Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Понятие и принцип работы синхронной машины:. Синхронные машины реферат


Понятие и принцип работы синхронной машины

Реферат

Понятие и принцип работы синхронной машины

Синхронная машина состоит из двух частей: индуктора и якоря. Индуктором называют часть машины, в которой создается первичное магнитное поле. Якорем называют часть машины, в которой индуцируется ЭДС. Наибольшее распространение получили синхронные машины, в которых якорь неподвижен, а индуктор вращается.

Рассмотрим устройство синхронной трехфазной машины, в которой якорь является статором, а индуктор является вращающимся ротором.

Статор такой машины по конструкции аналогичен статору асинхронной машины и состоит из трех основных частей: корпуса (станины), сердечника и обмоток. Сердечник представляет собой полый цилиндр, набранный из электротехнической стали толщиной 0,5 мм. На внутренней поверхности сердечника имеются пазы, в которые укладывается обмотка статора. Пазы, как правило имеют прямоугольное сечение.

Обмотка статора состоит из трех одинаковых фазных обмоток, сдвинутых в пространстве друг относительно друга на 1200 и соединенных звездой.

В синхронных машинах применяют роторы двух конструкций: явнополюсные и неявнополюсные. Неявнополюсные роторы используются в синхронных генераторах рассчитанных на скорость вращения ротора 1500 и 3000 оборотов в минуту. В синхронных двигателях используют только явнополюсные роторы.

Явнополюсный ротор содержит вал, на котором закреплен обод, а к нему крепятся полюса. Сердечники полюсов набираются из пластин, из электротехнической стали толщиной 0,5 мм, на полюсах крепится обмотка возбуждения, по которой пропускают постоянный ток, подводимый через щетки и контактные кольца, закрепленные на роторе. Кроме этого в сердечниках полюсов делают пазы, в которые укладывают медные стержни, по одному стержню в каждый паз. С торцов стержни между собой закорачиваются сегментами или кольцами, образуя короткозамкнутую обмотку такого же типа как обмотка у короткозамкнутого ротора асинхронного двигателя, которая является пусковой обмоткой.

На электрических схемах синхронная машина изображается в виде двух концентрических окружностей (внешняя окружность изображает обмотку ротора). К обмотке статора подключается трёхфазная сеть, а к обмотке ротора сеть постоянного тока. Условное изображение синхронной машины приведено ниже:

При пуске обмотка статора подключается к трехфазной сети. Ротор приводится в движении благодаря наличию короткозамкнутой пусковой обмотки. Трехфазные токи, проходя по обмоткам статора создают вращающееся магнитное поле, которое вращается со скоростью ?0 Поле статора, вращаясь, пересекает стержни пусковой обмотки, индуцируя в них ЭДС, под действием которой по ним будут протекать токи. При взаимодействии этих токов с вращающимся полем статора создается электромагнитный момент, приложенный к ротору, ротор придет во вращение. Обмотка возбуждения на период пуска замыкается на резистор с целью уменьшения возникающих в ней напряжений. В конце пуска, когда скорость ротора становится достаточно близкой к скорости вращения магнитного поля статора (0,95-0,98) ?0 , обмотку возбуждения отключают от резистора, и на нее подается постоянный ток. Постоянное магнитное поле вращающегося ротора сцепляется с вращающим полем статора, и ротор втягивается в синхронизм. После этого ротор продолжает вращаться со скоростью, развивая вращающий момент. Пусковая обмотка при этом перестает работать, так как поле статора уже не пересекает стержни пусковой обмотки, и ток в ней становится равным нулю.

Механическая характеристика при пуске синхронного двигателя соответствует характеристике асинхронного двигателя, а в рабочем режиме представляет собой прямую. Обе характеристики приведены на рисунке 4.8.

Электромагнитный момент, приложенный к ротору синхронной машины, создается за счет взаимодействия между магнитными полюсами магнитного поля ротора и вращающимся магнитным полем статора.

Изменение нагрузки на валу двигателя сопровождается изменением взаимного положения магнитных полюсов ротора и вращающегося магнитного поля статора.

При идеальном холостом ходе оси полюсов магнитного поля ротора и магнитного поля статора совпадают. Ротор не создает электромагнитного момента. При увеличении нагрузки на вал ротора, ротор несколько отстает в пространстве от магнитного поля статора. Ось магнитных полюсов ротора будет сдвинута от оси магнитных полюсов статора на некоторый угол ?. За счет взаимодействия между полюсами ротора и статора появится электромагнитный момент. Чем больше угол ?, тем больше будет электромагнитный вращающий момент ротора. При определенном значении угла ? вращающий момент достигает максимума.

Ниже на рисунке показано расположение полюсов магнитного поля статора и ротора при нагрузке в двигательном режиме.

Если статический момент нагрузки превысит значение максимального момента, то двигатель выпадает из синхронизма. При приеме и сбросе нагрузки ротор совершает колебания прежде, чем займет определенное положение.

Если при работе машины в режиме идеального холостого хода к ротору будет приложен вращающий момент, направленный в сторону вращения, то ось магнитных полюсов ротора сдвинется в сторону вращения на угол ?. Возникнет электромагнитный момент, направленный против вращения ротора (за счет взаимодействия между полюсами магнитных полей ротора и статора) и машина перейдет в генераторный режим работы.

Мощность, потребляемая синхронным электродвигателем из сети можно найти из выражения

P=3·U·I.

В этом выражении U — фазное напряжение статора, I — фазный ток. Если не учитывать потери, тогда выражение для электромагнитного момента развиваемого ротором можно записать так:

.

При q=90° электромагнитный момент, развиваемый ротором принимает максимальное значение:

.

Тогда электромагнитный момент синхронной машины:

M=Mmax sin?

Необходимо отметить, что угол q сдвига по фазе между ЭДС и напряжением статора в двухполюсной машине равен углу сдвига между магнитными полюсами статора и ротора. В многополюсной машине угол q сдвига по фазе между ЭДС и напряжением статора будет больше угла qреальный между полюсами на число пар полюсов магнитного поля ротора.

Зависимость электромагнитного момента синхронной машины от угла называется угловой характеристикой, она представлена на рисунке.

Устойчивый режим работы синхронного двигателя обеспечивается на участке 0<?<900 (устойчивый участок). Обычно номинальный момент двигателя лежит в пределах ?=20...300 . для обеспечения запаса по моменту.

Вращающий момент двигателя пропорционален напряжению сети в первой степени, что определяет его меньшую чувствительность к колебаниям напряжения, чем у асинхронного двигателя.

Для торможения обычно применяется режим динамического торможения, при котором обмотки статора отключаются от сети и замыкаются на резисторы. Механические характеристики в этом случае подобны характеристикам асинхронного двигателя при динамическом торможении.

Принципиальная схема включения синхронного двигателя при динамическом торможении приведена на рисунке.

Торможение синхронных двигателей противовключением практически не применяется, так как оно сопровождается большими бросками тока и ведет к усложнению управления ввиду необходимости отключения двигателя при подходе к нулевой скорости.

Синхронный двигатель может работать и в режиме генератора параллельно с сетью (рекуперативное торможение), в этом случае электромагнитный момент будет иметь отрицательное значение. Этому режиму отвечает левая ветвь угловой характеристики, угловая скорость вращения при этом не изменяется (равна синхронной).

Отличительной особенностью синхронного двигателя является его способность регулирования потребления реактивной мощности. Объясняется это тем, что, при некоторых допущениях можно считать, что ЭДС индуцируемая в обмотках статора (Е=4,44w1 f1 k1 Ф) и равная напряжению сети определяется результирующим магнитным потоком двигателя, который в свою очередь возбуждается намагничивающим током статора и ротора. Следовательно, значение магнитного потока машины (вращающегося магнитного поля) и напряжение сети связаны пропорциональной зависимостью. При неизменном напряжении сети неизменен магнитный поток машины.

В случае, когда ток возбуждения отсутствует (тока в роторе нет), то весь магнитный поток создается током статора, следовательно, синхронный двигатель потребляет из сети реактивную энергию и двигатель представляет собой активно-индуктивную нагрузку.

Если же машину возбудить, то результирующий магнитный поток будет создаваться как током статора так и током ротора, следовательно, потребление реактивной энергии статором из сети уменьшится. Дальнейшее увеличение тока возбуждения приведет к дальнейшему уменьшению потребления реактивной энергии. При номинальном токе ротора, статор вообще не будет потреблять реактивную энергию из сети, т.е. магнитный поток машины весь создается током ротора, наступает режим идеального холостого хода. При дальнейшем увеличении тока возбуждения, ток обмотки статора станет размагничивающим, т.е. статор будет работать и представлять собой по отношению к сети активно-емкостную нагрузку, а машина станет генератором реактивной энергии. Изменяя значение тока возбуждения машины (ток ротора) можно регулировать реактивную мощность синхронного двигателя. При токе ротора больше номинального (перевозбуждение двигателя) двигатель представляет собой активно-емкостную нагрузку, и его можно использовать для повышения cos j промышленных предприятий.

mirznanii.com

Курсовая работа - Понятие и принцип работы синхронной машины

Реферат

Понятие и принцип работы синхронной машины

Синхронная машина состоит из двух частей: индуктора и якоря. Индуктором называют часть машины, в которой создается первичное магнитное поле. Якорем называют часть машины, в которой индуцируется ЭДС. Наибольшее распространение получили синхронные машины, в которых якорь неподвижен, а индуктор вращается.

Рассмотрим устройство синхронной трехфазной машины, в которой якорь является статором, а индуктор является вращающимся ротором.

Статор такой машины по конструкции аналогичен статору асинхронной машины и состоит из трех основных частей: корпуса (станины), сердечника и обмоток. Сердечник представляет собой полый цилиндр, набранный из электротехнической стали толщиной 0,5 мм. На внутренней поверхности сердечника имеются пазы, в которые укладывается обмотка статора. Пазы, как правило имеют прямоугольное сечение.

Обмотка статора состоит из трех одинаковых фазных обмоток, сдвинутых в пространстве друг относительно друга на 1200и соединенных звездой.

В синхронных машинах применяют роторы двух конструкций: явнополюсные и неявнополюсные. Неявнополюсные роторы используются в синхронных генераторах рассчитанных на скорость вращения ротора 1500 и 3000 оборотов в минуту. В синхронных двигателях используют только явнополюсные роторы.

Явнополюсный ротор содержит вал, на котором закреплен обод, а к нему крепятся полюса. Сердечники полюсов набираются из пластин, из электротехнической стали толщиной 0,5 мм, на полюсах крепится обмотка возбуждения, по которой пропускают постоянный ток, подводимый через щетки и контактные кольца, закрепленные на роторе. Кроме этого в сердечниках полюсов делают пазы, в которые укладывают медные стержни, по одному стержню в каждый паз. С торцов стержни между собой закорачиваются сегментами или кольцами, образуя короткозамкнутую обмотку такого же типа как обмотка у короткозамкнутого ротора асинхронного двигателя, которая является пусковой обмоткой.

На электрических схемах синхронная машина изображается в виде двух концентрических окружностей (внешняя окружность изображает обмотку ротора). К обмотке статора подключается трёхфазная сеть, а к обмотке ротора сеть постоянного тока. Условное изображение синхронной машины приведено ниже:

При пуске обмотка статора подключается к трехфазной сети. Ротор приводится в движении благодаря наличию короткозамкнутой пусковой обмотки. Трехфазные токи, проходя по обмоткам статора создают вращающееся магнитное поле, которое вращается со скоростью ?0Поле статора, вращаясь, пересекает стержни пусковой обмотки, индуцируя в них ЭДС, под действием которой по ним будут протекать токи. При взаимодействии этих токов с вращающимся полем статора создается электромагнитный момент, приложенный к ротору, ротор придет во вращение. Обмотка возбуждения на период пуска замыкается на резистор с целью уменьшения возникающих в ней напряжений. В конце пуска, когда скорость ротора становится достаточно близкой к скорости вращения магнитного поля статора (0,95-0,98) ?0, обмотку возбуждения отключают от резистора, и на нее подается постоянный ток. Постоянное магнитное поле вращающегося ротора сцепляется с вращающим полем статора, и ротор втягивается в синхронизм. После этого ротор продолжает вращаться со скоростью, развивая вращающий момент. Пусковая обмотка при этом перестает работать, так как поле статора уже не пересекает стержни пусковой обмотки, и ток в ней становится равным нулю.

Механическая характеристика при пуске синхронного двигателя соответствует характеристике асинхронного двигателя, а в рабочем режиме представляет собой прямую. Обе характеристики приведены на рисунке 4.8.

Электромагнитный момент, приложенный к ротору синхронной машины, создается за счет взаимодействия между магнитными полюсами магнитного поля ротора и вращающимся магнитным полем статора.

Изменение нагрузки на валу двигателя сопровождается изменением взаимного положения магнитных полюсов ротора и вращающегося магнитного поля статора.

При идеальном холостом ходе оси полюсов магнитного поля ротора и магнитного поля статора совпадают. Ротор не создает электромагнитного момента. При увеличении нагрузки на вал ротора, ротор несколько отстает в пространстве от магнитного поля статора. Ось магнитных полюсов ротора будет сдвинута от оси магнитных полюсов статора на некоторый угол?.. За счет взаимодействия между полюсами ротора и статора появится электромагнитный момент. Чем больше угол ?, тем больше будет электромагнитный вращающий момент ротора. При определенном значении угла? вращающий момент достигает максимума.

Ниже на рисунке показано расположение полюсов магнитного поля статора и ротора при нагрузке в двигательном режиме.

Если статический момент нагрузки превысит значение максимального момента, то двигатель выпадает из синхронизма. При приеме и сбросе нагрузки ротор совершает колебания прежде, чем займет определенное положение.

Если при работе машины в режиме идеального холостого хода к ротору будет приложен вращающий момент, направленный в сторону вращения, то ось магнитных полюсов ротора сдвинется в сторону вращения на угол?.. Возникнет электромагнитный момент, направленный против вращения ротора (за счет взаимодействия между полюсами магнитных полей ротора и статора) и машина перейдет в генераторный режим работы.

Мощность, потребляемая синхронным электродвигателем из сети можно найти из выражения

P=3·U·I.

В этом выражении U — фазное напряжение статора, I — фазный ток. Если не учитывать потери, тогда выражение для электромагнитного момента развиваемого ротором можно записать так:

.

При q=90° электромагнитный момент, развиваемый ротором принимает максимальное значение:

.

Тогда электромагнитный момент синхронной машины:

M=Mmax sin?

Необходимо отметить, что угол q сдвига по фазе между ЭДС и напряжением статора в двухполюсной машине равен углу сдвига между магнитными полюсами статора и ротора. В многополюсной машине угол q сдвига по фазе между ЭДС и напряжением статора будет больше угла qреальный между полюсами на число пар полюсов магнитного поля ротора.

Зависимость электромагнитного момента синхронной машины от угла называется угловой характеристикой, она представлена на рисунке.

Устойчивый режим работы синхронного двигателя обеспечивается на участке 0<?<900 (устойчивый участок). Обычно номинальный момент двигателя лежит в пределах ?=20...300. для обеспечения запаса по моменту.

Вращающий момент двигателя пропорционален напряжению сети в первой степени, что определяет его меньшую чувствительность к колебаниям напряжения, чем у асинхронного двигателя.

Для торможения обычно применяется режим динамического торможения, при котором обмотки статора отключаются от сети и замыкаются на резисторы. Механические характеристики в этом случае подобны характеристикам асинхронного двигателя при динамическом торможении.

Принципиальная схема включения синхронного двигателя при динамическом торможении приведена на рисунке.

Торможение синхронных двигателей противовключением практически не применяется, так как оно сопровождается большими бросками тока и ведет к усложнению управления ввиду необходимости отключения двигателя при подходе к нулевой скорости.

Синхронный двигатель может работать и в режиме генератора параллельно с сетью (рекуперативное торможение), в этом случае электромагнитный момент будет иметь отрицательное значение. Этому режиму отвечает левая ветвь угловой характеристики, угловая скорость вращения при этом не изменяется (равна синхронной).

Отличительной особенностью синхронного двигателя является его способность регулирования потребления реактивной мощности. Объясняется это тем, что, при некоторых допущениях можно считать, что ЭДС индуцируемая в обмотках статора (Е=4,44w1 f1 k1 Ф) и равная напряжению сети определяется результирующим магнитным потоком двигателя, который в свою очередь возбуждается намагничивающим током статора и ротора. Следовательно, значение магнитного потока машины (вращающегося магнитного поля) и напряжение сети связаны пропорциональной зависимостью. При неизменном напряжении сети неизменен магнитный поток машины.

В случае, когда ток возбуждения отсутствует (тока в роторе нет), то весь магнитный поток создается током статора, следовательно, синхронный двигатель потребляет из сети реактивную энергию и двигатель представляет собой активно-индуктивную нагрузку.

Если же машину возбудить, то результирующий магнитный поток будет создаваться как током статора так и током ротора, следовательно, потребление реактивной энергии статором из сети уменьшится. Дальнейшее увеличение тока возбуждения приведет к дальнейшему уменьшению потребления реактивной энергии. При номинальном токе ротора, статор вообще не будет потреблять реактивную энергию из сети, т.е. магнитный поток машины весь создается током ротора, наступает режим идеального холостого хода. При дальнейшем увеличении тока возбуждения, ток обмотки статора станет размагничивающим, т.е. статор будет работать и представлять собой по отношению к сети активно-емкостную нагрузку, а машина станет генератором реактивной энергии. Изменяя значение тока возбуждения машины (ток ротора) можно регулировать реактивную мощность синхронного двигателя. При токе ротора больше номинального (перевозбуждение двигателя) двигатель представляет собой активно-емкостную нагрузку, и его можно использовать для повышения cos j промышленных предприятий.

www.ronl.ru

Понятие и принцип работы синхронной машины

Реферат

Понятие и принцип работы синхронной машины

Синхронная машина состоит из двух частей: индуктора и якоря. Индуктором называют часть машины, в которой создается первичное магнитное поле. Якорем называют часть машины, в которой индуцируется ЭДС. Наибольшее распространение получили синхронные машины, в которых якорь неподвижен, а индуктор вращается.

Рассмотрим устройство синхронной трехфазной машины, в которой якорь является статором, а индуктор является вращающимся ротором.

Статор такой машины по конструкции аналогичен статору асинхронной машины и состоит из трех основных частей: корпуса (станины), сердечника и обмоток. Сердечник представляет собой полый цилиндр, набранный из электротехнической стали толщиной 0,5 мм. На внутренней поверхности сердечника имеются пазы, в которые укладывается обмотка статора. Пазы, как правило имеют прямоугольное сечение.

Обмотка статора состоит из трех одинаковых фазных обмоток, сдвинутых в пространстве друг относительно друга на 1200 и соединенных звездой.

В синхронных машинах применяют роторы двух конструкций: явнополюсные и неявнополюсные. Неявнополюсные роторы используются в синхронных генераторах рассчитанных на скорость вращения ротора 1500 и 3000 оборотов в минуту. В синхронных двигателях используют только явнополюсные роторы.

Явнополюсный ротор содержит вал, на котором закреплен обод, а к нему крепятся полюса. Сердечники полюсов набираются из пластин, из электротехнической стали толщиной 0,5 мм, на полюсах крепится обмотка возбуждения, по которой пропускают постоянный ток, подводимый через щетки и контактные кольца, закрепленные на роторе. Кроме этого в сердечниках полюсов делают пазы, в которые укладывают медные стержни, по одному стержню в каждый паз. С торцов стержни между собой закорачиваются сегментами или кольцами, образуя короткозамкнутую обмотку такого же типа как обмотка у короткозамкнутого ротора асинхронного двигателя, которая является пусковой обмоткой.

На электрических схемах синхронная машина изображается в виде двух концентрических окружностей (внешняя окружность изображает обмотку ротора). К обмотке статора подключается трёхфазная сеть, а к обмотке ротора сеть постоянного тока. Условное изображение синхронной машины приведено ниже:

При пуске обмотка статора подключается к трехфазной сети. Ротор приводится в движении благодаря наличию короткозамкнутой пусковой обмотки. Трехфазные токи, проходя по обмоткам статора создают вращающееся магнитное поле, которое вращается со скоростью ?0 Поле статора, вращаясь, пересекает стержни пусковой обмотки, индуцируя в них ЭДС, под действием которой по ним будут протекать токи. При взаимодействии этих токов с вращающимся полем статора создается электромагнитный момент, приложенный к ротору, ротор придет во вращение. Обмотка возбуждения на период пуска замыкается на резистор с целью уменьшения возникающих в ней напряжений. В конце пуска, когда скорость ротора становится достаточно близкой к скорости вращения магнитного поля статора (0,95-0,98) ?0, обмотку возбуждения отключают от резистора, и на нее подается постоянный ток. Постоянное магнитное поле вращающегося ротора сцепляется с вращающим полем статора, и ротор втягивается в синхронизм. После этого ротор продолжает вращаться со скоростью, развивая вращающий момент. Пусковая обмотка при этом перестает работать, так как поле статора уже не пересекает стержни пусковой обмотки, и ток в ней становится равным нулю.

Механическая характеристика при пуске синхронного двигателя соответствует характеристике асинхронного двигателя, а в рабочем режиме представляет собой прямую. Обе характеристики приведены на рисунке 4.8.

Электромагнитный момент, приложенный к ротору синхронной машины, создается за счет взаимодействия между магнитными полюсами магнитного поля ротора и вращающимся магнитным полем статора.

Изменение нагрузки на валу двигателя сопровождается изменением взаимного положения магнитных полюсов ротора и вращающегося магнитного поля статора.

При идеальном холостом ходе оси полюсов магнитного поля ротора и магнитного поля статора совпадают. Ротор не создает электромагнитного момента. При увеличении нагрузки на вал ротора, ротор несколько отстает в пространстве от магнитного поля статора. Ось магнитных полюсов ротора будет сдвинута от оси магнитных полюсов статора на некоторый угол ?. За счет взаимодействия между полюсами ротора и статора появится электромагнитный момент. Чем больше угол ?, тем больше будет электромагнитный вращающий момент ротора. При определенном значении угла ? вращающий момент достигает максимума.

Ниже на рисунке показано расположение полюсов магнитного поля статора и ротора при нагрузке в двигательном режиме.

Если статический момент нагрузки превысит значение максимального момента, то двигатель выпадает из синхронизма. При приеме и сбросе нагрузки ротор совершает колебания прежде, чем займет определенное положение.

Если при работе машины в режиме идеального холостого хода к ротору будет приложен вращающий момент, направленный в сторону вращения, то ось магнитных полюсов ротора сдвинется в сторону вращения на угол ?. Возникнет электромагнитный момент, направленный против вращения ротора (за счет взаимодействия между полюсами магнитных полей ротора и статора) и машина перейдет в генераторный режим работы.

Мощность, потребляемая синхронным электродвигателем из сети можно найти из выражения

P=3·U·I.

В этом выражении U — фазное напряжение статора, I — фазный ток. Если не учитывать потери, тогда выражение для электромагнитного момента развиваемого ротором можно записать так:

.

При q=90° электромагнитный момент, развиваемый ротором принимает максимальное значение:

.

Тогда электромагнитный момент синхронной машины:

M=Mmaxsin?

Необходимо отметить, что угол q сдвига по фазе между ЭДС и напряжением статора в двухполюсной машине равен углу сдвига между магнитными полюсами статора и ротора. В многополюсной машине угол q сдвига по фазе между ЭДС и напряжением статора будет больше угла qреальный между полюсами на число пар полюсов магнитного поля ротора.

Зависимость электромагнитного момента синхронной машины от угла называется угловой характеристикой, она представлена на рисунке.

Устойчивый режим работы синхронного двигателя обеспечивается на участке 0<?<900 (устойчивый участок). Обычно номинальный момент двигателя лежит в пределах ?=20...300. для обеспечения запаса по моменту.

Вращающий момент двигателя пропорционален напряжению сети в первой степени, что определяет его меньшую чувствительность к колебаниям напряжения, чем у асинхронного двигателя.

Для торможения обычно применяется режим динамического торможения, при котором обмотки статора отключаются от сети и замыкаются на резисторы. Механические характеристики в этом случае подобны характеристикам асинхронного двигателя при динамическом торможении.

Принципиальная схема включения синхронного двигателя при динамическом торможении приведена на рисунке.

Торможение синхронных двигателей противовключением практически не применяется, так как оно сопровождается большими бросками тока и ведет к усложнению управления ввиду необходимости отключения двигателя при подходе к нулевой скорости.

Синхронный двигатель может работать и в режиме генератора параллельно с сетью (рекуперативное торможение), в этом случае электромагнитный момент будет иметь отрицательное значение. Этому режиму отвечает левая ветвь угловой характеристики, угловая скорость вращения при этом не изменяется (равна синхронной).

Отличительной особенностью синхронного двигателя является его способность регулирования потребления реактивной мощности. Объясняется это тем, что, при некоторых допущениях можно считать, что ЭДС индуцируемая в обмотках статора (Е=4,44w1f1k1Ф) и равная напряжению сети определяется результирующим магнитным потоком двигателя, который в свою очередь возбуждается намагничивающим током статора и ротора. Следовательно, значение магнитного потока машины (вращающегося магнитного поля) и напряжение сети связаны пропорциональной зависимостью. При неизменном напряжении сети неизменен магнитный поток машины.

В случае, когда ток возбуждения отсутствует (тока в роторе нет), то весь магнитный поток создается током статора, следовательно, синхронный двигатель потребляет из сети реактивную энергию и двигатель представляет собой активно-индуктивную нагрузку.

Если же машину возбудить, то результирующий магнитный поток будет создаваться как током статора так и током ротора, следовательно, потребление реактивной энергии статором из сети уменьшится. Дальнейшее увеличение тока возбуждения приведет к дальнейшему уменьшению потребления реактивной энергии. При номинальном токе ротора, статор вообще не будет потреблять реактивную энергию из сети, т.е. магнитный поток машины весь создается током ротора, наступает режим идеального холостого хода. При дальнейшем увеличении тока возбуждения, ток обмотки статора станет размагничивающим, т.е. статор будет работать и представлять собой по отношению к сети активно-емкостную нагрузку, а машина станет генератором реактивной энергии. Изменяя значение тока возбуждения машины (ток ротора) можно регулировать реактивную мощность синхронного двигателя. При токе ротора больше номинального (перевозбуждение двигателя) двигатель представляет собой активно-емкостную нагрузку, и его можно использовать для повышения cos j промышленных предприятий.

topref.ru

Понятие и принцип работы синхронной машины

Реферат

Понятие и принцип работы синхронной машины

Синхронная машина состоит из двух частей: индуктора и якоря. Индуктором называют часть машины, в которой создается первичное магнитное поле. Якорем называют часть машины, в которой индуцируется ЭДС. Наибольшее распространение получили синхронные машины, в которых якорь неподвижен, а индуктор вращается.

Рассмотрим устройство синхронной трехфазной машины, в которой якорь является статором, а индуктор является вращающимся ротором.

Статор такой машины по конструкции аналогичен статору асинхронной машины и состоит из трех основных частей: корпуса (станины), сердечника и обмоток. Сердечник представляет собой полый цилиндр, набранный из электротехнической стали толщиной 0,5 мм. На внутренней поверхности сердечника имеются пазы, в которые укладывается обмотка статора. Пазы, как правило имеют прямоугольное сечение.

Обмотка статора состоит из трех одинаковых фазных обмоток, сдвинутых в пространстве друг относительно друга на 1200и соединенных звездой.

В синхронных машинах применяют роторы двух конструкций: явнополюсные и неявнополюсные. Неявнополюсные роторы используются в синхронных генераторах рассчитанных на скорость вращения ротора 1500 и 3000 оборотов в минуту. В синхронных двигателях используют только явнополюсные роторы.

Явнополюсный ротор содержит вал, на котором закреплен обод, а к нему крепятся полюса. Сердечники полюсов набираются из пластин, из электротехнической стали толщиной 0,5 мм, на полюсах крепится обмотка возбуждения, по которой пропускают постоянный ток, подводимый через щетки и контактные кольца, закрепленные на роторе. Кроме этого в сердечниках полюсов делают пазы, в которые укладывают медные стержни, по одному стержню в каждый паз. С торцов стержни между собой закорачиваются сегментами или кольцами, образуя короткозамкнутую обмотку такого же типа как обмотка у короткозамкнутого ротора асинхронного двигателя, которая является пусковой обмоткой.

На электрических схемах синхронная машина изображается в виде двух концентрических окружностей (внешняя окружность изображает обмотку ротора). К обмотке статора подключается трёхфазная сеть, а к обмотке ротора сеть постоянного тока. Условное изображение синхронной машины приведено ниже:

При пуске обмотка статора подключается к трехфазной сети. Ротор приводится в движении благодаря наличию короткозамкнутой пусковой обмотки. Трехфазные токи, проходя по обмоткам статора создают вращающееся магнитное поле, которое вращается со скоростью ?0Поле статора, вращаясь, пересекает стержни пусковой обмотки, индуцируя в них ЭДС, под действием которой по ним будут протекать токи. При взаимодействии этих токов с вращающимся полем статора создается электромагнитный момент, приложенный к ротору, ротор придет во вращение. Обмотка возбуждения на период пуска замыкается на резистор с целью уменьшения возникающих в ней напряжений. В конце пуска, когда скорость ротора становится достаточно близкой к скорости вращения магнитного поля статора (0,95-0,98) ?0, обмотку возбуждения отключают от резистора, и на нее подается постоянный ток. Постоянное магнитное поле вращающегося ротора сцепляется с вращающим полем статора, и ротор втягивается в синхронизм. После этого ротор продолжает вращаться со скоростью, развивая вращающий момент. Пусковая обмотка при этом перестает работать, так как поле статора уже не пересекает стержни пусковой обмотки, и ток в ней становится равным нулю.

Механическая характеристика при пуске синхронного двигателя соответствует характеристике асинхронного двигателя, а в рабочем режиме представляет собой прямую. Обе характеристики приведены на рисунке 4.8.

Электромагнитный момент, приложенный к ротору синхронной машины, создается за счет взаимодействия между магнитными полюсами магнитного поля ротора и вращающимся магнитным полем статора.

Изменение нагрузки на валу двигателя сопровождается изменением взаимного положения магнитных полюсов ротора и вращающегося магнитного поля статора.

При идеальном холостом ходе оси полюсов магнитного поля ротора и магнитного поля статора совпадают. Ротор не создает электромагнитного момента. При увеличении нагрузки на вал ротора, ротор несколько отстает в пространстве от магнитного поля статора. Ось магнитных полюсов ротора будет сдвинута от оси магнитных полюсов статора на некоторый угол ?. За счет взаимодействия между полюсами ротора и статора появится электромагнитный момент. Чем больше угол ?, тем больше будет электромагнитный вращающий момент ротора. При определенном значении угла ? вращающий момент достигает максимума.

Ниже на рисунке показано расположение полюсов магнитного поля статора и ротора при нагрузке в двигательном режиме.

Если статический момент нагрузки превысит значение максимального момента, то двигатель выпадает из синхронизма. При приеме и сбросе нагрузки ротор совершает колебания прежде, чем займет определенное положение.

Если при работе машины в режиме идеального холостого хода к ротору будет приложен вращающий момент, направленный в сторону вращения, то ось магнитных полюсов ротора сдвинется в сторону вращения на угол ?. Возникнет электромагнитный момент, направленный против вращения ротора (за счет взаимодействия между полюсами магнитных полей ротора и статора) и машина перейдет в генераторный режим работы.

Мощность, потребляемая синхронным электродвигателем из сети можно найти из выражения

P=3·U·I.

В этом выражении U — фазное напряжение статора, I — фазный ток. Если не учитывать потери, тогда выражение для электромагнитного момента развиваемого ротором можно записать так:

.

При q=90° электромагнитный момент, развиваемый ротором принимает максимальное значение:

.

Тогда электромагнитный момент синхронной машины:

M=Mmaxsin?

Необходимо отметить, что угол q сдвига по фазе между ЭДС и напряжением статора в двухполюсной машине равен углу сдвига между магнитными полюсами статора и ротора. В многополюсной машине угол q сдвига по фазе между ЭДС и напряжением статора будет больше угла qреальныймежду полюсами на число пар полюсов магнитного поля ротора.

Зависимость электромагнитного момента синхронной машины от угла называется угловой характеристикой, она представлена на рисунке.

Устойчивый режим работы синхронного двигателя обеспечивается на участке 0<?<900(устойчивый участок). Обычно номинальный момент двигателя лежит в пределах ?=20...300. для обеспечения запаса по моменту.

Вращающий момент двигателя пропорционален напряжению сети в первой степени, что определяет его меньшую чувствительность к колебаниям напряжения, чем у асинхронного двигателя.

Для торможения обычно применяется режим динамического торможения, при котором обмотки статора отключаются от сети и замыкаются на резисторы. Механические характеристики в этом случае подобны характеристикам асинхронного двигателя при динамическом торможении.

Принципиальная схема включения синхронного двигателя при динамическом торможении приведена на рисунке.

Торможение синхронных двигателей противовключением практически не применяется, так как оно сопровождается большими бросками тока и ведет к усложнению управления ввиду необходимости отключения двигателя при подходе к нулевой скорости.

Синхронный двигатель может работать и в режиме генератора параллельно с сетью (рекуперативное торможение), в этом случае электромагнитный момент будет иметь отрицательное значение. Этому режиму отвечает левая ветвь угловой характеристики, угловая скорость вращения при этом не изменяется (равна синхронной).

Отличительной особенностью синхронного двигателя является его способность регулирования потребления реактивной мощности. Объясняется это тем, что, при некоторых допущениях можно считать, что ЭДС индуцируемая в обмотках статора (Е=4,44w1f1k1Ф) и равная напряжению сети определяется результирующим магнитным потоком двигателя, который в свою очередь возбуждается намагничивающим током статора и ротора. Следовательно, значение магнитного потока машины (вращающегося магнитного поля) и напряжение сети связаны пропорциональной зависимостью. При неизменном напряжении сети неизменен магнитный поток машины.

В случае, когда ток возбуждения отсутствует (тока в роторе нет), то весь магнитный поток создается током статора, следовательно, синхронный двигатель потребляет из сети реактивную энергию и двигатель представляет собой активно-индуктивную нагрузку.

Если же машину возбудить, то результирующий магнитный поток будет создаваться как током статора так и током ротора, следовательно, потребление реактивной энергии статором из сети уменьшится. Дальнейшее увеличение тока возбуждения приведет к дальнейшему уменьшению потребления реактивной энергии. При номинальном токе ротора, статор вообще не будет потреблять реактивную энергию из сети, т.е. магнитный поток машины весь создается током ротора, наступает режим идеального холостого хода. При дальнейшем увеличении тока возбуждения, ток обмотки статора станет размагничивающим, т.е. статор будет работать и представлять собой по отношению к сети активно-емкостную нагрузку, а машина станет генератором реактивной энергии. Изменяя значение тока возбуждения машины (ток ротора) можно регулировать реактивную мощность синхронного двигателя. При токе ротора больше номинального (перевозбуждение двигателя) двигатель представляет собой активно-емкостную нагрузку, и его можно использовать для повышения cos j промышленных предприятий.

superbotanik.net

Синхронные машины — реферат

Режим работы всех фаз статора одинаковый. То же относится к фазам ротора. Поэтому анализ работы ас.дв. можно вести для одной фазы, представив одну ее обмотку одним витком.

 

6. Универсальная характеристика Ас.М.

 

Асинхронная машина, как и все электрические  машины, обратима, т.е. в режиме двигателя  она может преобразовывать электрическую  энергию в механическую, а в режиме генератора — механическую в электрическую. Чтобы перевести ас.м. из режима двигателя в режим генератора, необходимо при помощи внешней механической силы, приложенной к валу ас.м., сообщить ротору частоту вращения, превышающую синхронную, т.е. нужно чтобы выполнялось условие n>n1. Тогда ротор будет обгонять вращающееся магнитное поле, а провода его обмотки будут пересекать линии магнитного поля в направлении, обратном направлению пересечения при вращении в режиме двигателя. Вследствие этого направления ЭДС и токи в обмотке ротора изменяется на противоположные. В результате силы взаимодействия вращающегося поля и токов ротора также изменят свое направление на обратное и станут противодействовать вращению ротора. Мощность, развиваемая машиной, в таких случаях отрицательна, т.е. машина не потребляет энергию, а отдает ее в сеть. При таком режиме скольжение s=(n1-n)/n1<0.

Отрицательное скольжение — характерный признак работы ас.м. в режиме генератора.

Асинхронный генератор (ас.г.) потребляет из сети индуктивный реактивный (намагничивающий) ток, как и двигатель, и поэтому нуждается в источнике реактивной мощности. Следовательно, ас.г. не может работать независимо.

Преимуществом ас.г. является простота его устройства и обслуживания.

Если  при помощи внешней механической  силы вращать ротор против направления  вращения магнитного поля машины, то в  выражение скольжения частота вращения ротора n войдет уже с отрицательным знаком, а в таких условиях скольжение s=(n1+n)/n1>1.

В этих условиях направления тока в  обмотке ротора не изменится, а, следовательно, ротор будет развивать момент, противодействующий тормозному моменту, приложенному к валу машины. Последняя будет получать механическую энергию, подводимую со стороны вала, и электрическую энергию из сети. Это будет режим электромагнитного тормоза.

Такой режим применяется для быстрой  остановки двигателя или в  случае применения ас.м. для торможения приводного механизма, например в крановых и подъемных устройствах при спуске грузов.

 

7. Пуск ас.дв. в ход.

 

Важное  практическое значение асинхронных  двигателей имеют их пусковые свойства. Эти свойства в основном определяются следующими величинами: пусковым током Iпуск и начальным пусковым вращающим моментом Мвр.пуск, плавностью и экономичностью пускового процесса, длительностью пуска.

  • Пуск ас.дв. с фазным ротором

Пусковые  условия асинхронного двигателя  с фазной обмоткой ротора можно существенно  улучшить ценой некоторого усложнения конструкции и обслуживания двигателя.

Если  в уравнении вращающего момента  положит s=1, то получим выражение начального пускового момента, т.е. момента, развиваемого двигателем при трогании с места:

 

(6)

 

Если  нужно, чтобы Мвр.пуск= Мвр.max т.е. чтобы при пуске двигатель развивал максимальный момент, то активное сопротивление фазной обмотки ротора должно быть

        (7)

Т.к. активное сопротивление фазной обмотки ротора относительно мало, то для получения максимального  начального пускового момента необходимо в цепь ротора включить пусковой реостат  с сопротивлением фазы

 

В этом случае зависимость Мвр(s) ас.дв. будет иметь максимум при s=1 рис

Как только ротор начинает вращаться, уменьшается  скольжение, а в месте с ним ЭДС и ток ротора, вследствие чего уменьшается вращающий момент. Чтобы двигатель продолжал развивать вращающий момент, близкий к максимальному, сопротивление пускового реостата нужно постепенно уменьшать. Наконец когда двигатель достигает номинальной частоты вращения, пусковой реостат замыкают накоротко.

Для уменьшения механических потерь и износа колец и щеток двигатели снабжаются иногда приспособлением для подъема  щеток и замыкания колец накоротко.

Чем больше должен быть пусковой момент, чем  ближе он к максимальному моменту, тем больше будет и пусковой ток. По этой причине лишь для особо  тяжелых условий пуска реостат  подбирается так, чтобы пусковой момент был равен максимальному.

Чтобы пусковой реостат в течение времени  пуска не перегревался, его мощность должна примерно равняться мощности двигателя. Для двигателей большой  мощности пусковые реостаты изготавливаются  с масляным охлаждением.

Конечно, применение пускового реостата значительно  улучшает пусковые условия асинхронного двигателя, повышая пусковой момент и уменьшая пусковой ток.

 

 

  • Пуск ас.да. с короткозамкнутым ротором

 

Такой пуск исключительно просто и быстр. Необходим лишь простой коммутирующий  аппарат, например рубильник, или для  двигателя высокого напряжения —  масляный включатель.  При прямом пуске двигателя кратность пускового  тока высока, примерно 5,5-7. Такой кратковременный  пуск относительно безопасен.

Пусковые  характеристики Ас.Дв. могут быть существенно улучшены, если обмотка ротора имеет двойную беличью клетку. Такой ротор снабжен двумя клетками, лежащими одна на другой: наружной — пусковой и внутренней — рабочей. Стержни клеток размещены соответственно в наружной и внутренней частях паза. Такое расположение клеток приводит к значительному различию их индуктивностей рассеивания. У внутренней клетки индуктивность рассеивания велика, т.к. стержни этой клетки окружены сталью, прорезанной лишь сверху узкой щелью паза, а у наружной клетки она значительно меньше, т.к. значительная часть пути линий поля рассеяния вокруг стержней проходит в воздушном промежутке между ротором и статором с большим магнитным сопротивлением и по щели паза под стержнями.

В первый момент пуска двигателя частота  токов в обмотке ротора равна  частоте сети. Т.о., при пуске двигателя  ток в роторе вытесняется из внутренней беличьей клетки. В тоже время полное сопротивление наружной клетки определяется преимущественно ее активным сопротивлением.

По  мере разбега ротора частота токов  в нем уменьшается и вместе с тем уменьшается влияние  индуктивного сопротивления на распределение  токов.

Ток наружной клетки будет меньше тока внутренней клетки, активное и полное сопротивления которой в таких  условиях малы, как у обычного двигателя  с короткозамкнутым ротором.

Упрощенным  вариантом ас.дв. с двойной беличьей клеткой является двигатель с глубоким пазом.

Двигатель с глубоким пазом ротора в конструктивном отношении проще двигателя с  двойной клеткой. Зато второй может  быть выполнен на различные начальные  моменты  и на различные кратности  пускового тока, что дает возможность  конструировать такой двигатель  для специальных случаев тяжелого пуска в ход.

 

8. Методы регулирования частоты вращения Ас.Дв.

 

  • Частотное регулирование

Наиболее перспективным методом управления частотой вращения ас.дв. является регулирование частоты переменного тока в обмотках статора двигателя. Угловая скорость вращающего поля wП =2p f / р , т.е. изменяется пропорционально изменению частоты тока f. Однако при регулировании частоты тока необходимо одновременное регулирование напряжения. Т.К. поток должен сохраняться во всех режимах одним и тем же, то напряжение должно быть пропорциональным частоте.

При оценке характера зависимости  вращающегося момента от частоты  тока в обмотках статора и от напряжения не будем учитывать в уравнении  активное сопротивление обмотки  статора rв1 и индуктивные сопротивления рассеяния обмоток статора xpac1 и ротора xpac2. Тогда вращающим момент:

где A=const

 

Следовательно, при изменении частоты тока для  поддержания вращающего момента  постоянным необходимо пропорционально изменять напряжение на обмотках статора, т.е. нужно выполнить условие U/f=const.

 

 

  • Регулирование изменением числа пар полюсов.ү

При постоянной частоте сети угловая  скорость вращающегося поля зависит  только от числа пар полюсов, задаваемого  обмоткой статора. Если на статоре поместить  две отдельные обмотки — одну, образующие р пар, а другую, образующую р\ ар полюсов, то, включив в сеть первую или вторую обмотку, получим частоту вращения поля:

n1 = 60 f / p  или        n\1 = 60 f / p|

следовательно,  n1 / n\1 = p / p,|   т.е. соответственным образом будут различаться и частоты вращения ротора двигателя. При этом обмотка ротора двигателя должна быть выполнена, как беличье колесо.

 

  • Реостатное регулирование

В трехфазных Ас.Дв. с фазным ротором применяется реостатный способ регулирования частоты вращения ротора. Это достигается введением в цепь фазных обмоток ротора регулируемого трехфазного реостата, как при пуске двигателя. Но этот реостат должен быть рассчитан на длительную нагрузку током ротора, а не на кратковременную, как пусковой реостат. Увеличение активного сопротивления цепи ротора изменяет характеристику Мвр(s) — делает ее более мягкой. Если при постоянном моменте на валу двигателя увеличивать активное сопротивление цепи ротора путем постепенного увеличения сопротивления реостата (rp1<rp2<rp3), то рабочая точка будет с одной кривой Мвр(s) на следующую, соответствующую возросшему сопротивлению цепи ротора, соответственно чему растет скольжение, а, следовательно, уменьшается частота вращения двигателя. Этим путем можно изменять частоту вращения ротора в пределах от номинальной до полной остановки. Недостатком такого способа регулирования являются относительно большие потери энергии.

myunivercity.ru

Реферат - Понятие и принцип работы синхронной машины

Реферат

Понятие и принцип работы синхронной машины

Синхронная машина состоит из двух частей: индуктора и якоря. Индуктором называют часть машины, в которой создается первичное магнитное поле. Якорем называют часть машины, в которой индуцируется ЭДС. Наибольшее распространение получили синхронные машины, в которых якорь неподвижен, а индуктор вращается.

Рассмотрим устройство синхронной трехфазной машины, в которой якорь является статором, а индуктор является вращающимся ротором.

Статор такой машины по конструкции аналогичен статору асинхронной машины и состоит из трех основных частей: корпуса (станины), сердечника и обмоток. Сердечник представляет собой полый цилиндр, набранный из электротехнической стали толщиной 0,5 мм. На внутренней поверхности сердечника имеются пазы, в которые укладывается обмотка статора. Пазы, как правило имеют прямоугольное сечение.

Обмотка статора состоит из трех одинаковых фазных обмоток, сдвинутых в пространстве друг относительно друга на 1200и соединенных звездой.

В синхронных машинах применяют роторы двух конструкций: явнополюсные и неявнополюсные. Неявнополюсные роторы используются в синхронных генераторах рассчитанных на скорость вращения ротора 1500 и 3000 оборотов в минуту. В синхронных двигателях используют только явнополюсные роторы.

Явнополюсный ротор содержит вал, на котором закреплен обод, а к нему крепятся полюса. Сердечники полюсов набираются из пластин, из электротехнической стали толщиной 0,5 мм, на полюсах крепится обмотка возбуждения, по которой пропускают постоянный ток, подводимый через щетки и контактные кольца, закрепленные на роторе. Кроме этого в сердечниках полюсов делают пазы, в которые укладывают медные стержни, по одному стержню в каждый паз. С торцов стержни между собой закорачиваются сегментами или кольцами, образуя короткозамкнутую обмотку такого же типа как обмотка у короткозамкнутого ротора асинхронного двигателя, которая является пусковой обмоткой.

На электрических схемах синхронная машина изображается в виде двух концентрических окружностей (внешняя окружность изображает обмотку ротора). К обмотке статора подключается трёхфазная сеть, а к обмотке ротора сеть постоянного тока. Условное изображение синхронной машины приведено ниже:

При пуске обмотка статора подключается к трехфазной сети. Ротор приводится в движении благодаря наличию короткозамкнутой пусковой обмотки. Трехфазные токи, проходя по обмоткам статора создают вращающееся магнитное поле, которое вращается со скоростью ?0Поле статора, вращаясь, пересекает стержни пусковой обмотки, индуцируя в них ЭДС, под действием которой по ним будут протекать токи. При взаимодействии этих токов с вращающимся полем статора создается электромагнитный момент, приложенный к ротору, ротор придет во вращение. Обмотка возбуждения на период пуска замыкается на резистор с целью уменьшения возникающих в ней напряжений. В конце пуска, когда скорость ротора становится достаточно близкой к скорости вращения магнитного поля статора (0,95-0,98) ?0, обмотку возбуждения отключают от резистора, и на нее подается постоянный ток. Постоянное магнитное поле вращающегося ротора сцепляется с вращающим полем статора, и ротор втягивается в синхронизм. После этого ротор продолжает вращаться со скоростью, развивая вращающий момент. Пусковая обмотка при этом перестает работать, так как поле статора уже не пересекает стержни пусковой обмотки, и ток в ней становится равным нулю.

Механическая характеристика при пуске синхронного двигателя соответствует характеристике асинхронного двигателя, а в рабочем режиме представляет собой прямую. Обе характеристики приведены на рисунке 4.8.

Электромагнитный момент, приложенный к ротору синхронной машины, создается за счет взаимодействия между магнитными полюсами магнитного поля ротора и вращающимся магнитным полем статора.

Изменение нагрузки на валу двигателя сопровождается изменением взаимного положения магнитных полюсов ротора и вращающегося магнитного поля статора.

При идеальном холостом ходе оси полюсов магнитного поля ротора и магнитного поля статора совпадают. Ротор не создает электромагнитного момента. При увеличении нагрузки на вал ротора, ротор несколько отстает в пространстве от магнитного поля статора. Ось магнитных полюсов ротора будет сдвинута от оси магнитных полюсов статора на некоторый угол?.. За счет взаимодействия между полюсами ротора и статора появится электромагнитный момент. Чем больше угол ?, тем больше будет электромагнитный вращающий момент ротора. При определенном значении угла? вращающий момент достигает максимума.

Ниже на рисунке показано расположение полюсов магнитного поля статора и ротора при нагрузке в двигательном режиме.

Если статический момент нагрузки превысит значение максимального момента, то двигатель выпадает из синхронизма. При приеме и сбросе нагрузки ротор совершает колебания прежде, чем займет определенное положение.

Если при работе машины в режиме идеального холостого хода к ротору будет приложен вращающий момент, направленный в сторону вращения, то ось магнитных полюсов ротора сдвинется в сторону вращения на угол?.. Возникнет электромагнитный момент, направленный против вращения ротора (за счет взаимодействия между полюсами магнитных полей ротора и статора) и машина перейдет в генераторный режим работы.

Мощность, потребляемая синхронным электродвигателем из сети можно найти из выражения

P=3·U·I.

В этом выражении U — фазное напряжение статора, I — фазный ток. Если не учитывать потери, тогда выражение для электромагнитного момента развиваемого ротором можно записать так:

.

При q=90° электромагнитный момент, развиваемый ротором принимает максимальное значение:

.

Тогда электромагнитный момент синхронной машины:

M=Mmax sin?

Необходимо отметить, что угол q сдвига по фазе между ЭДС и напряжением статора в двухполюсной машине равен углу сдвига между магнитными полюсами статора и ротора. В многополюсной машине угол q сдвига по фазе между ЭДС и напряжением статора будет больше угла qреальный между полюсами на число пар полюсов магнитного поля ротора.

Зависимость электромагнитного момента синхронной машины от угла называется угловой характеристикой, она представлена на рисунке.

Устойчивый режим работы синхронного двигателя обеспечивается на участке 0<?<900 (устойчивый участок). Обычно номинальный момент двигателя лежит в пределах ?=20...300. для обеспечения запаса по моменту.

Вращающий момент двигателя пропорционален напряжению сети в первой степени, что определяет его меньшую чувствительность к колебаниям напряжения, чем у асинхронного двигателя.

Для торможения обычно применяется режим динамического торможения, при котором обмотки статора отключаются от сети и замыкаются на резисторы. Механические характеристики в этом случае подобны характеристикам асинхронного двигателя при динамическом торможении.

Принципиальная схема включения синхронного двигателя при динамическом торможении приведена на рисунке.

Торможение синхронных двигателей противовключением практически не применяется, так как оно сопровождается большими бросками тока и ведет к усложнению управления ввиду необходимости отключения двигателя при подходе к нулевой скорости.

Синхронный двигатель может работать и в режиме генератора параллельно с сетью (рекуперативное торможение), в этом случае электромагнитный момент будет иметь отрицательное значение. Этому режиму отвечает левая ветвь угловой характеристики, угловая скорость вращения при этом не изменяется (равна синхронной).

Отличительной особенностью синхронного двигателя является его способность регулирования потребления реактивной мощности. Объясняется это тем, что, при некоторых допущениях можно считать, что ЭДС индуцируемая в обмотках статора (Е=4,44w1 f1 k1 Ф) и равная напряжению сети определяется результирующим магнитным потоком двигателя, который в свою очередь возбуждается намагничивающим током статора и ротора. Следовательно, значение магнитного потока машины (вращающегося магнитного поля) и напряжение сети связаны пропорциональной зависимостью. При неизменном напряжении сети неизменен магнитный поток машины.

В случае, когда ток возбуждения отсутствует (тока в роторе нет), то весь магнитный поток создается током статора, следовательно, синхронный двигатель потребляет из сети реактивную энергию и двигатель представляет собой активно-индуктивную нагрузку.

Если же машину возбудить, то результирующий магнитный поток будет создаваться как током статора так и током ротора, следовательно, потребление реактивной энергии статором из сети уменьшится. Дальнейшее увеличение тока возбуждения приведет к дальнейшему уменьшению потребления реактивной энергии. При номинальном токе ротора, статор вообще не будет потреблять реактивную энергию из сети, т.е. магнитный поток машины весь создается током ротора, наступает режим идеального холостого хода. При дальнейшем увеличении тока возбуждения, ток обмотки статора станет размагничивающим, т.е. статор будет работать и представлять собой по отношению к сети активно-емкостную нагрузку, а машина станет генератором реактивной энергии. Изменяя значение тока возбуждения машины (ток ротора) можно регулировать реактивную мощность синхронного двигателя. При токе ротора больше номинального (перевозбуждение двигателя) двигатель представляет собой активно-емкостную нагрузку, и его можно использовать для повышения cos j промышленных предприятий.

www.ronl.ru

Доклад - Понятие и принцип работы синхронной машины

Реферат

Понятие и принцип работы синхронной машины

Синхронная машина состоит из двух частей: индуктора и якоря. Индуктором называют часть машины, в которой создается первичное магнитное поле. Якорем называют часть машины, в которой индуцируется ЭДС. Наибольшее распространение получили синхронные машины, в которых якорь неподвижен, а индуктор вращается.

Рассмотрим устройство синхронной трехфазной машины, в которой якорь является статором, а индуктор является вращающимся ротором.

Статор такой машины по конструкции аналогичен статору асинхронной машины и состоит из трех основных частей: корпуса (станины), сердечника и обмоток. Сердечник представляет собой полый цилиндр, набранный из электротехнической стали толщиной 0,5 мм. На внутренней поверхности сердечника имеются пазы, в которые укладывается обмотка статора. Пазы, как правило имеют прямоугольное сечение.

Обмотка статора состоит из трех одинаковых фазных обмоток, сдвинутых в пространстве друг относительно друга на 1200и соединенных звездой.

В синхронных машинах применяют роторы двух конструкций: явнополюсные и неявнополюсные. Неявнополюсные роторы используются в синхронных генераторах рассчитанных на скорость вращения ротора 1500 и 3000 оборотов в минуту. В синхронных двигателях используют только явнополюсные роторы.

Явнополюсный ротор содержит вал, на котором закреплен обод, а к нему крепятся полюса. Сердечники полюсов набираются из пластин, из электротехнической стали толщиной 0,5 мм, на полюсах крепится обмотка возбуждения, по которой пропускают постоянный ток, подводимый через щетки и контактные кольца, закрепленные на роторе. Кроме этого в сердечниках полюсов делают пазы, в которые укладывают медные стержни, по одному стержню в каждый паз. С торцов стержни между собой закорачиваются сегментами или кольцами, образуя короткозамкнутую обмотку такого же типа как обмотка у короткозамкнутого ротора асинхронного двигателя, которая является пусковой обмоткой.

На электрических схемах синхронная машина изображается в виде двух концентрических окружностей (внешняя окружность изображает обмотку ротора). К обмотке статора подключается трёхфазная сеть, а к обмотке ротора сеть постоянного тока. Условное изображение синхронной машины приведено ниже:

При пуске обмотка статора подключается к трехфазной сети. Ротор приводится в движении благодаря наличию короткозамкнутой пусковой обмотки. Трехфазные токи, проходя по обмоткам статора создают вращающееся магнитное поле, которое вращается со скоростью ?0Поле статора, вращаясь, пересекает стержни пусковой обмотки, индуцируя в них ЭДС, под действием которой по ним будут протекать токи. При взаимодействии этих токов с вращающимся полем статора создается электромагнитный момент, приложенный к ротору, ротор придет во вращение. Обмотка возбуждения на период пуска замыкается на резистор с целью уменьшения возникающих в ней напряжений. В конце пуска, когда скорость ротора становится достаточно близкой к скорости вращения магнитного поля статора (0,95-0,98) ?0, обмотку возбуждения отключают от резистора, и на нее подается постоянный ток. Постоянное магнитное поле вращающегося ротора сцепляется с вращающим полем статора, и ротор втягивается в синхронизм. После этого ротор продолжает вращаться со скоростью, развивая вращающий момент. Пусковая обмотка при этом перестает работать, так как поле статора уже не пересекает стержни пусковой обмотки, и ток в ней становится равным нулю.

Механическая характеристика при пуске синхронного двигателя соответствует характеристике асинхронного двигателя, а в рабочем режиме представляет собой прямую. Обе характеристики приведены на рисунке 4.8.

Электромагнитный момент, приложенный к ротору синхронной машины, создается за счет взаимодействия между магнитными полюсами магнитного поля ротора и вращающимся магнитным полем статора.

Изменение нагрузки на валу двигателя сопровождается изменением взаимного положения магнитных полюсов ротора и вращающегося магнитного поля статора.

При идеальном холостом ходе оси полюсов магнитного поля ротора и магнитного поля статора совпадают. Ротор не создает электромагнитного момента. При увеличении нагрузки на вал ротора, ротор несколько отстает в пространстве от магнитного поля статора. Ось магнитных полюсов ротора будет сдвинута от оси магнитных полюсов статора на некоторый угол?.. За счет взаимодействия между полюсами ротора и статора появится электромагнитный момент. Чем больше угол ?, тем больше будет электромагнитный вращающий момент ротора. При определенном значении угла? вращающий момент достигает максимума.

Ниже на рисунке показано расположение полюсов магнитного поля статора и ротора при нагрузке в двигательном режиме.

Если статический момент нагрузки превысит значение максимального момента, то двигатель выпадает из синхронизма. При приеме и сбросе нагрузки ротор совершает колебания прежде, чем займет определенное положение.

Если при работе машины в режиме идеального холостого хода к ротору будет приложен вращающий момент, направленный в сторону вращения, то ось магнитных полюсов ротора сдвинется в сторону вращения на угол?.. Возникнет электромагнитный момент, направленный против вращения ротора (за счет взаимодействия между полюсами магнитных полей ротора и статора) и машина перейдет в генераторный режим работы.

Мощность, потребляемая синхронным электродвигателем из сети можно найти из выражения

P=3·U·I.

В этом выражении U — фазное напряжение статора, I — фазный ток. Если не учитывать потери, тогда выражение для электромагнитного момента развиваемого ротором можно записать так:

.

При q=90° электромагнитный момент, развиваемый ротором принимает максимальное значение:

.

Тогда электромагнитный момент синхронной машины:

M=Mmax sin?

Необходимо отметить, что угол q сдвига по фазе между ЭДС и напряжением статора в двухполюсной машине равен углу сдвига между магнитными полюсами статора и ротора. В многополюсной машине угол q сдвига по фазе между ЭДС и напряжением статора будет больше угла qреальный между полюсами на число пар полюсов магнитного поля ротора.

Зависимость электромагнитного момента синхронной машины от угла называется угловой характеристикой, она представлена на рисунке.

Устойчивый режим работы синхронного двигателя обеспечивается на участке 0<?<900 (устойчивый участок). Обычно номинальный момент двигателя лежит в пределах ?=20...300. для обеспечения запаса по моменту.

Вращающий момент двигателя пропорционален напряжению сети в первой степени, что определяет его меньшую чувствительность к колебаниям напряжения, чем у асинхронного двигателя.

Для торможения обычно применяется режим динамического торможения, при котором обмотки статора отключаются от сети и замыкаются на резисторы. Механические характеристики в этом случае подобны характеристикам асинхронного двигателя при динамическом торможении.

Принципиальная схема включения синхронного двигателя при динамическом торможении приведена на рисунке.

Торможение синхронных двигателей противовключением практически не применяется, так как оно сопровождается большими бросками тока и ведет к усложнению управления ввиду необходимости отключения двигателя при подходе к нулевой скорости.

Синхронный двигатель может работать и в режиме генератора параллельно с сетью (рекуперативное торможение), в этом случае электромагнитный момент будет иметь отрицательное значение. Этому режиму отвечает левая ветвь угловой характеристики, угловая скорость вращения при этом не изменяется (равна синхронной).

Отличительной особенностью синхронного двигателя является его способность регулирования потребления реактивной мощности. Объясняется это тем, что, при некоторых допущениях можно считать, что ЭДС индуцируемая в обмотках статора (Е=4,44w1 f1 k1 Ф) и равная напряжению сети определяется результирующим магнитным потоком двигателя, который в свою очередь возбуждается намагничивающим током статора и ротора. Следовательно, значение магнитного потока машины (вращающегося магнитного поля) и напряжение сети связаны пропорциональной зависимостью. При неизменном напряжении сети неизменен магнитный поток машины.

В случае, когда ток возбуждения отсутствует (тока в роторе нет), то весь магнитный поток создается током статора, следовательно, синхронный двигатель потребляет из сети реактивную энергию и двигатель представляет собой активно-индуктивную нагрузку.

Если же машину возбудить, то результирующий магнитный поток будет создаваться как током статора так и током ротора, следовательно, потребление реактивной энергии статором из сети уменьшится. Дальнейшее увеличение тока возбуждения приведет к дальнейшему уменьшению потребления реактивной энергии. При номинальном токе ротора, статор вообще не будет потреблять реактивную энергию из сети, т.е. магнитный поток машины весь создается током ротора, наступает режим идеального холостого хода. При дальнейшем увеличении тока возбуждения, ток обмотки статора станет размагничивающим, т.е. статор будет работать и представлять собой по отношению к сети активно-емкостную нагрузку, а машина станет генератором реактивной энергии. Изменяя значение тока возбуждения машины (ток ротора) можно регулировать реактивную мощность синхронного двигателя. При токе ротора больше номинального (перевозбуждение двигателя) двигатель представляет собой активно-емкостную нагрузку, и его можно использовать для повышения cos j промышленных предприятий.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.