Размещено на
Размещено на
Уборка зерновых культур
Введение
Уборка урожая - наиболее напряженный технологический процесс сельскохозяйственного производства. Чтобы обеспечить максимальный возможный сбор выращенного урожая с наиболее высоким качеством зерна и при минимально допустимых затратах труда и средств, необходимо выполнять следующие технологические и организационные требования:
строго соблюдать оптимальные агротехнические сроки уборки;
соблюдать поточность уборки и создавать благоприятные условия для урожая следующего года;
обеспечивать комплектность уборочного процесса;
собирать незерновую часть урожая;
максимально использовать технические возможности всего комплекса машин.
1. Понятие уборки
уборка технологический урожай
Уборка урожая - завершающий этап в выращивании всех сельскохозяйственных культур. Здесь природа не дает никакой свободы действий земледельцу, так как только лишь подоспела пора - немедленно убирай, иначе все потеряешь. Ведь известно, что урожай в поле - это еще не хлеб. Надо иметь в виду, что как только колос перестоял какое-то время, он начинают осыпаться и можно потерять до 50 кг зерна в день с 1 га. Поэтому уборка зерна должна проводиться своевременно и в очень сжатые сроки.
В настоящее время самоходные зерноуборочные комбайны являются основным средством для уборки хлебов Современный зерноуборочный комбайн - машина для скашивания и обмолота зерновых культур, его очистки и сбора в бункер, укладки соломы и половы в копнитель, а затем на поле. Зерноуборочные комбайны убирают также зернобобовые и масличные культуры, кукурузу и семенники трав.
Урожай зерновых культур убирают двумя способами однофазным - прямое комбайнирование и двухфазным - раздельная уборка.
При прямом комбайнировании зерновые убирают в фазе полной спелости зерна (при 10… 16%-ной влажности), сразу обмолачивают, а солому складывают в копны. Технологическая схема работы самоходного зерноуборочного комбайна при прямом комбайнировании показана на рис. 43.
При раздельной уборке зерноуборочный комбайн сначала скашивает зерновые и укладывает в валки, оставляя их на поле. Через два-три дня, когда валки подсолнух, их с помощью комбайна подбирают и обмолачивают. Но до начала работ на режущем аппарате жатки комбайна монтируют подборщик валков.
В районах недостаточного увлажнения нередко проводится поточная уборка зерна и соломы. Для этого на зерноуборочном комбайне вместо копнителя устанавливают соломоизмельчитель. Измельченную солому перегружают в прицепную тележку, на которой ее отвозят к месту скирдования.
Раздельную уборку зерновых можно выполнять и жатками с укладкой в валки. Затем подсохшие валки подбирают подборщиками-копнителями и отвозят на ток - площадку для обмолота, где их обмолачивают на молотилке или зерноуборочном комбайне, поставленном на стационар.
Раздельная уборка в сравнении с прямым комбайнированием позволяет снизить сроки уборки урожая, уменьшить потери зерна и на пять-шесть дней раньше приступить к уборке. При этом убранное зерно собирают более сухим.
2. Агротехнические требования к зерноуборочным машинам
При раздельной уборке потери зерна за валковой жаткой допускаются не более 0,5% для прямостоячих хлебов и 1,5% для полеглых. Потери зерна при подборе валков не должны превышать 1%, чистота зерна в бункере должна быть не менее 96%.
При прямом комбайнировании чистота зерна в бункере должна быть не ниже 95%. За жаткой комбайна допускается до 1% потерь для прямостоячих хлебов и 1,5% для полеглых. Общие потери зерна из-за недомолота и с соломой должны быть не более 1,5% при уборке зерновых и не более 2% при уборке риса. Дробление не должно превышать 1% для семенного зерна, 2% для продовольственного, 3% для зернобобовых и крупяных культур и 5% для риса.
3. Машинно-тракторные агрегаты для уборки зерновых культур и послеуборочной переработки зерна
В зависимости от состояния растений, сорта и почвенно-климатических условий зерновые культуры убирают однофазным (прямое комбайнирование) и двухфазным (раздельная уборка) способом. При прямом комбайнировании скашивание и обмолот хлебной массы выполняются за один проход комбайна. Двухфазная уборка - скашивание и укладка растений в валки валковыми жатками, подбор подсохшей хлебной массы и обмолот ее зерноуборочными комбайнами.
Прямое комбайнирование следует применять для уборки низкорослых и изреженных хлебов, семенников трав и бобовых культур, когда влажность зерна составляет 18…20%. Раздельное комбайнирование возможно преимущественно при устойчивой сухой погоде. При этом хлебная масса скашивается при 35…38% влажности зерна. Подбирают и обмолачивают валки при влажности зерна 15…18%.
Для скашивания зерновых культур в валки используются навесные валковые жатки ЖВН-6А, ЖВН-6, ЖНС-6-12, агрегатируемые с комбайнами «Нива-Эффект», «Енисей 950». Полеглые хлеба скашивают жатками ЖБА-3, ЖРБ - 4,2.
Для подбора валков используют подборщики: СК-ЗУ универсальный навесной барабанного типа, ширина захвата 3 м; ППТ-ЗА копирующий навесной, полотняно-планчатый, ширина захвата 3 м; ПТП - 2,45 копирующий навесной полотняно-транспортерный, ширина захвата 2,4 м.
Для прямого комбайнирования используют следующие зерноуборочные комбайны: Дон-1500Б, Дон-1500М, «Вектор», «Енисей 954» и др.
Послеуборочная обработка зерна включает взвешивание и разгрузку, очистку продовольственного зерна, его подсушку, погрузку в транспортные средства и перевозку к местам хранения или на заготовительные пункты, а отходов в фуражные склады и на фермы, а также очистку и сортирование семенного зерна.
Для оснащения пунктов послеуборочной обработки зерна применяют следующие машины и оборудование: зерноочистительные машины ЗМ-20, ОС-4,5А, СВУ-5, ЗВС-10, приемный блок ЗАВ-20; зернопогрузчики со швырялкой ПЗМ-80, ЗМС-90; зерносушилки СЗПБ - 2,0, СЗПБ - 4,0, СЗСБ - 8,0, СЗС - 8,0 и различные специальные зерноочистительные машины.
Для повышения производительности машины и улучшения качества обработки зерна на току зерноочистительные и сушильные машины объединяют в агрегаты ЗАВ-20, 40, а также в зерноочистительно-сушильные комплексы КЗС-40, КЗС-20Ш, КЗС-20Б.
4. Средства повышения плодородия
При сложившейся комбайновой технологии уборки зерновых создать благоприятные условия для высокого урожая удается далеко не всегда. Практически повсеместно из-за несвоевременного освобождения полей от соломы послеуборочные полевые работы выполняются с большим опозданием. Компенсировать недобор урожая при таких опозданиях в последующем невозможно, поскольку без высококачественной обработки почвы не могут дать надлежащего эффекта ни применение более качественных семян, ни новые сорта, ни увеличение доз внесения органических и минеральных удобрений.
Кроме того, после распада СССР, во многих странах постсоветского пространства ситуация с комбайновым парком стала критической. Во-первых, парк зерноуборочных комбайнов сократился на 40…50%, а с другой стороны - до 80% комбайнов изношены до предела.
В то же время, выход из создавшейся тупиковой ситуации есть. Серьезной альтернативой комбайновой уборке зерна является стационарные технологии. В 80-е годы прошлого столетия были разработаны различные технологические схемы и изготовлены опытные образцы технических средств для бескомбайновой уборки зерновых.
Однако, эти технологии не нашли широкого внедрения в производство, ввиду ряда существенных недостатков. Главным из которых являются высокие транспортные затраты. Причиной которых является низкая плотность перевозимой массы 50…60 кг/м3. Значительно повысить плотность зерносоломистого вороха, а также снизить затраты на его обмолот позволит технология очеса растений на корню.
Значительный вклад в обоснование технологии и разработку технических средств уборки зерновых культур методом очесывания на корню внесли ученые лаборатории уборочных машин МИМСХ (ныне ТГАТУ), д. т.н., проф. Шабанов П.А., к. т.н., доц. Данченко Н.Н., к. т.н., доц. Аблогин Н.Н., к. т.н. Голубев И.К., к. т.н., доц. Гончаров Б.И., к. т.н., доц. Шокарев И.К., к. т.н., доц. Шкиндер В.Н., к. т.н., доц. Цыбульников В.Н., к. т.н., доц. Повиляй В.М. Благодаря их многолетним исследованиям были разработаны механико-технологические основы уборки зерновых культур методом очесывания растений на корню, а также обоснованы параметры и режимы работы двухбарабанного очесывающего устройства, позволяющего снизить в 2-3 раза потери зерна при уборке и повысить производительность комбайнов.
В УкрНИИПИТ параллельно велись под руководством академика УААН и РАСХН Л.В. Погорелого научно-исследовательские работы по обоснованию и разработке конструкции однобарабанного очесывающего устройства, а также испытания зерноуборочных агрегатов с рабочими органами очесывающего типа.
Следует отметить, что немаловажной задачей при использовании очеса растений на корню является уборка незерновой части урожая.
До настоящего времени, несмотря на возросший интерес к разработке методов и средств повышения почвенно...
www.tnu.in.ua
Анализ производства зерна в ФГУП Учхоза ГОУ ПГСХА
В структуре посевов почти 50% приходится на зерновые и сою, как единственные товарные культуры отрасли растениеводства, возделываемые в Учхозе. На зерновые культуры приходится более 20 %...
Обзор и анализ технологий уборки зерновых культур различными способами
...
Обзор и анализ технологий уборки зерновых культур различными способами
Полустационарная технология предложенная харьковской опытной станцией УНИИМЭСХ, предусматривает сокращение потребности в транспорте...
Обзор и анализ технологий уборки зерновых культур различными способами
Развитие растений в Сибири отличается значительной неравномерностью созревания. Кроме того, в период уборочных работ, как правило, хлебная масса имеет повышенную влажность. Следовательно...
Производство продукции растениеводства на КФХ "Гранит"
Весной первую работу можно назвать такую как закрытие влаги. Это очень ответственная работа. Так как при правильном закрытии влаги урожайность зерновых культур повышается, в среднем, на 6,26 - 9,36 %...
Производство продукции растениеводства на КФХ "Гранит"
За 3 - 4 дня до начала уборки зерновых культур проводится обкосы полей, комбайном СК - 5 «Нива» + ЖВН - 6А. Перед началом массовой уборки, валки обкосов обмолачиваются другим комбайном СК - 5А...
Разработка и расчет жатки комбайна
Требования к зерновым культурам. Зерноуборочные машины обеспечивают качественную уборку только в том случае, если их рабочие органы выбраны и отрегулированы в соответствии со свойствами убираемой культуры...
Разработка модели ландшафтно-адаптированной технологии возделывания ячменя в СПК "Леднево" Юрьев-Польского района Владимирской области
Препарат Норма расхода кг/га, л/га Вредные организмы Способ обработки Премикс КС 2,5% Корневая гниль, пыльная, каменная головня, гельминтоспориозная, фузариозные, корневые гнили, плесневение семян...
Технология выполнения основных полевых работ
Уборка силосных культур. Процесс уборки силосных культур должен вестись беспрерывно, начиная от кошения, измельчения и перевозки до места укладки...
Технология основных полевых работ
Уборка зерновых культур. Зерновые культуры убирают прямым комбинированием, раздельным комбайнированием и раздельным способом. Прямое комбайнирование заключается в том...
Технология основных полевых работ
Уборка силосных культур. Процесс уборки силосных культур должен вестись беспрерывно, начиная от кошения, измельчения и перевозки до места укладки...
Учет затрат и калькулирования себестоимости продукции растениеводства в ООО "Русь"
Текущий учет затрат на производство зерновых культур в ООО «Русь» завершается исчислением фактической себестоимости продукции зерновых культур...
Формы воды в почве: значение для питания растений
Практикой земледелия и наукой доказано, что правильные севообороты в хозяйстве являются организующим звеном системы земледелия...
Центры происхождения зерновых культур
Успех селекционной работы в основном зависит от генетического разнообразия исходной группы растений и животных. Между тем генофонд существующих сортов растений, естественно, очень ограничен по сравнению с генофондом исходного дикого вида...
Экономическая эффективность производства зерна на примере ПСХК "Козинского тепличного комбината" Смоленского района
Все зерновые и зернобобовые культуры, выращиваемые в Российской Федерации, группируются по назначению: продовольственные и фуражные. В составе продовольственных культур выделяют хлебные (пшеница и рожь) и крупяные (гречиха, просо, рис)...
agro.bobrodobro.ru
Содержание
Введение
1. Обзор и анализ технологий уборки зерновых культур
1.1 Комбайновая технология уборки
1.2 Некомбайновые технологии уборки зерновых культур
1.2.1 Трехфазная технология уборки зерновых
1.2.2 Полустационарная технология уборки зерновых культур
1.2.3 Стационарная технология уборки зерновых культур
1.2.4 Технология уборки зерновых культур методом очеса на корню
2. Конструкторская разработка
2.1 Анализ влияния конструктивно-кинематических параметров жатки на надежность и качество выполнения технологического процесса
2.2 Обзор существующих конструкций
2.2.1 Рассмотрим первый привод режущего аппарата. Авторское свидетельство №1068065
2.2.2 Следующий привод разработан производственным объединением "Тульский комбайновый завод"
2.2.3 Другой привод разработанный тем же производственным объединением "Тульский комбайновый завод"
2.4 Предлагаемая конструкция
3. Конструкторско-технологические расчеты
3.1 Технологические расчеты
3.2 Прочностные расчеты
Выводы
Список используемой литературы
Реферат
Дипломный проект предоставлен на ____ страницах машинописного текста, рисунков, таблицы, 24 источников и 5 листов графического материала.
РАСЧЕТЫ, ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС, КОЭФИЦМЕНТ ТЕХНИЧЕСКОЙ ГОТОВНОСТИ, ОБЕМ РАБОТ, ЗАТРАТЫ ТРУДА, ЭКСПЛУАТАЦИНОННЫЕ РАСХОДЫ.
Объектом изучения является механизмы и устройство жатки сельскохозяйственных комбайнов.
В данной квалификационной работе проведен Обзор и анализ технологий уборки зерновых культур, различными способами. Комбайновая технология, некомбайновые технологии уборки зерновых культур: трехфазная технология уборки, полустационарная технология уборки, стационарная технология уборки зерновых культур, технология уборки методом очеса на корню, описал достоинства и недостатки каждой технологии.
Оценил состояния и перспективы механизации процессов уборки зерновых. Провел Анализ влияния конструктивно-кинематических параметров жатки на надёжность и качество выполнения технологического процесса. Сделал общий обзор существующих конструкций, рассмотрел существующие приводы режущих аппаратов.
В современном производстве продукции растениеводства широко используются машинные технологии. Под технологией в сельскохозяйственном производстве понимают систему производства, хранения, переработки и реализации продукции с конкретным количественными и качественными показателями при наименьших затратах труда, средств и энергии. Всякая технология - это результат многолетних научных исследований и полевых опытов. Технологии непрерывно совершенствуются и дополняются. Новые технологии могут быть рекомендованы к внедрению в производство после всесторонней проверки в хозяйственных условиях и получения положительного экономического эффекта.
Процесс создания машины состоит из нескольких этапов: зарождение идеи, воплощение идеи в техническое задание, разработка технического проекта, изготовление опытных образцов, их испытание, поставка на производство, массовое производство, старение, замена. Замена старой машины возможна лишь при появлении новых идей и научных разработок или модернизации старой.
Научно-технический процесс в механизации сельскохозяйственного производства направлен на снижение удельных затрат энергии, повышение производительности, улучшение показателей качества выполняемой работы и условий труда тракториста-машиниста, автоматизацию рабочего процесса машин, снижение техногенной нагрузки на природную среду.
Зерновые, зернобобовые и крупяные культуры ежегодно высеваются на площади 60-80 млн. га, что более половины всех площадей в стране. Они возделываются в различных природно-климатических зонах, что определяет колебания урожайности, высоты и состояние стеблестоя, засоренности и влажности растений. Погодные условия также изменчивы и не всегда благоприятны в период уборки. Уборка - завершающий этап всех полевых работ. Убрать вовремя и без потерь то, что выращено - такова первая заповедь земледельца.
Основными и единственными средствами уборки зерновых культур служат комбайны, парк которых все время увеличивается.
Уборка хлебов в среднем по стране продолжается не менее 25-30 дней, что соответствует агротехническим требованиям. В связи с этим возрастают потери не зерновой части урожая - соломы и половы, так необходимых для нужд животноводства.
Зерновые комбайны могут нормально работать лишь при определенных погодных условиях, хорошем хлебостое и малой засоренностью полей. Допустимой влажности зерна и не зерновой части урожая, исправном техническом состоянии и соответствующей регулировке механизмов комбайнов. Комбайны не могут работать ночью, когда выпадает роса, сразу после дождя, пока не просохнет хлебостой и валки.
Существует три вида комбайновой технологии отличающихся способом сбора незерновой части урожая, с копнением, измельчением и валкованием.
Первый вид технологии широко применяется. Комбайн с навесными копнителями малой вместительности (9м3) для собора соломы половы оставляют на поле небольшие копны. При скашивании полей на проб поля теряется почти вся полова и значительная (до 35%) часть соломы, рассеиваются по полю семена сорняков. Во многих случаях копна остаются на поле длительное время в плоть до весны, что исключает своевременную и высококачественную подготовку поля под урожай будущего года. Негде в мире подобный вид уборки не применяется.
При использовании технологии второго вида вместо копнителя комбайн оборудуется измельчителем - устройством, которое измельчает солому подаёт её вместе с половой (или только полову) в прицепную тележку. Комбайн становится громоздким агрегатом, затрудняется выгрузка зерна на ходу.
При технологии третьего вида вместо копнителя или измельчителя комбайн оборудуется щитками для образования валка соломы с половой укладываемого на поле, в процессе уборки при подборе валков большая часть половы теряется, а общие потери с половой достигают 30%
Разработка новых технологий
Идёт по двум направлениям - это совершенствования технологии уборки с использованием зерно уборочных комбайнов и разработка совершенно новых и безкомбайновых технологий.
К совершенствованным комбайновым технологиям уборки зерновых культур обеспечивающим одновременную уборку всего биологического урожая можно отнести: комплекс УНИИМЭСХ (Украинский НИИ) и способ "невейка". Комплекс УНИИМЭСХ с различными его вариантами получил достаточно широкое распространение в южных районах Европейской части России. Это объясняется природно-климатическими особенностями возделывания (благоприятными) зерновых культур в этих районах и тем, что он базируется на серийно выпускаемых комбайнах. Этот способ базируется на однофазной и двухфазной технологии уборки и заключается в том, что комбайн вместо копнителя оборудуется измельчителем соломы, которая измельчается и подается в совместную с половой в прицепную ему тележку, либо подается в тележку только полова, а измельченная солома разбрасывается по полю. Существует и другие различные варианты в данной технологии.
Процесс уборки по этой технологии осуществляется следующим образом.
Комбайн, оборудованный режущим аппаратом или подборщиком, срезает массу или подбирает валок, обмолачивает, отделяет зерно от крупного и мелкого вороха, а солому измельчает. Измельчённая солома с половой подается, в тележку с ёмкостью 45м3. По мере накопления тележки её отсоединяют от комбайна, а на её место подсоединяют новую. Заполненная тележка с измельченной незерновой частью транспортируется к месту хранения.
Основной недостаток рассмотренной технологии состоит в том, что он не согласуется с принципиальными положениями индустриальных технологий (основанными на упрощении мобильных машин и переносам сложных процессов на стационар), так как усложняется и без того сложный процесс и сам комбайновый агрегат. Затрудняется организация работ ибо комбайн оказывается связанным с транспортом по двум потокам - зерновому и незерновому. Бесперебойная работа комбайна возможна за счёт создания существенного избытка.
Многочисленными испытаниями комплекса в различных условиях установлена, что на веской измельчителя соломы на комбайн снижает его пропускную способность на 10-15%. С учётом этого и дополнительных затрат времени на смену тележек, эксплуатационная производительность комбайна снижается в среднем на 25%. Установлено, что срок служб комбайна с измельчителем ниже в среднем на 43%.
Для обеспечения поточного выполнения уборочного процесса и совершенствования технологий уборки незерновой части урожая при использовании высокопроизводительных комбайнов. УНИИМЭСХ обосновывая технологические параметры быстро разгружающегося универсального прицепа вместительностью кузова до 60м3. На ряду с выполнением функции сменной ёмкости для сбора и транспортировки измельчённой соломы и половы при поточной уборке хлебов, новый прицеп может формировать и быстро выгружать на поле копна соломы равномерно смешанной с половой, массой 2т. Так же копны не будут замыкать при выпадении осадков. Складирование незерновой части при уборке хлебов будет осуществляться при помощи агрегата УСА-10. Оборудование зерноуборочных комбайнов совершенными конструкциями измельчителей ПУН - 6 расширили возможность организации уборки всего биологического урожая комплексом УНИИМЭСХ, но остались не устраненными перечисленные выше недостатки присущие данному комплексу.
Всесоюзный институт механизации - ВИМ, УНИИМЭСХ, СибИМЭ и другими организациями разрабатывается и проверяется технология обработки невеяного вороха на стационаре - "Невейка".
Технология уборки с получением "невейки" основана на применении упрощенной мобильной машины, в том числе комбайна или подборщик-молотилка настраивается на получение зернового вороха с содержанием 20-30% соломистых частиц и половы, а основная часть соломы разбрасывается по полю, либо укладывается в валок с последующей уборкой различными комплексами машин для незерновой части урожая. Зерновой ворох транспортируется автомобилями или транспортными тележками на зерноочистительный пункт, оборудованный дополнительной приставкой в виде ворохоочистителя, обеспечивающий получение зерна с чистотой 92-98%.
Комплекс машин для получения "невейки" включает волновую жатку, упрощенную конструкцию комбайна, имеющего возможность работать на срезе хлебной массы или подборе валков, самосвальный транспортный прицеп емкостью 45-70 м3, ворохоочиститель ВН-12, производительностью 12 кг/с, вписанный в технологическую схему зерноочистительного пункта. Выделенный ворохоочистителем мелкий ворох, пневмотранспортом направляется в скирдооформитель половы.
Интересное решение по технологии "невейка" предложено челябинским институтом (ЧИМЭСХ). Оно заключается в использовании валковой жатки-накопителя, которая обеспечивает формирование хлебного валка шириной 4-5метров с полосы 6-ЮОметров. Это обеспечивается наличием у жатки платформы с транспортером, движущимся с малой скоростью в направлении, обратном движению жатки. По мере продвижения жатки (ширина захвата 4метра), скошенная масса непрерывно отводится транспортером от режущего аппарата, накапливаясь на платформе. Когда масса на платформе достигает противоположного края (платформа полностью заполняется хлебной массой), включается повышенная скорость транспортера и происходит разгрузка платформы с образованием поперечного валка. При следующем проходе, платформа разгружается хлебный валок перпендикулярно движущийся жатке. Благодаря формированию мощных валков предусматривается использовать молотилку с роторным молотильно-сенорежущим устройством двухфазного обмолота, позволяющий осуществлять дифференцированный сбор "невейки" с более ценным зерном, полученным при первой фазе обмолота и "невейки" с остатками зерна, выделенного из хлебной массы при жестком режиме второй фазы обмолота. Общая производительность полевой молотилки при ширине ее 4-5метров составляет 20-30кг/с. Молотилка имеет два бункера для раздельного сбора "невеек".
Обработка "невеек" обеих фракций осуществляется в конце гонов с помощью передвижного сепаратора. Длина гона выбирается с расчетом заполнения одного из бункеров полевой молотилки к концу гона. Сепаратор выполняется также двухпоточным для раздельной очистки семян обеих фракций. Очищенное сепаратором зерно первой фракции собирается раздельно в бункера-накопители сепаратора, из которых она отвозится на зерноочистительный пункт, для последующей обработки. Полова обеих фракций собирается в тележку или укладывается в бурты для последующей отвозки ее к месту хранения или потребления. Солома либо укладывается в валок, либо разбрасывается по полю.
Таким образом, комбайновая технология уборки зерновых культур не отвечает агротехническим и хозяйственным требованиям хозяйств.
Основные направления поисковых научно-исследовательских работ - разделение процесса уборки хлебов на скашивание и немедленную вывозку с поля хлебной массы и последующей обработкой на стационарных или полустационарных пунктах.
К не комбайновым технологиям уборки зерновых культур, обеспечивающим уборку всего биологического урожая можно отнести:
Трехфазную, полустационарную и стационарную.
Трехфазная технология, разработанная ВИМ предусматривает скашивание хлебной массы широковалковой жаткой с укладкой ее в валки для дозревание, подбор валков подборщиком-измельчителем, измельчение хлебной массы с погрузкой ее в транспортные средства (тракторные тележки большой емкости), перевозка на стационарный пункт измельченной массы, домолот ее молотилкой, оборудованной дозатором, обеспечивающим равномерную подачу массы в молотилку, очистку зерна на специальном ворохоочистителе и складирование соломы и половы с помощью скирдооформителей. Подача соломы и половы в скирдооформители осуществляется с использованием пневмотранспорта.
Этот способ предусматривает широкое использование электроэнергии, внедрение автоматизации технологического процесса, т.е. перевод процесса уборки на промышленную основу. Вместе с тем испытание комплекса машин для уборки трехфазным способом, проведенные на Северо-Кавказкой МИС, показали, что по сравнению с комбайновым, снижаются затраты рабочего времени и прямые издержки, расход топливосмазочные материалов при одновременном увеличении производительности на 25-30%. При этом обеспечивается полный сбор грубых кормов и поля очищаются от незерновой части урожая для подготовки и последующим почвообрабатывающим операциям.
Для уборки зерновых трехфазным способом выпускали комплекс машин, который включает полевой подборщик-измельчитель, тележку с кузовом вместимостью 42м3 и стационарный пункт. Транспортер-дозатор, молотилка-сеператор и устройство для отвода зерна и незерновой массы смонтированы на транспортном устройстве. Машины стационарного пункта обслуживает один рабочий, а полевого два. Производительность подборщика-измельчителя составляла - 25 кг/с, молотилки-сепаратора - не более 5.0 кг/с. Чтобы доставить весь биологический урожай для обработки на стационарный комплекс, необходимо большое число транспортных средств, т.к. плотность измельченной массы составляет 50 - 83,7 кг/м3. исследования показали, что трехфазная технология наиболее эффективна в сочетании с комбайновой. Значительная неравномерность подачи массы в молотилку, а также неравномерное распределение вымолоченного зерна в кузове тележки снижает пропускную способность молотилки и повышает дробление зерна. Наличие в хлебной массе частично вымолоченного зерна приводит к дополнительной потери при транспортировке. Другим недостатком трехфазного способа уборки является меньшая, по сравнению с комбайновым способом, универсальность оборудования. Указанные недостатки в какой-то степени послужили причиной тому, что работы по всесторонней производственному проведению данной технологии были прекращены. Однако работы по созданию перспективных технологий уборки с учетом недостатков, отмечены при трехфазной технологии, продолжаются в настоящее время различными организациями.
уборка зерновая культура комбайновый
Полустационарная технология предложенная харьковской опытной станцией УНИИМЭСХ, предусматривает сокращение потребности в транспорте. По этой технологии хлебная масса виде розвязи вывозится на край поля и выгружается в емкость специального загрузного устройства молотилки. Отсюда она дозирующими устройствами равномерно подается на обмолот. Выходящая из молотилки солома скирдуется присоединенным к молотилке скирдооформителем. Убрав один участок, молотилка в месте с полевыми агрегатами переходит на следующий. В данной технологии должно четко соблюдаться равномерность поступления массы в загрузочное устройство молотилки, что очень трудно выполнить в связи с огромным количеством случайных факторов (урожайность, соломистость, влажность, метеоусловия).
Неравномерность поступления хлебной массы к месту переработки требует организации межоперационного накопителя. Причем его размеры необходимо выбрать как раз из условия предупреждения простоя транспортных средств из-за отсутствия места для выгрузки, так и простоев молотилки из-за несвоевременного подвоза. По расчетам, применительно к транспортным емкостям 45-50м3 и пропускной способностью молотилки 8кг/с. Бесперебойная работа будет обеспечиваться в случае, когда в накопителе может разместиться не менее 10-12 порций.
Для условий Казахстана и других районов страны со сходными природными условиями НПО совместно с ВИМ и другими организациями разработали новую технологию уборки зерновых культур.
По данной технологии предусматривается скашивание хлебостоя с одновременным сбором не обмолоченных стеблей в кузов, транспортировку их на край поля, обмолот с выделением зерна и одновременным или последующим сбором соломы и половы.
В качестве полевой машины предусматривается использовать самоходную жатку-стогообразователь, унифицированную на моторно-ходовой части трактора
Т-150К, кузова-стогооброзователя СПТ-60.
Технологический процесс работы самоходной жатки заключается в том, что скошенная или подобранная из валка хлебная масса наклонным транспортером и приемным битером подается в приемную часть пневмотранспорта, где она подхватывается воздушным потоком и по каналу подается в кузов. Дефлектор пневмотранспорта позволяет равномерно загрузить массу по длине и ширине кузова. После его заполнения, агрегат останавливается для уплотнения массы в кузове путем опускания его крышки. Затем она поднимается и агрегат продолжает работу. Для хорошо сформированного стога достаточно двух-трех уплотнений. Выгрузка стога осуществляется в ряд к торцу ранее выгруженного стога. После выгрузки стога машина возвращается в загон и начинается новый цикл.
Специальная разбивка поля на загоны позволяет сократить средний путь вывоза урожая до 250-ЗООм. В связи с этим отпадает необходимость применения других машин для транспортировки урожая к месту обмолота и исключается простои при взаимном простое полевых и транспортных средств. Жатка-стогообразователь универсальная, не требует специальных регулировок, даже с изменением погодных условий.
Обмолот стогов выполняется высокопроизводительной молотилкой по поточной и последовательным схемам. По первой схеме уборка и обмолот выполняется одновременно.
Двигаясь со скоростью 0,02-0,03 м/с вдоль ряда стогов, молотилка с помощью питателя дозатора, навешанного вместо жатки, забирает технологический материал из стога и равномерно подает его на обмолот. Очищенное зерно загружается в бункер, а солому и полову можно собирать различными способами, например, полову загружать в прицеп, а солому отводить транспортером и укладывать параллельно линии движения молотилки. Отвоз зерна можно осуществлять большегрузными автопоездами. Необходимо, чтобы одну молотилку обслуживали не менее трех полевых машин.
При последовательной схеме обмолота стогов по краю поля все процессы уборки выполняются с разрывом во времени уборка с поля в жатые сроки, а обмолот - в благоприятное для хозяйства время, когда нет дефицита кадров, транспортных средств.
В этом случае необходимо, чтобы стога, выгруженные жаткой-стогообразователем, были хорошо завершены, а выгрузка осуществлялась на подстилку из сухой соломы.
Многократными исследованиями было установлено. Что в условиях Казахстана естественная сушка урожая в стогах, сформированных из стеблей в фазе восковой спелости зерна, собранных во время рос и не полностью просохших после дождя вполне удовлетворительна.
К полустационарным технологиям относится и технология, разработанная в УНИИМЭСХ - ленточная технология уборки всего биологического урожая зерновых культур с обмолотом на краю поля и заключается в следующем.
При скашивании растений или их подборе хлебная масса со всей шириной два метра, которая перемещается по стерне в месте с жатвенным агрегатом. Достигнув края поля жатка специальным устройством подает хлебную массу на питающий транспортер стационарной молотилки, расчетная производительность которой 12-14 кг/с. Обмолоченное зерно автомобилями вывозят на пункт послеуборочной обработки, а не зерновую часть подают в передвижной стогообразователь, формирующий стога массой 8-Ют. для длительного хранения.
По данным УНИИМЭСХа в комплекс машин для реализации предложенной технологии должны входить две молотилки расположенные на противоположных краях загонки, шесть жаток с ленточными накопителями хлебной массы. Молотильные агрегаты должны перемещаться поперек загонок, вдоль которых движутся валковые жатки, обеспечивающие их бесперебойную работу.
Ленточная технология позволяет очистить поля от не зерновой части урожая одновременно с уборкой зерна, исключить использование сложных машин в поле, повысить качество уборочных работ.
Развитие растений в Сибири отличается значительной неравномерностью созревания. Кроме того, в период уборочных работ, как правило, хлебная масса имеет повышенную влажность. Следовательно, для условий Сибири необходимо применять такую технологию уборки зерновых культур, которая бы учитывала эти особенности их возделывания. Все рассмотренные выше технологии требуют либо полного созревания хлебной массы и низкую влажность, либо фазу восковой спелости.
В связи с этим СибИМЭ предлагает технологию уборки зерновых с дозреванием и подсушкой хлебной массы на стационаре. Проведенные исследования говорят о возможности применения такой технологии в районах Сибири и Дальнего Востока.
Суть технологии заключается в том, что хлебная масса скашивается в период восковой спелости специальной жаткой-погрузчиком и подается в транспортные средства, которые доставляют ее на стационар. На стационарных площадях она складируется для дозревания и активного вентилирования. По мере готовности хлебной массы в скирдах, она обмолачивается передвижной молотилкой, оборудованной специальным дозатором. Солома и полова скирдуется, а зерно доставляется на пункт послеуборочной обработки. Данная технология находится лишь в стадии лабораторных исследований.
Кубанская индустриальная технология уборки зерновых культур на стационаре предусматривает скашивание хлебной массы с измельчением и транспортировкой, дозированную подачу в сушку, сушку с сепарацией, домолот массы, очистку зерна и транспортировку соломы и половы до места хранения, переработку их на корм. Комплекс машин для этой технологии включает насос-накопитель, две линии дозирования, до сушки, сепарации и домолота хлебной массы, линии транспортирования зерна, соломы и половы, бункер накопитель зерна емкостью 10т., склад половы, открытые склады соломы, пункт по переработке не зерновой части урожая на корм.
Для скашивания (подбора) хлебной массы используется переоборудованные комбайны типа "Нива" и "Енисей", а транспортировку измельченной массы герметизированные тракторные тележки емкостью 45-50м3.
Рабочий процесс по данной технологии осуществляется следующим измельчается, подается в тележку транспортируется в склад-накопитель и дозирующим устройством, которые равномерно подают ее на две сушильно-сепарирующие машины. В процессе движения массы по сушильно-сепарирующим линиям вся масса при необходимости подсушивается горячим воздухом, подаваемым двумя теплогенераторами ТАУ - 1,5. При этом вымолоченное при измельчении зерно сепарируется и подается в бункер-накопитель, а оставшаяся масса с невымолоченным зерном подается в комбайн-молотилки, которые осуществляют домолот, отделяют зерно от крупного и мелкого вороха. Очищенное зерно также подается в бункер-накопитель или отводится транспортером на послеуборочную обработку. Пневматические линии транспортируют полову и солому от комбайнов к местам складирования и переработки. Часть соломы складируется, а другая часть подается на линию обогащения и грануляции.
В этой технологии используются как производственные машины, так и часть, специального для данной технологии переоборудованные.
Отличительной особенностью данной технологии по сравнению с вышерассмотренными, является законченность процесса. В единую технологическую линию на стационаре увязаны пункты по обмолоту зерна, по послеуборочной обработке и производству кормов из не зерновой части урожая. Уборка зерновых с обработкой на стационаре испытывается в Латвии.
По этой технологии убранную измельченную массу Зеровых без предварительной подсушки транспортируют на стационар, где она дозируется и подается в молотилку зернокомбайна, а продукты обработки в комбайне направляются: зерно на зерноочистительносушильный пункт, полова на АВМ, солома на хранение или использование при силосовании. Стационарный пункт представляет собой асфальтированную площадку, у животноводческого комплекса, защищенную навесом.
Комплекс машин для данной технологии включает машины: Е-281 или КСК-100 настроенные на максимальную длину резки 120-150мм., погрузку измельченной массы в транспортное средство, измельченная масса транспортируется на стационарный пункт, где установлены дозаторы ПЭМ-1,5и комбайн СК-5 "Нива". Солома при помощи пневмотранспорта подается на силосование или складируется на вентиляционных установках. При оборудовании комбайна СК-5 приспособлением ПУН-5, полова и солома загружается в прицеп и транспортируется к месту складирования.
Результаты проверки данной технологии уборки зерновых культур в хозяйствах показали, что использование приспособленных для этой технологии серийных машин мало эффективно и не найдет широкого применения в хозяйствах.
Проводится поиск новых технологических процессов уборки зерновых культур и зарубежном, например шведская фирма совместно с финской разработала и испытала новый метод уборки зерновых культур: убирается весь биологический урожай и доставляется в перерабатывающий цех, где проводится сушка массы ее сепарация, выделение зерновой части урожая и переработка не зерновой части на кормовые цели, топливо, подготовка сырья для целлюлозной промышленности.
Скашивание массы проводится самоходной машиной, имеющий жатку захватом 3,6 метра, измельчающий механизм, съемный контейнер емкостью 40м3. Срезанная масса и измельченная, воздушным потоком подается в контейнер, который после заполнения перегружается на краю поля на автотранспорт, доставляющий его на стационарный пункт.
Перерабатывающий цех включает в себя: высокопроизводительную барабанную сушилку, осуществляющая сушку всей поступающей массы. После сушки солома разделяется на фракции в зависимости от плотности массы, полова и семена сорняков перерабатывается в кормовые, гранулы, а солома обрабатывается щелочным раствором и перерабатывается в комбикорм. Стационарный пункт обеспечивает выход зерна с влажностью 13% при производительности 15т/час. Уборка может осуществляться в неблагоприятные погодные условия, и за счет снижения потерь зерна, повышает его валовые сборы.
Значительные исследования по уборке всего биологического урожая проводятся в США, Дании, Голландии. Все это говорит о том, что существующие технологии уборки зерновых культур не удовлетворяют современным требованиям жизни и ждут своего разрешения с учетом конкретных природно-климатических, хозяйственных и других требований.
Затраты на уборку риса и других метелочных культур превышают 30% расходов на их производство. При этом серьезную проблему представляют собой потери, дробление, обрушивание и микротравмирование зерна в процессе уборки.
На основе анализа технологии уборки, конструкций уборочных машин и их молотильно-сепарирующих аппаратов, результатов, проведенных в различных НИИ, исследования физико-механических свойств метелочных культур разработана технология уборки методом очеса на корню и последующим сбором продукта обмолота. Были
разработаны машины, в которых зерно отделяется от метелки на корню при исследовательном прочесывании стеблей специальными гребенками или щетками размещенными на барабане. Установлено, что при уборке методом очеса растений на корню получается меньший зерносоломистый ворох, который состоит для риса из 70-80% свободного зерна, 20-30% оборванных метелок и 5-7% соломистых частиц. Очесывающий аппарат можно устанавливать на специальный комбайн в качестве приставки к серийному комбайну и в варианте, когда мелкий зерносоломистый ворох направляется от очесывающего аппарата в бункер, а затем выгружается в тележку и вывозится на стационарный пункт, где из него выделяют зерно и необмолоченные метелки.
На основании обзора и анализа существующих технологий уборки зерновых культур можно сделать краткий вывод, что при применении какой либо из технологий уборки необходимо учитывать природно-климатические, технические и экономические условия хозяйства. Все технологии имеют свои преимущества и недостатки. Рассмотренные безкомбайновые технологии уборки зерновых культур имеют ряд недостатков, которые не позволяют широко применять.
К таким недостаткам относится: большое число транспортных средств, чтобы доставить весь биологический урожай на стационарные комплексы, используемая техника и оборудование менее универсально в отличие от комбайнового способа уборки, большое использование электроэнергии, использование приспособленных для этих технологий серийных машин малоэффективно и не найдет широкого применения в хозяйствах.
По этим причинам наиболее эффективным и широко применяемым способом для уборки зерновых культур является комбайновый способ уборки. Но конструкторские разработки достигли наивысших увеличение производительности молотилки ведет к увеличению и без того большие габариты и массу комбайна.
Так как, производительность комбайна нельзя увеличить, то необходимо усовершенствовать и разрабатывать новые приспособления и приставки к машине, которые позволяют увеличить производительность комбайна.
Анализ отказов зерноуборочных комбайнов, проведенный на основе результатов испытаний в условиях эксплуатации, показал, что свыше 20% от общего числа их приходится на жатки. Если учитывать показания посторонних предметов (камней) в рабочие органы жаток, то доля отказов еще больше возрастет. При классификации их по группам сложности установлено, что 70% отказов относится к первой группе сложности и около 25% ко второй.
Основные причины отказов привода рабочих органов жатки - недостаточные жесткость и прочность конструкций, низкое качество сварки, т.е. причины как конструкционного, так и технологического характера. В следствии воздействия переменных нагрузок (в первую очередь от возвратно поступательных движущихся масс) из-за усталостных явлений происходят разрушения подшипников, валов колебателей, деформация и разбивание подвесок ножей, излом компенсирующей пластины, поломки валов и соединительных элементов. Как показывает практика не все комбайнеры а так же специалисты не могут правильно провести регулировку привода режущего аппарата жатки (биение торца вала качающейся шайбы - не должно превышать 0,5 мм), т.е. регулируется на глаз, а не при помощи инструкций по регулировки и измерительных приборов, что приводит к повышенной вибрации привода, шуму, разрушения подшипников качающейся шайбы, в результате чего увеличивается простой техники в поле и снижения суточной производительности.
Проводя поиск новых изобретений, привода режущего аппарата жатки, в патентном бюро Красноярской краевой научной библиотеки, я, из большого количества предлагаемых конструкторских разработок, отобрал несколько вариантов, которые предлагаю рассмотреть в этой части дипломного проекта и сравнить их с предлагаемой мною конструкцией механизма привода режущего аппарата травяной жатки кормоуборочного комбайна.
Изобретение относится к сельскохозяйственному машиностроению и используется в механизмах привода режущих аппаратов. Цель изобретения - увеличение надежности привода за счет снижения уровня вибрации и динамических нагрузок в его звеньях путем исключения избыточных связей.
На рисунке 1 приведена кинематическая схема привода.
Привод режущего аппарата, содержащий основание-1, на котором закреплен дифференциальный редуктор-2, ведущие валы-3, качающиеся шайбы-4, валы колебателен с рычагами-5, шатуны-6, коромысла-7, нож-8, колен валов 3 расположенных в одной плоскости под углом 180°. На основании 1 на подшипниках качения 9 установлены ведущие валы-3. На ведущих валах на подшипниках качения 10 установлены качающиеся шайбы 4. качающиеся шайбы 4 сопрягаются с валами колебателей 5 с помощью игольчатых подшипников 11. валы колебателей установлены на основании 1 с помощью сферических шарниров 12, допускающих осевое смещение.
Механизм работает следующим образом: вращение ведущих валов 3, осуществляется от дифференциального редуктора 2, преобразующая в сферическое движение качающимися шайбами, совершают движение ножа синфазное качательное движение. Качательное движение валов колебателей 5 преобразуется в возвратно-поступательное движение ножа 8 с помощью шатунов и коромысел 7. в предлагаемом привод в виду отсутствия избыточных связей при сборке и монтаже происходит автоматическая установка звеньев 3,4,5 таким образом, что компенсирует погрешности изготовления звеньев привода.
Рис.1 кинематическая схема привода, р. а.
Преимуществом предлагаемого привода по сравнению с прототипом является уменьшение износа в кинематических парах, повышение коэффициента полезного действия, уменьшение продолжительности обкатки, самоустанавливаемость звеньев.
Кроме того, в предлагаемом приводе перемещение ножа осуществляется постепенно путем вытягивания ножа относительно противорежующих пластин попеременно с одной и другой стороны.
Недостаток привода в том, что дифференциальный редуктор придется расположить под питающим устройством комбайна, что затруднит условие монтажа и демонтажа, и усложнит передачу крутящего момента от ВОМ к редуктору привода.
На рисунке 2 показан общий вид привода режущего аппарата.
Привод режущего аппарата содержит приводной вал 1, на свободном конце которого размещен кривошип, выполненный в виде пары зубчатых колес 2 и 3 с одинаковым числом зубьев, находящихся в зацеплении и размещенных в корпусе 4 на осях 5 с постоянным межцентровым расстоянием. Колесо 2 эксцентрично закреплено на приводном валу 1, а колесо 3 при помощи эксцентрично установленной оси 6 соединено с одним из концов шатуна 7, другой конец которого связан с узлом изменения направления исполнительного движения выполненным в виде зубчато-реечного механизма, состоящего из двух, расположенных друг к другу реек 8 и 9, контактирующих с колесом 10, установленным в корпусе 11 на оси 12, причем рейка 8 соединена с шатуном 7, а рейка 9 кинематически связана с подвижным ножом 13 режущего аппарата.
Рис.2 Привод режущего аппарата.
Привод межующего аппарата работает следующим образом: вращение приводного вала 1 передается эксцентрично установленному зубчатому колесу 2, входящему в зацепление с колесом 3. поскольку оба колеса установлены в корпусе на осях 5 с постоянным межцентровым расстоянием, колесо 3 одновременно совершает движение относительно приводного вала 1 и во круг собственной оси 5. одна из точек колеса 3, совпадающая с эксцентрично расположенной осью 6, совершает при этом прямолинейное движение возвратно поступательное движение, которая при помощи шатуна 7 передается на зубчатую рейку 8, входящую в зацепление зубчатым колесом 10, которая, вращаясь, передает исполнительное движение на подвижный нож 13, режущего аппарата. При необходимости, используя соответствующею конструкцию корпуса 11, возможна передача исполнительного движения рейками 8 и 9 под углом, отличном от прямого. Зависимость между движением исполнительного звена (ходом подвижного ножа 13 режущего аппарата) и эксцентриситетом зубчатых колес 2 и 3 определяется отношением 4: 1.
Наличие в конструкции привода режущего аппарата кривошипа, выполнена виде пары зубчатых колес, обеспечивает более благоприятные условия работы, а применения зубчато-реечного механизма позволяет без искажений передавать исполнительное движение на подвижный нож режущего аппарата. Надежность привода обеспечивается более плавной работой.
Недостаток привода в зубчато-реечном механизме, из-за сил трения, возникающих между корпусом 11 и зубчатыми рейками 8 и 9, корпус механизма со временем износится, что приведет к увеличению зазора между рейками 8 и 9, входящими в зацепление зубчатым колесом 10.
Из-за больших линейных размеров привода по направлению движения машины, компоновка его на травяную жатку затруднена, требует больших затрат труда и средств.
Привод изображен на рисунке 3.
Целью изобретения является упрощение конструкции и повышение надежности путем использования дополнительного качательного движения качающейся шайбы. Механизм привода ножа режущего аппарата сельскохозяйственных машин включает: корпус 1 с подшипниками 2, в которых располагается коленчатый вал 3, содержащий выступ 4 контактирующий с внутренними кольцами конических подшипников 5, зафиксированными в корпусе шайбы 6 подшипниками 7, образующими герметическую полость, заполненную смазкой. Выходной вал 8 одним концом жестко связан с шайбой 6, а другим с рычагом 9, верхнее плечо которого соединено с базовой поверхностью 1 - по средствам серьги П. нижнее плечом рычага 9 шарнирно связано при помощи серьги 12 с головкой 13 подвижного ножа 14. на коленчатом валу 3 расположен шкив 15, соединенный клинорёмевной передачей 16 с приводным валом 17. коленчатый вал, вращаясь в подшипниках 2, воздействует через конические подшипники 2 на шайбу 6. шайба 6 одновременно совершает два движения: вращения относительно собственной оси симметрии и качения в промежутки между опорами подшипников 2. выходной вал 8 является промежуточным звеном между шайбой 6 и рычагом9. В верхнее плечо рычага 9 шарнирно связано с базовой поверхностью 10, серьгой 11, компенсирующее его паразитные движения, а нижнее движения при помощи серьги 12 - с головкой 13 подвижного ножа 14, обеспечивая этим его возвратно-поступательное движение.
Рис.3 привод режущего аппарата А.С. №1678235.
Благоприятные условия работы механизмы привода обеспечены тем, что используется одновременно два движения шайбы 6: вращательное и качательное: рычаг 9 позволяет уменьшать угол качания шайбы 6 и воспринимает основные динамические нагрузки: геометрическая полость шайбы заполненной смазкой. Смазка подшипника 2 удерживается защитными шайбами (используются стандартные подшипники с защитной шайбой). Для теплоотвода используется максимальная площадь отвода механизма.
Недостаток привода в большом количестве кинематических связей отличающиеся жесткие требованиями к точности изготовления и предлагающих расширенную номенклатуру используемых для расширения деталей и стандартизированных узлов, что делает конструкции привода сложной и недостаточно надежной.
Привод режущего аппарата. Авторское свидетельство №1182699.
Изобретение относится к области сельскохозяйственного машиностроения. Надежность привода обеспечивается за счет исключения проскальзывания роликов по ребру.
По одной стороне вала на осях 3,4 расположена качалка 5 и рычаг 6. Один конец рычага связан шарнирно при помощи звена 7 с качалкой 5 и снабжен контактирующими с винтовой поверхностью 1 вала роликом 8, а другой конец взаимодействует с ножом режущего аппарата при помощи серьги 9. на конце качалки смонтирован ролик 10. также контактирующий с винтовой поверхностью 1 вала в точке А.
Рис.4 привод режущего аппарата А.С. № 118 2699
Вращение вала с винтовой поверхностью 1 передается через звездочку 11 посредствам цепи от карданной передачи от измельчителя. Привод работает следующим образом: от карданной передачи измельчителя через цепь крутящий момент через звездочку 11 передается на вал, винтовая поверхность 1 которого вращаясь, действует на ролики 8 и 10, отклоняя рычаг 6 и качалку 5 то влево, то в право. Конец рычага 6 через серьгу 9 перемещает нож режущего аппарата в возвратно-поступательное движение, тем самым происходит процесс резания.
Смещение роликов на величину Ь в сторону от плоскости, проходящий через ось вала с ребром, обеспечивает нахождение точки контакта роликов и ребра в данной плоскости. Это исключает проскальзывание и увеличивает надежность и ресурс работы привода, так как векторы скоростей ребра и роликов в данной точке совпадают.
Резание осуществляется ножами, которые представляют собой плоский клин. Сила приложенная к клину, вызывает значительное удельное давление между лезвием и материалом, что приводит к разрушению связей между отдельными частицами материала.
Рассчитаем силу Р, прилагаемую к ножу для преодоления сил сопротивления в процессе резания.
Для начала определим подачу Ь по формуле:
Ь = (30 Ум) /п (3.1)
Где Ь - подача, м;
Ум - скорость машины, м/с;
1.
п - частота вращения привода ножа, мин;Ь = (30 3,3) /778 = 0,127 м
Находим площадь подачи Р.
Под площадью подачи понимают площадь с которой срезаются стебли ножом за один его ход 5
Р = Ь 3 (3.2)
Где Р - площадь подачи, м; 8 - ход ножа, м;
Р = 0,127 0,0762 = 0,00967 м2
Площадь нагрузки Гн.
Площадь нагрузки называется площадь, с которой срезаются стебли у данного пальца.
ГН=КР (3.3)
где Г" - площадь нагрузки, м2;
К - коэффициент характеризующий режущий аппарат, К=1; ГН=1 0,00967 = 0,00967 м2 Находим усилие на срез стеблей режущим аппаратом, по формуле.
Рср = (Е * 2) /хр (3.4)
Где Е - работа, затрачиваемая на срез растений с 1 см2, Е = 0,02
2 - число пальцев;
2 = ВIо
Где В - ширина захвата режущего аппарата.
В = 420 см, в нашем случае два ножа.
1о - шаг противорежущей части, см.
2 = 420/ (2.7,62) = 27
хр - путь перемещения в процессе резания,
Рср = (0,02.96,7.27) /0,027 = 1374,2 Н
Найдем силу трения по формуле:
Рср = т * тн* Г
Где: т - коэффициент трения сегмента о противорежущую пластину Г=0,25;
тн - масса ножа, кг;
§ - ускорение свободного падения.
Рср = 0,25 * 4,8 * 9,81 = 11,7 Н
Находим силу сопротивления движению ножа.
N=Рср + Р (3.6)
N=1374,2+11,7 = 1385,9 Н
Расчет рычага на изгиб
Р1 = 1385,9 Н; Р2 = 2771,8 Н;
М1 = Р1* х1= 1385,9 * 0,164 = 227,2 Нм
М2 = Р2* х2 = 2771,8 Нм
Находим момент сопротивления для прямоугольного сечения.
У = ВЬ2/6
У= 1 * 2 * 2/6 = 0,6см3
Находим напряжение изгиба
[5Н] = 227,2/0,6 = 344,24 н/см2 = 34 МПа
Расчет болта на срез и на смятие Условие прочности по напряжениям среза.
Т = Р [ (П/4) а2 1] < [т]
где Р - сила, Н;
д - диаметр болта, м;
1 - число плоскостей среза, (1 = 2)
Т = 227,2/ [ (3,14/4) 0,122 2] = 10049,5 Па = 0,01 МПа.
Условие прочности по напряжениям смятия.
Осм = Р/ (<1 §2) < [асм]
где 52 - толщина детали, м;
асм = 227,2/ (0,12.0,015) = 76344,4 Па = 0,07 МПа
[0см] = 160 МПа
0,07 МПа < 160 МПа.
1. В данной квалификационной работе проведен Обзор и анализ технологий уборки зерновых культур, различными способами. Комбайновая технология, некомбайновые технологии уборки зерновых культур: трехфазная технология уборки, полустационарная технология уборки, стационарная технология уборки зерновых культур, технология уборки методом очеса на корню, описал достоинства и недостатки каждой технологии.
2. Оценил состояния и перспективы механизации процессов уборки зерновых. Провел Анализ влияния конструктивно-кинематьических параметров жатки на надёжность и качество выполнения технологического процесса. Сделал общий обзор существующих конструкций, рассмотрел существующие приводы режущих аппаратов.
3. Выполнил необходимые технологические расчеты на прочность и изгиб.
Ормаджи К.С. Правила производства механизированных работ в полеводстве. - М.: Россельхозиздат, 1983.
Справочник по скоростной сельскохозяйственной технике / Голяк А.Я., Щупак А.Ф., Антышев и др. - М.: Колос, 1983.
Карпенко А.П., Халанский В.М. Сельскохозяйственные машины. - М.: Аграпромиздат, 1989.
Технология механизированных работ в растениеводстве / Фирсов И.П., Соловьев А.М., Курочкин К.И. - М.: Аграпромиздат, 1988.
Кононенко А.Ф. Пути улучшения использования с. - х. техники. - М.: Колос, 1980.
Анурьев В.И. Справочник конструктора машиностроения. Том 3. М.: Машиностроение, 1979.
Федоренко В.А., Шалин А.И. Справочник по машиностроительному черчению. - Л.: Машиностроение, 1981.
Канарьев Ф.М., Перечехин М.А., Гричик Г.Н. Охрана труда. - М.: Колос, 1982.
Трутень В.А. Расчеты на прочность деталей в с. - х. техники с использованием ЭВМ. - Красноярск: КГАУ, 1995.
Попова Г.Н., Алексеев С.Ю. Машиностроительное черчение: Справочник. - Л.: Машиностроение, 1987.
Артемов М.И. Методические указания по оформлению курсовых и дипломных проектов. - Красноярск: КГАУ, 1992.
Артемов М.И. Методические указания. Расчет состава и планирования технического обслуживания. - Красноярск: КГАУ, 1997.
Зотов Б.И., Курдюмов В.И. Безопасность жизнедеятельности на производстве. Учебник / издательство Колос, 2000.
Жалин-Э.В., Савченко А.Н. технология уборки зерновых комбайновыми агрегатами - М.: Росагропромиздат, 1985.
Техническое обеспечение интенсивных технологий / составили Сисюкин М.К., Коморова - М.: Росагропромиздат, 1988.
Зерноуборочные комбайны / Г.Ф. Серый, Н.И. Косилов - М.: Агропромиздат, 1986
Джамбурин А.Ш. колосоуборочные машины и механизмы. - Алма-Ата, Кайнер 1977.
Муха В.Д., Картамышев Н.И., Кочетов И.С., "агрономия" - М.: "Колос", 2001.
Иванов А.Ф., Чурзин В.Н., Филин В.И., "кормопроизводство". - М.: "Колос", 1996
Сборник агротехнических требований на тракторы и сельскохозяйственные машины. - М: "ЦНИИТЭЙ". 1978
А.С. №1068065 СССР. Привод режущего аппарата / Авт. Атамашко А.А., Кретов СВ., и Синев А.В., опубликовано в Бюл. №8,28.02.93
А.С. Шаткус Д.И. зерноуборочный комбайн "Енисей". М:
Агропромиздат, 1986 с 32.35.
А.С. № 1678235 СССР. Механизм привода ножа режущего аппарата сельскохозяйственных машин / авт. Кузнецов М.В. и др.
Опубл. В Бюл. № 32 30.08.92.
А.С. №118299 СССР. Привод режущего аппарата / авт. Шифрин В.В. и др.; опубл. В Бюл. №48.1985.12. Турбин Б Г. и др., сельскохозяйственные машины. Теория и технологический расчет. - Л.; машиностроение 1967.
topref.ru
Введение
Я проходил производственную практику по профессии «Мастер по техническому обслуживанию и ремонту машинно-тракторного парка» в ООО «Лебяжье».Когда я пришёл на практику, меня поставили помощником по ремонту тракторного агрегата "дисковая борона Summers".После ремонта агрегата, я был на обработке почвы на тракторе New Holland T9 505 с дисковой бороной. Затем меня посадили на комбайн "Acros 590" для подборки волков с пшеницей. Через несколько дней после того как на поле наделали тюков, я вместе с водителем трактора возил тюки в бригаду, а затем складывал их на тракторе"JCB".После всего этого я занимался ремонтом трактора МТЗ 82.1 ,ремонт сцепления. Было дело, когда я помогал своему Отцу в ремонте сеялки "Horsh",для того чтобы поставить её на зимний период.
Содержание
I.Введение
…
II.Основная часть
1. Выполнение работ на машинно-тракторных агрегатах для основной обработки почвы;
2.Выполнение работ на машинно-тракторных агрегатах для уборки зерновых, зернобобовых культур;
3.Перевозка грузов на тракторных прицепах, контроль погрузки, размещения и закрепления на них перевозимого груза;
4.Выполнение работ средней сложности по периодическому техническому обслуживанию тракторов и агрегатируемых с ними сельскохозяйственных машин
5.Выявление несложных неисправностей сельскохозяйственных машин и оборудования и самостоятельное выполнение слесарных работ по их устранению
III.Заключение
Обработка почвы.
Под обработкой понимают механическое воздействие на почву рабочими органами почвообрабатывающих машин и орудий в целях создания оптимальных почвенных условий для выращиваемых растений, уничтожения сорняков, защиты почвы от эрозии. Обработка почвы — основное агротехническое средство регулирования почвенных режимов, интенсивности биологических процессов и, главное, поддержания хорошего фитосанитарного состояния почвы и посевов. Качественно обрабатывая почву, мы повышаем эффективное плодородие и урожайность культур.
Основные задачи системы обработки почвы в современном земледелии следующие:
создание мощного культурного пахотного слоя, поддержание в нем высокого эффективного плодородия, благоприятного для растений водно-воздушного, теплового и питательного режимов путем изменения его строения и структурного состояния, периодического оборачивания и перемешивания слоев почвы;
полное уничтожение растущих сорняков, возбудителей болезней и вредителей сельскохозяйственных культур, снижение потенциальной засоренности, улучшение общей фитосанитарной обстановки в полях севооборота;
повышение противоэрозионной устойчивости почвы и защита ее от эрозии;
заделка и равномерное распределение в почве растительных остатков и удобрений;
придание наилучшего строения и структурного состояния посевному слою почвы с целью размещения семян на установленную глубину, создание условий для высокопроизводительного использования почвообрабатывающих и уборочных машин.
Вспашку выполняют плугами с отвалами различной конструкции, что определяет несходство по составу производимых технологических операций и качеству их выполнения. Плуги с винтовыми отвалами хорошо оборачивают пласт почвы, но плохо его крошат; напротив, плуги с цилиндрической поверхностью отвала хорошо крошат пласт почвы, но плохо его оборачивают.
Если при работе плуга пласт почвы полностью оборачивается (на 180°), то говорят о вспашке с оборотом пласта. При неполном опрокидывании пласта почвы и косой его постановке (на 135°) на ребро говорят о вспашке со взметом пласта.
Однако лучшего оборачивания и крошения пласта почвы, особенно почвы, освобождающейся из-под многолетних трав, достигают при вспашке плугом с культурным отвалом и установленным перед ним предплужником. Предплужник снимает на 2/3 ширины захвата основного корпуса верхний слой почвы толщиной 8…10 см, содержащий стерню, растительные остатки, вредных насекомых и фитопатогенных микроорганизмов, семена и органы вегетативного возобновления сорняков, и сбрасывает его на дно борозды. Чтобы хорошо прикрыть и заделать верхний слой почвы, основной корпус должен работать глубже предплужника минимум на 10… 12 см. Он поднимает на отвал нижний слой, который хорошо структурирован и сравнительно свободен от вредных организмов, оборачивает, крошит его и полностью присыпает им ранее сброшенный верхний слой. Такую вспашку плугом с культурным отвалом и с предплужником на глубину не менее 20…22 см называют культурной, или классической, вспашкой. Ее широко применяют в качестве осенней (зяблевой) вспашки в различных регионах России на полях, на которых отсутствует реальная опасность проявления эрозионных процессов.
При вспашке отвальными плугами пласт почвы отваливается вправо. Поэтому если вспашку каждого загона, на которые разбивают подлежащее вспашке поле, начинают с краев загона, то в середине образуется разъемная борозда, и такой способ называют вспашкой вразвал. Если вспашку начинают с середины загона, то посередине образуется свальный гребень, и такой способ называют вспашкой в свал.
На полях с не выровненной поверхностью и большим количеством слаборазложившихся растительных остатков (ежегодная вспашка в одном направлении, образование кочек, куртин сорняков) хорошие результаты как основная обработка обеспечивает фрезерование. При работе фрезерных орудий (ФНБ-0,9, ФН-1,25, КФГ-3,6 и др.) почва до глубины 10…20 см интенсивно крошится и тщательно перемешивается, создавая гомогенный пахотный или же сразу только посевной слой, куда и высевают семена культур.
Уборка зерновых культур.
Уборка зерновых культур- один из важнейших производственных процессов в земледелии. Чтобы без потерь собрать зерно высокого качества, уборку необходимо проводить в кратчайший срок.
Машины должны быть выбраны и отрегулированы в соответствии со строением растений, а растения приспособлены для машинной уборки. Пригодность той или иной культуры к машинной уборке определяется способом уборки, а также физико-механическими свойствами и биологическими особенностями самого растения.
При выборе механизированной технологии и средств уборки учитывают агробиологические свойства и строение органов растений, высоту и густоту стояния, полеглость, прочность, влажность, размеры и массу плодов и незерновых органов, весовое отношение зерна к не зерновой части, фазу спелости, засоренность посевов.
От соотношения зерна, соломы и половы в урожае зависят производительность комбайна и качество убранного урожая. При уборке высокосоломистых хлебов снижается производительность, и возрастают потери от недомолота и свободным зерном в соломе, а при уборке малосоломистых хлебов производительность возрастает, но увеличивается дробление зерна. Отношение массы зерна к массе соломы должно быть не менее 1:1,2 и не более 1:0,5.
refac.ru