Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: РЕГЕНЕРАЦИЯ. Регенерация реферат


Реферат - РЕГЕНЕРАЦИЯ - Биология

 

Регенерация (от лат. regeneratio — возрождение) — процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают два вида регенерации: физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в сформированном организме.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса — волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. Это крипты в эпителии тонкой кишки, костный мозг, пролиферативные зоны в эпителии кожи. Интенсивность клеточного обновления в перечисленных тканях очень велика. Это так называемые «лабильные» ткани. Все эритроциты теплокровных животных, например, сменяются за 2—4 мес, а эпителий тонкой кишки полностью сменяется за 2 сут. Это время требуется для перемещения клетки из крипты на ворсинку, выполнения ею функции и гибели. Клетки таких органов, как печень, почка, надпочечник и др., обновляются значительно медленнее. Это так называемые «стабильные» ткани.

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22—24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений, пример которого изображен на рис. 8.23.

 

Рис. 8.23. Суточные изменения митотического индекса (МИ)

в эпителии пищевода (I) и роговицы (2) мышей.

 

Митотический индекс выражен в промилле (0/00), отражающем число митозов

в тысяче подсчитанных клеток

Суточный ритм количества митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он является отражением более общей закономерности, а именно ритмичности всех функций организма. Одна из современных областей биологии — хронобиология — изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма важное значение для медицины. Существование самой суточной периодичности количества митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных существуют лунные и годичные циклы обновления тканей и органов.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

Репаративная (от лат. reparatio — восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,— все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы. Способность некоторых животных, таких, как гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др., восстанавливать утраченные органы и части организма издавна изумляла ученых. Ч. Дарвин, например, считал удивительными способность улитки воспроизводить голову и способность саламандры восстанавливать глаза, хвост и ноги именно в тех местах, где они отрезаны.

Объем повреждения и последующее восстановление бывают весьма различными. Крайним вариантом является восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», ибо во многом напоминает эмбриональное развитие.

Существуют примеры восстановления больших участков организма, состоящих из комплекса органов. В качестве примера служат регенерация ротового конца у гидры, головного конца у кольчатого червя и восстановление морской звезды из одного луча (рис. 8.24). Широко распространена регенерация отдельных органов, например конечности у тритона, хвоста у ящерицы, глаз у членистоногих. Заживление кожных покровов, ран, повреждений костей и других внутренних органов является менее объемным процессом, но не менее важным для восстановления структурно-функциональной целостности организма. Особый интерес представляет способность зародышей на ранних стадиях развития восстанавливаться после значительной утраты материала. Эта способность была последним аргументом в борьбе между сторонниками преформизма и эпигенеза и привела в 1908 г. Г. Дриша к концепции эмбриональной регуляции.

 

 

Рис. 8.24. Регенерация комплекса органов у некоторых видов беспозвоночных животных. А — гидра;Б — кольчатый червь; В — морская звезда

(пояснение см. в тексте)

 

Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидермальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом (рис. 8.25). Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, однако они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану.

 

 

Рис. 8.25. Схема некоторых событий, происходящих

при эпителизации кожной раны у млекопитающих.

А—начало врастания эпидермиса под некротическую ткань; Б— срастание эпидермиса и отделение струпа:

1—соединительная ткань, 2—эпидермис, 3—струп, 4—некротическая ткань

 

К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно падает. По одной из версий, эта вспышка вызвана понижением концентрации ингибитора митозов — кейлона.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Регенерация конечности тритона и аксолотля изучена детально. Выделяют регрессивную и прогрессивную фазы регенерации. Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка кровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.

Затем начинается разрушение остеоцитов на дистальном конце кости и других клеток. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Затем вместо образования плотного сплетения волокон соединительной ткани, как это происходит при заживлении ран у млекопитающих, в области под раневым эпидермисом утрачиваются дифференцированные ткани. Характерна остеокластическая эрозия кости, что является гистологическим признаком дедифференцировки. Раневой эпидермис, уже пронизанный регенерирующими нервными волокнами, начинает быстро утолщаться. Промежутки между тканями все более заполняются мезенхимоподобными клетками. Скопление мезенхимных клеток под раневым эпидермисом является главным показателем формирования регенерационной бластемы. Клетки бластемы выглядят одинаково, но именно в этот момент закладываются основные черты регенерирующей конечности.

Затем начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Рост бластемы происходит на фоне идущего полным ходом формирования черт конечности, т.е. ее морфогенеза. Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.

Некоторые стадии регенерации передней конечности у тритона после ампутации на уровне плеча показаны на рис. 8.26. Время, необходимое для полной регенерации конечности, варьирует в зависимости от размера и возраста животного, а также от температуры, при которой она протекает.

 

Рис. 8.26. Стадии регенерации передней конечности у тритона

 

У молодых личинок аксолотлей конечность может регенерировать за 3 нед, у взрослых тритонов и аксолотлей за 1—2 мес, а у наземных амбистом для этого требуется около 1 года.

При эпиморфной регенерации не всегда образуется точная копия удаленной структуры. Такую регенерацию называют атипичной. Существует много разновидностей атипичной регенерации. Гипоморфоз — регенерация с частичным замещением ампутированной структуры. Так, у взрослой шпорцевой лягушки возникает шиловидная структура вместо конечности. Гетероморфоз — появление иной структуры на месте утраченной. Это может проявляться в виде гомеозисной регенерации, заключающейся в появлении конечности на месте антенн или глаза у членистоногих, а также в изменении полярности структуры. Из короткого фрагмента планарии можно стабильно получать биполярную планарию (рис. 8.27).

Встречается образование дополнительных структур, или избыточная регенерация. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более (рис. 8.28). Можно получить больше пальцев при регенерации конечности аксолотля, повернув конец культи конечности на 180°. Дополнительные структуры являются зеркальным отражением исходных или регенерировавших структур, рядом с которыми они расположены (закон Бэйтсона).

 

Рис. 8.27. Биполярная планария

Морфаллаксис — это регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части. На раневой поверхности в этом случае не происходит значительных формообразовательных процессов. Отрезанный кусочек сжимается, клетки внутри него перестраиваются, и возникает целая особь

уменьшенных размеров, которая затем растет. Этот способ регенерации впервые описал Т. Морган в 1900 г. В соответствии с его описанием морфаллаксис осуществляется без митозов. Нередко имеет место сочетание эпиморфного роста на месте ампутации с реорганизацией путем морфаллаксиса в прилежащих частях тела.

 

Рис. 8.28. Многоголовая планария, полученная после ампутации головы

и нанесения насечек на культю

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.

Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.

Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия.

Восстановление отдельных мезодермальных тканей, таких, как мышечная и скелетная, называют тканевой регенерацией. Для регенерации мышцы важно сохранение хотя бы небольших ее культей на обоих концах, а для регенерации кости необходима надкостница. Регенерация путем индукции происходит в определенных мезодермальных тканях млекопитающих в ответ на действие специфических индукторов, которые вводят внутрь поврежденной области. Этим способом удается получить полное замещение дефекта костей черепа после введения в него костных опилок.

Таким образом, существует множество различных способов или типов морфогенетических явлений при восстановлении утраченных и поврежденных частей организма. Различия между ними не всегда очевидны, и требуется более глубокое понимание этих процессов.

Изучение регенерационных явлений касается не только внешних проявлений. Существует целый ряд вопросов, носящих проблемный и теоретический характер. К ним относятся вопросы регуляции и условий, в которых протекают восстановительные процессы, вопросы происхождения клеток, участвующих в регенерации, способности к регенерации у различных групп, животных и особенностей восстановительных процессов у млекопитающих.

Установлено, что в конечности амфибий после ампутации и в процессе регенерации происходят реальные изменения электрической активности. При проведении электрического тока через ампутированную конечность у взрослых шпорцевых лягушек наблюдается усиление регенерации передних конечностей. В регенератах увеличивается количество нервной ткани, из чего делается вывод, что электрический ток стимулирует врастание нервов в края конечностей, в норме не регенерирующих.

Попытки стимулировать подобным образом регенерацию конечностей у млекопитающих оказались безуспешными. Так, под действием электрического тока или при сочетании действия электрического тока с фактором роста нервов удавалось получить у крысы только разрастание скелетной ткани в виде хрящевых и костных мозолей, которые не походили на нормальные элементы скелета конечностей.

Несомненна регуляция регенерационных процессов со стороны нервной системы. При тщательной денервации конечности во время ампутации эпиморфная регенерация полностью подавляется и бластема никогда не образуется. Были проведены интересные опыты. Если нерв конечности тритона отвести под кожу основания конечности, то образуется дополнительная конечность. Если его отвести к основанию хвоста — стимулируется образование дополнительного хвоста. Отведение нерва на боковую область никаких дополнительных структур не вызывает. Эти эксперименты привели к созданию концепции регенерационных полей. .

Было установлено, что для инициации регенерации решающим является число нервных волокон. Тип нерва роли не играет. Влияние нервов на регенерацию связывается с трофическим действием нервов на ткани конечностей.

Получены данные в пользу гуморальной регуляции регенерационных процессов. Особенно распространенной моделью для изучения этого является регенерирующая печень. После введения нормальным интактным животным сыворотки или плазмы крови от животных, подвергшихся удалению печени, у первых наблюдалась стимуляция митотической активности клеток печени. Напротив, при введении травмированным животным сыворотки от здоровых животных получали снижение количества митозов в поврежденной печени. Эти опыты могут свидетельствовать как о присутствии в крови травмированных животных стимуляторов регенерации, так и о присутствии в крови интактных животных ингибиторов клеточного деления. Объяснение результатов опытов затрудняется необходимостью учитывать иммунологический эффект инъекций.

Важнейшим компонентом гуморальной регуляции компенсаторной и регенерационной гипертрофии является иммунологический ответ. Не только частичное удаление органа, но и многие воздействия вызывают возмущения в иммунном статусе организма, появление аутоантител и стимуляцию процессов клеточной пролиферации.

Большие разногласия существуют по вопросу о клеточных источниках регенерации. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезенхимными? Существует три предположения.

1. Гипотеза резервных клеток подразумевает, что предшественниками регенерационной бластемы являются так называемые резервные клетки, которые останавливаются на некоем раннем этапе своей дифференцировки и не участвуют в процессе развития до получения стимула к регенерации.

2. Гипотеза временной дедифференцировки, или модуляции, клеток предполагает, что в ответ на регенерационный стимул дифференцированные клетки могут утрачивать признаки специализации, но затем снова дифференцируются в тот же клеточный тип, т.е., потеряв на время специализацию, они не утрачивают детерминацию.

3. Гипотеза полной дедифференцировки специализированных клеток до состояния, сходного с мезенхимными клетками и с возможной последующей трансдифференцировкой или метаплазией, т.е. превращением в клетки другого типа, полагает, что в этом случае клетка утрачивает не только специализацию, но и детерминацию.

Современные методы исследования не позволяют с абсолютной достоверностью доказать все три предположения. Тем не менее абсолютно верно, что в культях пальцев аксолотля происходит высвобождение хондроцитов из окружающего матрикса и миграция их в регенерационную бластему. Дальнейшая их судьба не определена. Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репрограммироватьсвой синтетический аппарат. Например, хондроцит становится миоцитом или наоборот.

Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными.

Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении. Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. В некоторых случаях наблюдали регенерацию сосков даже при ампутации их по основанию. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Об особенностях регенерации печени уже было сказано выше. Различные ткани млекопитающих тоже хорошо регенерируют. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни нежные морфогенетические процессы затрудняли бы существование. Достижения биологии в области регенерации успешно применяются в медицине. Однако в проблеме регенерации очень много нерешенных вопросов.

 

www.ronl.ru

Доклад - РЕГЕНЕРАЦИЯ - Биология

 

Регенерация (от лат. regeneratio — возрождение) — процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают два вида регенерации: физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в сформированном организме.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса — волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. Это крипты в эпителии тонкой кишки, костный мозг, пролиферативные зоны в эпителии кожи. Интенсивность клеточного обновления в перечисленных тканях очень велика. Это так называемые «лабильные» ткани. Все эритроциты теплокровных животных, например, сменяются за 2—4 мес, а эпителий тонкой кишки полностью сменяется за 2 сут. Это время требуется для перемещения клетки из крипты на ворсинку, выполнения ею функции и гибели. Клетки таких органов, как печень, почка, надпочечник и др., обновляются значительно медленнее. Это так называемые «стабильные» ткани.

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22—24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений, пример которого изображен на рис. 8.23.

 

Рис. 8.23. Суточные изменения митотического индекса (МИ)

в эпителии пищевода (I) и роговицы (2) мышей.

 

Митотический индекс выражен в промилле (0/00), отражающем число митозов

в тысяче подсчитанных клеток

Суточный ритм количества митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он является отражением более общей закономерности, а именно ритмичности всех функций организма. Одна из современных областей биологии — хронобиология — изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма важное значение для медицины. Существование самой суточной периодичности количества митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных существуют лунные и годичные циклы обновления тканей и органов.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

Репаративная (от лат. reparatio — восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,— все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы. Способность некоторых животных, таких, как гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др., восстанавливать утраченные органы и части организма издавна изумляла ученых. Ч. Дарвин, например, считал удивительными способность улитки воспроизводить голову и способность саламандры восстанавливать глаза, хвост и ноги именно в тех местах, где они отрезаны.

Объем повреждения и последующее восстановление бывают весьма различными. Крайним вариантом является восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», ибо во многом напоминает эмбриональное развитие.

Существуют примеры восстановления больших участков организма, состоящих из комплекса органов. В качестве примера служат регенерация ротового конца у гидры, головного конца у кольчатого червя и восстановление морской звезды из одного луча (рис. 8.24). Широко распространена регенерация отдельных органов, например конечности у тритона, хвоста у ящерицы, глаз у членистоногих. Заживление кожных покровов, ран, повреждений костей и других внутренних органов является менее объемным процессом, но не менее важным для восстановления структурно-функциональной целостности организма. Особый интерес представляет способность зародышей на ранних стадиях развития восстанавливаться после значительной утраты материала. Эта способность была последним аргументом в борьбе между сторонниками преформизма и эпигенеза и привела в 1908 г. Г. Дриша к концепции эмбриональной регуляции.

 

 

Рис. 8.24. Регенерация комплекса органов у некоторых видов беспозвоночных животных. А — гидра;Б — кольчатый червь; В — морская звезда

(пояснение см. в тексте)

 

Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидермальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом (рис. 8.25). Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, однако они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану.

 

 

Рис. 8.25. Схема некоторых событий, происходящих

при эпителизации кожной раны у млекопитающих.

А—начало врастания эпидермиса под некротическую ткань; Б— срастание эпидермиса и отделение струпа:

1—соединительная ткань, 2—эпидермис, 3—струп, 4—некротическая ткань

 

К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно падает. По одной из версий, эта вспышка вызвана понижением концентрации ингибитора митозов — кейлона.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Регенерация конечности тритона и аксолотля изучена детально. Выделяют регрессивную и прогрессивную фазы регенерации. Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка кровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.

Затем начинается разрушение остеоцитов на дистальном конце кости и других клеток. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Затем вместо образования плотного сплетения волокон соединительной ткани, как это происходит при заживлении ран у млекопитающих, в области под раневым эпидермисом утрачиваются дифференцированные ткани. Характерна остеокластическая эрозия кости, что является гистологическим признаком дедифференцировки. Раневой эпидермис, уже пронизанный регенерирующими нервными волокнами, начинает быстро утолщаться. Промежутки между тканями все более заполняются мезенхимоподобными клетками. Скопление мезенхимных клеток под раневым эпидермисом является главным показателем формирования регенерационной бластемы. Клетки бластемы выглядят одинаково, но именно в этот момент закладываются основные черты регенерирующей конечности.

Затем начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Рост бластемы происходит на фоне идущего полным ходом формирования черт конечности, т.е. ее морфогенеза. Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.

Некоторые стадии регенерации передней конечности у тритона после ампутации на уровне плеча показаны на рис. 8.26. Время, необходимое для полной регенерации конечности, варьирует в зависимости от размера и возраста животного, а также от температуры, при которой она протекает.

 

Рис. 8.26. Стадии регенерации передней конечности у тритона

 

У молодых личинок аксолотлей конечность может регенерировать за 3 нед, у взрослых тритонов и аксолотлей за 1—2 мес, а у наземных амбистом для этого требуется около 1 года.

При эпиморфной регенерации не всегда образуется точная копия удаленной структуры. Такую регенерацию называют атипичной. Существует много разновидностей атипичной регенерации. Гипоморфоз — регенерация с частичным замещением ампутированной структуры. Так, у взрослой шпорцевой лягушки возникает шиловидная структура вместо конечности. Гетероморфоз — появление иной структуры на месте утраченной. Это может проявляться в виде гомеозисной регенерации, заключающейся в появлении конечности на месте антенн или глаза у членистоногих, а также в изменении полярности структуры. Из короткого фрагмента планарии можно стабильно получать биполярную планарию (рис. 8.27).

Встречается образование дополнительных структур, или избыточная регенерация. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более (рис. 8.28). Можно получить больше пальцев при регенерации конечности аксолотля, повернув конец культи конечности на 180°. Дополнительные структуры являются зеркальным отражением исходных или регенерировавших структур, рядом с которыми они расположены (закон Бэйтсона).

 

Рис. 8.27. Биполярная планария

Морфаллаксис — это регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части. На раневой поверхности в этом случае не происходит значительных формообразовательных процессов. Отрезанный кусочек сжимается, клетки внутри него перестраиваются, и возникает целая особь

уменьшенных размеров, которая затем растет. Этот способ регенерации впервые описал Т. Морган в 1900 г. В соответствии с его описанием морфаллаксис осуществляется без митозов. Нередко имеет место сочетание эпиморфного роста на месте ампутации с реорганизацией путем морфаллаксиса в прилежащих частях тела.

 

Рис. 8.28. Многоголовая планария, полученная после ампутации головы

и нанесения насечек на культю

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.

Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.

Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия.

Восстановление отдельных мезодермальных тканей, таких, как мышечная и скелетная, называют тканевой регенерацией. Для регенерации мышцы важно сохранение хотя бы небольших ее культей на обоих концах, а для регенерации кости необходима надкостница. Регенерация путем индукции происходит в определенных мезодермальных тканях млекопитающих в ответ на действие специфических индукторов, которые вводят внутрь поврежденной области. Этим способом удается получить полное замещение дефекта костей черепа после введения в него костных опилок.

Таким образом, существует множество различных способов или типов морфогенетических явлений при восстановлении утраченных и поврежденных частей организма. Различия между ними не всегда очевидны, и требуется более глубокое понимание этих процессов.

Изучение регенерационных явлений касается не только внешних проявлений. Существует целый ряд вопросов, носящих проблемный и теоретический характер. К ним относятся вопросы регуляции и условий, в которых протекают восстановительные процессы, вопросы происхождения клеток, участвующих в регенерации, способности к регенерации у различных групп, животных и особенностей восстановительных процессов у млекопитающих.

Установлено, что в конечности амфибий после ампутации и в процессе регенерации происходят реальные изменения электрической активности. При проведении электрического тока через ампутированную конечность у взрослых шпорцевых лягушек наблюдается усиление регенерации передних конечностей. В регенератах увеличивается количество нервной ткани, из чего делается вывод, что электрический ток стимулирует врастание нервов в края конечностей, в норме не регенерирующих.

Попытки стимулировать подобным образом регенерацию конечностей у млекопитающих оказались безуспешными. Так, под действием электрического тока или при сочетании действия электрического тока с фактором роста нервов удавалось получить у крысы только разрастание скелетной ткани в виде хрящевых и костных мозолей, которые не походили на нормальные элементы скелета конечностей.

Несомненна регуляция регенерационных процессов со стороны нервной системы. При тщательной денервации конечности во время ампутации эпиморфная регенерация полностью подавляется и бластема никогда не образуется. Были проведены интересные опыты. Если нерв конечности тритона отвести под кожу основания конечности, то образуется дополнительная конечность. Если его отвести к основанию хвоста — стимулируется образование дополнительного хвоста. Отведение нерва на боковую область никаких дополнительных структур не вызывает. Эти эксперименты привели к созданию концепции регенерационных полей. .

Было установлено, что для инициации регенерации решающим является число нервных волокон. Тип нерва роли не играет. Влияние нервов на регенерацию связывается с трофическим действием нервов на ткани конечностей.

Получены данные в пользу гуморальной регуляции регенерационных процессов. Особенно распространенной моделью для изучения этого является регенерирующая печень. После введения нормальным интактным животным сыворотки или плазмы крови от животных, подвергшихся удалению печени, у первых наблюдалась стимуляция митотической активности клеток печени. Напротив, при введении травмированным животным сыворотки от здоровых животных получали снижение количества митозов в поврежденной печени. Эти опыты могут свидетельствовать как о присутствии в крови травмированных животных стимуляторов регенерации, так и о присутствии в крови интактных животных ингибиторов клеточного деления. Объяснение результатов опытов затрудняется необходимостью учитывать иммунологический эффект инъекций.

Важнейшим компонентом гуморальной регуляции компенсаторной и регенерационной гипертрофии является иммунологический ответ. Не только частичное удаление органа, но и многие воздействия вызывают возмущения в иммунном статусе организма, появление аутоантител и стимуляцию процессов клеточной пролиферации.

Большие разногласия существуют по вопросу о клеточных источниках регенерации. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезенхимными? Существует три предположения.

1. Гипотеза резервных клеток подразумевает, что предшественниками регенерационной бластемы являются так называемые резервные клетки, которые останавливаются на некоем раннем этапе своей дифференцировки и не участвуют в процессе развития до получения стимула к регенерации.

2. Гипотеза временной дедифференцировки, или модуляции, клеток предполагает, что в ответ на регенерационный стимул дифференцированные клетки могут утрачивать признаки специализации, но затем снова дифференцируются в тот же клеточный тип, т.е., потеряв на время специализацию, они не утрачивают детерминацию.

3. Гипотеза полной дедифференцировки специализированных клеток до состояния, сходного с мезенхимными клетками и с возможной последующей трансдифференцировкой или метаплазией, т.е. превращением в клетки другого типа, полагает, что в этом случае клетка утрачивает не только специализацию, но и детерминацию.

Современные методы исследования не позволяют с абсолютной достоверностью доказать все три предположения. Тем не менее абсолютно верно, что в культях пальцев аксолотля происходит высвобождение хондроцитов из окружающего матрикса и миграция их в регенерационную бластему. Дальнейшая их судьба не определена. Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репрограммироватьсвой синтетический аппарат. Например, хондроцит становится миоцитом или наоборот.

Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными.

Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении. Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. В некоторых случаях наблюдали регенерацию сосков даже при ампутации их по основанию. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Об особенностях регенерации печени уже было сказано выше. Различные ткани млекопитающих тоже хорошо регенерируют. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни нежные морфогенетические процессы затрудняли бы существование. Достижения биологии в области регенерации успешно применяются в медицине. Однако в проблеме регенерации очень много нерешенных вопросов.

 

www.ronl.ru

Реферат Регенерация

скачать

Реферат на тему:

План:

    Введение
  • 1 Физиологическая регенерация
  • 2 Репаративная регенерация
  • 3 Регенерация у животных
  • 4 Регенерация у человека
  • ПримечанияЛитература

Введение

Регенера́ция — свойство всех живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток).

Регенерацией называется восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической.

1. Физиологическая регенерация

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

2. Репаративная регенерация

Морская звезда регенерирует потерянные лучи

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

3. Регенерация у животных

Хамелеон

Способность к регенерации широко распространена среди животных. Низшие животные, как правило, чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого её фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как круглые черви и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые сравнительно близкородственные животные сильно различаются в этом отношении. Так, у дождевого червя только из передней половины тела может полностью регенерировать новая особь (т. к. обе части отращивают задний конец тела, и бывшая задняя часть остаётся без «головного мозга»), тогда как пиявки не способны восстановить даже отдельные утраченные органы. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит. Нет также чёткой связи между характером эмбрионального развития и способностью к регенерации. Так, у некоторых животных со строго детерминированным развитием (гребневики, полихеты) во взрослом состоянии регенерация развита хорошо (у ползающих гребневиков и некоторых полихет целая особь может восстановиться из небольшого участка тела), а у некоторых животных с регулятивным развитием (морские ежи, млекопитающие) — достаточно слабо.

Многие беспозвоночные способны к регенерации значительной части тела. У большинства видов губок, гидроидных полипов, многих видов плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чем свидетельствует следующий эксперимент. Губки трёх разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трём исходным. Из других животных к восстановлению целого организма из взвеси клеток способна только гидра.

4. Регенерация у человека

У человека хорошо регенерирует эпидермис, к регенерации способны также такие его производные, как волосы и ногти. Способностью к регенерации обладает также костная ткань (кости срастаются после переломов). С утратой части печени (до 75 %), щитовидной или поджелудочной железы клетки оставшихся фрагментов начинают усиленно делиться и восстанавливают первоначальные размеры органа. Нервные клетки также обладают такой способностью. При определённых условиях могут регенерировать кончики пальцев[1]. В связи с обнаружением на регенерирующих тканях слабых электрических напряжений можно предположить, что слабые электрофорезные токи ускоряют регенерацию.

Примечания

  1. Би-би-си | В мире | Как американец отрастил отрезанный палец - news.bbc.co.uk/hi/russian/international/newsid_7377000/7377456.stm

Литература

  1. Долматов И. Ю., Машанов В. С. Регенерация у голотурий. — Владивосток: Дальнаука, 2007. — 208 с.
  2. Tanaka EM. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev. 2003 Oct;13(5):497-501. PMID 14550415 - www.ncbi.nlm.nih.gov/pubmed/14550415?dopt=Abstract
  3. Nye HL, Cameron JA, Chernoff EA, Stocum DL. Regeneration of the urodele limb: a review. Dev Dyn. 2003 Feb;226(2):280-94. PMID 12557206 - www.ncbi.nlm.nih.gov/pubmed/12557206?dopt=Abstract
  4. Gardiner DM, Blumberg B, Komine Y, Bryant SV. Regulation of HoxA expression in developing and regenerating axolotl limbs. Development. 1995 Jun;121(6):1731-41. PMID 7600989 - www.ncbi.nlm.nih.gov/pubmed/7600989?dopt=Abstract
  5. Putta S, Smith JJ, Walker JA, Rondet M, Weisrock DW, Monaghan J, Samuels AK, Kump K, King DC, Maness NJ, Habermann B, Tanaka E, Bryant SV, Gardiner DM, Parichy DM, Voss SR, From biomedicine to natural history research: EST resources for ambystomatid salamanders. BMC Genomics. 2004 Aug 13;5(1):54. PMID 15310388 - www.ncbi.nlm.nih.gov/pubmed/15310388?dopt=Abstract
  6. Andrews, Wyatt. Medicine's Cutting Edge: Re-Growing Organs - www.cbsnews.com/stories/2008/03/22/sunday/main3960219.shtml, Sunday Morning, CBS News (March 23, 2008).

wreferat.baza-referat.ru

Реферат - Регенерация у человека и животных

Способность к регенерации широко распространена среди животных. Вообще говоря, низшие животные чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого ее фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как гребневики и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые близкородственные животные сильно различаются в этом отношении. Так, у дождевого червя из небольшого кусочка тела может полностью регенерировать новая особь, тогда как пиявки неспособны восстановить один утраченный орган. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит.

Многие беспозвоночные способны к регенерации значительной части тела. У губок, гидроидных полипов, плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чем свидетельствует следующий эксперимент. Губки трех разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трем исходным.

Ленточный червь, длина которого во много раз превышает его ширину, способен воссоздать целую особь из любого участка своего тела. Теоретически возможно, разрезав одного червя на 200 000 кусочков, получить из него в результате регенерации 200 000 новых червей. Из одного луча морской звезды может регенерировать целая звезда.

Моллюски, членистоногие и позвоночные не способны регенерировать целую особь из одного фрагмента, однако у многих из них происходит восстановление утраченного органа. Некоторые в случае необходимости прибегают к аутотомии. Птицы и млекопитающие как эволюционно наиболее продвинутые животные меньше других способны к регенерации. У птиц возможно замещение перьев и некоторых частей клюва. Млекопитающие могут восстанавливать покров, когти и частично печень; они способны также к заживлению ран, а олени — к отращиванию новых рогов взамен сброшенных.

Процессы регенерации. В регенерации у животных участвуют два процесса: эпиморфоз и морфаллаксис. При эпиморфической регенерации утраченная часть тела восстанавливается за счет активности недифференцированных клеток. Эти клетки, похожие на эмбриональные, накапливаются под пораненным эпидермисом у поверхности разреза, где они образуют зачаток, или бластему. Клетки бластемы постепенно размножаются и превращаются в ткани нового органа или части тела. При морфаллаксисе другие ткани тела или органа непосредственно преобразуются в структуры недостающей части. У гидроидных полипов регенерация происходит главным образом путем морфаллаксиса, а у планарий в ней одновременно участвуют и эпиморфоз, и морфаллаксис.

Регенерация путем образования бластемы широко распространена у беспозвоночных и играет особенно важную роль в регенерации органов у амфибий. Существует две теории происхождения бластемных клеток: 1) клетки бластемы происходят из «резервных клеток», т.е. клеток, оставшихся неиспользованными в процессе эмбрионального развития и распределившихся по разным органам тела; 2) ткани, целостность которых была нарушена при ампутации, «дедифференцируются» в области разреза, т.е. дезинтегрируются и превращаются в отдельные бластемные клетки. Таким образом, согласно теории «резервных клеток», бластема образуется из клеток, остававшихся эмбриональными, которые мигрируют из разных участков тела и скапливаются у поверхности разреза, а согласно теории «дедифференцированной ткани», бластемные клетки происходят из клеток поврежденных тканей.

В подтверждение как одной, так и другой теории имеется достаточно данных. Например, у планарий резервные клетки более чувствительны к рентгеновским лучам, чем клетки дифференцированной ткани; поэтому их можно разрушить, строго дозируя облучение, чтобы не повредить нормальные ткани планарии. Облученные таким образом особи выживают, но утрачивают способность к регенерации. Однако если только переднюю половину тела планарии подвергнуть облучению, а затем разрезать, то регенерация происходит, хотя и с некоторой задержкой. Задержка свидетельствует о том, что бластема образуется из резервных клеток, мигрирующих на поверхность разреза из необлученной половины тела. Миграцию этих резервных клеток по облученной части тела можно наблюдать под микроскопом.

Сходные эксперименты показали, что у тритона регенерация конечностей происходит за счет бластемных клеток местного происхождения, т.е. за счет дедифференцировки поврежденных тканей культи. Если, например, облучить всю личинку тритона, за исключением, скажем, правой передней конечности, а затем ампутировать эту конечность на уровне предплечья, то у животного отрастает новая передняя конечность. Очевидно, что необходимые для этого бластемные клетки поступают именно из культи передней конечности, так как все остальное тело подверглось облучению. Более того, регенерация происходит даже в том случае, если облучают всю личинку, за исключением участка шириной 1 мм на правой передней лапке, а затем последнюю ампутируют, производя разрез через этот необлученный участок. В этом случае совершенно очевидно, что бластемные клетки поступают с поверхности разреза, поскольку все тело, включая правую переднюю лапку, было лишено способности к регенерации.

Описанные процессы анализировали с применением современных методов. Электронный микроскоп позволяет наблюдать изменения в поврежденных и регенерирующих тканях во всех деталях. Созданы красители, выявляющие определенные химические вещества, содержащиеся в клетках и тканях. Гистохимические методы (с применением красителей) дают возможность судить о биохимических процессах, происходящих при регенерации органов и тканей.

Полярность. Одна из самых загадочных проблем в биологии — происхождение полярности у организмов. Из шаровидного яйца лягушки развивается головастик, у которого с самого начала на одном конце тела находится голова с головным мозгом, глазами и ртом, а на другом — хвост. Подобным же образом, если разрезать тело планарии на отдельные фрагменты, на одном конце каждого фрагмента развивается голова, а на другой — хвост. При этом голова всегда образуется на переднем конце фрагмента. Эксперименты ясно показывают, что у планарии существует градиент метаболической (биохимической) активности, проходящий по передне-задней оси ее тела; при этом наивысшей активностью обладает самый передний конец тела, а в направлении к заднему концу активность постепенно снижается. У любого животного голова всегда образуется на том конце фрагмента, где метаболическая активность выше. Если направление градиента метаболической активности в изолированном фрагменте планарии изменить на противоположное, то и формирование головы произойдет на противоположном конце фрагмента. Градиент метаболической активности в теле планарий отражает существование какого-то более важного физико-химического градиента, природа которого пока неизвестна.

В регенерирующей конечности тритона полярность новообразуемой структуры, по-видимому, определяется сохранившейся культей. По причинам, которые еще остаются неясными, в регенерирующем органе формируются только структуры, расположенные дистальнее раневой поверхности, а те, что расположены проксимальнее (ближе к телу), не регенерируют никогда. Так, если ампутировать кисть тритона, а оставшуюся часть передней конечности вставить обрезанным концом в стенку тела и дать этому дистальному (отдаленному от тела) концу прижиться на новом, необычном для него месте, то последующая перерезка этой верхней конечности вблизи плеча (освобождающая ее от связи с плечом) приводит к регенерации конечности с полным набором дистальных структур. У такой конечности имеются на момент перерезки следующие части (начиная с запястья, слившегося со стенкой тела): запястье, предплечье, локоть и дистальная половина плеча; затем, в результате регенерации, появляются: еще одна дистальная половина плеча, локоть, предплечье, запястье и кисть. Таким образом, инвертированная (перевернутая) конечность регенерировала все части, расположенные дистальнее раневой поверхности. Это поразительное явление указывает на то, что ткани культи (в данном случае культи конечности) контролируют регенерацию органа. Задача дальнейших исследований — выяснить, какие именно факторы контролируют этот процесс, что стимулирует регенерацию и что заставляет клетки, обеспечивающие регенерацию, скапливаться на раневой поверхности. Некоторые ученые полагают, что поврежденные ткани выделяют какой-то химический «раневой фактор». Однако выделить химическое вещество, специфичное для ран, пока не удалось

Древо, которое существует в нашем сознании, имеет внутреннее и внешние связи проявления. В организме это связи головного мозга с каждым определенным органом. Баланс с каждой клеткой и еще очень важно с окружающей средой.

Чтобы регенерация органа прошла правильно, нужно дерево жизни, с миллиардами веточек, которые необходимы для того, чтобы все клетки ЗНАЛИ друг о друге все.

Если МЫ нарушаем такое равновесие и нарушаем сбор информации со всего организма, плюс неправильно РАСПАКОВЫВАЕМ ДНК, то процесс регенерации может затормозиться. Ведь с ДНК все начинается. Она открытая система. Открыта в Космос гораздо больше, чем многие другие элементы структуры. Почему АТОМ металла вмонтирован между фосфатными группировками? Кобальт, Никель, Железо, Кальций, Магний, не случайно.

Таким образом, идет сканирование биосистем. Для того чтобы орган был построен правильно, процесс должен быть соотнесен со всем организмом.

Поэтому идет сканирование всего организма. Плюс космическая информация, Божественная информация. И в итоге возникает орган, как часть в целом. Дальше.

Если Вы получили НОВЫЙ ОРГАН, выполненный из идеальных клеток, вы переходите от нового органа к новому будущему. Значит, при наличии древа в сознании начинает работать не на уровне молекул ДНК, а они начинают работать как ЦЕЛОСТНАЯ СИСТЕМА, как человек единый, подчиняясь управлению сознания, а не только подсознательных автоматизмов. И после этого идет сканирование по всему организму, идет нарастание гомеостаза. Завершающая часть регенерации органа., который был поражен.

Раз у человека есть норма, значит у человека есть будущее. Получается следующее.

Регенерация возможна тогда, когда ВКЛЮЧЕНО БУДУЮЩЕЕ. Это бедующее должно стать НАСТОЯЩИМ. Это ПРОИСХОДИТ ПОТОМУ, ЧТО СОЗНАНИЕ ОБЛАДАЕТ СВОЙСТВАМИ ОТРАЖЕНИЯ ВСЕЙ РЕАЛЬНОСТИ НА КАЖДОМ СВОЕМ СЕГМЕНТЕ, Т.Е. В КАЖДОМ СЕГМЕНТЕ ИСТИННОГО СОЗНАНИЯ СУЩЕСТВУЕТ ВСЯ РЕАЛЬНОСТЬ МИРА ОДНОВРЕМЕННО.

Материя создается из энергии света, наполненной жизнью. Душа должна выстроить ЛУЧИ Световые в сторону здоровых клеток и всего физического тела, а также событий выздоровления на шкале времени. Душа выстраивает ВАШУ ЛИЧНУЮ РЕАЛЬНОСТЬ. У нее и спереди и сзади теперь здоровые клетки, здорового физического тела.

Значит, сознание в предсмертный момент соединяется с душой и Душа дает проявления того позитивного Будущего, к которому ВЫ СТРЕМИТЕСЬ. Делает она это через сознание, т.е. Душа точно знает, что она может изменить любое негативное событие, что она неразрушима.

Но она это знает там, в своем пространстве, а здесь она отражена сознанием и видит через сознание. А сознание есть в каждой клетке физ. тела. Тогда кому нужно показать, что ситуация исправлена и что для этого нужно действовать. Сознанию это нужно показать и научить его делать, чтобы преодолеть деструкцию в организме.

Вот такой отрывочек, чтобы настроить вас на понимание, что процесс регенерации, несмотря на тот листочек, который раздал, является гораздо более сложным.

И 99.99% делается не вами, а ДЕЛАЕТСЯ ЗА ВАС. Но и эта сотая процента, которую должны сделать ВЫ, чрезвычайно важна и чрезвычайно значительна. Потому, что если люди подходят к этому с колебанием и сомнением, то она начинает размывать будущее, которое вы желаете.

Что вы здоровы, что у вас впереди нескончаемое количество лет и все подобное.

Я говорю о наших технологиях. Если мы думаем о жизни впереди, а не о смерти впереди, нас ждет ЖИЗНЬ. Если мы думаем о здоровье, нас ждет ЗДОРОВЬЕ ВПЕРЕДИ. А если мы думаем, что что-то плохое произойдет, то плохое произойдет и надо отложить деньги на пенсию и пр.

Вот вам технология макроуправления, когда миллионы сознания работают в УНИСОН! Вот к чему призывает Грабовой, в чем его величайшая заслуга, он нас всех призывает к жизни. Он нам всем говорит, смерти нет, он нам всем говорит, можно воскрешать через наше сознание.

Какое будет наше сознание, как оно ВИБРИРУЕТ В ПРОСТРАНСТВЕ, такой и будет РЕАЛЬНОСТЬ. Если человек не управляет событиями жизни, это как весы механические вправо — влево.

Нужен третий компонент ТРИАДНОСТЬ, вернее не триадность, потому, что звучит, как 3 ада. СОЗНАНИЕ — само по себе, ДУХ сам по себе, ДУША сама по себе. Это 3 ада, а нужно ТРИЕДИНСТВО или ТРОИЦА.

Вот даже в словах нужно быть очень осторожным, какие слова употреблять.

И если кто-то пытается расколоть эти структуры, на этих людей надо обращать внимание. Они сразу проявиться. Тогда понятно, от кого они работают, на кого они работают и чего хотят достичь.

Потому что по-другому их не обнаружишь, только через поступки их можно увидеть. Через речи, которые они говорят. Можно назваться каким угодно именем и званием, можно войти в духовные структуры и занять в них очень высокое место, а поступить как свинья последняя. Вот такой случай.

Задача Григория Петровича любую структуру, которая собирается вокруг него, преобразовать до положительной. Но видно же, кто что делает по поступкам. Т.е не важно, какой пост человек занимает, а смотреть по его делам и поступкам.

Вы знаете, что регенерация зубов и регенерация волос — это одна из самых сложных регенераций, потому, что как волосы, так и зубы имеют как внутренние, так и внешние проявления. Это в первых, а во вторых и волосы, и зубы подвержены К.С. (коллективное сознание). А вы знаете, К.С. очень сильная вещь.

И на сегодняшний день для того, чтобы изменить коллективное сознание, нужно, прежде всего, изменить свое индивидуальное сознание. И когда, меняя свое сознание мы изменяем К.С. и приобретаем тот мир, в котором мы хотим жить, ту медицину, которой хотим пользоваться и работать.

Почему мы с вами начинаем с самого сложного, с регенерации зубов, потому, что как показал опрос в разных группах — в этом нуждаются 100 %.

А во вторых, мы с вами встали на путь духовного развития, на сложный путь. А вы знаете, что бог не по силам креста не дает, и не ставит перед человеком невыполнимых задач, значит у нас с вами все по силам.

Цель нашей сегодняшней работы — это восстановление зубов до нормы методом регенерации по технологиям А.Н. Петрова. Это первое.

Вторая наша задача — это создать информационное событие вокруг, которого ваши врачи стоматологи будут чесать затылки и говорить, что этого не может быть.

А на это мы с вами ответим, никогда не говорите никогда! Потому что, то, что вчера было невероятно, сегодня имеет место БЫТЬ.

Вы знаете, что пространство и время вторично по отношению к СОЗНАНИЮ.

И ВСЕ исходит из нашего сознания.

СОЗНАНИЕ — это структура, позволяющая нашей душе управлять нашим физическим телом. Наша душа соприкасается со всей окружающей реальностью через сознание. Более того, наше тело соприкасается со всеми нашими клетками, вернее взаимодействует со всеми нашими клетками. А клетки это великое дело. Григорий Петрович говорит, знаешь клетку — знаешь все.

Сегодня мы будем работать с нашими стволовыми клетками через наше сознание. Как говорил Циолковский: человек полетит в космос, опираясь не на сумму своих крыльев, а на силу своего разума, сознания. Прежде чем приступить к регенерации, я кратко остановлюсь на клетках, на стволовых клетках, на голограмме зубов.

Григорий Петрович говорит: Рассматривайте ваше сознание как элемент Мира, поместите его в любую область Мира. Например, в любой из внутренних органов. В результате этот орган измениться в соответствии с тем, что вы заложили в свое сознание.

Но, к сожалению, ничего в мире не меняется так медленно, как наше сознание. Мы по молодости без сожаления удаляем свои зубы. Потом делаем мосты, протезы и совершенно не задумываемся над тем, почему ящерица может восстанавливать свой хвост, крокодил может восстанавливать свой потерянный зуб, а мы, созданные по образу и подобию довольствуемся какими-то совершенно чуждыми нашему организму протезами. Это все потому, что человечество искало технологичные пути развития, а он оказался на много легче, чем духовный.

Согласитесь со мной, что поставить протез можно за 2 недели, а регенерировать — все зависит от вас. И это могут делать только люди с истинным сознанием, а нам предстоит еще огромный путь регенерации.

В основе любой РЕГЕНЕРАЦИИ лежит соединение нашего сознания с сознанием творца. И если цель нашего занятия совпадает с целями творца, а я думаю, что совпадает, потому, что регенерация зубов это — это созидательный процесс, это гармоничный процесс, то у нас с вами все получиться.

У вас на руках есть листочки с голограммой зубов, посмотрите.

Скажу несколько слов о СТВОЛОВЫХ КЛЕТКАХ. В организме человека большое количество клеток. У разных авторов от 70-90 триллионов клеток. И в каждой клетке ежесекундно проходит 9 триллионов реакций. Вы только вдумайтесь в это. У каждого человека, у каждого органа, у каждой клетки есть свои задачи. И человек, по отношению к своим клеткам является своеобразным богом.

Как говорит Григорий Петрович клетка обладает высоким интеллектуальным потенциалом. Клетки обладают сознанием, клеточным сознанием. Более того, клетки понимают человеческую речь, потому, что на молекуле ДНК записана речь творца.

А речь ЭТО КОДЕКС ЗАКОНОВ. Как говорит академик Горяев, тексты на молекулах ДНК — это некая космическая эспиранта. И на каком бы мы языке не разговаривали, клетки понимают нас. И это очень важно нам понимать, потому, что мы с вами будем разговаривать с этим нежным зачатком, в который мы сегодня заложим корневую закладку. Мы будем с ней разговаривать как с младенцем, когда вынашиваем своих детей.

Ежесуточно в организме человека миллиард клеток погибает и миллиард рождается заново. Стволовые клетки — это уникальные клетки. Они не имеют специализацию и способны к размножению и СПОСОБНЫ СОЗДАВАТЬ ЛЮБУЮ ТКАНЬ ВЗРОСЛОГО ОРГАНИЗМА.

Эти клетки находятся в костном мозге в плоских и трубчатых костях. Не путайте, не в спинном мозге. Эти клетки, как запчасти нашего организма, они как скорая помощь спешат к месту катастрофы. Они способны преодолевать значительные расстояния в организме, чтобы попасть на место катастрофы.

Сейчас их стали широко применять в медицине. В Москве работает клиника федерального значения, где клеточной терапией занимаются более 20 лет. Там лечат очень серьезные практически неизлечимые заболевания: рассеянный склероз, Паркинсона, гепатиты, циррозы печени, ишемические болезни сердца и т.д.

Подведем итог, что мы имеем. Мы имеем уникальный инструмент — наше сознание, мы имеем в своем организме — УНИКАЛЬНЫЕ КЛЕТКИ — СТВОЛОВЫЕ, к сожалению, к 60 годам стволовых клеток становиться все меньше и меньше. Вот почему с таким трудом у людей пожилого возраста заживают переломы и всевозможные раны и с легкостью с этими проблемами справляются дети и подростки.

Теперь перейдем к ГОЛОГРАММЕ ЗУБОВ.

Вам каждому в своем воображении или зоне управления нужно будет построить голограмму отсутствующего зуба. Вы находите, какой зуб у вас отсутствует. Регенерацию мы начинаем с верхней челюсти. Если в верхней челюсти все зубы есть, то регенерацию начинаем с нижней челюсти.

Если кто-то не может определить, какой зуб отсутствует. Потому, что бывает так, что человек теряет зубы очень рано. Потом происходит сдвиг всех зубов, они меняют свое положение, и, получается, трудно определить 6 или 7 или 5 зуб. А у них разное строение.

Сейчас в зале присутствует женщина, у которой растет зуб справа на нижней челюсти -5-ка. Но я этот зуб не могу вести, как фрактологию, т.к. не видела его до того, а увидела уже прорезавшимся. А мне нужен ваш статус до того, как прорезался зуб. Иногда зубы растут и в 30 и в 40 и в 50, в моей практике это было.

Молочные зубы начинают закладываться на 7 неделе беременности. Постоянные зубы начинают закладываться на 17 недели беременности. А теперь давайте посчитаем — 7 неделя беременности — это 2-ой месяц. Примерно 7 месяцев + 1-ый молочный зуб прорезается в 6 месяцев- это примерно проходит год и 3 месяца до появления первого зуба.

Для чего я это вам говорю, это ответ тем, кто хочет регенерировать зубы за 2 недели. А постоянные зубы режутся в 5 лет, это, как правило, 6 коренные зубы у ребенка, не первые центральные резцы. Родители, как правило, этого не знают. Так сколько нужно времени, чтобы прорезался постоянный зуб — 5 с лишним лет.

Поэтому я повторяю, что технологически путь значительно проще, чем духовный путь развития. Раз мы встали на путь духовного развития, мы будем его продолжать, получив технологии регенерации зубов, будем продолжать этот путь постижения мира, постижения себя, как частицу мира.

Потому, что результат не может, достигнут до тех пор, пока мы не осознаем себя элементом мира, частью мира. И тогда, раз, щелчок и результат у нас получается.

Теперь я прочитаю вам технологию Петрова А.Н.:

А ваша задача почувствовать, что происходит в том месте, где вы уже наметили, где будет происходить РЕГЕНЕРАЦИЯ ЗУБА.

Повторяю, что регенерацию мы начали с верхней челюсти, СТВОЛОВУЮ КЛЕТКУ мы берем из костного мозга одного из тел позвонков. Так рекомендует А.Петров. Мы не будем ни на йоту отходить от его технологии, потому, что она отработана и дает положительные результаты.

Мы обращаемся к своему Божественному сознанию и просим его: взять мою СТВОЛОВУЮ КЛЕТКУ из костного мозга одного из позвонков и ТЕЛЕПОРТИРОВАТЬ на границу между челюстью и отсутствующем зубом.

Сознание способно к эффекту телепортации, на этом основаны все методы регенерации.

Далее импульсом выстраиваем голограмму КОРНЯ ЗУБА. В ВЕРХУШКУ ЗУБА ВСТРАИВАЕМ КЛЕТКУ. Наши клетки подчиняются нашему сознанию, и хромосомы тоже подчиняются нашему сознанию. Мы даем ИМПУЛЬС из души. Энергия Духа и Знания Души входят в клетку, входят в хромосомы.

Так, что мы сейчас импульсом выстраиваем голограмму корня здорового зуба. Для этого СОЗНАНИЕМ заходим в хромосому, высвечиваем энергией информационный каркас ЗДОРОВОГО ЗУБА. Мысленно выбиваем. Касается импульс и 2 клеточки, касаемся этой первой клеточки — еще 2 клеточки. Таким образом, получается 5 клеточек, касаемся еще первой клеточки — 8 клеточек.

Таким образом, образовался ЗАРОДЫШ. Это корневая закладка.

Далее мы вводим словесное кодирование. Каждая клетка знает, что ей строить. Зуб это сложное образование, это не одна костная ткань. Зуб состоит из эмали, здесь внутри находиться ДЕНТИН, здесь корень, покрытый цементом. Внутри зуба проходит НЕРВНО — СОСУДИСТЫЙ ПУЧОК, который тоже имеет сложное строение. Состоит из нервов, сосудов, вен.

Поэтому, когда мы даем команду на клетку (СТВОЛОВУЮ КЛЕТКУ), ДЛЯ ВЫДЕЛЕНИЯ 9 КЛЕТКИ И ЭТИМ МЫ ВЫХОДИМ КАК БЫ ИЗ внутреннего во внешнее. Потому, что зуб имеет и внутреннее и внешнее проявление. Верхние зубы и нижние зубы — строение у них разное.

Счет начинается от средней линии, 2 резца центральных, 2 боковых, 2 клыка под номером 3,4 и 5-ый — это премоляры. 4-ый премоляр, как правило, имеет 2 корня, но может иметь и один. 6,7,8 имеют 3 корня. Но 8 зубы и верхние и нижние очень вариабельны. Они могут иметь 1,2,3 корня.

Нижние зубы распределены также, как и верхние. 6,7,8 зубы это мощные жевательные моляры. Эти жевательные зубы имеют по 2 корня, кроме 8, который, как я говорила вариабельны.

Поэтому, когда вы выстраиваете голограмму вашего регенерируемого зуба четко придерживаетесь указанному количеству корней зубов.

Если это 4 зуб, то 2 корня, если 6 — то 3. Я рассказала о ЗАКЛАДКЕ.

У кого нибудь есть ощущения?

Что такое РЕГЕНЕРАЦИЯ? Это МИНИВОСКРЕШЕНИЕ. Ведь регенерируя весь орган — организм просто омолаживается.

Вспомните пример у Петрова, как у одной женщины регенерировались яичники по законам всеобщих связей и причины следствий у нее регенерировался, и аппендицит и миндалины и она вообще омолодилась и почувствовала себя совершенно по-другому. Вы знаете по работам Г.П. и Петрова, что у нас есть клетки источники и клетки стоки.

Я долго думала, почему надо поставить клетки источники. Потом в работах Петрова и Грабового я нашла, что клетки ИСТОЧНИКИ ставятся для того, чтобы разрядить ткань.

Посмотрите, где у вас удален зуб, здесь у вас образовалась СФЕРОЗИРОВАННАЯ ТВЕРДОСТЬ, СФЕРОЗИРОВАННАЯ ТКАНЬ.

А вы здесь заложили нежный зачаток из 9 микроскопических стволовых клеточек. Им трудно пробиться и поэтому вокруг здесь ставятся клетки источники. А СОЗНАНИЕ само ЗНАЕТ, сколько клеток и сколько их кому поставить.

Теперь, когда зуб был на своем месте он был связан с ОПРЕДЕЛЕННЫМ ОРГАНОМ. Обратитесь к этой картинке, здесь нарисованы все связи. Обратите внимание, что все зубы связаны с желудочно-кишечным трактом, потому, что зубы — это начало ЖКТ.

Сейчас мы не будем восстанавливать эти связи. Кому не понятны синусы, это гайморовы и фронтальные пазухи. 3,4,5 связаны с синусами. Если какой-то орган удален, то жди заболевания еще где-то, т.е. какой-то орган чего-то недополучает, нарушена связь в организме.

Вот когда я училась в институте, то говорили, что аппендикс не нужен в организме и была одно время такая технология удалять у грудных младенцев аппендицит, чтобы не было проблем в будущем.

А что такое аппендицит — это очень важная часть в нашем организме, в первых это профилактика дизбактериоза, во вторых стимулирует перистальтику толстого кишечника. Удаляя аппендицит, вы обрекаете человека на запоры. Кроме того, аппендицит является ДЕПО ИММУННОЙ СИСТЕМЫ. Удаляя аппендицит, мы нарушаем эту связь, удаляя миндалины, мы нарушаем кольцо Пирогова, мы делаем свободным вход инфекции для верхних дыхательных путей.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.