Контрольный заряд разряд аккумуляторных батарей: Проведение контрольного разряда батареи — Сервисная компания АКК-МАН

Содержание

6. Контрольно-тренировочный цикл

Контрольно-тренировочный цикл проводится для контроля технического состояния аккумуляторных батарей, проверки отдаваемой ими емкости, исправления отстающих аккумуляторов.

При контрольно-тренировочном цикле проводятся:

  • предварительный полный заряд;
  • контрольный (тренировочный) разряд током 10-часового режима;
  • окончательный полный заряд.

Предварительный полный заряд при КТЦ проводится зарядным током, указанным в табл. 9 и 10, с соблюдением всех правил заряда.

Контрольный разряд производится по группам при соответствующих переключениях в ЗРУ. Перед началом контрольного разряда температура электролита должна быть 18…27 °C. Величина разрядного тока для аккумуляторных батарей должна соответствовать значению указанному в табл. 15.

Таблица 15. Величина разрядного тока для аккумуляторных батарей при проведении контрольно-тренировочного цикла

Тип батареи Разрядный ток, А Тип батареи Разрядный ток, А
6СТЭН-140М 12. 6 6СТ-75 6.8
6СТ-140Р 12.6 6СТ-82 7.5
12СТ-85Р 8.0 6СТ-90 8.1
12СТ-70М 7.0 6СТ-105 9.5
12СТ-70 7.0 6СТ-132 12.0
3СТ-150 13.5 6СТ-182 16.5
3СТ-215 19.5 6СТ-190 17.0
6СТ-45 4.2 3МТ-12 1.2
6СТ-50 4.5 3МТ-8 0.7
6СТ-55 5.0 6МТС-9 0.8
6СТ-60 5.4 6МТС-22 2.0

Постоянство разрядного тока должно тщательно соблюдаться в течение всего разряда, который должен заканчиваться в момент снижения напряжения до 1,7 В на первом вышедшем аккумуляторе батареи.

Замер напряжения на аккумуляторах и температуры в среднем аккумуляторе батареи производится при включении на разряд, затем через каждые 2 ч. При снижении напряжения на одном из аккумуляторов до 1,85 В замеры напряжения надо проводить через каждые 15 мин, а при снижении напряжение до 1,75 В аккумулятор контролируется непрерывно, чтобы уловить конец разряда. Как только на указанном аккумуляторе напряжение упадет до 1,7 В, следует немедленно измерить напряжение на всех остальных аккумуляторах, отключить батарею от разрядной цепи и восстановить величину разрядного тока для оставшихся в группе батарей.

Разряд автомобильных аккумуляторных батарей со скрытыми перемычками ведется до конечного напряжения на выводах 5,1 В у 6-вольтовых батарей и 10,2 В у 12-вольтовых батарей. При снижении напряжения до 5,55 В на 6-вольтовой батарее и до 11,1 В на 12-вольтовой батарее измерения производят через каждые 15мин, а при снижении напряжения до 5,25 В на 6-вольтовой батарее и до 10,5 В на 12-вольтовой батарее измерения производят непрерывно до конца разряда.

При контрольном разряде необходимо записывать время включения батареи на разряд и начальную температуру электролита, а также время окончания разряда (при достижении 1,7 В на первом вышедшем аккумуляторе или напряжения на выводах 5,1 B y 6-вольтовой батареи и 10,2 В у 12-вольтовой батареи) и конечную температуру электролита.

Подсчет емкости, отдаваемой аккумуляторной батареей, в процентах от номинальной емкости, производится по специальной таблице. Фактическая емкость, отдаваемая при контрольном разряде, может быть как меньше, так и больше номинальной.

Окончательный полный разряд автомобильных батарей производится нормальным зарядным током, указанным в таблице 10, с соблюдением всех правил с доводкой плотности электролита в конце заряда. Танковые батареи заряжаются током двух ступеней согласно табл. 9. Между окончанием контрольного разряда и началом последующего заряда допускается разрыв по времени не более 12 ч.

Танковые аккумуляторные батареи, не отработавшие гарантийного срока и отдавшие при контрольном разряде емкость менее 100% номинальной, подвергают повторному контрольно-тренировочному циклу. Перед вторым контрольным разрядом в аккумуляторах должна быть установлена плотность электролита 1,28±0,01 г/см3. Если при втором контрольном разряде батареи, не отработавшие гарантийного срока, отдают менее 100% гарантированной емкости, предъявляется акт-рекламация.

Виды зарядов и разрядов батарей, режимы заряд-разряд

В процессе эксплуатации аккумуляторные батареи подвергают восстановительному или лечебно-тренировочному зарядам.

Восстановительный заряд для кислотных батарей производят током 45 А до напряжения 2,3-2,4 В у большинства элементов, далее отключают ток на 1-2 ч и затем продолжают заряд током 20 А в течение 1 ч. Операции заряда током 20 А с перерывами 1—2 ч повторяют 2-3 раза до тех пор, пока не будет бурное газовыделение при включении батареи под заряд. Щелочные батареи заряжают, током 150 А в течение 2-5 ч.

Лечебно-тренировочный заряд выполняют в такой последовательности:

для кислотных батарей — заряд током 35 А до постоянства напряжений и плотности электролита в течение двух последних часов заряда и обильного газовыделения, разряд током 45 А до напряжения 1,8 В на двух наиболее слабых аккумуляторах, заряд двухступенчатым режимом (1-я ступень током 65 А до достижения напряжения 2,4 В, 2-я ступень — током 35 А) до постоянства напряжения и плотности электролита у всех элементов батареи;

для щелочных батарей — разряд током 110 А, после чего сливают электролит, заливают теплой подщелоченной водой и оставляют для отстоя на 15-20 ч, далее выливают воду, батарею заполняют свежим электролитом и проводят лечебно-тренировочный цикл: заряд током 150 А в течение 12 ч, разряд током 110 А в течение 5 ч, заряд током 150 А — 6 ч, разряд током 110 А до напряжения 1 В на элементе, заряд током 150 А в течение 12 ч.

При комплектовании кислотных батарей из новых или отремонтированных аккумуляторов выполняют несколько циклов зарядов-разрядов.

Первый цикл проводят в два этапа: заряд током 40 А до достижения у большинства элементов напряжения 2,4 В, снижение тока до 25 А до „закипания” электролита. При достижении температуры электролита 40 °С батарею разряжают током 45 А до напряжения 1,8 В на одном-двух наиболее слабых элементах.

Второй цикл проводят через 2 ч после первого и дают заряд током 65 А до напряжения 2,4 В, далее ток снижают до 35 А до появления обильного газовыделения. Разряд производят аналогично первому.

Последующие режимы заряда и разряда выполняют подобно второму циклу. Критерием годности батареи к установке на тепловоз является отдача ее при втором разряде не’ менее 80 %, а при третьем не менее 86 % гарантированной емкости 10-часового разрядного режима.

Процесс подготовки новых щелочных батарей не отличается от лечебного заряда и должен обеспечить не менее 90 % гарантированной емкости. Если после контрольного заряда-разряда этого не произошло, то выполняют дополнительно 1-3 тренировочных цикла, пока ее емкость не достигнет нормы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Каковы основные неисправности аккумуляторных батарей?

2. Какова плотность электролита, как ее измеряют?

3. Как измеряют уровень электролита?

4. Как определяют сопротивление изоляции аккумуляторной батареи?

5. В каких случаях производят разборку аккумуляторов и в какой последовательности?

6. Каким образом можно устранить сульфатацию аккумулятора?

7. Какие виды зарядов и разрядов аккумуляторных батарей выполняют в депо?

Глава VII.
ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ И ПОИСК ОТКАЗАВШИХ ЭЛЕМЕНТОВ

⇐Сборка, герметизация крышки, заливка электролитом | Ремонт электрооборудования тепловозов | Характерные признаки отказов электрических цепей и способы их обнаружения⇒

какие параметры аккумуляторных батарей нужно проверять и как это сделать?

При использовании аккумуляторных батарей на любых объектах, особенно в системах бесперебойного питания, за их состоянием нужно следить и регулярно проводить проверки.

В этом материале мы рассмотрим основные параметры АКБ, а также рассмотрим, какими приборами и как можно провести их контроль и проверку!

Основная задача при проверке состояния любой аккумуляторной батареи – выяснить, обладает ли она достаточной емкостью, может ли обеспечить заявленные производителем характеристики в течение необходимого времени. Однако непосредственно средствами измерения определяются только несколько основных параметров – напряжение, сила тока. В обслуживаемых аккумуляторах можно также замерить плотность электролита. Измерения можно проводить неоднократно, фиксируя изменение значений с течением времени. Все остальные параметры и характеристики не измеряются напрямую, а выводятся по разработанной изготовителем методике, причем она зависит и от типа АКБ, и от рекомендаций производителя, и от вида подключенной нагрузки. При этом необходимо учитывать, что многие зависимости, характеризующие работу АКБ, носят нелинейный характер. Могут сказываться и другие факторы, например, влияние температуры.

При выполнении краткосрочных измерений при использовании даже самых совершенных методик тестирование носит не точный количественный, а качественный характер. Единственный достоверный способ измерения емкости АКБ – его полная разрядка в течение многих часов с тщательной фиксацией параметров в ходе всего процесса. Но использовать столь продолжительную процедуру на практике можно далеко не всегда, особенно если батарей много. Тем не менее, и краткосрочных оценочных измерений достаточно для того, чтобы отличить работоспособный аккумулятор от изношенного, утратившего емкость, и вовремя произвести замену АКБ.

Способы проверки АКБ

1. Подключение нагрузки

К АКБ на некоторое время подключается рабочая или второстепенная нагрузка той или иной величины. Вольтметром или мультиметром измеряется падение напряжения. Если процедура выполняется несколько раз, между измерениями выжидается определенное время, чтобы батарея восстановилась. Полученные данные сопоставляются с параметрами, заявленными производителем АКБ для данного типа батареи и данной величины нагрузки.

2. Измерения при помощи нагрузочной вилки

Строение простейшей нагрузочной вилки показано на схеме:

Устройство оснащено вольтметром, параллельно которому установлен большой по мощности нагрузочный резистор, и имеет два щупа. В старых моделях вольтметры аналоговые; новые модели, как правило, оснащены ЖК-дисплеем и цифровым вольтметром. Существуют нагрузочные вилки с усложненной схемой, использующие несколько нагрузочных спиралей (сменных сопротивлений), рассчитанные на разные диапазоны измерения напряжений, предназначенные для тестирования кислотных либо щелочных аккумуляторов. Есть даже вилки, которыми тестируют отдельные банки аккумуляторов. В состав продвинутых устройств помимо вольтметра может входить амперметр.

Получаемые при измерениях данные также необходимо сопоставлять с параметрами, заявленными производителями для данного типа батарей и данного сопротивления.

3. Измерения при помощи специальных устройств, тестеров анализаторов АКБ

Приборы Кулон

Принципиальным развитием идеи нагрузочной вилки можно считать семейство цифровых приборов-тестеров Кулон (Кулон-12/6f, Кулон-12m, Кулон-12n и другие) для проверки состояния свинцовых кислотных аккумуляторов, а также другие подобные устройства. Они позволяют проводить быстрые замеры напряжения, приближенно определять емкость АКБ без контрольного разряда и сохранять в памяти несколько сотен, а иногда и тысяч измерений.

Приборы Кулон питаются от аккумулятора, на котором проводятся измерения. Входящие в комплект провода с разъемами «крокодил» имеют части, изолированные друг от друга, что обеспечивает четырехзажимное подключение к аккумулятору и устраняет влияние на показания прибора сопротивления в точках подключения зажимов. По заявлению разработчика, прибор анализирует отклик аккумулятора на тестовый сигнал специальной формы, при этом измеряемый параметр примерно пропорционален площади активной поверхности пластин аккумулятора и, таким образом, характеризует его емкость. Фактически, точность показаний зависит от достоверности методики, разработанной производителем.

Емкость аккумулятора – электрический заряд, отдаваемый полностью заряженным аккумулятором – измеряется в ампер-часах и представляет собой произведение тока разряда на время. Для точного определения емкости необходимо произвести разряд батареи (процесс длительный, многочасовой), постоянно фиксируя величину заряда, отдаваемого батареей. При этом относительная емкость АКБ в зависимости от времени изменяется нелинейно. Например, для аккумуляторной батареи типа LCL-12V33AP относительная емкость меняется со временем следующим образом:

Время разряда, часы Относительная емкость, %
0,1 37
1,3 48
0,7 53
1,9 76
4,2 84
9,2 92
20 100

Прибор Кулон при помощи быстрого измерения ориентировочно определяет емкость полностью заряженного аккумулятора. Он не предназначен для оценки степени заряженности АКБ, все измерения необходимо проводить на полностью заряженной батарее. Устройство кратковременно подает тестовый сигнал, регистрирует отклик от батареи и через несколько секунд выдает ориентировочную емкость АКБ в ампер-часах. Одновременно на экран выводится измеренное напряжение. Полученные значения можно сохранять в памяти прибора.

Производитель подчеркивает, что устройство не является прецизионным измерителем, но позволяет оценочно определять емкость свинцовой кислотной батареи, особенно если пользователь самостоятельно откалибровал прибор при помощи аккумулятора такого же типа, что и тестируемый, но с известной емкостью. Процедура калибровки подробно изложена в инструкции к прибору.

Тестеры PITE

Следующая разновидность устройств для тестирования АКБ – тестеры PITE: модель  Kongter BT-3915  для измерения внутреннего сопротивления батарей.

Управление осуществляется при помощи цветного сенсорного экрана, но основные управляющие кнопки вынесены на клавиатуру в нижней части корпуса. Прибором можно тестировать батареи емкостью от 5 до 6000 А·ч, с элементами аккумулятора 1.2 В, 2 В, 6 В и 12 В. Диапазон измерения напряжения – от 0.000 В до 16 В, сопротивления – от 0.00 до 100 мОм. Прибор позволяет задать тип проверяемых батарей, выполнить измерение напряжения и сопротивления (модель 3915) или напряжения и проводимости (модель 3918), и на их основании судить о том, соответствует емкость батареи заявленной производителем или нет. При этом параметр Capacity (емкость батареи) выводится в процентах.

Интерфейс прибора позволяет проводить как одиночные измерения, так и последовательные (до 254 измерений в каждой последовательности, совокупное количество результатов более 3000), что удобно при проверке большого количества однотипных АКБ (в последнем случае результаты сохраняются автоматически, помимо данных в них фиксируется также порядковый номер измерения). В зависимости от настроек прибор может использовать для выдачи результата (статуса Good, Pass, Warning или Failed) собственные критерии либо значения, заданные пользователем. Результаты тестирования через порт USB могут быть перенесены на компьютер для просмотра и последующей подготовки отчетов.

Анализаторы Fluke

Более глубокое развитие той же идеи – приборы Fluke Battery Analyzer серии 500 (BT 510, BT 520, BT 521), которые позволяют измерять и сохранять в памяти напряжение, внутреннее сопротивление стационарной батареи, температуру минусовой клеммы, напряжение при разрядке. При наличии дополнительных аксессуаров можно измерять и сохранять в памяти и другие параметры. Тесты можно проводить как в режиме отдельных измерений, так и в последовательном режиме; используя настраиваемые профили. Есть возможность задать пороговые значения для различных параметров. Встроенный порт USB позволяет передавать собранные записи (до 999 записей каждого типа) на компьютер для подготовки отчетов с помощью программного обеспечения Analyze Software, входящего в комплект поставки.

Щупы прибора имеют специальную конструкцию: внутренний подпружиненный контакт предназначен для измерения тока, внешний – для измерения напряжения. Если на щуп надавить, внутренний наконечник смещается внутрь таким образом, что оба контакта каждого щупа касаются поверхности одновременно. В результате одни и те же щупы позволяют организовать как 2-проводное, так и 4-проводное подключение к полюсам батареи (последнее необходимо для измерения Кельвина).

  • Прибор позволяет измерять следующие параметры:

  • Внутреннее сопротивление батареи (измерение занимает менее 3 с).

  • Напряжение батареи (производится одновременно с измерением внутреннего сопротивления)

  • Температура минусовой клеммы (рядом с черным наконечником на щупе BTL21 Interactive Test Probe предусмотрен ИК-датчик)

  • Напряжение при разрядке (определяется несколько раз в ходе разрядки или во время теста на нагрузку)

Также возможно измерение пульсирующего напряжения, измерение переменного и постоянного тока (при наличии токовых клещей и адаптера), выполнение функций мультиметра. С анализаторами Fluke можно использовать интерактивный тестовый щуп BTL21 Interactive Test Probe со встроенным датчиком температуры. С приборами совместимо большое разнообразие дополнительных аксессуаров (токовые клещи, удлинители разного размера, съемный фонарик и т. п.).


 


 

Хотя прибор обладает богатым функционалом, ключевым этапом в определении состояния АКБ остается сопоставление измеренных показателей с расчетными или заданными изготовителем для данного конкретного типа батарей. Устройства Fluke Battery Analyzer серии 500 удобны для массовой инспекции состояния батарей. Последовательный режим и система профилей позволяют выполнять необходимые измерения одно за другим, результаты запоминаются прибором и хранятся в упорядоченной форме, последовательно пронумерованные и разбитые на группы. Но прибор не имеет функции прямого или косвенного измерения емкости АКБ в ампер-часах – хотя бы потому, что для батарей разного типа на сегодняшний день вряд ли возможно разработать единую точную методику такого определения.

Все перечисленные выше устройства, хоть и отличаются друг от друга по размеру, относятся к классу портативных. В отдельную группу можно выделить стационарные комплексы для проверки АКБ, которые могут проводить быстрые испытания с определением внутреннего сопротивления, контролировать все параметры, включая активную и реактивную составляющие сопротивления, управлять процессом разряда/заряда и т. п. Подобные комплексы адресованы скорее исследовательским лабораториям, промышленным производителям АКБ и разработчикам нового оборудования, чем конечным пользователям.

4. Полная разрядка/зарядка

На сегодняшний день полная разрядка и зарядка – это единственный прямой и максимально достоверный способ определения емкости АКБ. Специализированные устройства контроля разряда/заряда батареи (УКРЗ) позволяют выполнить глубокую разрядку и последующую полную зарядку батареи с постоянным контролем емкости. Однако эта процедура занимает очень много времени: 15-17-20-24 часа, иногда и более суток, в зависимости от емкости и текущего состояния батареи. Хотя метод дает наиболее точные результаты, из-за временных затрат его применение ограничено.

5. Измерение плотности электролита

В обслуживаемых аккумуляторах для определения их состояния можно измерять плотность электролита, поскольку между этим параметром и емкостью АКБ существует непосредственная зависимость. Плотность электролита может меняться в силу разных причин, которые вдобавок взаимосвязаны (частый глубокий разряд батареи, сульфатация, неоптимальная плотность электролита, испарение и утечка раствора и т. д.). Аккумулятор начинает быстрее разряжаться, отдает меньше заряд. При этом необходимо понимать, что плотность электролита даже в исправном аккумуляторе, находящемся в идеальном состоянии – не константа, она меняется с температурой и степенью зарядки аккумулятора. Более того, для разных регионов рекомендованная плотность электролита отличается в зависимости от типовых климатических условий.

Результаты измерения плотности ареометром можно сопоставить со следующей диаграммой для кислотных аккумуляторов.

В зависимости от того, больше или меньше плотность электролита, чем требуемая (а для батареи вредно отклонение и в ту, и в другую сторону), можно частично или полностью заменить электролит, залить дистиллированную воду или раствор необходимой концентрации, обязательно обеспечив перемешивание. Как и при использовании всех ранее описанных способов проверки состояния АКБ ключевым является сопоставление измеренных значений с рекомендациями производителя батареи и следование всем предусмотренным процедурам обслуживания.

Выводы

Каждый способ определения текущего состояния аккумуляторной батареи имеет свои преимущества и недостатки. Каким из них пользоваться – зависит от ваших задач и возможностей. Сориентироваться вам поможет эта сводная таблица.

Способ определения состояния АКБ Преимущества Недостатки
Подкл ючение нагрузки Достаточно реалистичные результаты без использования специализированного оборудования Времязатратность при многократных измерениях Измеренные параметры документируются вручную
Нагрузочная вилка, специализированные анализаторы и тестеры

Портативность устройств

Простота использования

Быстрое проведение измерений, особенно многократных

Некоторые модели способны проводить измерения без выведения АКБ из режима эксплуатации

Специализированные модели позволяют сохранять результаты и переносить их на компьютер для подготовки отчетов

Часть параметров АКБ определяется по косвенным методикам Оценочная точность измерений
Полный разряд/заряд Единственный достоверный способ оценки емкости АКБ Очень продолжительная процедура – многие часы, иногда сутки
Измерение плотности электролита ρ Непосредственное определение состояния батареи по концентрации электролита Способ применяется только для обслуживаемых батарей

 

Материал подготовлен
техническими специалистами компании “СвязКомплект”.


См. также:

Контрольный разряд — батарея — Большая Энциклопедия Нефти и Газа, статья, страница 1

Контрольный разряд — батарея

Cтраница 1

Контрольные разряды батареи целесообразно проводить ежегодно или II раз в 2 года и всякий раз, когда возникает подозрение о снижении емкости батареи.  [1]

Контрольный разряд батареи является наиболее точным и безошибочным способом проверки ее состояния, но требует значительной затраты времени. Перед контрольным разрядом батарею следует полностью зарядить. Контрольный разряд производят при силе тока 10-часового разрядного режима. Температура электролита в начале разряда должна быть в пределах 20 — 30 С. Разряд производят до момента, когда напряжение одного из элементов батареи снизится до 1 7 В. После начала разряда замеры напряжения производят через каждые 2 ч, а после того, как напряжение какого-либо элемента снизится до 1 85 В, через каждые 15 мин.  [2]

Производят нормальный заряд и контрольный разряд батареи током 10-часового режима разряда ( / ю) до напряжения 1 8В на элемент.  [3]

После окончания первого заряда производится контрольный разряд батареи для определения ее фактической емкости. Контрольный разряд после формировки проводится, как правило, на нагрузочный реостат током 10-часового режима разряда.  [4]

Определение емкости производится путем проведения контрольного разряда батареи. Контрольный разряд позволяет определить не только физическую емкость батареи, но выявить отстающие аккумуляторы и при необходимости установить, какие электроды в отстающих аккумуляторах ограничивают емкость.  [5]

Один раз в год должен проводиться контрольный разряд батареи без какого-либо предварительного заряда. Если ток, потребляемый технологической нагрузкой, постоянен во времени и находится в указанных пределах, то в порядке исключения можно проводить контрольный разряд на реальную технологическую нагрузку.  [6]

По окончании лечебных циклов заряда-разряда после соответствующего заряда производят контрольный разряд батареи током 10-часового режима разряда. При этом батарея должна отдать не менее 95 % номинальной емкости.  [7]

Рубильник В предназначен для включения — отключения буферных выпрямителей, рубильник В2 — для коммутации батареи, рубильник BZ — для включения зарядного выпрямителя при заряде батареи на раздельных шинах с нагрузкой; в этом случае рубильник BZ должен быть отключен, нагрузки должны получать питание от буферных выпрямителей через рубильник Вг. При контрольном разряде батареи нагрузочный реостат подключается к клемме Разряд, рубильник В2 отключается, a Bz включается.  [8]

Разряд ведется до конечного напряжения 1 8 В на любом из элементов батареи. Для правильной оценки и сравнимости состояния аккумуляторов желательно все контрольные разряды данной батареи производить в одном и том же режиме.  [9]

Пластины разных полярностей, собранные с сепараторами, вставляют в аккумуляторный бак, который должен быть предварительно проверен на отсутствие трещин, очищен от осыпавшейся активной массы и тщательно промыт. Над пластинами устанавливают предохранительные щитки. Места стыка крышек с баком уплотняют асбестовым шнуром и устанавливают крышки. Затем приваривают межэлементные перемычки. Для заполнения высверленных при разборке отверстий наплавляют свинец из присадочного прутка. В зазоры между крышками и стенками бака заливают мастику. Батарею заполняют электролитом и ставят на заряд. Рекомендуется провести контрольный разряд батареи, вышедшей из ремонта. При удовлетворительных результатах контрольного разряда батарею вновь заряжают и направляют на эксплуатацию.  [10]

Страницы:      1

Циклы зарядки и разрядки аккумулятора.


Циклы зарядки и разрядки аккумулятора




Цикл зарядка-разрядка и определение фактической емкости аккумулятора

Фактическая емкость аккумуляторной батареи определяется с использованием, так называемого контрольного цикла зарядка-разрядка. Выполняется цикл в следующей последовательности.
Вначале производится зарядка аккумуляторной батареи током, равным 5 % номинальной емкости батареи. Затем с помощью специального прибора или реостата с амперметром аккумуляторную батарею разряжают током силой 5 % емкости до напряжения 10,2…10,3 В.

Фактическая емкость (СФ) аккумуляторной батареи равна произведению времени разрядки на величину тока разрядки и может быть определена по формуле:

СФ = tр×0,05 Сном,

где:
tр – время разрядки аккумуляторной батареи;
Сном – номинальная (паспортная) емкость аккумуляторной батареи.

Пример:
Аккумуляторная батарея 6СТ-90 имеет емкость 90 А×ч, следовательно, ток ее разряда должен составлять 9 А. В результате контрольного цикла разрядки установлено, что аккумулятор разрядился за 6 часов.
Из этого следует, что реальная (фактическая) емкость аккумулятора
СФ = 9×6 = 54 А×ч,
т. е. значительно меньше номинальной (паспортной) емкости.

При повторе цикла разрядка-зарядка по описанной выше схеме фактическая емкость батареи в большинстве случаев постепенно увеличивается и может составить 90 % номинальной после 3…4 циклов. Поэтому не следует спешить с утилизацией старой аккумуляторной батареи без оценки ее реального состояния при помощи описанных циклов заряда-разряда.
Если измеренная емкость аккумуляторной батареи меньше 40 % от номинальной емкости, то она, вероятнее всего, подлежит замене, а если больше, то после 2…4 циклов зарядки-разрядки ее можно установить на автомобиль для дальнейшей эксплуатации.

При определении технического состояния аккумуляторной батареи обычно ограничиваются определением степени ее заряженности по изменению плотности электролита для определения необходимости в подзарядке.
На практике чаще всего исправность аккумуляторной батареи и ее пригодность к дальнейшей эксплуатации определяют исходя из возможности надлежащего пуска двигателя и ее нормальной зарядки.

***



Восстановительный цикл зарядка-разрядка

Восстановительный цикл зарядка-разрядка проводится для восстановления емкости аккумуляторной батареи, снизившейся в результате сульфатации ее пластин или загрязненности электролита. Цикл технологически аналогичен описанному выше тренировочному циклу зарядки-разрядки, но при восстановлении применяется поэтапная замена электролита с промывкой бака и блоков пластин дистиллированной водой.
Восстановительная зарядка занимает значительно больше времени, поскольку заряд осуществляется слабым током (примерно 2 % номинальной емкости аккумулятора).

Для проведения восстановительного цикла зарядка-разрядка аккумуляторную батарею разряжают током, равным 10 %-й емкости до 10,2 В. После этого сливают старый электролит, промывают батарею дистиллированной водой и заливают электролит пониженной емкости (1,1 г/см3). Затем заряжают аккумуляторную батарею малым током, равным 2% емкости до появления признаков окончания зарядки (стабилизация плотности электролита и ЭДС, выделение газов – «кипение» электролита).

По окончании зарядки сливают из аккумуляторной батареи электролит пониженной плотности, заливают электролит нормальной плотности и полностью заряжают ее током, равным 5% емкости батареи.

Для полного слива электролита или промывочной дистиллированной воды аккумуляторную батарею аккуратно переворачивают вниз отверстиями и выдерживают так в течение 5…10 минут.
Желательно большую часть содержимого бака батареи откачать при помощи резиновой груши, а остатки слить описанным выше способом. Не следует при сливе взбалтывать содержимое – мусор, застрявший между пластинами батареи существенно снизит ее реальную емкость.

Перед восстановительным циклом целесообразно выполнить контрольную зарядку-разрядку, оценив при этом фактическую емкость аккумуляторной батареи. Это позволит определить техническое состояние аккумуляторной батареи и избежать потери времени на длительную восстановительную зарядку в случае непригодности батареи – если фактическая емкость менее 40 % восстановительный цикл будет бесполезен. В большинстве таких случаев аккумуляторная батарея выбраковывается, поскольку ее ремонт или невозможен, или нецелесообразен.

Не следует забывать, что при зарядке аккумуляторной батареи происходит выделение вредных для здоровья и взрывоопасных газов, поэтому зарядку следует проводить в отдельном хорошо проветриваемом помещении, не допускать поблизости появления открытого огня и искр.

***

Сухозаряженные аккумуляторные батареи


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Как сделать контрольно-тренировочный цикл (КТЦ) аккумулятора в домашних условиях

Аккумуляторная батарея является важным компонентом любого современного автомобиля. С её помощью запускается двигатель, плюс можно включать разных потребителей, не заводя мотор. Тем самым питание поступает не от генератора, а от АКБ.

Но с течением времени ёмкость батареи может падать. И в какой-то момент при повороте ключа в замке зажигания ничего не происходит. Да, специалисты в автосервисе скажут, что аккумулятору пришёл конец, срок его службы закончился, и лучше приобрести новый. Причём наверняка вам подскажут, где и какой покупать.

Но не стоит делать поспешные выводы. Такая процедура как КТЦ часто позволяет реанимировать батарею. Это не 100% гарантия возвращения полной работоспособности, но отличный способ сэкономить на покупке новой АКБ. Как минимум стоит попробовать.

Почему падает заряд

У всех АКБ есть определённая ёмкость, прописанная в Ач. На легковых авто чаще всего встречаются батареи на 60-80 Ач. То есть при 60 Ач устройство может в течение 60 часов выдавать ток, сила которого составит 1 Ампер. Но это в теории.

На практике всё иначе. Как только происходит запуск мотора, заряд сильно падает. Но он компенсируется за счёт работы генератора. Не все водители ездят много и часто, а потому генератор попросту не успевает восполнить весь заряд. Доказано, что в большинстве случаев авто эксплуатируются с постоянным недозарядом.

Ёмкость может уменьшаться под воздействием разных факторов:

  • плохое крепление, механические повреждения;
  • проблемы в электрооборудовании;
  • нарушение целостности электропроводки;
  • процессы сульфатации;
  • езда по городу короткими поездками;
  • низкая температура окружающей среды и пр.

Поскольку большинство водителей ездят именно в таких условиях, периодически проверять состояние и заряд АКБ нужно обязательно.

Понятие о КТЦ

Теперь следует детальнее разобраться с контрольно-тренировочным циклом для АКБ, поскольку далеко не все понимают, что это такое и для чего проводится.

Используемые на автомобилях аккумуляторные батареи являются свинцово-кислотными. Они отличаются между собой конструктивными особенностями, применяемыми добавками, консистенцией используемого электролита. Поэтому различают AGM батареи, гелевые, кальциевые и пр.

Срок службы АКБ обычно указан производителем на корпусе устройства. При этом часто можно увидеть цифры в пределах 5-10 лет. Такой период кажется вполне приемлемым, поскольку перспектива менять батареи раз в 7-8 лет радует. Но заявленные сроки редко совпадают с реальными. Это обусловлено тяжёлыми условиями работы, езда с постоянным недозарядом. Этим страдают машины, эксплуатируемые в городе и проезжающие короткие дистанции. Добавьте сюда низкие температуры и халатное отношение.

Чтобы минимизировать денежные затраты на покупку новой батареи, следует сделать всё возможное для продления срока службы имеющегося аккумулятора. Для этого и предусмотрена такая процедура как КТЦ.

Контрольно-тренировочным циклом называют процедуру, которая проводится для восстановления разряженных и старых АКБ. Её смысл заключается в полном разряде и последующем заряде устройства.

КТЦ позволяет частично восстановить характеристики, улучшить работоспособность аккумулятора. На прежние 100% эффективности, как было при покупке, рассчитывать не стоит. Но дополнительные 2-3 года АКБ точно послужит.

Рекомендуемая периодичность КТЦ составляет 2 раза в год.

Зачем нужны тренировки

Не все до конца понимают, для чего проводится подобная тренировка старого или севшего автомобильного аккумулятора.

Можно выделить несколько основных причин:

  • желание отложить покупку новой дорогостоящей батареи;
  • увеличение срока службы используемой АКБ;
  • реанимация аккумулятора, о котором забыли и нашли его через долгое время;
  • восстановление характеристик уже давно эксплуатируемой батареи.

В некоторых случаях, когда батарея пролежала пару лет в гараже либо её просто забыли снять с машины, оставив на длительное хранение без скинутых клемм, удаётся восстановить АКБ, которая кажется уже приговорённой к утилизации.

Правильно проведённая тренировка старого автомобильного разряженного аккумулятора, когда выполняется заряд-разряд, позволяет сэкономить деньги автовладельцу. Плюс АКБ несколько восстановит свои характеристики, а потому двигатель будет запускаться легче даже при сильных морозах.

Последовательность процедуры КТЦ

Многие занимаются проведением КТЦ старых аккумуляторов в домашних условиях и успешно выполняют поставленные задачи.

Чтобы выполнить такую процедуру, потребуется подготовить:

  • зарядное устройство;
  • ареометр;
  • нагрузку нужной величины;
  • мультиметр.

Самостоятельная зарядка собственного автомобильного аккумулятора методом КТЦ довольно часто даёт положительный результат. Но для этого важно чётко соблюдать инструкции и придерживаться заданной последовательности.

Чтобы выполнить тренировочный цикл, то есть заряд-разряд изношенных аккумуляторов, следует обучиться работе с мультиметром.

Сама процедура включает в себя 3 этапа:

  • предварительная зарядка;
  • контрольный разряд;
  • заряд.

Тут важно выполнить грамотно каждый этап. Если при обычном обслуживании требуется лишь разряжать батарею, то при КТЦ аккумулятора необходимо знать, до какого напряжения это делать и когда приступать к обратному действию.

Проводятся предварительные расчёты для конкретной АКБ, чтобы определить точную нагрузку.

Предварительный этап

Если вникнуть в суть и изучить все детали, то схема проведения КТЦ автомобильного аккумулятора не покажется такой уж сложной. Поэтому многие успешно делают это своими руками.

При наличии заводского зарядного устройства хорошего качества никаких проблем не возникнет. Достаточно соединить АКБ с зарядным устройством и дождаться завершения процесса.

То, до какого напряжения потребуется проводить КТЦ, зависит от конкретного аккумулятора и условий выполнения цикла. Поэтому изучите его технические характеристики.

Заряд проводится по плотности находящегося внутри электролита и по напряжению. Выполняя предварительный заряд АКБ, ориентируйтесь на следующие значения:

  • Напряжение 12,72 В соответствует плотности 1,28 и говорит о 100% заряде.
  • Напряжение 12,5 В говорит, что плотность 1,24, а заряд 75%.
  • При 12,35 В плотность будет 1,2. При этом АКБ заряжена на 50%.
  • Если 12,1 В, то плотность низкая, всего 1,16, а заряд лишь 25%.

Эти параметры, как и применение специальных формул, будут актуальными при использовании упрощённой версии зарядного устройства. Важно рассчитать точное время.

К примеру, замер плотности аэрометром показал 1,16 г/см3. То есть заряд тут 25%, а его потеря соответственно 75%. Сама батарея имеет ёмкость 60 Ач.

Для расчёта потери ёмкость следует 60 Ач умножить на 75% и поделить на 100%. Получаем 45 Ач.

Напряжение зарядного тока должно всегда составлять не более 10% от ёмкости АКБ.

Если у вас 60 Ач, то зарядный ток составит 6 А.

В итоге легко рассчитать время, необходимое для заряда. Для этого есть формула: 2 умножить на потерю ёмкости и разделить на зарядный ток.

В рассматриваемом случае это 2*45/6. Итого 15 часов для заряда.

Но расчёт примерный, поскольку всё равно требуется постоянно следить за параметрами плотности и напряжения. Как только они достигнут 1,27 г/см3 и 12,7 В соответственно, заряд будет завершён.

Как провести предварительный заряд АКБ, уже разобрались.

Разряд

Далее о том, как правильно и самостоятельно провести КТЦ для своего аккумулятора. Нужно переходить на второй этап. Теперь правильно разряжаем АКБ.

Как ни странно, но для восстановления работоспособности батареи после её заряда нужно снова полностью посадить. Только процесс разряда должен строго контролироваться.

При разряде АКБ, будь он типа АГМ, популярный гелевый, кальциевый или классический свинцово-кислотный, требуется создать электроцепь, в которой будет подключен потребитель тока, вольтметр и амперметр.

Разрядка батареи выполняется током 10-часового режима. Его величина составляет в пределах от 9 до 10 от ёмкости АКБ.

Здесь стоит заглянуть в руководство по эксплуатации либо ориентироваться по специальным таблицам. Приведём несколько примеров:

  • для АКБ с 6 банками на 50 Ач разрядный ток будет 4,5 А;
  • при 6 банках, но 60 Ач, это 5,4 А;
  • если банок 12, а ёмкость 70, тогда используется 7 А;
  • при 90 Ач нужен ток разряда 8,1 А.

Разряд выполняется соответствующей и правильно подобранной нагрузкой. Для стандартных автомобильных АКБ, ёмкость которых составляет 60 Ач, достаточно взять лампочку на 65 Вт. Рассчитать нагрузку можно по формуле, умножив разрядный ток на напряжение, составляющее 12 В.

Имея все необходимые инструменты для КТЦ АКБ, можно приступать к разряду. Параллельно важно обеспечить такие условия:

  • температура электролита при старте разряда в диапазоне от 18 до 27 градусов;
  • проверка температуры и напряжения проводится перед началом процесса, а затем повторяется с интервалом 2 часа;
  • при падении напряжения до 1,85 В проверка делается каждые 15 мин.;
  • при снижении напряжения до 1,75 В параметры контролируются постоянно;
  • на значении 1,7 В разряд прекращается, нагрузка отключается.

Ни в коем случае не оставляйте АКБ разряженной. Нужно сразу же приступать к повторному заряду.

Иначе реанимировать батарею уже вряд ли получится.

Повторный заряд

Теперь просто заряжаем ранее разряженную батарею. Здесь процедура ничем не отличается от первого контрольного заряда.

Но в зависимости от того, находится в вашем распоряжении обслуживаемый или необслуживаемый аккумулятор, при контроле рабочих параметров могут возникнуть трудности. Потому лучше всего проводить заряд именно специальными, заводскими зарядными устройства с системой автоотключения.

Для обеспечения лучшего качества КТЦ процедуру заряд-разряд-заряд рекомендуется повторить 2-3 раза.

По завершению тренировки очищаются клеммы, удаляются следы электролита при их наличии.

КТЦ требует к себе повышенного внимания. На эту процедуру обычно уходит 2 дня. При этом оставлять батарею на длительное время без присмотра категорически запрещено.

Восстановление аккумуляторов в Екатеринбурге | Проведение КТЦ

Если батарея на вашем автомобиле стала было разряжаться – не стоит ее сразу выбрасывать. Дать новую жизнь аккумулятору поможет проведение контрольно-тренировочного цикла.
КТЦ – длительная процедура, заключающаяся в чередовании цикла «Заряд-разряд-заряд». Целью проведение тренировочных циклов является повышение емкости аккумулятора и увеличение его срока службы.
Зарядно-разрядное устройство состоит из: регулируемого резистора с амперметром, вольтметром и кремниевым вентилем для защиты от обратного тока. Для проведения КТЦ потребуется:
  • два кабеля (провода)
  • устройство зарядки
  • часы
  • вольтметр
  • лампочка или реостат с нужной мощностью

Механизм проведения КТЦ аккумулятора

  • Зарядка аккумулятора. Батарея с помощью ЗУ заряжается полностью, После чего с помощью ареометра проверяется плотность электролита. Значение должно быть в пределах 1.27 – 1.28. Если плотность выше нормы – доливается дистиллированная вода. Следует учитывать, что уровень электролита должен быть на 10-15 мм выше пластин.
  • Далее следует полная разрядка аккумулятора. Производится десятичасовым током. Величина разряда определяется как 10% от номинальной емкости батареи. Батарею с указанной емкостью 60 Ач следует заряжать током 6 Ампер (60/10 = 6). Для точной регулировки тока в цепь включается реостат. Если реостата нет – можно взять автомобильную лампу нужной мощности – 6А x 12В  = 72 Вт.
  • Лампа используется как доп. Нагрузка, параллельно подключается вольтметр. Недопустимо разряжать батарею в «ноль». Напряжение на клеммах должно быть не ниже 10.3 В. Рассчитывается так: если с момента разряда прошло 8 часов, ее емкость равна 8ч x 6А = 48 Ач. То есть, от номинальной емкости осталось 68 %.
  • Повторная полная зарядка. Рекомендуется проводить до 3-х полных циклов «разряд-заряд».

Проведение КТЦ АКБ позволит восстановить емкость батареи до 90% от заявленного.

Восстановление аккумуляторных батарей в Екатеринбурге

«Ибп-Урал» – магазин с широким ассортиментом аккумуляторов от лучших российских и зарубежных производителей: Восток, Delta, Red Energy, Sonnenschein и другие. Выгодные цены.
Кроме того, в нашем штате есть бригада опытных профессионалов, которые занимаются сервисом и обслуживанием АКБ.

Зачем тратить деньги на новую батарею, когда можно продлить жизнь старого? Свяжитесь с нами по телефону 8 (343) 302 05 74 и мы решим вашу проблему с аккумулятором!

Проверка заряда-разряда батареи | ESPEC CORP.

Рост числа устройств, работающих на литий-ионных батареях, создал потребность в высоких уровнях точности и качества для поддержки различных приложений. Цикл зарядки / разрядки — это один из методов оценочных испытаний, используемый для удовлетворения этого требования. Задача теста — определить, сколько раз можно использовать аккумулятор, оценивая его до тех пор, пока он не выйдет из строя после повторяющихся циклов зарядки и разрядки. Стандартный метод — это многократная зарядка и разрядка с рекомендованной скоростью зарядки и разрядки.Также часто выполняется испытание с циклическим изменением температуры, при котором температура испытания повышается и понижается путем помещения образца в температурную камеру. Для автомобильных аккумуляторов IEC 62660-1 призывает к циклическому испытанию срока службы с быстрым изменением скорости заряда / разряда. Используется комбинация профилей заряда / разряда. Некоторые профили имеют немного большее количество заряда, чем количество разряда, а другие имеют немного большее количество разряда, чем количество заряда.
Тестирование температурных характеристик проводится для определения того, сколько мощности можно вводить / выводить при различных температурных условиях.Существуют тесты характеристик температуры разряда и тесты характеристик температуры заряда.
Испытание нагрузочной характеристики при постоянном токе выполняется для определения того, какую мощность можно вводить / выводить при различных значениях тока. Существуют тесты характеристик разрядной нагрузки (в которых скорость тока изменяется при разряде образца) и тесты характеристик зарядной нагрузки (в которых скорость тока изменяется во время зарядки образца).
Помимо тестирования заряда / разряда, ESPEC предоставляет услуги по оценке литий-ионных аккумуляторов, а также по тестированию безопасности, консультационным услугам по испытаниям и сертификации аккумуляторных блоков / модулей транспортных средств.У нас также есть широкий спектр услуг по тестированию / сертификации на соответствие Правилам ЕЭК ООН R100.

Центр экологических испытаний энергетических устройств

Тестирование аккумуляторов, методы и процедуры тестирования

Тестирование предназначено для того, чтобы сообщить нам то, что мы хотим знать об отдельных элементах и ​​батареях.

Вот некоторые типичные вопросы:

  • Полностью ли заряжен?
  • Сколько заряда осталось в аккумуляторе?
  • Соответствует ли он спецификации производителя?
  • Произошло ли ухудшение характеристик с момента его выпуска?
  • Как долго это продлится?
  • Все ли предохранительные устройства работают?
  • Создает ли он помехи или электрические помехи?
  • На него влияют помехи или электрические помехи?

Ответы не всегда однозначны.

Косвенные измерения

Хотя все параметры ячейки, которые инженер-проектировщик может пожелать измерить, можно количественно измерить прямым измерением, это не всегда удобно или возможно. Например, количество оставшегося заряда в аккумуляторе, состояние заряда (SOC) может быть определено путем полной разрядки аккумулятора и измерения выходной энергии. Это требует времени, приводит к бесполезной трате энергии, каждый цикл тестирования сокращает срок службы батареи, и это может оказаться непрактичным, если батарея уже используется.Для первичной ячейки это тоже было бы бессмысленно. Для получения более подробной информации о том, как это делается, см. Страницу о состоянии зарядки.

Точно так же можно определить оставшийся срок службы вторичной клетки, непрерывно меняя ее цикл до тех пор, пока она не выйдет из строя, но нет смысла знать ожидаемую продолжительность жизни клетки, если вам придется ее уничтожить, чтобы узнать. Это называется состоянием здоровья (SOH) батареи.

Что необходимо, так это простые тесты или измерения, которые можно использовать в качестве приближения или косвенного измерения желаемого параметра.Для получения дополнительной информации см. Страницу «Состояние здоровья»

.

Тестирование процесса проектирования ячейки

При разработке новых ячеек необходим гораздо более подробный режим испытаний. Дополнительную информацию можно найти на странице «Новые конструкции батарей и химический состав».

Условия испытаний

Во всех следующих тестах и ​​тестировании в целом должны быть указаны условия тестирования, чтобы можно было получить повторяемые результаты и проводить значимые сравнения.Сюда входят такие факторы, как метод, температура, глубина разряда, нагрузка и рабочий цикл. Например, емкость элемента и срок службы, два ключевых показателя производительности могут отличаться на 50% и более в зависимости от температуры и скорости разряда, при которой проводились испытания. См. Также «Рабочие характеристики ячейки».

В спецификации батареи всегда должны быть указаны условия тестирования, чтобы избежать неоднозначности.

Квалификационное тестирование

Квалификационные испытания предназначены для определения того, подходят ли элемент или батарея для той цели, для которой они были предназначены, до того, как они будут одобрены для использования в продукте.Это особенно важно, если ячейка будет использоваться в «критически важном» приложении. Это комплексные испытания, проводимые первоначально на небольшом количестве ячеек, включая тестирование некоторых из них на разрушение, если это необходимо. На втором этапе квалификация также включает тестирование готовых аккумуляторных блоков перед тем, как продукт будет утвержден для выпуска потребителю. Испытания обычно проводятся для проверки того, что ячейки соответствуют спецификации производителя, но они также могут использоваться для тестирования ячеек до произвольных пределов, установленных инженером по приложениям, чтобы определить, как долго ячейки выживают в неблагоприятных условиях или необычных нагрузках, для определения отказа. режимы или факторы безопасности.

Аккумуляторные блоки также следует протестировать с помощью зарядного устройства, рекомендованного для данной области применения, чтобы убедиться в совместимости. В частности, необходимо оценить потенциальные пользовательские шаблоны, чтобы гарантировать, что аккумуляторы не будут случайно перезаряжены. См. Также раздел о зарядных устройствах.

Встряхнуть и выпекать

  • Механические испытания
  • Типовые испытания включены в приведенные ниже стандарты безопасности.Они включают в себя простые тесты на размерную точность и динамические испытания, чтобы убедиться, что продукт может выдержать любые статические и динамические механические нагрузки, которым он может подвергаться.

  • Экологические испытания
  • Типовые испытания включены в приведенные ниже стандарты безопасности. Они предназначены для работы с продуктом в любых условиях окружающей среды, с которыми он может столкнуться в течение срока его службы.

Тестирование на злоупотребления

Целью тестирования на неправильное использование является проверка того, что аккумулятор не представляет опасности для пользователя или для самого себя в результате случайного или преднамеренного злоупотребления при любых возможных условиях использования. Создавать надежные батареи становится все труднее, потому что, как мы знаем, дураки очень изобретательны.

Тестирование на злоупотребления (всегда интересное для свидетелей) обычно указывается как часть Тестирования на безопасность (см. Ниже).Недавние аварии с литиевыми элементами высветили потенциальные опасности и ужесточили правила проектирования батарей, применяются более широкий спектр испытаний, а также ужесточаются правила перевозки для перевозки продуктов.

Стандарты безопасности

Потребительские товары обычно должны соответствовать национальным или международным стандартам безопасности, требуемым организациями по безопасности стран, в которых они продаются.Примерами являются стандарты UL, ANSI, CSA и IEC.

Типовое содержание

Тесты на безопасность

Кожух

  • Прочность, жесткость и горючесть
  • Напряжение формы (температура)
  • Вентиляция
  • Изоляция
  • Электролит не под давлением
  • Нет утечки
  • Отсутствие опасности взрыва или пожара

Защита от или толерантность к

  • Короткое замыкание
  • Перегрузка (время)
  • Перегрузка (напряжение)
  • Перегрузка
  • Реверс напряжения
  • Высокая температура
  • Низкотемпературный
  • Неправильное использование
  • Нарушение

Выходная мощность — испытание под нагрузкой

Отказоустойчивая электроника

Артикул

Инструкция по эксплуатации

Указания по технике безопасности

Механические испытания

  • Испытания на раздавливание
  • Испытания на проникновение гвоздей
  • Ударное испытание
  • Испытание на вибрацию
  • Испытание на удар
  • Испытание на падение

Экологические испытания

  • Обогрев
  • Температурный цикл
  • Высота
  • Влажность
  • Воздействие огня

Опубликованные стандарты безопасности определяют метод тестирования и пределы, которым должен соответствовать продукт.

Стандарты DEF

Ячейки, используемые в военных целях, обычно должны отвечать более строгим требованиям, чем те, которые используются в потребительских товарах.

Цикл испытания

Это, пожалуй, самый важный из квалификационных испытаний. Элементы подвергаются повторяющимся циклам заряда-разряда, чтобы убедиться, что элементы соответствуют заявленному производителем сроку службы или превышают его.Срок службы обычно определяется как количество циклов заряда-разряда, которое батарея может выполнить до того, как ее номинальная емкость упадет ниже 80% от начальной номинальной емкости. Эти тесты необходимы, чтобы убедиться, что характеристики батареи соответствуют надежности конечного продукта и ожидаемому сроку службы, и не приведут к чрезмерным гарантийным или гарантийным претензиям.

Температура, скорость заряда / разряда и глубина разряда — каждая из них имеет большое влияние на срок службы элементов в цикле (см. Страницу Срок службы элементов). согласованный референтный уровень для получения повторяемых результатов, которые можно сравнить со стандартом.В качестве альтернативы тесты могут использоваться для моделирования рабочих условий, в которых температура может повышаться или ограничивается DOD, чтобы определить, как это повлияет на срок службы.

Аналогичным образом на срок службы в цикле влияют избыточная зарядка и чрезмерная разрядка, и очень важно установить правильные пределы напряжения и тока, если необходимо проверить спецификацию производителя.

Циклическое тестирование

обычно выполняется группами ячеек с использованием многоканальных тестеров, которые могут создавать различные профили заряда и разряда, включая импульсные входы и нагрузки.В то же время можно контролировать и записывать различные рабочие параметры элемента, такие как температура, емкость, импеданс, выходная мощность и время разряда. Обычно контролируемый полный цикл зарядки-разрядки занимает около 5 часов. Это означает, что тестирование до 1000 циклов займет 208 дней при условии работы 7 дней в неделю 24 часа в сутки. Таким образом, требуется много времени, чтобы проверить эффект любых текущих улучшений, внесенных в ячейки. Поскольку процесс старения является непрерывным и достаточно линейным, можно предсказать срок службы элемента по меньшему количеству циклов.Однако, чтобы убедительно доказать это, чтобы гарантировать срок службы продукта, потребуется большое количество ячеек и длительное время. Для батарей большой мощности это может быть очень дорого.

См. Также Оценка срока службы батарей и тестирование надежности и альтернативное тестирование срока службы

Нагрузочное испытание

Нагрузочное тестирование используется для проверки того, что аккумулятор может выдавать заданную мощность при необходимости.

Нагрузка обычно рассчитывается таким образом, чтобы соответствовать ожидаемым условиям, в которых может использоваться аккумулятор. Это может быть постоянная нагрузка со скоростью C или импульсные нагрузки с более высокими значениями тока или, в случае автомобильных аккумуляторов, нагрузка может быть спроектирована так, чтобы имитировать типичную схему движения. Испытания малой мощности обычно проводят с резистивными нагрузками. Для испытаний очень высокой мощности с переменными нагрузками могут потребоваться другие методы. Контроллер Ward-Leonard может использоваться для обеспечения изменяемого профиля нагрузки, при этом энергия батареи возвращается в сеть, а не рассеивается в нагрузке.

Обратите внимание, что аккумулятор может иметь большую емкость при периодической разрядке, чем при постоянной разрядке. Это связано с тем, что аккумулятор может восстанавливаться во время периодов простоя между сильными прерывистыми утечками тока. Таким образом, тестирование емкости батареи при непрерывном потреблении большого тока не обязательно даст результаты, которые отражают емкость, достижимую с фактическим профилем использования.

Нагрузочное тестирование часто требуется проводить с переменными уровнями нагрузки. Это могут быть просто импульсные нагрузки или более сложные профили нагрузки высокой мощности, например, требуемые для аккумуляторов электромобилей. Стандартные профили нагрузки, такие как Федеральное расписание вождения по городу (FUDS) и испытание на динамическую нагрузку (DST), установленное Консорциумом усовершенствованных аккумуляторов США (USABC) в США и спецификацией Европейской экономической комиссии Организации Объединенных Наций (ECE-15). ) и Extra Urban Driving Cycle (EUDC) в Европе были разработаны для моделирования условий вождения, и несколько производителей включили эти профили в свое испытательное оборудование.

Имитация цикла движения ECE-15

Хотя эти стандартные циклы использования были разработаны для обеспечения основы для сравнения, следует отметить, что типичный пользователь не обязательно ездит в соответствии с этими циклами и, вероятно, будет ускоряться как минимум в два раза быстрее, чем разрешено в стандартах. .

Калориметрия

Управление температурным режимом аккумулятора имеет решающее значение для аккумуляторных блоков большой мощности.Получение точных данных о тепловыделении от батареи Модули необходимы для проектирования систем терморегулирования аккумуляторных батарей. Калориметр используется для количественной оценки общего количества тепла, выделяемого батареей, когда она проходит циклы зарядки / разрядки. По сути, это изолированный ящик, в который помещается батарея, которая улавливает и измеряет выделяемое тепло. аккумулятор во время езды на велосипеде. Система калибруется путем сравнения тепла, выделяемого батареей, с теплом, выделяемым известным источником тепла.

Тепловизор

Тепловизионное изображение используется для проверки «горячих точек», которые могут указывать на точки высокого теплового напряжения в элементе или аккумуляторном блоке. Это фотографическая техника, при которой с помощью специальной камеры регистрируется интенсивность инфракрасного излучения, испускаемого объектом. На изображении слева изображен пакетный литий-ионный аккумулятор после продолжительного разряда при 4 ° C.В этом случае температура равномерно распределяется внутри ячейки, и клеммы ячейки охлаждаются. Эти тесты могут помочь выявить такие проблемы, как перегрев, недостаточный теплоотвод или воздушный поток, малоразмерные токопроводы и помехи от соседних ячеек или устройств. Изображения также можно использовать для определения наилучшего места для датчиков температуры, используемых в схемах защиты.

Испытания на электромагнитную совместимость (ЭМС)

Электромагнитная совместимость (ЭМС) — это способность электронного и электрического оборудования и систем работать, не оказывая неблагоприятного воздействия на другое электрическое или электронное оборудование ИЛИ не подвергаясь влиянию других источников помех, таких как переходные процессы в линии электропередач, радиочастотные (РЧ) сигналы, цифровые импульсы, электрические машины, молния или другие воздействия.

Обратите внимание, что EMC касается как излучения электромагнитных помех (EMI или радиочастотные помехи RFI) продуктом или устройством, так и восприимчивости продукта к EMI, излучаемым из других источников. Помехи могут передаваться через силовые или сигнальные кабели или шасси оборудования, они могут распространяться через индуктивную или емкостную связь или могут излучаться через атмосферу.

Поскольку батареи являются устройствами постоянного тока, мы не можем предполагать, что они защищены от проблем с электромагнитной совместимостью.В MPower мы видели схему защиты аккумулятора в двусторонней радиосвязи, отключенную радиочастотными помехами от передатчика телефона. Подобные проблемы возможны в автомобильных приложениях, где силовые кабели, как известно, зашумлены из-за помех от систем зажигания и переходных процессов от электродвигателей и переключателей. Хотя сама батарея может не излучать радиопомех, этого нельзя сказать о зарядном устройстве. Во многих зарядных устройствах используются импульсные регуляторы, которые также печально известны своим электрическим шумом.Излучаемые электромагнитные помехи могут иметь решающее значение для таких приложений, как кардиостимуляторы, медицинские приборы, оборудование связи и военные приложения.

Как и во многих случаях, профилактика лучше, чем лечение, и разумно начинать учитывать ЭМС на самой ранней стадии проектирования, чтобы избежать дорогостоящих изменений конструкции, когда проект будет представлен на окончательное утверждение. Это может включать выбор конструкции системы, такой как рабочие частоты, схемы схем и дизайн корпуса, а также отказ от конструкций с высокими переходными токами.

Для минимизации воздействия электромагнитных помех используются различные методы. Чувствительные части схемы могут быть физически отделены от источников помех, оборудование может быть заключено в герметичный металлический корпус, отдельные части схемы могут быть экранированы металлической фольгой, к кабелям могут быть добавлены фильтры для фильтрации шума,

Испытания на ЭМС включают в себя специализированное испытательное оборудование и оборудование.Тестирование должно проводиться в среде, свободной от других источников электромагнитных помех. Обычно это означает безэховую камеру или клетку Фарадея. Для создания и измерения помех необходимы специальные источники сигналов с широким диапазоном и чувствительные приемники.

Некоторые примеры требований ЭМС приведены в разделе «Стандарты

».

Технологический аудит

Проведение технологического аудита производственных мощностей производителя ячеек является дополнительным способом получения уверенности в рассматриваемых элементах, однако этот вариант обычно доступен только крупным покупателям ячеек большого объема или высокой стоимости.Если вы не один из них, вам придется полагаться на дружелюбного создателя пакетов, который, возможно, имеет право на особое обращение.

Аудит процесса включает проверку того, что производитель элементов имеет соответствующие системы качества и что они полностью внедряются на каждом этапе производственного процесса. Чтобы эта задача была эффективной, она должна выполняться командой, обладающей специальными отраслевыми знаниями. Опять же, эту работу лучше всего доверить производителю упаковок, который должен иметь необходимый опыт и авторитет у производителей ячеек.

Инспекция и производственные испытания

Целью инспекционных производственных испытаний является проверка того, что приобретенные элементы и изделия, изготовленные с их помощью, соответствуют согласованным спецификациям. Как правило, это короткие тесты, проводимые на 100% производительности или на репрезентативных образцах. Не следует упускать из виду состав материалов, из которых изготовлены компоненты.Мы видели примеры, когда недобросовестные поставщики покрывали разъемы сплавом золотого цвета, а не указанным золотом, и использовали дешевые пластмассы, которые изгибаются при нагревании, а не требуемые высококачественные пластмассы.

Типовые испытания включают механические и электрические испытания. Компоненты проверяются на точность размеров, а образцы узлов подвергаются испытанию на прочность сварных швов межсоединений.Измеряемые электрические параметры включают внутренний импеданс и выходное напряжение элемента или аккумуляторной батареи с нагрузкой или без нее. Аккумулятор также подвергается кратковременным импульсам зарядки и разрядки длительностью около 2 миллисекунд, чтобы убедиться, что устройство принимает и может доставить заряд.

Аккумуляторные блоки обычно подвергаются более всестороннему тестированию, чтобы убедиться, что электроника работает правильно.Схема защиты проверяется путем короткого замыкания клемм аккумулятора на 1 или 2 секунды и проверки того, что путь тока прерван в течение предписанного периода и что аккумулятор после этого восстанавливается. Выходные данные указателя уровня топлива проверяются, и если аккумулятор имеет встроенную память, данные, такие как химический код элемента, дата и серийный номер, считываются и записываются для обеспечения возможности отслеживания.

Подготовка заряда или формирование

Обычно это выполняется производителем элемента, но в некоторых случаях это может быть обязанность сборщика аккумуляторной батареи.В любом случае элементы необходимо проверить, чтобы убедиться, что они готовы к подаче тока.

Мониторинг производительности

Мониторинг производительности используется для проверки того, продолжает ли ячейка работать должным образом после того, как она используется в приложении, для которого она была указана. Это индивидуальные тесты, определяемые пользователем.

Нет простых прямых измерений, таких как размещение вольтметра на клеммах, чтобы определить состояние батареи.Показания вольтметра могут сказать нам кое-что о состоянии заряда (с огромной погрешностью), но не могут сказать нам, насколько хорошо батарея будет обеспечивать ток, когда это потребуется.

Внутреннее сопротивление

Необходимо знать внутреннее сопротивление ячейки, чтобы рассчитать выделение джоулева тепла или потери мощности I 2 R в ячейке, однако простое измерение с помощью омметра невозможно, поскольку ток, генерируемый самой ячейкой мешает измерению.

Для определения внутреннего сопротивления сначала необходимо измерить напряжение холостого хода ячейки. Затем к ячейке должна быть подключена нагрузка, вызывающая протекание тока. Это снизит напряжение ячейки из-за падения напряжения ИК-излучения на ячейке, которое соответствует внутреннему сопротивлению ячейки. Затем необходимо снова измерить напряжение ячейки при протекании тока. Сопротивление рассчитывается по закону Ома из разницы напряжений между двумя измерениями и тока, протекающего через ячейку.

Напряжение холостого хода OCV

Измерение напряжения холостого хода батареи не является надежным показателем ее способности передавать ток. По мере старения батареи ее внутреннее сопротивление увеличивается. Это снизит способность аккумулятора принимать и удерживать заряд, но напряжение холостого хода по-прежнему будет нормальным, несмотря на уменьшенную емкость аккумулятора. Сравнение фактического внутреннего сопротивления с сопротивлением новой батареи укажет на ухудшение характеристик батареи.

Состояние заряда (SOC)

Для многих приложений пользователю необходимо знать, сколько энергии осталось в аккумуляторе. SOC также является фундаментальным параметром, который необходимо отслеживать и контролировать в системах управления батареями. Методы оценки SOC объясняются в разделе о состоянии заряда.

Состояние здоровья (SOH)

Состояние здоровья — это мера способности батареи обеспечивать указанный ток при необходимости.Это важный фактор для мониторинга производительности батареи после того, как она введена в эксплуатацию. Это кратко рассматривается в разделе ниже и более подробно в разделе «Состояние здоровья».

Испытания импеданса и проводимости

Обсуждение эквивалентной схемы батареи в разделе «Рабочие характеристики» показывает, что мы можем ожидать, что сопротивление батареи будет увеличиваться с возрастом.

Производители батарей имеют свои собственные определения и соглашения для импеданса и проводимости, основанные на используемом методе испытаний. Хотя не совсем корректно, они служат своей цели.

Метод испытания включает приложение небольшого переменного напряжения «E» известной частоты и амплитуды к ячейке и измерение синфазного переменного тока «I», протекающего в ответ на него.

Импеданс Z рассчитывается по закону Ома и равен Z = E / I

Электропроводность «C» рассчитывается аналогично как C = I / E (величина, обратная импедансу).

Обратите внимание, что сопротивление увеличивается по мере разряда батареи, а проводимость уменьшается.Таким образом, C напрямую коррелирует со способностью батареи производить ток, то есть с ее емкостью, тогда как Z дает обратную корреляцию. Таким образом, проводимость ячейки дает косвенное приближение к состоянию здоровья ячейки. Это измерение можно уточнить, приняв во внимание другие факторы. Они описаны на странице о состоянии здоровья.

В дополнение к импедансу и проводимости эти тесты, очевидно, обнаружат дефекты ячеек, такие как короткие замыкания и обрыв цепи.

Эти методы испытаний можно использовать с разными химическими составами ячеек, однако в испытательное оборудование должны быть встроены разные калибровочные коэффициенты, чтобы учесть различия в профилях старения для разных химикатов.

Тестирование импеданса и проводимости надежно, безопасно, точно, быстро и не влияет на характеристики батареи. Их можно проводить, пока батарея используется, или их можно использовать для постоянного контроля производительности батареи, избегая необходимости тестирования под нагрузкой или разряда.

Измерения постоянного тока

Обратите внимание, что измерения постоянного тока не распознают изменения емкости, и поэтому измерения внутреннего сопротивления ячейки не так хорошо коррелируют с SOH ячейки.

Использование обычного омметра для измерения сопротивления кабелей, контактов и межэлементных перемычек неудовлетворительно, поскольку сопротивление очень низкое, а сопротивление выводов прибора и контактов вызывает значительные ошибки.Более высокая точность может быть достигнута за счет использования моста Кельвина, который отделяет провода измерения напряжения от выводов источника тока и, таким образом, позволяет избежать ошибки, вызванной падением напряжения на выводах источника тока. См. Также определение напряжения зарядного устройства.

Анализаторы батарей

Анализаторы батарей предназначены для быстрой индикации состояния здоровья (SOH) батареи. Некоторые анализаторы также выполняют двойную функцию восстановления батареи.

Для этого оборудования нет отраслевых стандартов, в основном потому, что нет стандартного определения состояния здоровья. У каждого производителя оборудования есть свой любимый способ его определения и измерения, от простого измерения проводимости до средневзвешенного значения нескольких измеренных параметров, и испытательное оборудование разработано, чтобы дать соответствующий ответ. Это не должно быть проблемой, если одно и то же оборудование используется постоянно, однако это вызывает проблемы, если для проведения испытаний используется оборудование от разных производителей.

Анализ отказов

Анализ отказов ячеек лучше всего проводят производители ячеек. Только они будут иметь подробные спецификации механических и химических компонентов ячейки, а для этого обычно требуется доступ к дорогостоящему аналитическому оборудованию, такому как электронные микроскопы и масс-спектрометры, которые они должны иметь. Дополнительные сведения см. В разделах «Почему выходят из строя батареи» и «Неисправности литиевых батарей»

.

Система тестирования заряда / разряда аккумуляторных батарей


Система проверки заряда и разряда аккумуляторных элементов Chroma 17011 — это высокоточная система, разработанная специально для проверки элементов литий-ионных аккумуляторов (LIB), конденсаторов с двойным электрическим слоем (EDLC) и литиево-ионных конденсаторов (LIC).Он подходит для разработки продукта, контроля качества и полезен для характерных исследований, тестирования жизненного цикла, проверки продукта и оценки качества.

Chroma 17011 имеет модели с линейной схемой и рекуперативным двунаправленным преобразователем переменного / постоянного тока для различных применений. Системы тестирования линейных цепей характеризуются чрезвычайно низким выходным шумом и высокой точностью измерения и применимы для тестирования компонентов аккумуляторов энергии малых и средних размеров. Рекуперативные двунаправленные испытательные системы с высокой эффективностью, энергосбережением, низким нагревом и стабильными измерительными возможностями подходят для тестирования компонентов накопителей энергии среднего и большого размера или аккумуляторных элементов силового типа и подходят для производства экологически чистой энергии с низким уровнем выбросов углерода.

В дополнение к обычно используемым режимам тестирования постоянного тока (CC), постоянной мощности (CP), постоянного напряжения (CV), постоянного сопротивления (CR) и покоя, Chroma 17011 также оснащена функциями моделирования формы сигнала и элементами тестирования, включая DCIR. , HPPC, емкость EDLC и EDLC DCR, которые соответствуют международным стандартам, что значительно упрощает редактирование программ и анализ результатов испытаний.

В тестовую систему Chroma 17011 встроены гибкие функции редактирования программного обеспечения, которые могут создавать базовые тесты зарядки / разрядки или сложные циклические тесты для каждого канала, которые будут выполняться независимо.Программа может редактировать логические решения для перехода или вывода переменных, а также для паузы или возобновления. Он также имеет функции защиты данных для безопасного хранения данных в энергонезависимой памяти в случае отключения электроэнергии или разрыва связи, чтобы предотвратить потенциальную потерю данных и возобновить тесты после перезагрузки.

Поскольку безопасность имеет решающее значение при тестировании литий-ионных аккумуляторных элементов, конструкция Chroma 17011 предлагает различные меры безопасности. Перед запуском проверьте контакт и полярность, чтобы избежать тестирования при плохом соединении.Во время тестирования, помимо предварительно загруженной аппаратной защиты схемы, пользователь может настроить прошивку для обнаружения перенапряжения (OVP), перегрузки по току (OCP), избыточной мощности (OQP), изменения напряжения / тока (ΔV / ΔI), сопротивления контура и других аномалий для защиты литий-ионные аккумуляторные батареи.

Серия линейных круговых испытаний

Высокая точность — улучшение качества продукции
  • Точность измерения напряжения / тока: ± 0.015 % Ф.С. / ± 0,02 % полной шкалы.
  • Широкий диапазон выходного напряжения: Оснащен выходным диапазоном от 0 В до 6 В, а определенные модели позволяют переключаться между тремя встроенными режимами выходного напряжения. Измерения напряжения различаются до 0,1 мВ.
  • Конструкция с несколькими диапазонами измерения: обеспечение различных диапазонов тока или напряжения (в зависимости от модели) для значительного повышения точности и разрешения измерений. Диапазон тока переключается автоматически, и в режиме постоянного напряжения нет прерывания токового выхода.

Быстрый отклик по току — подходит для множества приложений для высокоскоростных переходных процессов
  • Текущее время отклика (от 10% до 90%) <100 мкСм *
  • Поддержка динамической формы волны для имитации быстро меняющихся состояний тока и мощности

* Примечание. Текущее время отклика <100 мкСм относится к модели 17216M-10-6, полное сопротивление других проверяемых устройств будет немного отличаться.

Динамическое моделирование формы волны
  • Динамическая форма волны заряда / разряда тока и мощности, имитирующая фактическое использование аккумулятора при вождении автомобиля или других реальных приложениях
  • Импорт кривых тока и мощности из файла Excel
  • Сэкономьте 1440 000 точек на каждом канале для длительного часового динамического тестирования
  • Минимальный интервал времени для вывода данных: 10 мс

Регенеративный двунаправленный тест серии

Переработка энергии — оптимальное использование электроэнергии
  • Прямая переработка: автоматическая передача энергии разряда аккумуляторным элементам для зарядки с эффективностью переработки> 80%
  • Переработка сети: переработка избыточной энергии в сеть с эффективностью рециркуляции> 60%
  • Низкие выбросы углерода для зеленой энергии, предотвращающие образование отходящего тепла во время разгрузки
  • Экономия затрат на электроэнергию за счет высокоэффективного заряда и разряда энергии
  • Экономия затрат на кондиционирование на холодильном оборудовании
  • Гармонические искажения тока <5% для обратной связи по току сети
  • Коэффициент мощности> 0.98 при номинальной мощности

Высокая точность — улучшение качества продукции
  • Точность напряжения: ± (0,02% от показаний + 0,02% от полной шкалы)
  • Точность тока: ± 0,05% от полной шкалы.

Быстрый отклик по току — режим формы сигнала
  • Текущая скорость отклика (-90% ~ 90%) <1 мс для всех видов испытаний
  • Поддержка динамической формы волны для имитации текущего состояния и состояния питания при реальном вождении автомобиля с помощью стандартов испытаний NEDC, FUDS и DST.

Функции

Технология измерения высокочастотной выборки — повышение точности измерений

  • Частота дискретизации В / I: 50 кГц (Δt : 20 мкс)

Обычно тестеры батарей используют программное обеспечение для считывания значений тока для расчета мощности; однако ограниченная частота дискретизации данных может привести к большим ошибкам при вычислении динамической текущей емкости.Увеличивая частоту дискретизации и используя метод двойного интегрирования, Chroma 17011 может обеспечить вычисление емкости с гораздо более высокой точностью. При изменении тока данные не теряются и скорость передачи не изменяется.

* Примечание : Текущее время отклика <100 мкСм относится к модели 17216M-10-6, полное сопротивление других проверяемых устройств будет немного отличаться.

Гибкие параллельные каналы для вывода

Испытательные системы позволяют гибко настраивать параллельные каналы, чтобы обеспечить более высокие токи применения для многоканальных и широких диапазонов тестирования, что делает Chroma17011 подходящим для различных проверяемых устройств.

  • Простое параллельное соединение каналов тестера с помощью программного обеспечения, поддерживающего весь спектр продуктов
  • Подходит для испытаний с высоким коэффициентом заряда и разряда или разнообразных приложений для испытаний аккумуляторов

Защита и восстановление данных

Механизм восстановления данных о потере питания: после сбоя питания ПК автоматически восстанавливает состояние данных тестирования, которые уже были записаны в базу данных. Пользователь может возобновить или перезапустить тестирование.

Тестовое приложение HPPC

HPPC — это процедура тестирования, разработанная USABC (U.S. Advanced Battery Consortium) для определения мощности аккумуляторной батареи гибридных и электромобилей. В пределах диапазона рабочего напряжения батарей процедура в основном устанавливает функцию соотношения между глубиной разряда и мощностью и, во вторую очередь, устанавливает глубину разряда, проводящее сопротивление и функцию поляризационного сопротивления через кривую зависимости напряжения и тока от разряда и стояния. к зарядке.Измеренное сопротивление можно использовать для оценки падения мощности батареи во время последующих испытаний на срок службы и разработки модели эквивалентной схемы. Chroma 17011 имеет гибкую программу редактирования, которая позволяет проводить тестирование HPPC.

Приложение для тестирования батареи DCIR

Приложение для тестирования батареи DCIR

Значение внутреннего сопротивления зависит от степени заряда / разряда батареи. Чем больше значение внутреннего сопротивления, тем ниже эффективность при повышении температуры.Согласно модели эквивалентной схемы литий-ионной батареи, измерение ACIR традиционных измерителей LCR 1 кГц может только оценить проводящее сопротивление (Ro) батареи, которое влияет на мгновенную выходную мощность, но не может оценить полученное сопротивление поляризации (Rp). во время электрохимической реакции. Оценка DCIR включает ACIR, которая ближе к фактическому эффекту поляризации батареи при непрерывном питании.

Chroma 17011 включает два типа тестовых режимов DCIR: DCIR-тест (1) вычисляет значение DCIR, используя разность напряжений, вызванную изменением одноступенчатого тока, DCIR-тест (2) вычисляет значение DCIR, используя разность напряжений, вызванную изменение двухступенчатого тока.Пользователи могут выбрать желаемый режим тестирования и автоматически, без каких-либо ручных вычислений, получить результаты, соответствующие стандартам IEC 61960.

Приложение для проверки емкости аккумулятора Емкость может быть получена как интеграл тока, интегрирующий ток в зависимости от времени от начала зарядки / разрядки до достижения условия отключения. Результаты сравнения полезны для анализа различий в производительности между продуктами, а общие элементы тестирования включают тесты на коэффициент тока и температурные характеристики.Более высокая точность измерения тока, напряжения и более быстрая выборка позволяют более точно различать различия в емкости аккумуляторных элементов.

Приложение для проверки срока службы батареи Срок службы — один из важнейших критериев проверки батарей. В соответствии с экспериментальной целью, он проверяет одну и ту же батарею в условиях повторяющейся зарядки и разрядки до тех пор, пока емкость не упадет до 80%, и вычисляет количество циклов.Испытание на срок службы может использоваться для оценки характеристик батареи или определения применимых условий использования.

Приложение для испытания кулоновской эффективности Кулоновский КПД (CE) рассчитывается по соотношению емкости заряда / разряда, когда аккумулятор полностью заряжен, а затем полностью разряжен. Хорошие батареи имеют более высокую кулоновскую эффективность и требуют высокоточного и стабильного оборудования, чтобы различать различия. Точный тест кулоновской эффективности позволяет оценить срок службы батареи всего за несколько циклов.

Приложение для анализа дополнительных мощностей Функция высокоточного измерения напряжения и выборки ΔV позволяет строить графики зависимости dQ / dV от напряжения для анализа характеристик аккумуляторных элементов и снижения емкости.

Тестовые приложения EDLC


▲ Разработка модели эквивалентной схемы EDLC

Разработка модели эквивалентной схемы классического EDLC включает эквивалентное последовательное сопротивление (ESR), емкость (C) и эквивалентное параллельное сопротивление (EPR).ESR используется для оценки внутренних потерь и тепла EDLC во время зарядки / разрядки; EPR для оценки эффекта утечки при длительном хранении EDLC; C для оценки жизненного цикла EDLC.

Эти параметры нелегко измерить непосредственно в лаборатории; Исследователям нужен анализ данных и сложные вычисления для определения этих важных показателей. Chroma 17011 соответствует стандартам тестирования IEC 62391, и пользователь может использовать тесты заряда / разряда для получения значений параметров EDLC, чтобы оценить характеристики EDLC и срок службы.


▲ Характеристика напряжения между выводами EDLC

Приложение для испытаний на сопротивление постоянному току (DCR) и эквивалентное последовательное сопротивление (ESR) EDLC

Chroma 17011 предлагает функцию тестирования сопротивления постоянному току EDLC в соответствии со стандартом тестирования IEC 62391. Перед тестированием EDLC необходимо зарядить постоянным током. Проверка емкости заключается в разрядке CC с помощью указанного выше разрядного тока.Когда разряд завершен, возьмите линейный участок на кривой разряда и увеличьте его до времени разряда, а затем получите разность номинального напряжения и тока разряда для расчета значения DCR.


▲ Характеристика напряжения между выводами EDLC

Приложение для испытания емкости EDLC (C)

В соответствии с методом приближения прямой линии стандарта IEC 62391 перед измерением значения емкости (C) EDLC сначала необходимо полностью зарядить в режиме зарядки CC-CV.Проверка емкости заключается в разрядке CC с помощью указанного выше разрядного тока. Затем разность электрических потенциалов (ΔV) двух контрольных точек на кривой разряда сравнивается с разницей во времени (Δt) и током разряда (I) для расчета значения емкости EDLC.


▲ Характеристика напряжения между выводами EDLC

EDLC Комбинированное приложение для испытаний DCR и C

Chroma 17011 также имеет приложение для комбинированных испытаний сопротивления постоянному току (DCR) и емкости (C).В одних и тех же условиях заряда CC-CV и разряда CC пользователь может использовать электрический потенциал в выбранных контрольных точках для одновременного расчета значений DCR и C EDLC, чтобы сэкономить время тестирования.

Приложение для проверки характеристик заряда / разряда и срока службы

Встроенные режимы тестирования сопротивления постоянному току (DCR) и емкости (C) могут быть объединены с функцией цикла и изменяемыми условиями тестирования для проверки выносливости и надежности EDLC нагрузки.После тестирования пользователь может напрямую экспортировать отчеты DCR vs Cycle No. и Capacity vs Cycle No., чтобы проанализировать механизмы отказа и ухудшения EDLC.


▲ Характеристика напряжения между выводами EDLC

Приложение для испытания кулоновской эффективности

Chroma 17011 имеет низкий уровень шума, автоматическое переключение диапазона тока и отчет об отключении для быстрого вывода точного тока заряда / разряда.Кулоновский КПД (CE) рассчитывается по соотношению емкости заряда / разряда, которое указывает преобразование внутренней емкости EDLC как доступную емкость. Высокоточный КЭ является важным маркером, позволяющим различать различия между продуктами.


▲ Характеристика напряжения между выводами EDLC

Приложение для испытания на ток утечки Для измерения тока утечки

EDLC обычно требуется зарядка CC-CV до определенного времени, а затем он измеряет этот крошечный зарядный ток, который рассматривается как ток утечки.Режим Chroma 17011 CC-CV может автоматически изменять диапазон тока без прерывания вывода. При стабильном напряжении диапазон тока может составлять всего 200 мкА.


▲ Характеристика напряжения между выводами EDLC

Приложение для испытания на саморазряд

Chroma 17011 также имеет встроенный режим проверки саморазряда, когда EDLC полностью заряжен, он может проверять заряд / разряд в течение заданного периода времени.Когда запускается этот режим, система отключает измерительную цепь, чтобы обеспечить идеальную разомкнутую цепь, и измеряет только пусковой потенциал (V1) и потенциал отсечки (V2). Программа может автоматически рассчитать разность электрических потенциалов (ΔV).

Операционный интерфейс графического программного обеспечения

Испытательные системы Chroma 17011 управляются компьютерным программным обеспечением с различными функциями для тестирования накопителей энергии.Безопасный, стабильный и удобный интерфейс позволяет пользователям быстро выполнять настройку и тестирование.

  • Поддержка интерфейсов на английском, традиционном китайском и упрощенном китайском языках
  • Мониторинг состояния многоканального тестируемого устройства в реальном времени
  • Управление безопасностью: установить права пользователя для безопасного управления
  • Отслеживание записи отказов: независимо записывать аномалии для каждого канала, защита от заряда и разряда прервет тест при обнаружении ненормального состояния

Редактирование рецептов
  • 500 шагов на рецепт
  • Двойной цикл (цикл и цикл) с 999,999 счетчиками повторений на цикл
  • Функция вспомогательного рецепта: вызов существующих рецептов
  • шагов теста: CC / CV / CP / CC-CV / CP-CV / CR / Rest / Waveform / DCIR / C / DCR и т. Д.
  • Условия отключения: время / ток / мощность / мощность / переменная и т. Д.
  • Логические операции: Next / End / Jump / If-Then

Выполнение рецепта
  • Режимы работы: Пуск / Стоп / Пауза / Возобновление / Переход / Резервная пауза / Изменение во время теста
  • Интерфейсы дисплея: Графический дисплей / Табличный дисплей
  • Окно мгновенного мониторинга

Статистический отчет
  • Возможность определять форматы отчетов и экспортировать их в файлы PDF, CSV и XLS
  • Функции анализа графических отчетов позволяют создавать пользовательские отчеты, такие как отчеты о жизненном цикле, отчеты Q-V, отчеты о времени V / I / T и т. Д.

Системная интеграция

  • Интеграция с климатической камерой с помощью программного обеспечения для синхронизации условий настройки для тестирования заряда / разряда
  • Интегрируйтесь с многофункциональным регистратором данных с помощью программного обеспечения для чтения и установки нескольких температурных записей во время процесса зарядки / разрядки. Измените эти условия на условия защиты или отключения

Внешняя структура

Модели линейных цепей

Тестер можно использовать отдельно, чтобы он занимал мало места, что позволяет проводить несколько тестов, выполняемых на рабочем столе.Когда тестер настроен на большее количество тестовых каналов, его можно интегрировать в стандартную 19-дюймовую стойку для использования. Система может быть сконфигурирована в соответствии с требованиями пользователя, поскольку количество каналов может быть расширено, и с одного ПК можно управлять до 64 каналов одновременно.

Регенеративные модели

Тестер заряда / разряда и двунаправленный преобразователь переменного / постоянного тока могут быть интегрированы в стандартную 19-дюймовую стойку для использования. Система может быть сконфигурирована в соответствии с требованиями пользователя, поскольку количество каналов может быть расширено, и с одного ПК можно управлять до 48 каналов одновременно.

НОВИНКА Chroma 17010 Система проверки надежности батареи (с батареей LEx) была официально запущена, пожалуйста, нажмите для получения информации


Параметры заряда и разряда батареи

Ключевой функцией батареи в фотоэлектрической системе является обеспечение энергией, когда другие источники энергии недоступны, и, следовательно, батареи в фотоэлектрических системах будут испытывать непрерывные циклы зарядки и разрядки. На все параметры аккумулятора влияет цикл зарядки и перезарядки аккумулятора.

Состояние заряда батареи (BSOC)

Ключевым параметром батареи, используемой в фотоэлектрической системе, является состояние заряда батареи (BSOC). BSOC определяется как доля общей энергии или емкости батареи, которая была использована по сравнению с общей доступной от батареи.

Уровень заряда батареи (BSOC или SOC) показывает отношение количества энергии, хранящейся в настоящее время в батарее, к номинальной номинальной емкости. Например, для батареи с 80% SOC и емкостью 500 Ач энергия, запасенная в батарее, составляет 400 Ач.Распространенным способом измерения BSOC является измерение напряжения батареи и сравнение его с напряжением полностью заряженной батареи. Однако, поскольку напряжение аккумулятора зависит от температуры, а также от состояния заряда аккумулятора, это измерение дает лишь приблизительное представление о состоянии заряда аккумулятора.

Глубина разряда

Во многих типах батарей вся энергия, накопленная в батарее, не может быть извлечена (другими словами, батарея не может быть полностью разряжена) без серьезного и часто непоправимого повреждения батареи.Глубина разряда (DOD) батареи определяет долю энергии, которая может быть снята с батареи. Например, если DOD батареи указан производителем как 25%, то только 25% емкости батареи может быть использовано нагрузкой.

Почти все батареи, особенно для возобновляемых источников энергии, имеют номинальную емкость. Однако фактическая энергия, которая может быть извлечена из аккумулятора, часто (особенно для свинцово-кислотных аккумуляторов) значительно меньше номинальной емкости.Это происходит потому, что, особенно для свинцово-кислотных аккумуляторов, извлечение из аккумулятора полной емкости резко сокращает срок службы аккумулятора. Глубина разряда (DOD) — это доля емкости аккумулятора, которая может быть использована от аккумулятора, и указывается производителем. Например, аккумулятор на 500 Ач с DOD 20% может обеспечить только 500 Ач x 0,2 = 100 Ач.

Суточная глубина разряда

Помимо указания общей глубины разряда, производитель аккумуляторов обычно также указывает суточную глубину разряда.Суточная глубина разряда определяет максимальное количество энергии, которое может быть извлечено из батареи за 24 часа. Обычно в более крупномасштабной фотоэлектрической системе (например, для удаленного дома) размер аккумуляторной батареи изначально такой, что суточная глубина разряда не является дополнительным ограничением. Однако в небольших системах, которые имеют относительно несколько дней хранения, может потребоваться рассчитать суточную глубину разряда.

Скорость зарядки и разрядки

Распространенный способ определения емкости батареи — указать емкость батареи как функцию времени, которое требуется для полной разрядки батареи (обратите внимание, что на практике батарея часто не может быть полностью разряжена).Обозначение для определения емкости батареи таким образом записывается как Cx, где x — время в часах, которое требуется для разряда батареи. C10 = Z (также записывается как C10 = xxx) означает, что емкость аккумулятора равна Z, когда аккумулятор разряжается за 10 часов. Когда скорость разрядки уменьшается вдвое (а время, необходимое для разрядки аккумулятора, увеличивается вдвое до 20 часов), емкость аккумулятора возрастает до Y. Скорость разрядки при разрядке аккумулятора за 10 часов определяется путем деления емкости на время.Следовательно, C / 10 — это тариф заряда. Это также может быть записано как 0,1C. Следовательно, спецификация C20 / 10 (также обозначаемая как 0,1C20) — это скорость заряда, полученная, когда емкость батареи (измеренная, когда батарея разряжается за 20 часов) разряжается за 10 часов. Такие относительно сложные обозначения могут возникнуть, когда в течение коротких периодов времени используются более высокие или более низкие тарифы.

Скорость зарядки в амперах выражается в сумме заряда, добавляемого к аккумулятору за единицу времени (т.е.е., Кулон / сек, что является единицей измерения ампер). Скорость заряда / разряда может быть указана напрямую, задавая ток — например, аккумулятор может заряжаться / разряжаться при токе 10 А. Однако более часто скорость заряда / разряда задается путем определения количества времени, необходимого для полностью разрядите аккумулятор. В этом случае скорость разряда определяется как емкость аккумулятора (в Ач), деленная на количество часов, необходимое для зарядки / разрядки аккумулятора. Например, аккумулятор емкостью 500 Ач, который теоретически разряжается до напряжения отключения за 20 часов, будет иметь скорость разряда 500 Ач / 20 ч = 25 А.Кроме того, если аккумуляторная батарея 12 В, то мощность, подаваемая на нагрузку, составляет 25 А x 12 В = 300 Вт. Обратите внимание, что аккумулятор разряжен до максимального уровня только «теоретически», поскольку большинство практичных аккумуляторов не могут быть полностью разряжены без повреждения аккумулятора или сокращения срока его службы.

Режимы зарядки и разрядки

Каждый тип батареи имеет определенный набор ограничений и условий, связанных с режимом зарядки и разрядки, и многие типы аккумуляторов требуют определенных режимов зарядки или контроллеров заряда.Например, никель-кадмиевые батареи перед зарядкой должны быть почти полностью разряжены, в то время как свинцово-кислотные батареи никогда не должны разряжаться полностью. Кроме того, напряжение и ток во время цикла зарядки будут разными для каждого типа аккумулятора. Как правило, зарядное устройство или контроллер заряда, предназначенные для одного типа аккумулятора, не могут использоваться с другим типом.

Как проверить вашу автомобильную батарею | Тестирование и обслуживание аккумуляторов

Важно регулярно проверять аккумулятор и электрическую систему, а не только тогда, когда они начинают проявлять признаки разряда.Проактивное тестирование (или проверка того, что ваш механик делает это) два раза в год, поможет снизить ваши шансы на сбой. Большинство розничных продавцов предлагают простой бесплатный пятиминутный тест батареи. Воспользуйтесь нашим сервисом поиска продавца в ближайшем к вам месте, чтобы бесплатно протестировать аккумулятор.

Сколько вольт должно быть у автомобильного аккумулятора при полной зарядке?

Полностью заряженные автомобильные аккумуляторы должны иметь напряжение 12,6 В или выше. Когда двигатель работает, это измерение должно составлять от 13,7 до 14,7 вольт.Если у вас нет мультиметра, чтобы определить напряжение аккумулятора, вы можете проверить свою электрическую систему, запустив автомобиль и включив фары. Если они тусклые, это указывает на то, что световые индикаторы отключены от аккумулятора и что генератор переменного тока производит небольшой заряд или совсем не заряжает его. Если индикаторы становятся ярче при увеличении оборотов двигателя, это означает, что генератор вырабатывает некоторый ток, но на холостом ходу его может не хватить, чтобы аккумулятор был заряжен должным образом. Если индикаторы имеют нормальную яркость и не меняют интенсивность при увеличении оборотов двигателя, ваша система зарядки, вероятно, работает нормально.Если у вас возникли проблемы с аккумуляторной системой и проверка фар прошла успешно, вам следует проверить, держит ли аккумулятор заряд или что-то в автомобиле его разряжает.

Как выполнить нагрузочный тест?

Чтобы пройти тест под нагрузкой, аккумулятор должен поддерживать 9,6 В в течение 15 секунд при тестировании при половине номинального значения CCA и температуре 70 ° F (или выше). Этот тест должен проводиться с истинной нагрузкой (углеродным ворсом), а не с одним из портативных тестеров, которые работают по алгоритму проводимости.Тест должен проводиться при высоком уровне заряда аккумулятора. Обязательно прочтите и соблюдайте все инструкции по безопасности и обращению с аккумулятором, на этом веб-сайте и с тестером аккумулятора. Если вы хотите протестировать аккумулятор, воспользуйтесь функцией «Поиск продавца» в ближайшем к вам месте.

Разрядная батарея — Все производители — eTesters.com

Отображение недавних результатов 1 — 15 из 125 найденных продуктов.

  • Тестеры разряда аккумуляторов

    Coudoint S.A.S

    Тестеры разряда аккумуляторов используются для проверки аккумуляторов путем их разрядки в указанном режиме: заданная резистивная нагрузка, фиксированный ток разряда и т. Д. В зависимости от требуемой номинальной мощности доступны различные размеры: от переносных вручную тестеров до нескольких устройств с электронным управлением в одном корпусе. конфигурация ведущий / ведомый. Пять серий стандартных моделей.

  • Тестеры емкости аккумуляторов | Тестеры разряда

    IBEKO Power AB

    DV Power предлагает широкий спектр тестеров емкости аккумуляторов для удовлетворения конкретных потребностей клиентов.Все они портативные, мощные и, главное, универсальные. Любая серия аккумуляторов, например свинцово-кислотная, литий-ионная, никель-кадмиевая и другие, с напряжением в диапазоне 0,9 — 800 В постоянного тока может быть проверена точным и удобным способом. выполняется в соответствии со стандартами тестирования аккумуляторов: IEEE 450-2010, IEEE 1188-2005, IEEE 1106-2015, IEC 60896-11 / 22 и другими соответствующими стандартами. Тестеры аккумуляторов BLU позволяют устанавливать ток разряда до 350 А, при 0 , 1 Разрешение. Если требуются более высокие токи, можно подключить несколько блоков параллельно или использовать дополнительные блоки нагрузки BXL.Параметры разряда можно контролировать в режиме реального времени во время проверки емкости. Общее напряжение батареи, ток, истекшее время тестирования и емкость будут отображаться в течение всего теста на сенсорном экране.

  • Тестеры батарей

    Ла-Марке

    Этот запатентованный тестер аккумуляторов может сохранять кривую разряда аккумулятора в качестве эталона для анализа тенденций состояния аккумулятора.

  • Система тестирования рекуперативного аккумулятора

    17040 — Chroma Systems Solutions, Inc.

    Система тестирования рекуперативного аккумуляторного блока 17040 — это высокоточная система, специально разработанная для тестирования вторичного аккумуляторного модуля и аккумуляторного блока. Он имеет функцию регенерации энергии для значительного снижения энергопотребления во время разряда и обеспечения стабильной электросети без создания гармонических помех на других устройствах даже в условиях динамического заряда и разряда.Он способен рециркулировать энергию, разряженную при испытании аккумуляторной батареи, обратно в сеть, уменьшая потери энергии, которые традиционное оборудование разряжает в виде тепла.

  • Имитатор батареи Модель

    A170202 — Chroma Systems Solutions, Inc.

    Моделирование состояния многоканальных аккумуляторных блоков. Следите за поведением кривой аккумуляторных элементов для моделирования состояния аккумуляторной батареи. Возможность установки часто используемых параметров для аккумуляторного блока и быстрой настройки начального состояния вывода.Функция рекуперативного разряда энергии батареи, энергосбережение, экологичность и низкое тепловыделение с КПД 85%. До 60 каналов могут быть подключены параллельно для запроса большого тока. Режим работы: постоянный ток / постоянное напряжение / постоянная разрядка мощности 600 Вт, 1,25 кВт, 2,5кВт, 5кВт, 10кВт, 20кВт, 30кВт, 50кВт, 60кВт Мощность на канал Модули напряжения 20В, 60В, 100В, 200В и 500В Максимальный ток 2600А (параллельно) Динамическое моделирование заряда и разряда по току. Высокоточное измерение тока и напряжения.Плавное и быстрое переключение заряда и разряда без прерывания. Плавный ток без скачков напряжения при изменении режима заряда и разряда (CC-CV-CP). Независимая функция защиты канала.

  • Аккумулятор Мониторинг ампер-часов

    IM2505 — Ajinkya Electronic Systems

    IM2505 — это измеритель ампер-часов зарядно-разрядного типа, который полезен для отслеживания / контроля заряда батареи в цепи.Они используются в приложениях, связанных с подводными лодками и телекоммуникациями, или в тех секторах, где используются резервные батареи и необходимо контролировать заряд батареи для включения и выключения зарядного устройства и нагрузки, чтобы избежать чрезмерной зарядки, а также глубокой разрядки.

  • Нагрузка 110 В / 100 А

    BD12-110P-48/24 — Manatronics Pty Ltd

    Для тестирования разряда батареи и тестирования источника питания. Эта конкретная нагрузка была разработана для работы с аккумуляторными системами 110 В и чрезвычайно рентабельна.

  • Нагрузка 110 В / 100 А

    BD12-110P — Manatronics Pty Ltd

    Для тестирования разряда батареи и тестирования источника питания. Эта конкретная нагрузка была разработана для работы с аккумуляторными системами 110 В и чрезвычайно рентабельна.

  • WizardOne Зарядное устройство-Анализатор для 4 AA / AAA

    MH-C9000 — Maha Energy Corporation

    Это как четыре зарядных устройства-анализатора для NiMH / NiCD аккумуляторов AA и AAA.Обновить и проанализировать: заряжает аккумулятор, отдыхает в течение одного часа, разряжается, снова отдыхает, затем заряжает его. Возможность выбора скорости зарядки и разрядки. Взлом: также известен как измерение емкости IEC и «формирование батареи». Заряжает батарею при 0,1C в течение 16 часов, отдыхает в течение одного часа, разряжает батарею при 0,2C, затем снова заряжает при 0,1C в течение 16 часов.

  • Тестер батарей

    SE-1004 — KILTER ELECTRONIC CO., ООО

    ● Проверка емкости аккумулятора мобильного телефона ● 0,1 Ач ~ 1,9 Ач (2 Ач) в 19 шагов, стандартное время разряда: 1 час (1 Ач) ● Автоматическое отключение при завершении разряда ● Доступна подзарядка ● Установите переключатель в положение Разряд, на индикаторе появится надпись Разряд Когда разрядка завершится, светодиод перестанет мигать и раздастся звуковой сигнал.

  • Батарейные блоки с дополнительной нагрузкой

    IBEKO Power AB

    Выполнение теста емкости / разряда батареи большой емкости может быть сложной задачей, поскольку к системе разряда предъявляются высокие требования.В случаях, когда необходимо сократить время испытаний на разряд, от разрядной системы требуется большая допустимая нагрузка. Блок дополнительной нагрузки батареи BXL — это блок дополнительной нагрузки, разработанный специально для этой цели. Он в основном используется с тестерами батарей BLU. Однако агрегат является универсальным дополнительным устройством. Это означает, что его можно использовать в качестве дополнительной нагрузки с любым другим тестером разряда / емкости на рынке. Когда ток разряда превышает емкость одного устройства BLU, дополнительный блок нагрузки увеличивает разрядную емкость.Система приборов BLU и BXL позволяет выполнять проверку емкости точным и удобным способом в соответствии со стандартами тестирования батарей: IEEE 450-2010, IEEE 1188-2005, IEEE 1106-2015, IEC 60896-11 / 22 и другие соответствующие стандарты.

Обслуживание батарей | Компания Trojan Battery


Trojan Battery Company более трех поколений производит заливные батареи глубокого цикла.

Наш опыт показал, что ключевым фактором достижения оптимальной производительности и длительного срока службы батареи является соблюдение программы регулярного ухода и технического обслуживания.

Просматривая наши советы по обслуживанию аккумуляторов, помните, что все аккумуляторные системы уникальны. Тип аккумулятора, технология зарядного устройства, нагрузка на оборудование, размер кабеля, климат и другие факторы могут варьироваться. Эти незначительные или значительные различия потребуют соответствующей корректировки обслуживания батареи. Это всего лишь рекомендации, которым необходимо следовать для правильного ухода за аккумулятором. Каждая конкретная система всегда требует особого внимания.

Достижение оптимальной производительности и длительного срока службы батареи

Перед началом работы

  • Убедитесь, что вы знаете напряжение вашей системы, размер батарейного отсека (длину, ширину и высоту) и ваши потребности в энергии.
  • Определите, хотите ли вы использовать залитый глубокий цикл, AGM или гелевый аккумулятор.

Шаг 1. Определите напряжение вашей батареи и сколько батарей использовать

1-1 Исходя из напряжения вашей системы, вы должны сначала решить, какая батарея необходима и сколько использовать, чтобы соответствовать вашим требованиям. Например, вы можете подключить серию из восьми батарей на 6 В, шести батарей на 8 В или четырех батарей на 12 В для 48-вольтовой системы.Размер аккумуляторного отсека, требования к характеристикам и стоимость могут ограничивать ваши возможности.
1-2 Убедитесь, что между батареями достаточно места, чтобы обеспечить незначительное расширение батареи во время использования и обеспечить надлежащий воздушный поток для снижения температуры батареи в жарких условиях.

НАКОНЕЧНИК

Последовательное соединение аккумуляторов не увеличивает емкость аккумуляторов; он просто увеличивает общее напряжение в соответствии с требованиями вашей системы.Как только ваши требования к напряжению будут соблюдены и если позволяет пространство, вы можете удвоить батареи при параллельном подключении, тем самым удвоив емкость батареи. См. Диаграммы ниже.

серии Connect Параллельное соединение Последовательное / параллельное соединение
Для увеличения напряжения подключите батареи последовательно.Это не увеличит емкость системы.
Пример
Две батареи T-105, 6 В номиналом 225 Ач, подключенные последовательно
Напряжение системы
6 В + 6 В = 12 В Емкость системы = 225 Ач
Для увеличения емкости подключите батареи параллельно. Это не приведет к увеличению напряжения в системе.
Пример
Две батареи T-105, 6 В номиналом 225 Ач, подключенные параллельно
Напряжение системы
6 В Емкость системы = 225 Ач + 225 Ач = 450 Ач
Для увеличения напряжения и емкости подключите дополнительные батареи последовательно и параллельно.
Пример
Четыре батареи T-105, 6 В номиналом 225 Ач, подключенные последовательно / параллельно
Напряжение системы
6 В + 6 В = 12 В Емкость системы = 225 Ач + 225 Ач = 450 Ач
Для увеличения напряжения подключите батареи последовательно. Для увеличения емкости в ампер-часах подключите батареи параллельно. Для увеличения напряжения и емкости в ампер-часах подключите батареи последовательно / параллельно.

Шаг 2. Выберите лучшую модель аккумулятора

2-1 При выборе модели аккумулятора сначала учитывайте объем аккумуляторного отсека, так как это может ограничить ваши возможности.В пределах ваших ограничений по размеру у вас может быть несколько вариантов батареи на выбор. Например, вы можете использовать Т-605, Т-105 или Т-125 в одном помещении, поскольку они имеют одинаковый физический размер. Разница между этими батареями заключается в количестве энергии, которую они предлагают.
2-2 Затем рассмотрите свои потребности в энергии. При замене существующей батареи используйте ее как ориентир. Если ваша старая батарея обеспечивала достаточно энергии, ее можно заменить батареей аналогичной емкости.Если вам нужно больше энергии, вы можете увеличить ее, а если вам нужно меньше энергии, вы можете уменьшить ее.

СОВЕТ
Если вы не знаете, какую батарею использовать, обратитесь к производителю оборудования для получения рекомендованной спецификации батареи. Trojan Battery также предлагает отличную техническую поддержку, которую предоставляют штатные инженеры по приложениям, чтобы помочь вам выбрать идеальные батареи.

Шаг 3. Выберите лучший терминал

3-1 Наконец, определите, какой вариант терминала лучше всего соответствует вашим потребностям, исходя из типа кабельных соединений, которые вы планируете использовать.Найдите клеммы, доступные для выбранной вами батареи.

СОВЕТ
Убедитесь, что вы используете кабель подходящего размера при подключении батарей, чтобы соединения не перегревались. Для получения информации о правильных размерах проводов вы можете обратиться к Национальному электрическому кодексу, Руководству пользователя Trojan Battery или обратиться в службу технической поддержки Trojan по телефону 800.423.6569.

Свинцово-кислотные батареи обычно классифицируются по применению (для чего они используются) и по конструкции (как они сделаны).Аккумуляторы глубокого разряда используются для различных типов приложений, таких как жилые автофургоны, автомобили для гольфа, возобновляемые источники энергии и морские суда.

Существует два популярных типа конструкции: залитые батареи (мокрые) и батареи VRLA (свинцово-кислотные батареи с регулируемым клапаном). В затопленных типах электролит представляет собой раствор серной кислоты и воды, который может вылиться при опрокидывании аккумулятора. В батареях VRLA электролит суспендирован в геле или стекловолокне (технология AGM), что позволяет устанавливать эти батареи в различных положениях.

Перед началом работы обязательно определите тип используемой батареи. В этом разделе рассматривается зарядка и техническое обслуживание как аккумуляторных батарей глубокого цикла, так и аккумуляторов VRLA.

Существует множество инструментов, которые могут помочь в правильном уходе и обслуживании аккумуляторов. Ниже приведен список основных элементов, которые троянец рекомендует для этой задачи:

Рекомендуемое оборудование
Пищевая сода Дистиллированная вода Очки и перчатки Ареометр
Очиститель столбов Вазелин Вольтметр Гаечный ключ

ВНИМАНИЕ: Всегда надевайте защитную одежду, перчатки и очки при работе с аккумуляторами, электролитом и зарядкой аккумулятора.

Батареи следует регулярно тщательно проверять, чтобы обнаруживать и устранять потенциальные проблемы, прежде чем они могут причинить вред. Это отличная идея начать эту процедуру, когда вы впервые получаете батареи.

Инспекция Указания

1. Осмотрите внешний вид аккумулятора.

  • Поищите в емкости трещины.
  • Верхняя часть батареи, стойки и соединения должны быть чистыми, без грязи, жидкостей и коррозии.Если батареи грязные, обратитесь к разделу «Очистка», чтобы узнать о правильной процедуре очистки.
  • Отремонтируйте или замените поврежденные батареи.

2. Любая жидкость на батарее или вокруг нее может указывать на то, что электролит проливается, выщелачивается или вытекает.

  • Протекающие батареи необходимо отремонтировать или заменить.

3. Проверьте все кабели аккумуляторной батареи и их соединения.

  • Внимательно посмотрите на незакрепленные или поврежденные детали.
  • Кабели аккумулятора не должны быть повреждены; Оборванные или изношенные кабели могут быть чрезвычайно опасными.
  • Замените любой подозрительный кабель.

4. Затяните все соединения проводки в соответствии со спецификацией (см. Ниже). Убедитесь в хорошем контакте с клеммами.


ВНИМАНИЕ: Не перетягивайте клеммы. Это может привести к поломке стойки, ее расплавлению или возгоранию.


Одного визуального осмотра недостаточно для определения общего состояния аккумулятора.

Показания как напряжения холостого хода, так и удельного веса могут дать хорошее представление об уровне заряда, возрасте и состоянии аккумулятора.Регулярные проверки напряжения и силы тяжести не только покажут состояние заряда, но также помогут выявить признаки неправильного ухода, такие как недостаточный заряд и чрезмерный полив, и, возможно, даже обнаружить неисправный или слабый аккумулятор. Следующие шаги описывают, как правильно выполнять обычные испытания на напряжение и удельный вес аккумуляторов.

I. Проверка удельного веса (только для залитых батарей)

  1. Не добавляйте воду в это время.
  2. Перед взятием пробы наполните и слейте воду из ареометра 2–4 раза.
  3. В ареометре должно быть достаточно проб электролита, чтобы полностью поддерживать поплавок.
  4. Снимите показания, запишите их и верните электролит обратно в ячейку.
  5. Чтобы проверить другую ячейку, повторите 3 шага выше.
  6. Проверить все элементы в аккумуляторной батарее.
  7. Установите на место вентиляционные колпачки и вытрите пролившийся электролит.
  8. Скорректируйте показания на 80º F (26,6º C):
    • Добавьте 0,004 к показаниям на каждые 10º F (5.6 ° C) выше 80 ° F (26,6 ° C)
    • Вычтите 0,004 на каждые 10 ° (5,6 ° C) ниже 80 ° F (26,6 ° C)
  9. Сравните показания.
  10. Проверьте уровень заряда по Таблице 1 ниже.

Показания должны быть на уровне 1,277 +/- 0,007 или выше заводской спецификации. Если какое-либо значение удельного веса окажется низким, выполните следующие действия.

  1. Проверьте и запишите уровень (-а) напряжения.
  2. Полностью зарядите аккумулятор (и).
  3. Снова снимите показания удельного веса.

Если какие-либо значения удельного веса по-прежнему низкие, выполните следующие действия.

  1. Проверить уровень (и) напряжения.
  2. Выполните уравнительный заряд. Обратитесь к разделу выравнивания для правильной процедуры.
  3. Снова снимите показания удельного веса.

Если какое-либо значение удельного веса по-прежнему ниже заводской спецификации 1,277 +/- 0,007, то может существовать одно или несколько из следующих условий:

  1. Батарея старая, срок ее службы подходит к концу.
  2. Аккумулятор слишком долго находился в разряженном состоянии.
  3. Электролит утерян из-за пролива или перелива.
  4. Развивается слабая или плохая клетка.
  5. Аккумулятор перед тестированием был чрезмерно полив.

Батареи в условиях 1–4 должны быть доставлены к специалисту для дальнейшей оценки или сняты с эксплуатации.

II. Проверка напряжения холостого хода
Для получения точных показаний напряжения батареи должны оставаться в режиме ожидания (без зарядки и разрядки) не менее 6 часов, предпочтительно 24 часа.

  1. Отключите все нагрузки от аккумуляторов.
  2. Измерьте напряжение с помощью вольтметра постоянного тока.
  3. Проверьте уровень заряда по Таблице 1 ниже.
  4. Зарядите аккумулятор, если уровень заряда составляет от 0% до 70%.

Если уровень заряда батареи ниже значений, указанных в таблице 1, могут существовать следующие условия:

  1. Аккумулятор слишком долго находился в разряженном состоянии.
  2. Батарея неисправна.

Батареи в этих условиях следует доставить к специалисту для дальнейшей оценки или снять с эксплуатации.

ТАБЛИЦА 1
Состояние заряда в зависимости от удельного веса и напряжения холостого хода
Процент заряда Удельный вес с поправкой на Напряжение холостого хода
6v 8v 12 В 24 В 36v 48v
100 1.277 6,37 8,49 12,73 25,46 38,20 50,93
90 1,258 6,31 8,41 12,62 25,24 37,85 50,47
80 1,238 6,25 8,33 12,50 25,00 37,49 49,99
70 1.217 6,19 8,25 12,37 24,74 37,12 49,49
60 1,195 6,12 8,16 12,27 24,48 36,72 48,96
50 1,172 6,02 8,07 12,10 24,20 36,31 48,41
40 1.148 5,98 7,97 11,89 23,92 35,87 47,83
30 1,124 5,91 7,88 11,81 23,63 35,44 47,26
20 1,098 5,83 7,77 11,66 23,32 34,97 46,63
10 1.073 5,75 7,67 11,51 23,02 34,52 46,03

ТОЛЬКО ЗАЛИВНЫЕ БАТАРЕИ

Залитые батареи нуждаются в воде.

Что еще более важно, полив должен производиться в нужное время и в нужном количестве, иначе ухудшатся характеристики и долговечность аккумулятора.

Воду следует добавлять после полной зарядки аккумулятора. Перед зарядкой должно быть достаточно воды, чтобы покрыть пластины.Если аккумулятор разряжен (частично или полностью), уровень воды также должен быть выше пластин. Поддержание правильного уровня воды после полной зарядки избавит от необходимости беспокоиться об уровне воды при другом уровне заряда.

В зависимости от местного климата, методов зарядки, области применения и т. Д. Trojan рекомендует проверять батареи раз в месяц, пока вы не почувствуете, как часто ваши батареи нуждаются в поливе.

Важно помнить

  1. Не допускайте контакта пластин с воздухом.Это приведет к повреждению (коррозии) пластин.
  2. Не доливайте воду в заливное отверстие до крышки. Это, скорее всего, вызовет переполнение батареи кислотой, что приведет к потере емкости и возникновению коррозионного беспорядка.
  3. Не используйте воду с высоким содержанием минералов. Используйте только дистиллированную или деионизированную воду.

ВНИМАНИЕ: Электролит представляет собой раствор кислоты и воды, поэтому следует избегать контакта с кожей.

Пошаговая процедура полива

  1. Откройте вентиляционные крышки и загляните внутрь заливных колодцев.
  2. Проверить уровень электролита; минимальный уровень — вверху тарелок.
  3. Если необходимо, добавьте в это время ровно столько воды, чтобы покрыть пластины.
  4. Полностью зарядите аккумуляторы перед добавлением воды (см. Раздел «Зарядка»).
  5. По завершении зарядки откройте вентиляционные крышки и загляните внутрь заливных колодцев.
  6. Добавляйте воду до тех пор, пока уровень электролита не станет на 1/8 дюйма ниже дна заливного колодца.
  7. Кусок резины можно безопасно использовать в качестве щупа для определения этого уровня.
  8. Очистите, замените и затяните все вентиляционные крышки.

ВНИМАНИЕ: Никогда не добавляйте кислоту в аккумулятор.

Батареи притягивают пыль, грязь и сажу. Содержание в чистоте поможет обнаружить признаки проблем, когда они появляются, и избежать проблем, связанных с грязью.

  1. Убедитесь, что все вентиляционные крышки плотно закрыты.
  2. Очистите верхнюю часть батареи тканью или щеткой, смоченной в растворе пищевой соды и воды.
    • Во время чистки не допускайте попадания чистящего раствора или других посторонних предметов внутрь батареи.
  3. Промойте водой и вытрите насухо чистой тканью.
  4. Очистите клеммы аккумулятора и внутреннюю часть кабельных зажимов с помощью очистителя для столбов и зажимов.
    • Чистые клеммы будут иметь яркий металлический блеск.
  5. Снова подсоедините зажимы к клеммам и нанесите на них тонкий слой антикоррозийного спрея или силиконового геля.
  6. Следите за тем, чтобы место вокруг батарей было чистым и сухим.

Периоды простоя могут быть чрезвычайно опасными для свинцово-кислотных аккумуляторов. Помещая аккумулятор на хранение, следуйте приведенным ниже рекомендациям, чтобы аккумулятор оставался исправным и готовым к использованию.

ПРИМЕЧАНИЕ: Хранить, заряжать или эксплуатировать аккумуляторы на бетоне — это нормально.

Самые важные вещи, которых следует избегать

  1. Замораживание. Избегайте мест, где ожидается отрицательная температура. Поддержание высокого уровня заряда аккумулятора также предотвратит замерзание. Замораживание приводит к непоправимому повреждению пластин и контейнера аккумулятора.
  2. Тепло. Избегайте прямого воздействия источников тепла, таких как радиаторы отопления или обогреватели. Температура выше 80 ° F (26.6º C) ускоряют саморазряд батареи.

Пошаговая процедура хранения

  1. Полностью зарядите аккумулятор перед хранением.
  2. Храните аккумулятор в прохладном сухом месте, защищенном от атмосферных воздействий.
  3. Во время хранения следите за удельным весом (залитый водой) или напряжением. Батареям, находящимся на хранении, следует дать ускоренный заряд, если они показывают уровень заряда 70% или меньше. См. Таблицу 1 в разделе «Тестирование».
  4. Полностью зарядите аккумулятор перед повторной активацией.
  5. Для оптимальной работы выровняйте аккумуляторы (залитые) перед их повторным вводом в эксплуатацию. Обратитесь к разделу выравнивания для этой процедуры.

В большинстве приложений с глубоким циклом уже установлена ​​какая-либо система зарядки для зарядки аккумуляторов (например, солнечные панели, инвертор, зарядное устройство для гольф-кара, генератор и т. Д.). Тем не менее, все еще существуют системы с батареями глубокого разряда, в которых необходимо выбрать индивидуальное зарядное устройство. Следующее поможет сделать правильный выбор.

Сегодня доступно множество типов зарядных устройств. Обычно они оцениваются по их начальному значению, значению в амперах, которое зарядное устройство подает в начале цикла зарядки. При выборе зарядного устройства скорость заряда должна составлять от 10% до 13% от 20-часовой емкости аккумулятора. Например, для аккумулятора с 20-часовой номинальной емкостью 225 Ач будет использоваться зарядное устройство с номиналом приблизительно от 23 до 30 ампер (для зарядки нескольких аккумуляторов используйте рейтинг АН всего банка).Можно использовать зарядные устройства с более низкими номиналами, но время зарядки будет увеличено.

Trojan рекомендует использовать трехступенчатое зарядное устройство. Также называемые «автоматическими», «интеллектуальными» или «IEI» зарядными устройствами, которые продлевают срок службы батареи с помощью запрограммированного профиля зарядки. Эти зарядные устройства обычно имеют три различных этапа зарядки: объемный, приемный и плавающий.

Для правильной зарядки батарей требуется подача нужного количества тока при правильном напряжении. Большинство зарядного оборудования автоматически регулируют эти значения.Некоторые зарядные устройства позволяют пользователю устанавливать эти значения. Как автоматическое, так и ручное оборудование могут вызывать трудности при зарядке. В таблицах 2 и 3 перечислены большинство необходимых настроек напряжения, которые могут потребоваться для программирования зарядного устройства. В любом случае для правильной зарядки также следует обращаться к оригинальным инструкциям по зарядному устройству. Вот список полезных вещей, которые следует помнить при зарядке.

  1. Ознакомьтесь с инструкциями производителя зарядного устройства и следуйте им.
  2. Батареи следует заряжать после каждого периода использования.
  3. Свинцово-кислотные батареи не обладают памятью, и их не нужно полностью разряжать перед зарядкой.
  4. Заряжайте только в хорошо вентилируемых помещениях. Берегите заряжаемый аккумулятор от искр или огня.
  5. Проверьте правильность настроек напряжения зарядного устройства (Таблица 2).
  6. Отрегулируйте напряжение зарядки для компенсации температур выше или ниже 77 ° F (25 ° C). Вычтите 0,0028 вольт на элемент на каждые 1 ° F (0.005 В на элемент на каждый 1 ° C) выше 77 ° F (25 ° C) или добавьте 0,0028 В на элемент на каждый 1 ° F (0,005 В на элемент на каждый 1 ° C) ниже 77 ° F (25 ° C) .
  7. Проверить уровень воды (см. Раздел «Полив»).
  8. Перед заправкой затяните все вентиляционные крышки.
  9. Не допускайте перезарядки аккумуляторов. Чрезмерная зарядка вызывает чрезмерное выделение газов (разрушение воды), перегрев и старение батареи.
  10. Не допускайте недостаточной зарядки аккумуляторов. Недозаряд вызывает расслоение, которое может привести к преждевременному выходу из строя аккумулятора.
  11. Не заряжайте замерзший аккумулятор.
  12. Избегайте зарядки при температуре выше 120 ° F (48,8 ° C).

Таблица 2
Настройки напряжения зарядного устройства для залитых аккумуляторов Системное напряжение
Настройка напряжения зарядного устройства 6v 12в 24в 36v 48v
Поглощение / насыпная загрузка 7.35 14,7 29,4 44,1 58,8
Плавающий заряд 6,75 13,5 27,0 40,5 54,0
Уравнительный заряд 8,1 16,2 32,4 48,6 64,8

Дополнительные инструкции по зарядке VRLA:

  1. Ознакомьтесь с инструкциями производителя зарядного устройства и следуйте им.
  2. Убедитесь, что зарядное устройство имеет необходимые настройки VRLA.
  3. Установить зарядное устройство на настройки напряжения VRLA (Таблица 3).
  4. Не перезаряжайте батареи VRLA. Чрезмерная зарядка приведет к высыханию электролита и повреждению аккумулятора.

Таблица 3
Настройки напряжения зарядного устройства для батарей VRLA Напряжение системы
Настройка напряжения зарядного устройства 12в 24в 36v 48v
Поглощение / насыпная загрузка 14.4 28,8 43,2 57,6
Плавающий заряд 13,5 27,0 40,5 54,0

ТОЛЬКО ЗАЛИВНЫЕ БАТАРЕИ

Выравнивание — это перезарядка свинцово-кислотных аккумуляторов после их полной зарядки.

Он обращает вспять накопление отрицательных химических эффектов, таких как расслоение, состояние, при котором концентрация кислоты в нижней части батареи выше, чем в верхней.Выравнивание также помогает удалить кристаллы сульфата, которые могли скопиться на пластинах. Если не установить этот флажок, это состояние, называемое сульфатацией, снизит общую емкость аккумулятора.

Многие эксперты рекомендуют периодически выравнивать аккумуляторные батареи, от одного раза в месяц до одного или двух раз в год. Однако троянец рекомендует выполнять выравнивание только при обнаружении низкого или широкого диапазона удельного веса (> 0,030) после полной зарядки аккумулятора.

Пошаговое выравнивание

  1. Убедитесь, что батарея (и) залитого типа.
  2. Снимите все нагрузки с аккумуляторов.
  3. Подключить зарядное устройство.
  4. Установите зарядное устройство для выравнивающего напряжения (см. Таблицу 2 в разделе «Зарядка»). Если в вашем зарядном устройстве нет режима выравнивания, вы можете отключить зарядное устройство и снова подключить его. Это также проведет выравнивающий заряд.
  5. Начать зарядку аккумуляторов.
  6. Батареи начнут выделять газ и сильно пузыриться.
  7. Измеряйте удельный вес каждый час.
  8. Выравнивание завершено, когда значения удельного веса больше не повышаются во время стадии газовыделения.

Разрядка батарей полностью зависит от вашего конкретного применения.

Однако ниже приведен список полезных вещей:

  1. Мелкие разряды продлевают срок службы батареи.
  2. Рекомендуется разрядка не более 50%.
  3. 80% разряд — это максимально безопасный разряд.
  4. Не разряжайте полностью залитые батареи (80% и более).Это повредит (или убьет) аккумулятор.
  5. Многие специалисты рекомендуют эксплуатировать аккумуляторы только от 50% до 85% от полного диапазона заряда. При использовании этой практики необходимо периодическое выравнивание заряда.
  6. Не оставляйте аккумуляторы глубоко разряженными на какое-либо время.
  7. Свинцово-кислотные батареи не обладают памятью, и их не нужно полностью разряжать перед зарядкой.
  8. Батареи следует заряжать после каждого периода использования.
  9. Батареи, которые заряжаются, но не могут выдерживать нагрузку, скорее всего, неисправны и должны быть проверены.Обратитесь к разделу «Тестирование» для правильной процедуры.
% Разряжено
100 80 60 40 20 0
0 20 40 60 80 100

Залитые батареи нуждаются в воде.

Но что еще более важно, полив должен производиться в нужное время и в нужном количестве, иначе производительность и долговечность аккумулятора страдают.

Общие инструкции по поливу:

  • Добавьте воду, но не кислоту, в ячейки (рекомендуется дистиллированная вода)
  • НЕ ПЕРЕЛИВАТЬ
  • Для полностью заряженных стандартных аккумуляторов глубокого цикла добавьте воды до уровня на 1/8 ниже дна вентиляционного колодца (см. Диаграмму A ниже)
  • Для полностью заряженных батарей серии Plus долейте воды до индикатора максимального уровня воды (см. Диаграмму B ниже)
  • Если батареи разряжены, добавляйте воду только в том случае, если пластины открыты.Добавьте воды, достаточной для покрытия пластин, затем зарядите батареи. После полной зарядки долейте воды до надлежащего уровня, указанного выше
  • .
  • После полива закройте вентиляционные колпачки на аккумуляторах
Схема A Схема B
Добавьте воду до уровня 0,125 дюйма ниже дна вентиляционного колодца. Долейте воду до указателя максимального уровня воды.

ДЛЯ СОЛНЕЧНОГО ПРИМЕНЕНИЯ

Храните аккумуляторы и эксплуатируйте их в прохладном сухом месте.
На каждые 18 ° F (10 ° C) повышения температуры выше комнатной (77 ° F или 25 ° C) срок службы батареи сокращается на 50%.

Полностью заряжайте аккумуляторы после каждого периода использования.
Если ваши батареи будут находиться в состоянии низкого уровня заряда в течение длительного времени, уменьшится их емкость и срок службы.

Если вы храните батареи в течение длительного периода времени, обязательно заряжайте их полностью каждые 3-6 месяцев.Свинцово-кислотные батареи будут саморазряжаться от 5% до 15% в месяц, в зависимости от температуры условий хранения.

Регулярно контролируйте напряжение аккумулятора и удельный вес электролита, чтобы убедиться в полной перезарядке. Как правило, общий ток от ваших фотоэлектрических панелей должен составлять от 10% до 20% от общего количества ампер-часов (Ач) аккумуляторной батареи.

Многие контроллеры заряда имеют настройки выравнивания, которые вы можете установить, чтобы обеспечить исправность ваших батарей.Выполняйте выравнивание аккумуляторов не реже одного раза в месяц в течение 2–4 часов или дольше, если аккумуляторы постоянно недозаряжались.

Напряжение системы
Настройки напряжения 12В 24 В 36V 48 В
Ежедневная зарядка 7,4 14,8 29,6 44,5 59,3
Плавающий заряд 6.7 13,5 27 40,5 54
Уравнительный заряд 8,1 16,2 32,4 48,6 64,8

Регулярно поливайте батареи.
Залитые батареи или батареи с жидкими элементами требуют периодического полива. Проверяйте батареи раз в месяц после установки, чтобы определить правильный график полива. Добавьте воду после полной зарядки аккумулятора и используйте дистиллированную воду.

Для получения более подробной информации о процедурах полива, проверке напряжения аккумуляторной батареи и других инструкциях по техническому обслуживанию, обратитесь к нашему разделу по обслуживанию аккумуляторной батареи.

Leave a Reply

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *