системе и удержания вакуума внутри системы. Утечка указывается, если захваченный вакуум повышается до атмосферного давления. Производитель компонентов довольно часто использует этот тип проверки на герметичность в качестве проверки на герметичность производства. Однако очень сложно определить место или места утечки, если она существует.Дымогенераторы использовались для определения места втягивания дыма в трубопровод. Это очень сложно использовать, если утечка не достаточно велика, чтобы втягивать весь или большую часть дыма в трубу. Если дыма образуется значительно больше, чем может быть втянуто в трубу, дым, который рассеивается в окружающий воздух, может легко скрыть место утечки. Очевидно, что этот метод не подходит для испытания трубопровода при рабочем давлении или выше, если только трубопровод не должен работать в вакууме.
Статическая Головка Испытание на герметичность
Данный метод иногда называют тест на падение, поскольку падение уровня воды в открытом стояка, добавлены к системе для создания необходимого давления, является показателем утечки. После того, как система и опускной заполнена водой, уровень опускной измеряются и отметил. После необходимого периода выдержки высота повторно проверяется, и любое снижение уровня и период выдержки записываются. Любое место утечки определяется визуальным осмотром.
Тестирование утечки галогена и гелия
В этих методах тестирования используется индикаторный газ для определения места утечки и количества утечки. В случае обнаружения утечки галогена в систему загружается газообразный галоген. Датчик галогенного детектора используется для определения утечки индикаторного газа из любого открытого стыка. Детектор утечек галогена, или анализатор, состоит из трубчатого зонда, который всасывает смесь вытекающего газа галогена и воздуха в прибор, чувствительный к небольшим количествам газообразного галогена.
В этом приборе используется диод для определения присутствия газообразного галогена. Утечка газообразного галогена проходит через нагретый платиновый элемент (анод). Нагреваемый элемент ионизирует газообразный галоген. Ионы стекают на пластину коллектора (катод). Ток, пропорциональный скорости образования ионов и, следовательно, скорости потока утечки, указывается измерителем. Зонд галогенного детектора калибруется с использованием отверстия, через которое проходит известный поток утечки. Детекторный зонд проходит над отверстием с той же скоростью, которая будет использоваться для проверки системы на утечку.Предпочтительным индикаторным газом является хладагент 12, но можно использовать хладагенты 11, 21, 22, 114 или хлористый метилен. Галогены нельзя использовать с аустенитными нержавеющими сталями.
Проверка на утечку гелия также может выполняться в режиме сниффера, как описано выше для галогенов. Однако, кроме того, испытание на утечку гелием может быть выполнено с использованием двух других методов, которые более чувствительны при обнаружении утечки. Это режим трассировки и режим капота или закрытой системы. В режиме индикатора создается вакуум в системе, и гелий распыляется на наружные поверхности соединений, которые проверяются на утечку.Вакуум системы всасывает гелий через любое негерметичное соединение и доставляет его на гелиевый масс-спектрометр. В режиме вытяжки тестируемая система окружена концентрированным гелием.
Испытание на герметичность гелием в вытяжном шкафу является наиболее чувствительным методом обнаружения утечек и единственным методом, признанным Разделом V Кодекса ASME как количественный. Производители компонентов, требующих герметичного уплотнения, будут использовать вытяжной метод обнаружения утечки гелия в качестве производственного испытания на герметичность. В этих случаях компонент может быть окружен гелием в камере.Подключение к компоненту осуществляется с помощью гелиевого течеискателя, который пытается довести внутренние компоненты компонента до вакуума, близкого к абсолютному нулю.
Любая утечка гелия из окружающей камеры в компонент будет втягиваться в гелиевый течеискатель под действием создаваемого им вакуума. Детектор утечки гелия содержит масс-спектрометр, сконфигурированный для определения присутствия молекул гелия. Этот метод тестирования в замкнутой системе позволяет обнаруживать утечки величиной от 1X10 -10 куб. См / с (6.1X10 -12 куб. Дюймов / сек), стандартный атмосферный воздух. Метод замкнутой системы не подходит для измерения большой утечки, которая может затопить детектор и сделать его бесполезным для дальнейших измерений до тех пор, пока из детектора не удастся извлечь каждую молекулу гелия.
Метод закрытой системы не подходит для трубопроводной системы в полевых условиях из-за больших объемов. Также он не показывает место утечки или утечек. Наконец, чувствительность обнаружения утечек с использованием замкнутой системы на много порядков выше, чем обычно требуется.Анализатор гелия является наименее чувствительным методом и может давать ложные показания, если гелий из большой утечки в одном месте системы диффундирует в другие места.
Большая утечка также может затопить детектор, временно сделав его непригодным, пока весь гелий не будет удален из масс-спектрометра. Давление гелия, используемое во всех этих методах, обычно составляет одну или две атмосферы, что достаточно для обнаружения очень небольших утечек. Низкое давление также служит для уменьшения количества гелия, необходимого для испытания.Испытания на утечку гелия редко, если вообще когда-либо, используются для демонстрации того, что система может безопасно выдерживать расчетное давление.
Детекторы утечки гелияне смогут обнаружить утечки, если компонент или система трубопроводов не станут полностью сухими. Жидкость, содержащаяся в небольшом канале утечки из-за капиллярного действия, может перекрыть утечку из-за низкого давления гелия и поверхностного натяжения жидкости. Поэтому требуется большая осторожность при использовании этого подхода в абсолютно сухих условиях.В противном случае эта система может оказаться даже менее чувствительной при обнаружении утечки, чем гидростатическое испытание под высоким давлением. Кроме того, гелиевый течеискатель легко загрязняется маслами и другими соединениями и становится неточным. В полевых условиях обычно не исключается возможность загрязнения течеискателя.
Испытательное давление
Выбранный метод испытания и жидкая испытательная среда вместе с применимыми правилами также устанавливают правила, которым необходимо следовать при расчете требуемого испытательного давления.В большинстве случаев давление, превышающее расчетное, применяется на короткое время, скажем, по крайней мере, 10 минут. Величина этого начального испытательного давления часто как минимум в 1,5 раза превышает расчетное давление для гидростатических испытаний. Однако он может быть другим, в зависимости от того, какой код применим и от того, будет ли испытание гидростатическим или пневматическим.
Кроме того, испытательное давление ни в коем случае не должно превышать давление, которое могло бы вызвать податливость, или максимально допустимое испытательное давление какого-либо компонента, подвергаемого испытанию.В случае ASME B31, раздел 137.1.4 и Норм для котлов и сосудов высокого давления, максимальное испытательное давление не должно превышать 90 процентов от выхода для любого компонента, подвергающегося испытанию. Испытательное давление необходимо для демонстрации того, что система может безопасно выдерживать номинальное давление. После этого периода давления, превышающего расчетное, часто допустимо снизить давление до более низкого значения для проверки герметичности. Давление при осмотре поддерживается в течение времени, необходимого для проведения тщательного
Код | Тип испытания |
ASME B31.1 | Гидростатическая (1) |
ASME B31.1 | Пневматический |
ASME B31.1 | Первоначальное обслуживание |
ASME B31.3 | Гидростатическая |
ASME B31.3 | Пневматический |
ASME B31.3 | Первичное обслуживание (3) |
ASME I | Гидростатическая |
ASME III Раздел 1, подраздел NB | Гидростатическая |
ASME III Раздел 1, подраздел NB | Пневматический |
ASME III Раздел 1 Подраздел NC | Гидростатическая |
ASME III Раздел 1 Подраздел NC | Пневматический |
ASME III Раздел 1 Подраздел ND | Гидростатическая |
ASME III Раздел 1 Подраздел ND | Пневматический |
Код | Испытательное давление минимум |
ASME B31.1 | в 1,5 раза больше конструкции |
ASME B31.1 | в 1,2 раза больше дизайна |
ASME B31.1 | Нормальное рабочее давление |
ASME B31.3 | 1,5-кратное исполнение (2) |
ASME B31.3 | в 1,1 раза больше дизайна |
ASME B31.3 | Расчетное давление |
ASME I | В 1,5 раза больше максимально допустимого рабочего давления (4) |
ASME III Раздел 1, подраздел NB | 1.В 25 раз больше расчетного давления в системе (5) |
ASME III Раздел 1, подраздел NB | Давление в системе в 1,25 раза больше расчетного (6) |
ASME III Раздел 1 Подраздел NC | В 1,5 раза больше расчетного давления в системе |
ASME III Раздел 1 Подраздел NC | Давление в системе в 1,25 раза больше расчетного |
ASME III Раздел 1 Подраздел ND | В 1,5 раза больше расчетного давления в системе для завершенных компонентов, в 1,25 раза больше расчетного давления в системе для трубопроводных систем |
ASME III Раздел 1 Подраздел ND | 1.В 25 раз больше расчетного давления в системе |
Код | Испытательное давление максимальное |
ASME B31.1 | Максимально допустимое испытательное давление для любого компонента или 90% предела текучести |
ASME B31.1 | В 1,5 раза больше расчетного или максимально допустимого испытательного давления для любого компонента |
ASME B31.1 | Нормальное рабочее давление |
ASME B31.3 | Не превышать предел текучести |
ASME B31.3 | В 1,1 раза больше расчетного давления плюс меньшее из 50 фунтов на кв. Дюйм или 10 процентов испытательного давления |
ASME B31.3 | Расчетное давление |
ASME I | Предел текучести не должен превышать 90% |
ASME III Раздел 1, подраздел NB | Не превышать пределы напряжений, указанные в расчетном разделе NB-3226, или максимальное испытательное давление любого компонента системы (5) |
ASME III Раздел 1, подраздел NB | Не превышать пределы напряжения, указанные в расчетном разделе NB-3226, или максимальное испытательное давление любого компонента системы |
ASME III Раздел 1 Подраздел NC | Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента |
ASME III Раздел 1 Подраздел NC | Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента |
ASME III Раздел 1 Подраздел ND | Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента |
ASME III Раздел 1 Подраздел ND | Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента |
Код | Испытательное давление время выдержки |
ASME B31.1 | 10 минут |
ASME B31.1 | 10 минут |
ASME B31.1 | 10 минут или время на проверку герметичности |
ASME B31.3 | Время до завершения проверки герметичности, но не менее 10 минут |
ASME B31.3 | 10 минут |
ASME B31.3 | Время на проверку на герметичность |
ASME I | Не указано, обычно 1 час |
ASME III Раздел 1, подраздел NB | 10 минут |
ASME III Раздел 1, подраздел NB | 10 минут |
ASME III Раздел 1 Подраздел NC | 10 или 15 минут на дюйм проектной минимальной толщины стенки для насосов и клапанов |
ASME III Раздел 1 Подраздел NC | 10 минут |
ASME III Раздел 1 Подраздел ND | 10 минут |
ASME III Раздел 1 Подраздел ND | 10 минут |
Код | Обследование давление |
ASME B31.1 | Расчетное давление |
ASME B31.1 | Ниже 100 фунтов на кв. Дюйм или расчетного давления |
ASME B31.1 | Нормальное рабочее давление |
ASME B31.3 | в 1,5 раза больше конструкции |
ASME B31.3 | Расчетное давление |
ASME B31.3 | Расчетное давление |
ASME I | Максимально допустимое рабочее давление (4) |
ASME III Раздел 1, подраздел NB | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1, подраздел NB | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел NC | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел NC | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел ND | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел ND | Давление больше расчетного или испытательное давление в 0,75 раза больше |
Примечания:
1. | Наружные трубопроводы котла должны пройти гидростатические испытания в соответствии с PG-99 ASME Code Section I. |
2. | ASME B31.3 гидростатическое давление должно быть выше 1,5-кратного расчетного давления пропорционально пределу текучести при температуре испытания, деленному на прочность при расчетной температуре, но не должно превышать предела текучести при температуре испытания. Если речь идет о сосуде, расчетное давление которого меньше, чем в трубопроводе, и если сосуд не может быть изолирован, трубопровод и сосуд могут быть испытаны вместе при испытательном давлении сосуда при условии, что испытательное давление сосуда составляет не менее 77 процентов испытательного давления трубопроводов. |
3. | ASME B31.3: начальные эксплуатационные испытания разрешены только для трубопроводов категории D. |
4. | Кодекс ASME Раздел I. Давление гидростатического испытания при температуре не менее 70 ° F (21 ° C) и испытательное давление при температуре менее 120 ° F (49 ° C). Для парогенератора с принудительным потоком, с частями, работающими под давлением, рассчитанными на разные уровни давления, испытательное давление должно быть не менее чем в 1,5 раза больше максимально допустимого рабочего давления на выходе из пароперегревателя, но не менее 1.25-кратное максимально допустимое рабочее давление любой части котла. |
5. | Кодекс ASME, раздел III, раздел 1, подраздел NB, пределы испытательного давления определены в разделе NB3226; также компоненты, содержащие паяные соединения, и клапаны, которые перед установкой должны быть испытаны при давлении, в 1,5 раза превышающем расчетное для системы. |
6. | Кодекса ASME Раздел III, Раздел 1, подраздел NB, давление пневматического испытания для компонентов, частично заполненных водой, должно быть не менее 1.25-кратное расчетное давление системы. |
Отказ оборудования, работающего под давлением
Сосуды высокого давления и трубопроводные системы широко используются в промышленности и содержат очень большую концентрацию энергии. Несмотря на то, что их конструкция и установка соответствуют федеральным, государственным и местным нормам и признанным промышленным стандартам, продолжают происходить серьезные отказы оборудования, работающего под давлением.
Существует множество причин выхода из строя оборудования, работающего под давлением: разрушение и истончение материалов в процессе эксплуатации, старение, скрытые дефекты во время изготовления и т. Д.. К счастью, периодические испытания, а также внутренние и внешние проверки значительно повышают безопасность сосуда высокого давления или системы трубопроводов. Хорошая программа испытаний и инспекций основана на разработке процедур для конкретных отраслей или типов судов.
Ряд аварий позволил сосредоточить внимание на опасностях и рисках, связанных с хранением, обращением и перекачкой жидкостей под давлением. Когда сосуды под давлением действительно выходят из строя, это обычно является результатом разрушения корпуса в результате коррозии и эрозии (более 50% разрушения корпуса).
Новое построенное судно разорвано во время гидроиспытаний
Все сосуды под давлением имеют свои собственные специфические опасности, включая большое накопленное потенциальное усилие, точки износа и коррозии, а также возможный отказ предохранительных устройств контроля избыточного давления и температуры.
Правительство и промышленность отреагировали на потребность в улучшенных испытаниях систем, работающих под давлением, разработав стандарты и правила, определяющие общие требования к безопасности под давлением (Кодекс ASME по котлам и сосудам под давлением, Руководство по безопасности под давлением DOE и другие).
Эти правила определяют требования для реализации программы безопасности при испытаниях под давлением. Очень важно, чтобы конструкторский и эксплуатационный персонал использовал эти стандарты в качестве критериев при написании и реализации программы безопасности при испытаниях под давлением.
Программа испытаний под давлением
Хорошая программа безопасности при испытаниях под давлением должна выявлять производственные дефекты и износ в результате старения, растрескивания, коррозии и других факторов до того, как они вызовут отказ сосуда, и определять (1) может ли сосуд продолжать работу при том же давлении, (2) какое могут потребоваться меры контроля и ремонта, чтобы система давления могла работать при исходном давлении, и (3) необходимо ли понижать давление для безопасной эксплуатации системы.
Все компании, работающие с оборудованием под давлением, почти все имеют расширенные технические инструкции по испытаниям сосудов под давлением и трубопроводных систем. Эти руководящие принципы подготовлены в соответствии со стандартами безопасности давления OSHA, DOT, ASME, местными, государственными и другими федеральными кодексами и стандартами.
Документация включает определение ответственности инженерного, управленческого персонала и персонала по безопасности; общие требования к оборудованию и материалам; процедуры гидростатических и пневматических испытаний для проверки целостности системы и ее компонентов; и руководящие принципы для плана испытаний под давлением, аварийных процедур, документации и мер контроля опасностей.Эти меры включают контроль сброса давления, защиту от воздействия шума, экологический и личный мониторинг, а также защиту от присутствия токсичных или легковоспламеняющихся газов и высокого давления.
Пуск нового резервуара при испытании на пневматическое давление воздухом
Определения испытаний под давлением
- Изменение — Изменение — это физическое изменение любого компонента, имеющее последствия для конструкции, которые влияют на способность сосуда высокого давления выдерживать давление, выходящее за рамки элементов, описанных в существующих отчетах с данными.
- Допуск на коррозию — Дополнительная толщина материала, добавленная конструкцией, чтобы учесть потери материала в результате коррозионного или эрозионного воздействия.
- Коррозионная обработка — Любая услуга системы давления, которая из-за химического или другого взаимодействия с материалами конструкции контейнера, содержимым или внешней средой приводит к растрескиванию контейнера, его охрупчиванию, потере более 0,01 дюйма. толщину за год эксплуатации, или испортить любым способом.
- Расчетное давление — давление, используемое при расчете компонента давления вместе с совпадающей расчетной температурой металла с целью определения минимально допустимой толщины или физических характеристик границы давления. Расчетное давление для сосудов показано на производственных чертежах, а для трубопроводов максимальное рабочее давление указано в перечне трубопроводов. Расчетное давление для трубопроводов больше на 110% от максимального рабочего давления или на 25 фунтов на кв. Дюйм от максимального рабочего давления.
- Инженерная инструкция по безопасности (ESN) — Утвержденный руководством документ с описанием ожидаемых опасностей, связанных с оборудованием, и проектных параметров, которые будут использоваться.
- Высокое давление — Давление газа выше 20 МПа (3000 фунтов на кв. Дюйм) и давление жидкости выше 35 МПа (5000).
- Промежуточное давление — Давление газа от 1 до 20 МПа (от 150 до 3000 фунтов на кв. Дюйм) и давление жидкости от 10 до 35 МПа (от 1500 до 5000 фунтов на кв. Дюйм).
- Испытание на утечку — Испытание давлением или вакуумом для определения наличия, скорости и / или местоположения утечки.
- Низкое давление -Давление газа менее 1 МПа (150 фунтов на кв. Дюйм) или давление жидкости менее 10 МПа (1500 фунтов на кв. Дюйм).
- Работа в зоне с персоналом — Операция под давлением, которая может проводиться (в определенных пределах) в присутствии персонала.
- Максимально допустимое рабочее давление (МДРД) — максимальное допустимое давление в верхней части сосуда в его нормальном рабочем положении при рабочей температуре, указанной для данного давления.Это наименьшее из значений, найденных для максимально допустимого рабочего давления для любой из основных частей сосуда в соответствии с принципами, установленными в разделе VIII ASME. МДРД указано на паспортной табличке емкости. МДРД можно принять таким же, как расчетное давление, но по большей части МДРД основывается на изготовленной толщине за вычетом допуска на коррозию. MAWP относится только к сосудам под давлением.
- Максимальная расчетная температура — максимальная температура, используемая при проектировании, и не должна быть ниже максимальной рабочей температуры.
- Максимальное рабочее давление (MOP) — Максимальное давление, ожидаемое во время работы. Обычно это на 10-20% ниже МДРД.
- Минимально допустимая температура металла (MAMT) — Минимальная температура для существующего сосуда, позволяющая выдерживать испытания или рабочие условия с низким риском хрупкого разрушения. MAMT определяется путем оценки сосудов под давлением, построенных до 1987 года. Этот термин используется в API RP 579 для оценки хрупкого разрушения существующего оборудования.Это может быть одна температура или диапазон допустимых рабочих температур в зависимости от давления.
- Минимальная расчетная температура металла (MDMT) — Минимальная температура металла, используемая при проектировании сосуда высокого давления. MDMT является термином кода ASME и обычно отображается на паспортной табличке сосуда или в форме U-1 для сосудов, спроектированных в соответствии с ASME Section VIII, Division 1, издание 1987 г. или более поздней версии.
- МПа — Абсолютное давление в единицах СИ. 1 атмосфера (14,7 фунта на кв. Дюйм) равна 0.1 МПа.
- Процедура эксплуатационной безопасности (OSP) — Документ, используемый для описания средств управления, необходимых для обеспечения того, чтобы риски, связанные с потенциально опасным исследовательским проектом или уникальной деятельностью, находились на приемлемом уровне.
- Оборудование, работающее под давлением — Любое оборудование, например, сосуды, коллекторы, трубопроводы или другие компоненты, которое работает при давлении выше или ниже (в случае вакуумного оборудования) атмосферного давления.
- Сосуд под давлением — Компонент, работающий под давлением (например, сферический или цилиндрический резервуар) с относительно большим объемом, с поперечным сечением больше, чем соответствующий трубопровод.
- Контрольное испытание — Испытание, в ходе которого прототипы оборудования подвергаются воздействию давления для определения фактического выхода или давления разрыва (используется для расчета МДРД).
- Дистанционное управление — Операция под давлением, которую нельзя проводить в присутствии персонала. Оборудование должно быть установлено в испытательных камерах, за сертифицированными заграждениями или работать из безопасного места.
- Фактор безопасности (SF) — Отношение предельного (т. Е. Разрыва или отказа) давления (измеренного или рассчитанного) к МДРД.Фактор безопасности, связанный с чем-то другим, кроме давления отказа, должен быть обозначен соответствующим нижним индексом.
Коды, стандарты и ссылки
Американское общество инженеров-механиков (ASME)
- Котлы и сосуды под давлением Код: Раздел VIII Сосуды под давлением
- ASME B31.3 Трубопроводы для химических и нефтеперерабатывающих заводов
- ASME B16.5 Трубные фланцы и фланцевые фитинги
Американское общество испытаний материалов (ASTM)
- ASTM E 1003 Стандартный метод испытаний на гидростатическую герметичность
Американский институт нефти (API)
- RP 1110 Испытание давлением стальных трубопроводов для транспортировки газа, нефтяного газа, опасных жидкостей…
- API 510 Техническое обслуживание, проверка, оценка, ремонт и изменение
- Обжиговые обогреватели по API 560 для нефтеперерабатывающих заводов общего назначения
- API 570 Осмотр, ремонт, изменение и повторная оценка эксплуатационных трубопроводных систем
- API 579 Проект рекомендованной практики API для пригодности к эксплуатации
Роберт Б. Адамс
- Президент и главный исполнительный директор EST Group, Inc. Харлейсвилл, Пенсильвания
Интересные статьи об отказе при испытаниях давлением
Отказ сосуда под давлением во время пневматического испытания
Отказ сосуда под давлением во время гидроиспытаний
Отказ сосуда под давлением во время испытания воздуха
Замечание (и) автора…
Испытания под давлением ASME B31.3
Системы трубопроводовобычно проектируются и изготавливаются в соответствии с применимыми нормами. Конечно, использование ASME B31.3 может быть применимо к судам, перевозящим нефть, но вы действительно должны соблюдать код, для которого была разработана система трубопроводов. Поскольку я знаком с B31.3, а не с эквивалентом в Европе (или другой стране), я буду основывать свой ответ на B31.3.
ASME B31.3 требует «проверки герметичности» системы трубопроводов. Это не структурный тест, это всего лишь проверка, чтобы определить, есть ли в системе точки утечки.* С другой стороны, существуют нормы, которые могут потребовать структурных испытаний, например, по нормам для котлов и сосудов высокого давления. В этом случае проводится гидростатическое испытание, чтобы убедиться, что резервуар и присоединенные к нему трубопроводы являются конструктивными, а не только герметичными.
ASME B31.3, п. 345.1 гласит:
До ввода в эксплуатацию и после завершения соответствующих проверок, требуемых п. 341, каждая система трубопроводов должна быть испытана на герметичность. Испытание должно представлять собой гидростатическое испытание на герметичность в соответствии с п.345.4, за исключением случаев, предусмотренных в данном документе.
Если владелец считает гидростатическое испытание на герметичность нецелесообразным, либо пневматическое испытание в соответствии с п. 345.5 или комбинированное гидростатико-пневматическое испытание в соответствии с п. 345.6 может быть заменен, учитывая опасность энергии, хранящейся в сжатом газе.
Таким образом, согласно нормативам, испытание на герметичность с использованием воздуха может быть выполнено, если владелец системы считает гидростатическое испытание нецелесообразным.
Важно понимать, что давление, при котором проводится испытание, является функцией расчетного давления.Расчетное давление является функцией допустимых пределов напряжений в трубопроводе, которая также является функцией рабочей температуры.
- Для гидростатических испытаний, п. 345.4.2 требует давления не менее чем в 1,5 раза превышающего расчетное давление.
- Для пневматического испытания, п. 345.5.4 требует давления не менее 110% от расчетного.
Следующим шагом для инженера (предпочтительно проектировщика трубопроводной системы или специалиста по анализу напряжений) является создание процедур испытаний под давлением.Эти процедуры испытания под давлением рассматривают возможность хрупкого разрушения при низких температурах, что может быть проблемой при указанных температурах. Процедуры испытания давлением на самом деле представляют собой набор процедур (обычно), которые включают в себя такие вещи, как метод создания давления в системе, положения клапана, снятие предохранительных устройств, изоляция частей системы трубопроводов и т. Д.
Относительно низкой температуры, п. 345.4.1 гласит: «Жидкость должна быть водой, если нет возможности повреждения из-за замерзания или неблагоприятного воздействия воды на трубопровод или технологический процесс (см. Параграф.F345.4.1). В этом случае можно использовать другую подходящую нетоксичную жидкость. «Итак, гликоль / вода разрешены.
Если испытание должно проводиться пневматически, испытательное давление следует повысить до 25 фунтов на квадратный дюйм, после чего должна быть проведена предварительная проверка, включая осмотр всех соединений. Настоятельно рекомендуется использование низкотемпературной пузырьковой жидкости.
Итак, вывод:
- Если вам дали задание провести гидроиспытание при 16 бар, то это должно быть 1.5-кратное расчетное давление 10,67 бар. Следовательно, согласно B31.3, пневматическое испытание следует проводить не при 16 бар, а при 1,1-кратном расчетном давлении или 11,7 бар. Доведите пневматическое давление до 11,7 бар.
- Возможность хрупкого разрушения должна быть рассмотрена соответствующим инженером. В случае температуры ниже 0 ° C следует проверить используемый материал, чтобы убедиться, что он не ниже минимально допустимой температуры для данной стали.
- Опытный инженер должен разработать набор процедур испытаний под давлением.В этих процедурах необходимо указать, какие участки трубы проходят испытания, в каких положениях следует размещать клапаны, какие предохранительные устройства необходимо снять (или установить) и т. Д.
- Пневматическое испытание необходимо начинать при давлении 25 фунтов на кв. Дюйм, а перед повышением давления необходимо провести предварительную проверку на утечки.
- Самое главное, знающий инженер должен также проверить проектную спецификацию трубопровода на предмет всех требований, относящихся к испытаниям на герметичность или давление.
Хотя B31.3 описывает это как «испытание на герметичность», когда выполняется гидростатическое испытание в 1,5 раза больше расчетного, оно является структурным испытанием.
Пожалуйста, прочтите статью: Департамент труда США, OSHA
.Процедуры испытания трубопроводов под давлением
Дезинфекция систем водоснабжения
Номер документа по дезинфекции системы водоснабжения Версия 1 Утверждено Риком Моррисом Все 6/2/04 Активные подразделения / департаменты FEMC Raytheon Polar Services Company ЖЕСТКОЕ КОПИРОВАНИЕ НЕ КОНТРОЛИРУЕМОЕ-КОНТРОЛИРУЕМОЕ КОПИРОВАНИЕ ДОСТУПНО
Дополнительная информацияИнженерная документация в экспедиции
Техническая документация в номере экспедиционной документации, редакция 0, утверждена Уэйном Л.Корнелл, ЧП 10 января 2006 г. Действующие подразделения / департаменты Raytheon Polar Services Company Оборудование, проектирование, техническое обслуживание,
Дополнительная информацияВАЖНОЕ ЗАМЕЧАНИЕ ПО БЕЗОПАСНОСТИ
ВАЖНОЕ УВЕДОМЛЕНИЕ О БЕЗОПАСНОСТИ Для наших уважаемых клиентов Безопасность пользователей является основным приоритетом при разработке наших продуктов. Соблюдение мер предосторожности, изложенных в этом руководстве, сведет к минимуму риск получения травмы. ITT Goulds
Дополнительная информацияПРОЦЕДУРА ИСПЫТАНИЯ ДАВЛЕНИЯ BOP
0 Обсудите требования оператора BOP С МЕНЕДЖЕРОМ буровой установки.Убедитесь, что все противовыбросовое оборудование Romfor прошло испытания в соответствии с политикой Romfor. Это может потребовать от компании Nabors покрытия расходов на субподрядчика по испытанию
. Дополнительная информацияFEMC Document Control
Номер документа по контролю за документами FEMC Версия 7 Утверждено Уэйном Л. Корнеллом, PE Дата публикации — 10 апреля 2006 г. Действующие подразделения / департаменты FEMC Raytheon Polar Services Подразделение-собственник или организация
Дополнительная информацияЭлектрический воздушный компрессор PC1131
Senco Products Inc.8485 Broadwell Road Cincinnati, Ohio 45244 Руководство по эксплуатации электрического воздушного компрессора PC1131, 2006 г., составлено Senco Products, Inc. Предупреждения по безопасному использованию этого инструмента включены в
Дополнительная информацияСИСТЕМА КОНТРОЛЯ МОЧЕВОГО ПУЗЫРЯ
ЧАСТЬ I ОБЩИЕ ПОЛОЖЕНИЯ 1.01 Описание СИСТЕМА УПРАВЛЕНИЯ ПОГРУЖЕНИЕМ МОЧЕВОГО ПУЗЫРЯ В данной спецификации описываются требования к Системе управления выбросом мочевого пузыря. Назначение системы — минимизировать переходные давления
Дополнительная информацияЭта страница намеренно оставлена пустой
1 Эта страница намеренно оставлена пустой. 2 УПРАВЛЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ И СОХРАНЕНИЯ ПОДЗЕМНЫХ ЦИСТЕРН ТЕХНИЧЕСКАЯ ГЛАВА 4.2 ЭФФЕКТИВНОЕ ПРЕДУПРЕЖДЕНИЕ ДЛЯ ПРЕДОТВРАЩЕНИЯ РАЗЛИВОВ И ПЕРЕЛИВОВ
Дополнительная информацияКОНЕЧНЫЙ ШАРОВОЙ КЛАПАН
Спецификация: ФЛАНЦЕВЫЙ КОНЦЕВОЙ ШАРОВОЙ КЛАПАН — двухкомпонентный шаровой кран Chem Oil был разработан для работы в экстремальных условиях эксплуатации с непревзойденной надежностью. Корпус клапана изготовлен из твердого деформируемого материала
Дополнительная информацияBERMAD Противопожарная защита
400E-2M / 700E-2M Дренчерный клапан IOM Bermad с электрическим управлением и ручным сбросом EasyLock Модель: 400E-2M / 700E-2M УСТАНОВКА ОПЕРАЦИЯ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ Разработка приложений BERMAD 400E-2M / 700E-2M Bermad
Дополнительная информацияЭлектрический воздушный компрессор PC1130
Senco Products Inc.8485 Broadwell Road Cincinnati, Ohio 45244 Руководство по эксплуатации электрического воздушного компрессора PC1130, 2006 г., составлено Senco Products, Inc. Предупреждения по безопасному использованию этого инструмента включены в
Дополнительная информацияЭкономический и Социальный Совет
От: André Rijnders Организация: GFV Кому: Jeffrey Seisler Секретариат неофициальной группы Контактное лицо: André Rijnders Рассматриваемое постановление: Постановление 110 Дата: 6 июня 2013 г. Проблема решена LNG
Дополнительная информацияСухой клапан FireLock NXT I-768
НАВЕСИТЕ ДАННУЮ ИНСТРУКЦИЮ НА УСТАНОВЛЕННЫЙ КЛАПАН, ЧТОБЫ ПОЛУЧИТЬ БУДУЩИЙ СПРАВОЧНИК ПРЕДУПРЕЖДЕНИЕ Несоблюдение инструкций и предупреждений может привести к выходу изделия из строя, что приведет к серьезным травмам и
Дополнительная информацияУХОД ЗА ВОДОНАГРЕВАТЕЛЕМ
http: // водонагреватель.org / Troubleshoot-rheem-tankless-water-heating.html Осмотр водонагревателя УХОД ЗА ВАШЕМ ВОДЯНЫМ НАГРЕВАТЕЛЕМ Система вентиляции (только прямая вентиляция) Необходимо проверить систему вентиляции
Дополнительная информацияBERMAD Противопожарная защита
Модель: 400E-2M BERMAD Дренчерный клапан с электрическим управлением и функцией Easy Lock Ручной сброс Установка Эксплуатация Техническое обслуживание Безопасность прежде всего BERMAD считает, что безопасность персонала, работающего с
Дополнительная информацияМногие продукты…Один источник
ДАТЧИКИ ДАВЛЕНИЕ Специализированный торговый представитель для вашего региона Уровень заполнения 97% Доставка в течение 24 часов Современная система складов Техническая поддержка Программа контроля качества 25 Whaley Avenue Milverton, Ontario N0K
Дополнительная информацияТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ САНТЕХНИКИ
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ САНИТАРНО-КАНАЛИЗАЦИОННОЙ СИСТЕМЫ ОКТЯБРЬ 2003 ГОДА УРОЖАЙ — ВОДОСНАБЖЕНИЕ, КАНАЛИЗАЦИЯ И ПОЖАРНАЯ ЗАЩИТА МОНРОВИИ РАЗДЕЛ 1.00 1.10 Цель Цель этого документа — собрать спецификации, правила канализации,
Дополнительная информацияПолитика входа в замкнутое пространство
Университет Иллинойса в Урбане-Шампейн Отделение безопасности и соблюдения требований Политика в отношении въезда в замкнутые пространства, пересмотренная в ноябре 2012 г. Дополнительная информация
Название: Стоянка самолетов
Экологический стандарт Операционная процедура Подразделение-составитель: Редакция: Подготовлено: Утверждено: MCAS Miramar Первоначальный экологический отдел экологического менеджмента Уильям Муг Департамент менеджмента
Дополнительная информация .Пределы давления в трубопроводе
Область применения
В этом документе подробно описывается, как термин «Безопасный рабочий предел» (SOL) в Правилах безопасности трубопроводов 1996 г. (PSR) и термин «Максимально допустимое рабочее давление» (MAOP) в Руководящем документе PSR (L82) переводятся в термины давления, используемые в признанных стандартах для Сектор Великобритании, как на суше, так и на море.
SOL могут быть указаны с точки зрения максимального рабочего давления, максимальной и минимальной температуры.В некоторых случаях SOL также учитывает такие факторы, как скорость жидкости и любые ограничения, установленные для состава жидкости. В этом документе рассматривается только давление SOL.
Также важно отметить, что определение безопасного рабочего предела давления в трубопроводе (SOL) может варьироваться в зависимости от признанных стандартов / правил трубопроводов. Это приемлемо при условии, что SOL установлен в соответствии с признанными стандартами проектирования / правилами, принятыми для трубопровода, и в соответствии с указаниями, приведенными ниже.
Справочная информация — Руководство PSR и PSR
Правило 11PSR гласит, что оператор трубопровода должен гарантировать, что жидкость не будет транспортироваться по трубопроводу, если не установлены точки SOL в трубопроводе, и что трубопровод не будет эксплуатироваться за пределами своих SOL.
В параграфе 52 руководящего документа L82 говорится, что оператор трубопровода должен гарантировать, что трубопровод эксплуатируется в пределах SOL.
График 5 PSR определяет как событие, подлежащее уведомлению, изменения в SOL.
В пункте 199 инструктивного документа L82 указано, что изменения в MAOP подлежат уведомлению. MAOP используется HSE для целей планирования землепользования.
Примечание: SOL для давления и MAOP не одно и то же
Признанные стандарты допускают короткие скачки давления выше МАОП. Таким образом, трубопровод может в течение ограниченного периода времени видеть давления, превышающие MAOP, и при этом оставаться в коде. Следовательно, SOL, выше которого давление не должно повышаться ни при каких обстоятельствах, выше, чем MAOP.
L82 параграф 54 может быть истолкован как подразумевающий, что MAOP совпадает с SOL. По указанным выше причинам это неверное толкование. Предполагается, что этот параграф будет пересмотрен после пересмотра руководства.
Уведомления PSR
SOL должен быть уведомлен в соответствии с правилом 20, приложение 4 PSR и правилом 22, приложение 5.
Кроме того, в параграфе 199 L82 указано, что изменения в MAOP также подлежат уведомлению в соответствии с PSR.
Эквиваленты PSR SOL и MAOP в признанных стандартах
ПСР СОЛ | ПСР МАОП | |
---|---|---|
BS EN 14161 | MAOP + 10% | MAOP |
BS EN 1594 | MIP | MOP |
BS PD 8010 Часть 1 | Не определено в спецификации | MAOP |
ИГЭ / ТД / 1 | MIP | MOP |
ИГЭ / ТД / 3 | MIP | MOP |
ИГЭ / ТД / 13 | MIP | MOP |
BS PD 8010 Часть 2 | Мин. MAOP + 10% | MAOP |
DNV-OS-F101 | MIP | MAOP |
API 17B + API 17J | Не определено в спецификации | Не определено в спецификации |
Примечание:
- MAOP — Максимально допустимое рабочее давление
- MIP — Максимальное побочное давление
- MOP — максимальное рабочее давление
Европейский гармонизированный стандарт: BS EN 14161: Нефтяная и газовая промышленность — Трубопроводные транспортные системы
Стандарт включает следующие определения
- Максимально допустимое рабочее давление (MAOP) = максимальное давление, при котором трубопроводная система может работать.Не должно быть превышено в устойчивых условиях.
- Внутреннее расчетное давление = максимальное внутреннее давление, на которое рассчитан трубопровод. (равно или больше MAOP)
Случайные давления выше MAOP, вызванные, например, скачками или отказом оборудования для контроля давления, допустимы при условии, что они имеют ограниченную частоту и продолжительность и не превышают MAOP более чем на 10%. Это эквивалент PSR SOL.
Европейский гармонизированный стандарт: BS EN 1594: Системы газоснабжения — Трубопроводы для максимального рабочего давления более 16 бар — Функциональные требования
Стандарт включает следующие определения
- Расчетное давление — давление, на котором основаны проектные расчеты.
- Случайное давление — давление, которое случайно возникает в системе, при котором срабатывает предохранительное устройство.
- Максимальное случайное давление (MIP) — максимальное давление, которое газовая система может испытать в течение короткого времени, ограниченное устройствами безопасности.
- Максимальное рабочее давление (MOP) — максимальное давление, при котором система может непрерывно работать в нормальных условиях. Рабочее давление (OP) — давление при нормальных условиях эксплуатации.
При работе при MOP или около него MOP может быть превышено не более чем на 2,5% для учета изменений устройств регулирования давления.
Случайные давления допустимы, если существуют системы, автоматически ограничивающие превышение до 15% сверх MOP. Это МИП. MOP не должен превышаться дольше, чем это строго необходимо для проверки неисправности и возврата к нормальным рабочим условиям.
Примечание: MIP согласно BS EN 1594 может составлять максимум MOP + 15%.В TD1 это может быть максимум MOP + 10%.
Британский стандартный свод правил для трубопроводов: BS PD 8010 Часть 1: Стальные трубопроводы на суше
Стандарт включает следующие определения
- Расчетное давление (DP) = давление, на котором основаны критерии расчета
- Случайное давление = уровень случайного давления, при котором срабатывают предохранительные устройства
- Максимально допустимое рабочее давление (MAOP).
- Рабочее давление (OP).
- Скачок давления = импульсное давление, вызванное насосами, работой клапана и т. Д. Для жидкостных или многофазных линий.
Случайное давление определяется как уровень случайно возникающего давления, при котором срабатывают предохранительные устройства. Следовательно, оно может быть превышено, когда предохранительное устройство срабатывает так, что меньше максимального случайного давления, определенного рекомендациями IGEM. Следовательно, это меньше, чем требуется согласно PSR.
Пульсирующее давление — это максимальное давление, вызванное максимальным давлением, вызванным:
- быстрое закрытие арматуры при работе трубопровода;
- насосов отключены и перезапущены;
- вакуумных полостей в трубопроводе;
- реверсивных операций;
- комбинация вышеперечисленного, обычно вызванная неправильной работой
Пульсирующее давление применяется к жидкостным и многофазным линиям.Неограниченное пульсирующее давление — это максимум комбинации пульсирующего давления жидкости при максимальных рабочих условиях и давления напора при останове насоса.
Пульсирующее давление в целом аналогично переходному давлению, определенному в PD BS 8010, часть 2. Таким образом, можно принять, что минимальное значение PSR SOL составляет MAOP + 10% согласно PD BS 8010, часть 2.
IGE / TD / 1: Стальные трубопроводы для транспортировки газа под высоким давлением (трубопроводы с давлением более 16 бар)
Стандарт включает следующие определения
- MIP — максимальное случайное давление
- PLOP — максимальное рабочее давление
- MOP — максимальное рабочее давление
MIP обычно составляет MOP + 10%.Экскурсии между PLOP и MOP разрешены, если они не длятся более 5 часов сверх MOP в любое время или более 20 часов в течение любого текущего года.
Если MOP больше или равно 75 бар изб., То для национальных энергосистем MIP составляет MOP + 6%.
PLOP составляет MOP + 2,5% и покрывает колебания давления для систем с регулируемым давлением с заданным значением MOP.
IGE / TD / 3: Стальные и полиэтиленовые трубопроводы для распределения газа — (трубопроводы не более 16 бар)
Стандарт включает следующие определения:
- MIP — максимальное случайное давление
- PLOP — максимальное рабочее давление
- MOP — максимальное рабочее давление
Они такие же, как определения в TD1 и TD 13.
IGE / TD / 13: Установки регулирования давления для систем передачи и распределения
Стандарт включает следующие определения:
- STP — испытательное давление на прочность
- MIP — максимальное случайное давление
- SP Nom 3 — уставка ПЗК
- TOP — временное рабочее давление
- SP Nom 2 — регулятор контроля уставки
- PLOP — максимальное рабочее давление
- MOP — максимальное рабочее давление.
- SP Nom 1 — уставка активного регулятора может равняться MOP
- OP — рабочее давление
Если MOP> 7 бар изб., То
PLOP — MOP + 2,5%
TOP — MOP + 5%
MIP — MOP + 10%
Зазор давления SP Nom 2 до TOP — это класс точности регулятора (AC)
Зазор давления SP Nom 3 до MIP — группа точности ПЗК (AG)
Британский стандартный свод правил для трубопроводов: BS PD 8010 Часть 2: Подводные трубопроводы
Стандарт включает те же определения, что и BS PD 8010 Часть 1, с добавлением
- Переходное давление = колебание давления, вызванное нарушением установившегося расхода
Переходное давление определяется как колебание давления, создаваемое нарушением установившегося режима потока в трубопроводе.Утверждается, что переходное давление обычно вызывается работой клапана, запуском или отключением насоса или колебаниями регулирующего клапана и неточностями уставок прибора, и что переходное давление может превышать MAOP, но не более чем на 10%. Это дает минимальное значение для PSR SOL как MAOP + 10%.
Норвежский морской стандарт: DNV-OS-F101: подводные трубопроводные системы
Стандарт включает следующие определения:
- MIP — Максимальное случайное давление
- MAIP — Максимально допустимое случайное давление
- MAOP — Максимально допустимое рабочее давление
MAIP — это максимальное давление, при котором трубопроводная система должна работать во время аварийного (т.е.е., переходный) работа. Максимально допустимое случайное давление определяется как максимальное случайное давление за вычетом положительного допуска системы безопасности давления. Таким образом, MIP — это PSR SOL.
API 17B: Рекомендуемая практика для гибких труб и API 17J: Спецификация для гибких труб без скрепления
Эти стандарты не включают определения давления для PSR SOL или PSR MAOP.
В спецификациях API упоминаются расчетное давление, максимальное рабочее давление и рабочее давление.
За максимальное рабочее давление можно принять PSR MAOP. PSR SOL должен быть явно указан оператором.
Дата выдачи: 19 февраля 2008 г.
Блок газа и трубопроводов
Проектирование и выбор трубопроводов. Оптимальный диаметр трубопровода
Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, реализующих рабочие процессы, относящиеся к различным областям применения. При выборе труб и конфигураций трубопроводов большое значение имеет стоимость самих труб и стоимость арматуры. Окончательная стоимость передачи среды по трубопроводу во многом определяется размером труб (диаметром и длиной).Для расчета этих значений используются специально разработанные формулы, специфичные для определенных типов операций.
Труба — это полый цилиндр из металла, дерева или другого материала, используемый для транспортировки жидких, газообразных и гранулированных сред. Переносимая среда может включать воду, природный газ, пар, нефтепродукты и т. Д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая домашним хозяйством.
Различные материалы, такие как сталь, чугун, медь, цемент, пластик, например АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутилен, полиэтилен и т. Д., можно использовать при производстве труб.
Диаметр трубы (внешний, внутренний и т. Д.) И толщина стенки, измеряемая в миллиметрах или дюймах, являются основными размерами трубы. Также используется такое значение, как номинальный диаметр или условное отверстие — номинальное значение внутреннего диаметра трубы, также измеряемое в миллиметрах (обозначается Ду ) или дюймах (обозначается DN). Значения номинального диаметра стандартизованы, что является основным критерием при выборе трубы и соединительной арматуры.
Соответствие номинального диаметра в [мм] и [дюймах] указано ниже.
По ряду причин, указанных ниже, трубы с круглым (круглым) поперечным сечением являются предпочтительным вариантом по сравнению с другими геометрическими поперечными сечениями:
- Circle имеет минимальное отношение периметра к площади; применительно к трубам это означает, что при одинаковой пропускной способности расход материала для труб круглой формы будет минимальным по сравнению с трубами другой формы. Это также подразумевает минимально возможные затраты на изоляционные и защитные покрытия;
- Круглое поперечное сечение является наиболее выгодным вариантом для перемещения жидких или газообразных сред с гидродинамической точки зрения.Кроме того, благодаря минимально возможной внутренней площади трубы на единицу ее длины трение между перекачиваемой жидкостью и трубой сводится к минимуму.
- Круглая форма наиболее устойчива к внутреннему и внешнему давлению;
- Процесс производства круглых труб достаточно прост и удобен в реализации.
Трубы могут сильно различаться по диаметру и конфигурации в зависимости от назначения и области применения. Поскольку магистральные трубопроводы для перекачки воды или нефтепродуктов могут достигать почти полуметра в диаметре при довольно простой конфигурации, а змеевики, также выполненные в виде трубы малого диаметра, имеют сложную форму с большим количеством витков.
Невозможно представить любой сектор промышленности без трубопроводной сети. Расчет любой трубопроводной сети включает в себя выбор материалов труб, разработку ведомости материалов, которая включает данные о толщине, размере, маршруте и т.д. трубы. Сырье, промежуточный продукт и / или готовый продукт проходят различные стадии производства, перемещаясь между различными аппаратами и агрегатами. , которые соединяются трубопроводами и арматурой. Правильный расчет, выбор и установка системы трубопроводов необходимы для надежной реализации всего технологического процесса и обеспечения безопасной передачи рабочих сред, а также для герметизации системы и предотвращения утечки переносимых веществ в атмосферу.
Не существует универсальной формулы или правила для выбора трубопровода для любого возможного применения и рабочей среды. Каждая область применения трубопровода включает ряд факторов, которые следует принимать во внимание и которые могут оказать значительное влияние на требования к трубопроводу. Например, при работе с жидким навозом крупногабаритный трубопровод не только увеличит стоимость установки, но и создаст трудности в эксплуатации.
Обычно трубы выбираются после оптимизации материальных затрат и эксплуатационных затрат.Чем больше диаметр трубопровода, т.е. чем больше первоначальные вложения, тем меньше перепад давления и, соответственно, меньше эксплуатационные расходы. И наоборот, небольшой размер трубопроводов позволит снизить начальную стоимость труб и арматуры; однако повышенная скорость повлечет за собой повышенные потери и приведет к затратам дополнительной энергии на прокачку среды. Значения скорости, фиксированные для различных приложений, основаны на оптимальных расчетных условиях. Эти ставки с учетом области применения используются при расчетах размеров трубопроводов.
.