Курсовая работа: Характерные особенности живых организмов. Реферат живые организмы


Курсовая работа - Характерные особенности живых организмов

РЕФЕРАТ ПО БИОЛОГИИ

на тему:

“ Характерные особенности живых организмов. ”

Анохин Вячеслав Сергеевич

группа ВТ-2

Москва — 1998

Всем живым организмам в большей или меньшей степени свойственны определенные размеры и форма, обмен веществ, подвижность, раздражимость, рост, размножение и приспособляемость. Хотя этот перечень кажется вполне четким и определённым, граница между живым и неживым довольно условна, и будем ли называть, например, вирусы живыми или неживыми, зависит от того определения жизни, которое мы примем. Неживые объекты могут обладать одним или несколькими из перечисленных свойств, но никогда не проявляют всю совокупность этих свойств одновременно. Кристаллы в насыщенном растворе могут “расти”, кусочек металлического натрия начинает быстро “бегать” по поверхности воды, а капля масла, плавающая в смеси глицерина и спирта, выпускает псевдоподии и передвигается наподобие амёбы.

Подавляющее большинство проявления жизни в конечном счете можно объяснить на основании тех же физических и химических законов, которым подчиняются неживые системы. Из этого следует, что если бы мы достаточно хорошо знали химическую и физиологическую основу жизненных явлений, то мы, возможно, были бы в состоянии синтезировать живое вещество. В сущности ферментативный синтез специфических молекул ДНК, осуществленный в пробирке Артуром Конбергом в 1958г., уже можно рассматривать как важный первый шаг в этом направлении*. Противоположный взгляд, называемый витализмом, был широко распространен среди биологов до начала этого века; они считали, что жизнь обуславливают и контролируют силы особого рода, необъяснимые в понятиях физики и химии. Многие явления жизни, казавшиеся такими таинственными при их первом открытии, удалось понять без привлечения особой “жизненной силы”, и разумно будет предположить, что и другие проявления жизни при их дальнейшем исследовании окажутся объяснимыми на научной основе.

* В конце 1967 г. А.Корнберг и его сотрудники получили новые важные результаты. Им удалось синтезировать специфическую ДНК вируса Æ Х174, обладающую биологической активностью. При заражении клеток эта искусственная ДНК ведет себя точно так же, как природная ДНК этого вируса.

[В.С.1] Специфическая организация. Каждый род живых организмов обладает характерными для него формой и внешним видом; взрослые индивидуумы каждого рода организмов, как правило, имеют характерную величину. Неживые объекты обычно имеют гораздо менее постоянные размеры и форму. Живые организмы не гомогенны, а состоят из различных частей, выполняющих специальные функции; таким образом, они характеризуются специфической сложной организацией. Структурной и функциональной единицей как растительных, так и животных организмов служит клетка — наиболее простая частица живого вещества, способная существовать самостоятельно. Но и сама клетка имеет специфическую организацию; клетки каждого типа обладают характерными размерами и формой, они имеют плазматическую мембрану, отделяющую живое вещество от окружающей среды, и содержат ядро — специализированную часть клетки, отдельную от остального ее вещества ядерной оболочкой. Ядро, как мы узнаем позже, играет важную роль в контроле и регулировании функций клетки. Тела высших животных и растений имеют ряд последовательно усложняющихся уровней организации: клетки организованы в ткани, ткани — в органы, а органы — в системы органов ..

Обмен веществ. Совокупность всех химических процессов, осуществляемых протоплазмой и обеспечивающих ее рост, поддержание и восстановление, называется обменом веществ или метаболизмом. Протоплазма каждой клетки непрерывно изменяется: она поглощает новые вещества, подвергает их разнообразным химическим изменениям, строит новую протоплазму и превращает в кинетическую энергию и тепло потенциальную энергию, заключенную в крупных молекулах белков, жиров и углеводов, по мере того как эти вещества превращаются в другие, более простые соединения. Это постоянное расходование энергии представляет собой одну из специфических и характерных особенностей живых организмов. Некоторые типы протоплазмы отличаются высокой интенсивностью обмена; очень высока она, например, у бактерий. Другие типы, как, например, протоплазма семян и спор, имеют столь низкий уровень обмена, что его с трудном можно обнаружить. Даже в пределах одного вида организмов или у одной особи интенсивность обмена может меняться в зависимости от таких факторов, как возраст, пол, общее состояние здоровья, активность эндокринных желез или беременность.

Процессы обмена могут быть анаболическими или катаболическими. Термин анаболизм относится к тем химическим процессам, при которых более простые вещества соединяются между собой с образованием более сложных веществ, что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизмом же называют расщепление этих сложных веществ, приводящее к освобождению энергии и к износу и расходованию протоплазмы. Процессы того и другого типа протекают непрерывно; более того, они находятся в сложной взаимозависимости и их трудно отделить друг от друга. Сложные соединения расщепляются, и их составные части соединяются друг с другом в новых комбинациях, образуя другие вещества. Примером сочетания катаболизма с анаболизмом могут служить взаимные превращения углеводов, белков и жиров, непрерывно происходящие в клетках нашего тела. Поскольку большинство анаболических процессов требует затраты энергии, должны происходить какие-то катаболические процессы, которые доставляли бы энергию для реакций, связанных с построением новых молекул.

Как у растений, так и у животных есть анаболическая и катаболическая фазы обмена. Однако растения (за некоторым исключением) обладают способностью синтезировать свои собственные органические вещества из неорганических веществ почвы и воздуха; животные же зависят в своем питании от растений.

Подвижность. Третья особенность живых организмов — это их способность к движению. Подвижность большинства животных совершенно очевидна: они ползают, плавают, бегают или летают. У растений движения гораздо более медленны и не так заметны, но они все же происходят. Некоторые животные — губки, кораллы, устрицы, кое-какие паразиты — не передвигаются с места на место, но у большинства из них имеются реснички или жгутики, приводящие в движение окружающую их жидкую среду, которая доставляет этим животным пищу и все необходимое для жизни. Движение может быть результатом мышечного сокращения, биения микроскопических протоплазменных волосков, называемых ресничками и жгутиками, или медленного течения массы протоплазмы (амебоидное движение ). Течение протоплазмы в клетках листьев растений известно также под названием циклоза .

Раздражимость. Живые организмы обладают раздражимостью: они реагируют на раздражители, т.е. на физические или химические изменения в непосредственно окружающей их среде. Раздражители, вызывающие реакцию у большинства животных и растений, — это изменения цвета, интенсивности или направления световых лучей, температура, давление, звук и изменения в химическом составе почвы, воды или атмосферы, окружающей организм. У человека и других сложноорганизованных животных некоторые высокоспециализи-рованные клетки тела обладают особой чувствительностью к раздражителям определенного типа: палочки и колбочки в сетчатке глаза реагируют на свет, определенные клетки в носу и во вкусовых почках языка — на химические раздражения, а специальные клетки кожи — на изменения температуры или давления. У низших животных и у растений такие специализированные клетки могут отсутствовать, но весь организм реагирует на раздражение. Одноклеточные животные и растения отвечают движением по направлению к раздражителю или от него при воздействии тепла или холода, некоторых химических веществ, света или при прикосновении микроиглы.

Раздражимость растительных клеток не всегда бывает такой заметной, как раздражимость животных клеток, но и растительные клетки чувствительны к изменениям окружающей их среды. Течение протоплазмы в клетках растений иногда ускоряется или прекращается под действием изменений в освещении. Некоторые растения (например, венерина мухоловка, растущая в болотах Каролины) обладают поразительной чувствительностью к прикосновению и могут ловить насекомых. Их листья способны перегибаться вдоль средней жилки, а края листьев снабжены волосками. В ответ на раздражение, производимое насекомым, лист складывается, его края сближаются, а волоски, переплетаясь, не позволяют добыче выскользнуть. Затем лист выделяет жидкость, которая убивает и переваривает насекомое. Способность ловить насекомых развилась как приспособление, позволяющее таким растениям получать часть необходимого для их роста азота из “поедаемой” добычи, так как почва, на которой они растут, очень бедна азотом.

Рост. Следующая особенность живых организмов — рост — представляет собой результат анаболизма. Прирост массы протоплазмы может происходить за счет увеличения размеров отдельных клеток, за счет увеличения числа клеток или за счет того и другого. Увеличение размеров клеток может быть следствием простого поглощения воды, но такого рода набухание обычно не рассматривается как рост. Понятие рост относится лишь к тем процессам, при которых увеличивается количество живого вещества организма, измеряемое количеством азота или белка. Рост различных частей организма может быть либо равномерным, либо одни части растут быстрее, так что пропорции тела по мере роста изменяются. Некоторые организмы (например, большинство деревьев) могут расти в течение неопределенно долгого времени. Большинство животных имеет ограниченный период роста, заканчивающийся по достижении взрослым животным определен-ных размеров. Одна из замечательных особенностей процесса роста состоит в том, что всякий растущий орган продолжает в то же время функционировать.

Размножение. Если есть какое-либо свойство, которое можно считать совершенно обязательным атрибутом жизни, так это способность к воспроизведению. Наиболее простые вирусы лишены обмена веществ, не двигаются и не растут, и все-таки, поскольку они способны воспроизводить себя (а также мутировать), большинство биологов считает их живыми организмами. Одно из основных положений биологии гласит, что “всё живое происходит только от живого”.

Классические опыты, опровергающие теорию самоп-роизвольного зарождения жизни, произвел итальянец Франческо Реди около 1680г. Реди очень простым способом доказал, что “черви” (личинки мух) не образуются из гниющего мяса. Он положил по куску мяса в три банки, одну из которых оставил открытой, второю обвязал тонкой марлей, а третью — пергаментом. Все три куска мяса начали гнить, но “черви” появились только в мясе, находившемся в открытой банке. Несколько червяков появилось на марле, покрывавшей вторую банку, но в мясе их не было, как не было и в мясе, закрытом пергаментом. Таким образом Реди доказал, что “черви” не возникли из гниющего мяса, а вывелись из яиц, отложенными мухами, привлеченными запахом разлагающегося мяса. Дальнейшие наблюдения показали, что из личинок развиваются взрослые мухи, которые снова откладывают яйца. Примерно через два столетия Луи Пастер установил, что и бактерии возникают не путем самозарождения, а только от предсуществовавших бактерий. Субмикроскопические фильтру-ющиеся вирусы не образуются из невирусного материала, а происходит только от существовавших ранее вирусов.

Процесс размножения может сводиться к простому разделению одного индивидуума на два. Однако у большей части животных и растений он связан с образованием специализированных яйцевых и семенных клеток, которые, соединяясь между собой, образуют оплодотворенное яйцо (зиготу), развивающееся в новый организм. У некоторых паразитических червей процесс размножения совершается путем образования нескольких совершенно различных форм, каждая из которых порождает последующую, пока цикл не завершится вторичным появлением взрослой формы.

Приспособление, или адаптация. Способность растения или животного приспособляет ему выживать в мире, полном неожиданных перемен. Тот или иной вид может либо отыскивать пригодную для его жизни среду, либо претерпевать изменения, делающие его лучше приспособленным к существующим в данный момент внешним условиям. Адаптация может осуществляться путем немедленного изменения, основанного на раздражимости протоплазмы, или путем длительного процесса мутирования и отбора. Очевидно, что отдельное растение или животное не может приспособиться ко всем возможным условиям среды, а это означает, что существуют определенные области, где оно не в состоянии будет выжить. Перечень факторов, которые могут ограничивать распространение вида, почти бесконечно: вода, свет,. Температура, пища, хищники, конкуренты, паразиты и т.д. [В.С.2] [В.С.3]

[В.С.1] [В.С.1] [В.С.1] [В.С.1]

[В.С.2]

[В.С.3]

www.ronl.ru

Реферат - Живые организмы мирового океана: детритофаги и редуценты

Министерство Образования Российской Федерации

Череповецкий Государственный Университет

Инженерно-Экономический Институт

Кафедра промышленной экологии

Реферат по теме:

«Живые организмы мирового океана:

детритофаги и редуценты»

Выполнила студентка

Проверил преподаватель

Отметка о зачете

Дата

Череповец

2005

Содержание

Введение ……………………………….……………………….….3

1. Пищевые цепи ………....………………………………………..4

2.Морские бентоносные животные и детритофаги ……….…...5

3. Редуценты ………………………………………………………..9

Заключение ……………………………………………………….12

Литература ………………………………………………………..13

Введение

Жизнь в океане представлена самыми различными организмами, в нем обитает более 200 000 видов организмов.

На дне мирового океана происходит накопление и преобразование огромной массы минеральных и органических веществ, поэтому геологические и геохимические процессы, протекающие в океанах и морях, оказывают очень сильное влияние на всю земную кору. Именно океан стал колыбелью жизни на Земле; сейчас в нём обитает около четырёх пятых всех живых существ планеты.

Океаническая биота делится на следующие основные группы: планктон, нектон и бентос. Эти организмынаселяют воды от приливной до неритической зоны над шельфом и до океанической среды.Бентос — живые существа, обитающие на дне океана, в грунте и на грунте.

В данном реферате необходимо рассмотреть жизнь бентических животных, их отношения. Определить значение детритофагов и редуцентов в круговороте материи в океане; роль гетеротрофных бактерий в жизни океана. Проанализировать детритную пищевую цепь.

1. Пищевые цепи

Цепь питания — цепь взаимосвязанных видов, последовательно извлекающих органическое вещество и энергию из исходного пищевого вещества. Каждое предыдущее звено цепи питания является пищей для следующего звена.

Более 90% органических веществ, составляющих основу жизни в море, синтезируется при солнечном освещении из минеральных веществ и других компонентов фитопланктоном, в изобилии населяющим верхние слои водной толщи в океане[1]. Некоторые организмы, входящие в состав зоопланктона, поедают эти растения и в свою очередь являются источником пищи для более крупных животных, обитающих на большей глубине. Тех поедают более крупные животные, живущие еще глубже, и такая закономерность прослеживается до самого дна океана, где наиболее крупные беспозвоночные получают необходимые им питательные вещества из остатков отмерших организмов – органического детрита, опускающегося на дно из вышележащей толщи воды. Так беспрерывно обновляется запас различных органических веществ, растворенных или взвешенных в воде и отложенных на грунте.

2. Морские бентоносные животные и детритофаги

Бентоносные животные – это животные, населяющие дно или внедряющиеся в верхние слои донных отложений.

Пища морских животных концентрируется преимущественно в поверхностном слое вод и на дне. В поверхностном слое в результате фотосинтеза постоянно пополняются запасы органического вещества. Некоторая часть отмершего органического вещества погружается на дно и поедается бентоносными животными – трупоедами, а также разлагается бактериями.

Добываемая бентетическими животными так называемая «микроскопическая» пища бывает самой разнообразной. Она может представлять собой как неживые органические частицы, так и живые, то есть бактерии, простейшие растения или животные: диатомеи, жгутиковые, ресничные инфузории, крошечные беспозвоночные, различные личинки и т. д.

Донные животные относительно малоподвижны, а некоторые из них и вовсе проводят всю свою жизнь на одном месте. Живут они довольно долго: от нескольких месяцев до нескольких лет, или десятилетий.

В соответствии с характером потребляемой пищи жителей океанской бездны можно разделить на три группы. В первую объединяют сестонофагов, питающихся взвешенными в воде частичками органического вещества и находящимися в них микробами. Вторая группа – зоофаги, то есть хищники, поедающие отмершее органическое вещество, добытое в придонном слое океана, на дне или извлеченное из грунта. В третью группу объединяют бентофагов, питающихся детритом донных отложений [3].

К бентофагам главным образом относят специальные организмы — детритофаги, которые питаются мертвым органическим веществом — детритом.Детрит (от латинского detritus — истертый) — различные остатки растительного, животного и минерального происхождения, оседающие на дно из водной толщи. На глубине 4 километра в них может быть сосредоточено до 99 процентов всего органического вещества. Четыре процента их общей массы падает на живущих в детрите микробов. Кроме того, пользуется устойчивым спросом «морской снег» — частички фекального детрита величиной в несколько миллиметров, опускающиеся на дно с большой скоростью, до 50 – 100 метров в сутки [3].

Детрит играет важную роль в круговороте органического вещества (детритная пищевая цепь) и служит пищей многим донным животным. Детритом (триптоном) называют все взвешенные в толще воды органические и неорганические частицы.Детритофаги подразделяются на редуцентов, или деструкторов (это главным образом бактерии и грибы), превращающих органические остатки в неорганические вещества, и детритофаги в узком смысле — животных, которые питаются мертвыми тканями растений и животных или экскрементами.

Среди детритофагов водных экосистем по способу добывания и переработки пищи различают размельчителей, собирателей, соскребателей, фильтраторов. Специальная экологическая группа детритофагов — копрофаги, питающиеся экскрементами.

В океане они обитают на алеврите и более крупнозернистых песках, либо собирают пищевые частицы с поверхности грунта, либо добывают пищу, заглатывая донный осадок и пропуская его через кишечник.

Донные осадки содержат мало питательных веществ. Чтобы не умереть с голоду, у этих морских животных имеется длинный кишечник.

Если у хищных рыб его длина меньше длины рыбы, то у детриторастительноядных рыб он в 3, у детритоядных голотурий в 2,7, у морских ежей в 4,7, а у сипункулид – в 6 – 7 раз длиннее тела. Детритофаги способны безостановочно есть, и кишечник у них всегда забит пищей не меньше чем на ½, а его содержание обычно составляет около 1/3, веса животного[3].

Раньше полагали, что детритофаги просто собирают с поверхности дна находящийся там осадок. Сейчас ученые склонны считать, что всеядных существ практически нет. Даже детритофаги производят какой – то отбор отправляемых в рот компонентов. Если в донных отложениях океана им попадаются крохотные трупы местных животных, детритофаги от них отказываются. Отсутствие необходимых пищеварительных ферментов не позволяет им воспользоваться богатой находкой.

В желудках всех обитателей дна, кроме детрита, встречаются раковины диатомей. Почти у всех можно найти минеральные частички и фораминифер. Половина детритофагов поедает фекальные комочки донных животных. Иногда в кишечник попадают спикулы губок, а у морских звезд, голотурий и некоторых других животных споры и пыльца растений. Неясно, каким образом они этого добиваются, но в кишечнике спор и пыльцы бывает в 5 – 10 раз больше, чем их содержит грунт. Размер зерен и спор колеблется от 6 до300 микрон, так что поштучно отбирать их, видимо, невозможно. Споры и зерна без их наружных оболочек, тоже представляющих немалую ценность, состоят из 13 – 28 процентов белков, 2 – 17 – жира, 13 – 37 — углеводов, содержат все 10 незаменимых аминокислот, все витамины, микроэлементы, некоторые гормоны и ферменты[3].

Потребление поверхностной пленки, покрывающей осадки, в которой содержатся органические остатки растительного и животного происхождения, осуществляется детритофагами по-разному. Иногда это простое соскабливание верхнего слоя осадка: морские бокоплавы рода Corophium, например, высовывая из своей норки переднюю часть тела, антеннами очищают пространство вокруг входа. Различные десятиногие ракообразные, особенно раки-отшельники, скребут осадок ногочелюстями третьей пар, а затем, выбрав из него при помощи ногочелюстей второй пары подходящую пищу, отправляют ее в рот.

Морское животное может собирать всю пленку при помощи тока воды, или непосредственно ее всасывая.

Систему прокачивания воды используют, например, многощетинковые черви Arenicola (пескожилы). Эти черви живут в U – образной трубке, движениями тела животное создает в трубке направленный ток воды, который вызывает оползание поверхностного слоя илистого песка с покрывающей его пленкой; все это пескожил заглатывает целиком. Аналогичным способом питаются пектинарии (многощетинковые черви), живущие в просто склеенных из песчинок трубках, которые они перетаскивают с собой; однако в этом случае частицы грунта и детрита, опустившиеся к входному отверстию трубки, сортируются и захватываются щупальцами.

Морские обитатели, питающиеся поверхностной пленкой грунта приведены на рисунке 1[3].

Рис.1 Бентические беспозвоночные, питающиеся поверхностной пленкой грунта:

а – пескожил Arenicola, б — в – моллюски Tellinaи Scrobicularia, г — змеехвостка Amphiura.

Процентное содержание илистых частиц в грунте увеличивается на рисунке слева направо.

Многие двустворчатые моллюски обитают, зарывшись в ил, и питаются, фильтруя морскую воду, однако некоторые виды прикрепляются к скалам или деревянному субстрату. Двустворчатые – животные фильтраторы. Они обволакивают частицы, находящиеся во взвешенном состоянии в воде, тонкой пленкой слизи. Затем частицы направляются к ротовым щупальцам, где пищевые частицы отфильтровываются.

Приспособленность моллюсков к добыванию пищи проявляется в чрезвычайной длине сифонов и в их разделении. Вводный сифон благодаря своей длине и подвижности ощупывает поверхность осадка вокруг того места, где закопался моллюск, а выводной сифон выбрасывает вверх воду, прошедшую через жаберную решетку.

Из брюхоногих моллюсков детритом, содержащимся в поверхностной пленке, питаются Turritella, Aporrhais и различные другие близкие их формы; эти животные, обитающие внутри грунта, собирают частицы, создавая направленный спереди назад ток воды.

Офиуры с полужесткими лучами тоже детритофаги. Они способны двигаться только в плоскости диска, кроме того, офиуры не передвигаются с помощью амбулакральных ножек, а плавают благодаря энергичным взмахам лучей. Офиуры не имеют ни внутренних органов, ни ануса. Двумя из пяти лучей животное прикрепляется к грунту или ко дну, а три остальные, поднятых перпендикулярно, задерживают живые и неживые частицы, несомые течениями в непосредственной близости от дна.

В некоторых случаях выбор добычи из поверхностной пленки оказывается чрезвычайно тонким. Морские ежи Echinocardium, обитающие глубоко в грунте, через выходной канал своей норки выдвигают наружу амбулаторные ножки передней части тела и при помощи их хватают мелких беспозвоночных.

Голотурии (морские огурцы) – продолговатые животные, их организм защищен эпидермисом, поддерживаемым микроскопическими известковыми пластиночками и амбулакральными ножками. Голотурии обитают на морском дне, некоторые из них питаются отмершими органическими остатками, которые они с помощью щупалец извлекают из морских осадков.

Питаясь, перемещаясь по поверхности грунта, детритофаги постоянно воздействуют на поверхностные слои осадков, изменяя их физические и геохимические свойства.

Масштабы этого воздействия огромны: большая часть дна океана, от границ глубоководной безжизненной зоны до прибрежных песчаных мелководий, занята поселениями «поедателей» детрита.

3. Редуценты

Редуценты — гетеротрофные организмы, восстановители, они возвращают вещества из отмерших организмов снова в неживую природу, разлагая органику до простых неорганических соединений и элементов в ходе жизнедеятельности. Они выделяют пищеварительные ферменты на мертвые тела или отходы жизнедеятельности и поглощают продукты их переваривания.

Возвращая в водную среду биогенные элементы, редуценты завершают биохимический круговорот. Это делают в основном бактерии, большинство других микроорганизмов и грибы. Редуценты — заключительное звено в пищевой цепи в экологической пирамиде.

Бактерия — микроскопический, обычно одноклеточный организм, обладающий клеточной стенкой, но не имеющий оформленного ядра. В природе бактерии выполняют функции редуцентов. Микроорганизмы приведены на рисунке 2 [3].

Рис.2 Микроорганизмы.

Для беспозвоночных все бактерии являются не только энергетическим, но и олигодинамическим источником пищи, ибо синтезируют различные витамины группы В и провитамин D. При оценке роли бактерий в питании глубоководного бентоса необходимо учитывать то важное обстоятельство, что гетеротрофные бактерии имеют более высокую, чем другие степени пищевой пирамиды, эффективность использования энергии пищи, позволяющую им превращать в живую материю 30 – 40 % мертвых органических остатков, которые они минерализуют [3].

Гетеротрофные бактерии производят живое вещество, вещество это может быть использовано в качестве пищи животными, занимающими вторую ступень пищевой пирамиды, то есть микрофагами. Деятельность гетеротрофных микроорганизмов важна не только для обеспечения круговорота основных элементов (углерода, азота, фосфора, серы и т.д.) в океане: она дополняет синтез живой органической материи на глубинах.

Микроорганизмы существуют повсюду и в водной толще, и в донных отложениях, причем в количествах порой весьма ощутимых. Общее представление о количественном распределении в океане микробного населения можно получить из приведенного ниже рисунка [2].

Рис. 3 Вертикальное распределение бактерий в океане

Наибольшее количество бактерий обнаруживается в подповерхностных слоях, где обычно накапливаются продукты обмена и останки организмов, развивающиеся в массовых количествах в поверхностных слоях. С погружении размеры органических веществ в результате разложения уменьшаются, но их поверхность по отношению к объему увеличивается; кроме того, понижение температуры, отмечаемое с возрастанием глубины, увеличивая вязкость воды, тоже тормозит их опускание. Этим и объясняется, что максимум органических остатков, образующихся в поверхностных слоях, наблюдается на некоторой глубине (от нескольких десятков до нескольких сотен метров). Именно здесь наблюдается наиболее многочисленное население гетеротрофных бактерий, которые используют органические остатки в качестве своего субстрата. С дальнейшим возрастанием глубины бактериальное население уменьшается; одновременно происходит и уменьшение количества неживого органического вещества, взвешенного или растворенного в воде. В непосредственной близости от поверхности грунта, который на значительной глубине бывает рыхлым, значительно увеличивается содержание неживой органической материи, как в грунтовой вод, так и на поверхности самого осадка. Одновременно произойдет сильное увеличение бактериального населения. Бактерии редко бывают свободными: обычно они поселяются на различных частицах.

Таким образом, на дне и в непосредственной близости от него деятельность бактерий более значительна, чем на любом другом выше лежащим уровне. Количество бактерий, немногочисленных в воде, в горсти ила увеличивается до миллионов, даже миллиардов. Известковые и кремниевые скелеты планктеров вместе с минеральными частицами образуют ил, который кишит бактериями, довершающими разложение органических веществ. Бактерии обеспечивают обильной пищей некоторых бентических беспозвоночных – микрофагов, особенно на больших глубинах, где бактерии – единственные первичные производители живой материи.

Заключение

Детритофаги и деструкторы играют в круговороте веществ первостепенную роль. Детрит играет важную роль в круговороте органического вещества и служит пищей многим донным животным. Часть питательных веществ, содержащихся в детрите, возвращается в круговорот, минуя стадию разложения до минеральных соединений и потребления их растениями.

Деятельность гетеротрофных микроорганизмов важна не только для обеспечения круговорота основных элементов в океане: она дополняет синтез живой материи на глубинах.

Гетеротрофные бактерии существуют за счет более или менее сложных органических веществ благодаря своей способности постепенно разлагать их до состояния относительно простых неорганических соединений. Этот процесс, в результате которого бактерия создает собственное свое живое вещество, отличается высокой эффективностью. В протоплазму бактерий превращается в общей сложности 30 – 40% неживой органической материи, поскольку остальные 70 – 60% используется для производства энергии и, в конце концов, попадает в минеральные осадки [1]. Гетеротрофные бактерии обеспечивают минерализацию различных органических веществ, снабжая, автотрофные организмы минеральной пищей, без которой последние не могут существовать. Таким образом, замыкается круговорот материи в океанах.

Необходимо отметить, что микроорганизмы участвуют в самоочищение морей и океанов. Морские организмы (их поведение и состояние) являются индикаторами нефтяных загрязнений, т.е. они как бы осуществляют биологическое наблюдение за окружающей средой.

Микроорганизмы моря функционируют в составе сложного микробиоценоза, который реагирует на чужеродные вещества как на единое целое.Смешанное бактериальное «население» более эффективно разрушает нефть и отдельные углеводороды. К морским организмам, которые участвуют в процессах самоочищения, относятся моллюски. Известны около 70 родов микроорганизмов, включая бактерии, грибы, дрожжи, которые способны вступать в единоборство с нефтью[3]. Им принадлежит важнейшая роль разложения нефти и углеводородов в море.

Литература

1. Вейль, П. Популярная океанография [текст]/Питер Вейль. Пер. с англ. Г. И. Баранова, В. В. Панова, А. О. Шпайхера. Под редакцией ис предисловием А. Ф. Трешникова. – Л.: Гидрометеоиздат, 1977. – 504с., ил.

2. Перес, Ж-М. Жизнь в океане [текст]/ Перес Жан – Мари. Пер. с франц. А.Л. Анрес и В. Е. Стрельцова. — Л.: Гидрометеоиздат, 1966., ил.

3. А. А. Зелин, В. Гидрогеохимический словарь [текст]/ А. А. Зелин, Н. Белоусова. Под. ред. А. М. Никанорова – Л.: Гидрометеоиздат, 1988.

www.ronl.ru

Реферат: Характерные особенности живых организмов

 

 

 

 

 

 

 

 

 

 

 

РЕФЕРАТ ПО БИОЛОГИИ

 

на тему:

 

 

 

 

“Характерные особенности живых организмов.”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Анохин Вячеслав Сергеевич

группа ВТ-2

 

 

 

 

 

 

 

 

 

Москва - 1998

 

Всем живым организмам в большей или меньшей степени свойственны определенные размеры и форма, обмен веществ, подвижность, раздражимость, рост, размножение и приспособляемость. Хотя этот перечень кажется вполне четким и определённым, граница между живым и неживым довольно условна, и будем ли называть, например, вирусы живыми или неживыми, зависит от того определения жизни, которое мы примем. Неживые объекты могут обладать одним или несколькими из перечисленных свойств, но никогда не проявляют всю совокупность этих свойств одновременно. Кристаллы в насыщенном растворе могут “расти”, кусочек металлического натрия начинает быстро “бегать” по поверхности воды, а капля масла, плавающая в смеси глицерина и спирта, выпускает псевдоподии и передвигается наподобие амёбы. 

          Подавляющее большинство проявления жизни в конечном счете можно объяснить на основании тех же физических и химических законов, которым подчиняются неживые системы. Из этого следует, что если бы мы достаточно хорошо знали химическую и физиологическую основу жизненных явлений, то мы, возможно, были бы в состоянии синтезировать живое вещество. В сущности ферментативный синтез специфических молекул ДНК, осуществленный в пробирке Артуром Конбергом в 1958г., уже можно рассматривать как важный первый шаг в этом направлении*. Противоположный взгляд, называемый витализмом, был широко распространен среди биологов до начала этого века; они считали, что жизнь обуславливают и контролируют силы особого рода, необъяснимые в понятиях физики и химии. Многие явления жизни, казавшиеся такими таинственными при их первом  открытии, удалось понять без привлечения особой “жизненной силы”, и разумно будет предположить, что и другие проявления жизни при их дальнейшем исследовании окажутся объяснимыми на научной основе.

 

 

 

 

 

* В конце 1967 г.  А.Корнберг и его сотрудники получили новые важные результаты. Им удалось синтезировать специфическую ДНК вируса Æ Х174, обладающую биологической активностью. При заражении клеток эта искусственная ДНК ведет себя точно так же, как природная ДНК этого вируса.

 

[В.С.1]           Специфическая организация. Каждый род живых организмов обладает характерными для него формой и внешним видом; взрослые индивидуумы каждого рода организмов, как правило, имеют характерную величину. Неживые объекты обычно имеют гораздо менее постоянные размеры и форму. Живые организмы не гомогенны, а состоят из различных частей, выполняющих специальные функции; таким образом, они характеризуются специфической сложной организацией. Структурной и функциональной единицей как растительных, так и животных организмов служит клетка - наиболее простая частица живого вещества, способная существовать самостоятельно. Но и сама клетка имеет специфическую организацию; клетки каждого типа обладают характерными размерами и формой, они имеют плазматическую мембрану, отделяющую живое вещество от окружающей среды, и содержат ядро - специализированную часть клетки, отдельную от остального ее вещества ядерной оболочкой. Ядро, как мы узнаем позже, играет важную роль в контроле и регулировании функций клетки. Тела высших животных и растений имеют ряд последовательно усложняющихся уровней организации: клетки организованы в ткани, ткани - в органы, а органы - в системы органов..

 

Обмен веществ. Совокупность всех химических процессов, осуществляемых протоплазмой и обеспечивающих ее рост, поддержание и восстановление, называется обменом веществ или метаболизмом. Протоплазма каждой клетки непрерывно изменяется: она поглощает новые вещества, подвергает их разнообразным химическим изменениям, строит новую протоплазму и превращает в кинетическую энергию и тепло потенциальную энергию, заключенную в крупных молекулах белков, жиров и углеводов, по мере того как эти вещества превращаются в другие, более простые соединения. Это постоянное расходование энергии представляет собой одну из специфических и характерных особенностей живых организмов. Некоторые типы протоплазмы отличаются высокой интенсивностью обмена; очень высока она, например, у бактерий. Другие типы, как, например, протоплазма семян и спор, имеют столь низкий уровень обмена, что его с трудном можно обнаружить. Даже в пределах одного вида организмов или у одной особи интенсивность обмена может меняться в зависимости от таких факторов, как возраст, пол, общее состояние здоровья, активность эндокринных желез или беременность.

Процессы обмена могут быть анаболическими или катаболическими. Термин анаболизм относится к тем химическим процессам, при которых более простые вещества соединяются между собой с образованием более сложных веществ, что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизмом же называют расщепление этих сложных веществ, приводящее к освобождению энергии и к износу и расходованию протоплазмы. Процессы того и другого типа протекают непрерывно; более того, они находятся в сложной взаимозависимости и их трудно отделить друг от друга. Сложные соединения расщепляются, и их составные части соединяются друг с другом в новых комбинациях, образуя другие вещества. Примером сочетания катаболизма с анаболизмом могут служить взаимные превращения углеводов, белков и жиров, непрерывно происходящие в клетках нашего тела. Поскольку большинство анаболических процессов требует затраты энергии, должны происходить какие-то катаболические процессы, которые доставляли бы энергию для реакций, связанных с построением новых молекул.

Как у растений, так и у животных есть анаболическая и катаболическая фазы обмена. Однако растения (за некоторым исключением) обладают способностью синтезировать свои собственные органические вещества из неорганических веществ почвы и воздуха; животные же зависят в своем питании от растений.

 

Подвижность. Третья особенность живых организмов - это их способность к движению. Подвижность большинства животных совершенно очевидна: они ползают, плавают, бегают или летают. У растений движения гораздо более медленны и не так заметны, но они все же происходят. Некоторые животные - губки, кораллы, устрицы, кое-какие паразиты - не передвигаются с места на место, но у большинства из них имеются реснички или жгутики, приводящие в движение окружающую их жидкую среду, которая доставляет этим животным пищу и все необходимое для жизни. Движение может быть результатом мышечного сокращения, биения микроскопических протоплазменных волосков, называемых ресничками и жгутиками, или медленного течения массы протоплазмы (амебоидное движение). Течение протоплазмы в клетках листьев растений известно также под названием циклоза.

 

Раздражимость. Живые организмы обладают раздражимостью: они реагируют на раздражители, т.е. на физические или химические изменения в непосредственно окружающей их среде. Раздражители, вызывающие реакцию у большинства животных и растений, - это изменения цвета, интенсивности или направления световых лучей, температура, давление, звук и изменения в химическом составе почвы, воды или атмосферы, окружающей организм. У человека и других сложноорганизованных животных некоторые высокоспециализи-рованные клетки тела обладают особой чувствительностью к раздражителям определенного типа: палочки и колбочки в сетчатке глаза реагируют на свет, определенные клетки в носу и во вкусовых почках языка - на химические раздражения, а специальные клетки кожи - на изменения температуры или давления. У низших животных и у растений такие специализированные клетки могут отсутствовать, но весь организм реагирует на раздражение. Одноклеточные животные и растения отвечают движением по направлению к раздражителю или от него при воздействии тепла или холода, некоторых химических веществ, света или при прикосновении микроиглы.

Раздражимость растительных клеток не всегда бывает такой заметной, как раздражимость животных клеток, но и растительные клетки чувствительны к изменениям окружающей их среды. Течение протоплазмы в клетках растений иногда ускоряется или прекращается под действием изменений в освещении. Некоторые растения (например, венерина мухоловка, растущая в болотах Каролины) обладают поразительной чувствительностью к прикосновению и могут ловить насекомых. Их листья способны перегибаться вдоль средней жилки, а края листьев снабжены волосками. В ответ на раздражение, производимое насекомым, лист складывается, его края сближаются, а волоски, переплетаясь, не позволяют добыче выскользнуть. Затем лист выделяет жидкость, которая убивает и переваривает насекомое. Способность ловить насекомых развилась как приспособление, позволяющее  таким растениям получать часть необходимого  для их роста азота из “поедаемой” добычи, так как почва, на которой они растут, очень бедна азотом.

 

Рост. Следующая особенность живых организмов - рост - представляет собой результат анаболизма. Прирост массы протоплазмы может происходить за счет увеличения размеров отдельных клеток, за счет увеличения числа клеток или за счет того и другого. Увеличение размеров клеток может быть следствием простого поглощения воды, но такого рода набухание обычно не рассматривается как рост. Понятие рост относится лишь к тем процессам, при которых увеличивается количество живого вещества организма, измеряемое количеством азота или белка. Рост различных частей организма может быть либо равномерным, либо одни части растут быстрее, так что пропорции тела по мере роста изменяются. Некоторые организмы (например, большинство деревьев) могут расти в течение неопределенно долгого времени. Большинство животных имеет ограниченный период роста, заканчивающийся по достижении взрослым животным определен-ных размеров. Одна из замечательных особенностей процесса роста состоит в том, что всякий растущий орган продолжает в то же время функционировать.

 

Размножение. Если есть какое-либо свойство, которое можно считать совершенно обязательным атрибутом жизни, так это способность к воспроизведению. Наиболее простые вирусы лишены обмена веществ, не двигаются и не растут, и все-таки, поскольку они способны воспроизводить себя (а также мутировать), большинство биологов считает их живыми организмами. Одно из основных положений биологии гласит, что “всё живое происходит только от живого”.

Классические опыты, опровергающие теорию самоп-роизвольного зарождения жизни, произвел итальянец Франческо Реди около 1680г. Реди очень простым способом доказал, что “черви” (личинки мух) не образуются из гниющего мяса. Он положил по куску мяса в три банки, одну из которых оставил открытой, второю обвязал тонкой марлей, а третью -  пергаментом. Все три куска мяса начали гнить, но “черви” появились только в мясе, находившемся в открытой банке. Несколько червяков появилось на марле, покрывавшей вторую банку, но в мясе их не было, как не было и в мясе, закрытом пергаментом. Таким образом Реди доказал, что “черви” не возникли из гниющего мяса, а вывелись из яиц, отложенными мухами, привлеченными запахом разлагающегося мяса. Дальнейшие наблюдения показали, что из личинок развиваются взрослые мухи, которые снова откладывают яйца. Примерно через два столетия Луи Пастер установил, что и бактерии возникают не путем самозарождения, а только от предсуществовавших бактерий. Субмикроскопические фильтру-ющиеся вирусы не образуются из невирусного материала, а происходит только от существовавших ранее вирусов.

Процесс размножения может сводиться к простому разделению одного индивидуума на два. Однако у большей части животных и растений он связан с образованием специализированных яйцевых и семенных клеток, которые, соединяясь между собой, образуют оплодотворенное яйцо (зиготу), развивающееся в новый организм. У некоторых паразитических червей процесс размножения совершается путем образования нескольких совершенно различных форм, каждая из которых порождает последующую, пока цикл не завершится вторичным появлением взрослой формы.

 

Приспособление, или адаптация. Способность растения или животного приспособляет ему выживать в мире, полном неожиданных перемен. Тот или иной вид может либо отыскивать пригодную для его жизни среду, либо претерпевать изменения, делающие его лучше приспособленным к существующим в данный момент внешним условиям. Адаптация может осуществляться путем немедленного изменения, основанного на раздражимости протоплазмы, или путем длительного процесса мутирования и отбора. Очевидно, что отдельное растение или животное не может приспособиться ко всем возможным условиям среды, а это означает, что существуют определенные области, где оно не в состоянии  будет выжить. Перечень факторов, которые могут ограничивать распространение вида, почти бесконечно: вода, свет,. Температура, пища, хищники, конкуренты, паразиты и т.д.       [В.С.2] [В.С.3] 

www.referatmix.ru


Смотрите также