reftop.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Ветроэнергетика. Перспективы использования в Республике Беларусь. Реферат ветроэнергетика в беларуси


Реферат - Ветроэнергетика. Перспективы использования в Республике Беларусь

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ РЕСПУБЛИКИ  БЕЛАРУСЬ

БЕЛОРУССКИЙ  НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИ  УНИВЕРСИТЕТ

<span Verdana",«sans-serif»">Кафедра:“ЮНЕСКО”

<span Courier New"">

РЕФЕРАТ

на тему: “Ветроэнергетика.  Перспективы использования в

Республике Беларусь”

                                                                                                                            2 курс

                                                                               

Минск, 2002

                                                            “Нетрадиционная энергетика”нетрадиционна

 потому, что не везде ещё у нас есть традиция –

                 беречь родную природу.

Разуваев В.А.

    <span Courier New"; letter-spacing:1.0pt">

<span Courier New"; letter-spacing:1.0pt">        

Историю человеческого общества (в том числе  и нашей Беларуси) можно рассматривать по-разному. Например, как историю жизни и поступковкоролей,  императоров, президентов. Аможно  — как историю развития энергетики.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Солнцепо-разному обогревает разные участки земной поверхности – горы и долины, океаныи сушу. Воздушный океан, на дне которого мы живем, всегда неспокоен. Постояннои повсюду дуют ветры – от легкого ветерка, приносящего желанную прохладу влетний зной, до могучих и грозных ураганов.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Огромнаяэнергия движущихся воздушных масс, и мысль об ее использовании давно ужепривлекала людей. Да и использовать эту энергию научились за тысячу лет донашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряныемельницы служили единственным источником энергии для тех человеческихпоселений, где не было рек или моря.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">     В Европе количество водяных мельниц вконце VXIII века доходило до полумиллиона. В Беларусив середине XIX века, например, в Гродненской губерниинасчитывалось 258 ветряных мельниц.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Ограниченность мировых запасов топлива иэнергии, неравномерность их распределения по планете, ухудшение экологическойситуации все острее ставят вопрос о всемирном использовании нетрадиционныхэкологически чистых энерготехнологий и использованиивозобновляемых энергоресурсов.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Итеперь интерес к использованию энергии ветра, источника нескончаемого, непрошел, и, более того, техника ХХ века открыла дляэтого совершенно новые возможности.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Активноеиспользование экологически чистых источников энергии сейчас своего рода признакхорошего тона, всячески приветствуется как мировой общественностью, так иправительствами развитых стран.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Из таких энергоресурсов наиболее распространенными доступным является ветер. Эксплуатация ветроустановокне требует топлива и воды, они могут быть полностью автоматизированы,отчуждаемая территория минимальна и по расчетам составляет 3 – 5 м²/кВт установленной мощности. Эти установкипрактически полной заводской готовности, и для их монтажа требуется минимумвремени (фундамент и подключение к сети). Вот почему ветроэнергетика  бурно развивается.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Для эффективной работы ветроустановокнеобходимы определенные требования по их размещению. Так, для относительнопостоянной работы ветроэнергетических установок требуется их размещение вместностях, где ветровой потенциал составляет 2500 часов в год. 

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Ветровые условия района применительно к ветроиспользованию характеризуются ветроэнергетическимпотенциалом, который включает в себя различные показателя ветра, определяемыепо результатам многолетних наблюдений: среднегодовые и среднемесячные скоростиветра; повторяемость скорости и направление ветра в течение года, месяца,суток; данные о порывистости, затишьях и максимальных значениях скорости ветра;изменения его с высотой и т. п.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Достоверность оценки ветрового потенциала местности –наиболее важный фактор, определяющий эффективность ветроэнергетическихстанций. 

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Следует отметить, что была разработана классификация силыветра по шкале Бофора и изучено влияние ее на характеристикиветроэнергетических установок различных классов и условия их работы.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Сила ветра по шкале Бофора и ее влияние на

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt"> ветроустановки и условия их работы.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">

<span Arial Unicode MS";letter-spacing:1.0pt">Баллы Боффора

<span Arial Unicode MS";letter-spacing:1.0pt">Скорость ветра, м/с

<span Arial Unicode MS"; letter-spacing:1.0pt">Хар-ка

  ветра

<span Arial Unicode MS"; letter-spacing:1.0pt">Наблюд

.

<span Arial Unicode MS";letter-spacing:1.0pt">эффекты действия

<span Arial Unicode MS";letter-spacing:1.0pt">Воздействие

<span Arial Unicode MS";letter-spacing:1.0pt">ветра на ВЭУ

<span Arial Unicode MS";letter-spacing:1.0pt">Условия для работы ВЭУ

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">1

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">0,4 – 1,8

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Тихий

<span Arial Unicode MS"; letter-spacing:1.0pt">Дым из труб слегка отклоняется; на воде появляется рябь

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Нет

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Отсутствует

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">2

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">1,8 – 3,6

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Легкий

<span Arial Unicode MS"; letter-spacing:1.0pt">Ветер ощущается лицом, шелестят листья, на воде отчетливые волнения

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Нет

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Отсутствует

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">3

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">3,6 – 5,8

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Слабый

<span Arial Unicode MS"; letter-spacing:1.0pt">Колеблются листья на деревьях, развиваются легкие флаги; на отдельных волнах появляются барашки

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Начинают вращаться лопасти тихоходных ВЭУ

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Плохие для всех установок

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">4

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">5,8 – 8,5

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Умеренный

<span Arial Unicode MS"; letter-spacing:1.0pt">Колеблются тонкие ветки деревьев, поднимается пыль, на воде много барашков

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Начинают вращаться полеса всех ВЭУ

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Хорошие

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">5

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">8,5 — 11

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Свежий

<span Arial Unicode MS"; letter-spacing:1.0pt">Начинают раскачиваться лиственные деревья, все волны в барашках

<span Arial Unicode MS"; letter-spacing:1.0pt">Мощность ВЭУ достигает 30% проектной

<span Arial Unicode MS"; letter-spacing:1.0pt">

<span Arial Unicode MS"; letter-spacing:1.0pt">Очень хорошие

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt"> 

<span Courier New";mso-fareast-font-family: «Arial Unicode MS»;letter-spacing:1.0pt">Ветроустановки

классифицируются по следующим признакам:

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">- положению ветроколеса относительно направления ветра;

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">- геометрии ветроколеса;

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">- по мощности ветроустановки.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">В настоящее время технические средства включают дваосновных типа промышленных ветроустановок:горизонтальные – с горизонтально осевой турбиной (ветроколесом), когда осьвращения ветроколеса параллельна воздушному потоку; вертикальные – свертикально осевой турбиной (ротором), когда ось вращения перпендикулярнавоздушному потоку.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Ветроколесо с горизонтальной осью делятся наоднолопастные, двухлопастные, трехлопастные, многолопастные; с вертикальнойосью различают следующие конструкции роторов: чашечный анемометр, ротор Савониуса, ротор Дарье, также имеются конструкции сконцентратами (усилителями) ветрового потока, такие, как ротор Масгрува, ротор Эванса, усилители потока специальнойконструкции.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Следует отметить, что ветроколесо свертикальной осью вращения, в отличие от таковых с горизонтальной, находятся врабочем положении при любом направлении ветра, однако их принципиальныминедостатками являются большая подверженность усталостным разрушениям из-завозникающих в них автоколебательных процессов и пульсация крутящего момента,приводящая к нежелательным пульсациям выходных параметров генератора. Из-заэтого подавляющее большинство ветроагрегатоввыполнено по горизонтально-осевой схеме, хотя продолжаются всесторонниепроработки различных типов вертикально-осевых установок.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">По мощности ветроустановкиделятся на: малой мощности – до 100 кВт, средней – от 100 до 500 кВт, и большой(мегаваттного класса) – 0,5-4 МВт и более.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Часто идет речь о малой ветроэнергетике, назначение которой– обеспечение водоподъема для сельскохозяйственных целей, получение тепла иэлектропитания отдельных потребителей в неэлектрофицированныхрайонах и т.п. Во многих странах налажено серийное производство ветроустановок малой мощности. Например, в России НПО"Ветроэн" серийно выпускает установкимощностью 4 кВт с диаметром колеса 6 м.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Следует отметить, что малая ветроэнергетика не требуетбольших территорий, ее можно развивать везде, где имеются для этогосоответствующие условия.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Выбор характеристик ветроколеса для ветроустановкив конкретных ветровых условиях определяется целями, которые перед ней ставятся.Обычно это требование максимизации производства энергии за год, чтобы,например, уменьшить потребление топлива тепловыми станциями единойэнергосистемы, либо обеспечение производства определенного минимума энергиидаже при слабом ветре, чтобы, например, сохранить работоспособность насосовсистемы водоснабжения.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Одной из важнейших характеристик ветроколеса является егобыстроходность, которая зависит от трех основных переменных: радиуса обметаемойветроколесом окружности, скорости ветра, угловой скорости вращения колеса.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt"> В настоящее времяв мире установлены и находятся в эксплуатации ветроэнергетические установки (ВЭУ) суммарной мощностью более 25 000 МВт.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">К началу 2001 г. мировой рынок ВЭУоценивался следующими цифрами (табл. 1).

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">   

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">Табл.1

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Мировой рынок

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Установленная мощность в 2000 г., МВт

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Ожидаемая мощность в 2005 г.,

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">МВт % роста

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">Европейский

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">13 630

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">28 230 / 207

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">Североамериканский

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">2 847

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">5 890 / 207

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">Азиатский

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">1 728

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">3 840 / 222

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">Остальной

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">244

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">2 165 /887

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">   

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Рынок ВЭУ внастоящее время является одним из наиболее быстроразвивающихся, его ростпревышает 20% в год.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Ведущими производителями ВЭУв мире в настоящее время являются фирмы Германии, Дании, Испании. На рынке ВЭУ существует острая конкуренция между ведущими фирмами. Впоследние годы некоторые крупные производители ВЭУразорились и появились новые. На конце 2000 г. рынок распределялся примерноследующим образом (табл. 2).

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">Табл.2

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Фирма

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Доля, % общего рынка

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">Примечание

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">1994 г.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">2000 г.

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Vestas

(Дания)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">20,4

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">17,9

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Kenetech

(США)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">14,2

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">Разорилась

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Enercon

(Германия)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">14,0

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">13,7

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">NEPC

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">8,5

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Tacke

(Германия)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">10,4

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family: «Arial Unicode MS»;letter-spacing:1.0pt">Куплена

<span Courier New";mso-fareast-font-family: «Arial Unicode MS»;letter-spacing:1.0pt">фирмой

Enren(США)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Bonus

(Дания)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">7,5

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">11,5

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">NEG

Micon (Дания)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">17,0

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">13,4

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Wind World

(Дани)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">3,3

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family: «Arial Unicode MS»;letter-spacing:1.0pt">Куплена фирмой

NEG Micon

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Ned Wind(

Голландия)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">3,2

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Nordex

(Германия)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">3,0

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">8,3

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Wind

Master(Бельгия)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">0,1

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">-

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">Остальные

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">2,3

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">14,1

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Enron

(США)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">6,0

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">Gamesa

(Испания)

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">13,9

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">MADE

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">-

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt">1,9

<span Courier New";mso-fareast-font-family:«Arial Unicode MS»; letter-spacing:1.0pt;mso-ansi-language:EN-US">-

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">   

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">   

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Специалисты подсчитали, что в течениепервого десятилетия

XXI в. энергия ветра может обеспечить 10%потребности Западной Европы в электроэнергии. Используя большие неосвоенныезапасы энергии ветра на морском побережье, европейские страны могут увеличитьмощность ветроэнергетических установок до 40 тыс. МВт в 2010 г. и до 100 тыс.МВт в 2020 г. Если учесть, что суммарная мощность ВЭУв Европе в 2000 г. составляла  примерно 8тыс. МВт, то приведенные цифры свидетельствуют о беспрецедентных темпахразвития этого сектора энергетики.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Повышение единичных мощностей исовершенствование технологии улучшают экологические показатели производстваэнергии на ВЭУ. Стоимость 1 кВТ·чэлектроэнергии, вырабатываемой на ВЭУ в 1980 г.составляла 0,45 – 0,60 немецких марок, а в 1995 г. снизилось до 0,11 – 0,25немецких марки. По оценкам специалистов, в перспективе себестоимостьэлектроэнергии на ВЭУ будет существенно снижаться.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Ведущее место в мире по производствуэлектроэнергии на ветроэлектростанциях (ВЭС) занимает Германия. Причиной успешного развитияветроэнергетики послужили принятые руководством страны в 1991 г. Акт обэнергосбережении и Акт о подводе в электросеть энергии от возобновляемыхисточников. Такие же законодательные акты были приняты в Дании и Испании, чтопозволило этим странам не только создать промышленное производство ветроустановок. Но и занять лидирующее положение в мире на ВЭС, так и по продажам оборудования на мировом рынке ветроустановок.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    По данным на последний год 

XX в.,установленная мощность ветроэлектростанций в Европесоставила:

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    — в Германии – 4 443 МВт

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    — в Дании – 1 761 МВт

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    — в Испании – 1 225 МВт

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    — в Великобритании  — 353 МВт.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Новым толчком к развитию ветроэнергетики,как уже отмечалось, явилось подписание Киотскогопротокола, по которому все западноевропейские страны должны снизить выбросы СО2 в атмосферу. С 1 апреля 2000 г в Германиивступил в действие утвержденный бундестагом новый закон, направленный наразвитие возобновляемых источников энергии. В частности, новый закон определяетдифференцированные тарифы на электроэнергию, производимую ветроэнергетическимиустановками. За такую  электроэнергию   в  течение 5 лет, начиная   с даты   приемки ВЭУ вэксплуатацию должна  выплачиватьсякомпенсация. Если ВЭУ будет установлена в море, топериод компенсации увеличивается до 9 лет.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Опираясь на благоприятные экономическиеусловия и на успехи машиностроителей, ветроэнергетика в ФРГ в последние годыразвивается бурными темпами. Крупные ВЭУ мощностью 1МВт и выше выпускают фирмы

Vestas, GET и Tacke. Первая из них уже освоила выпуск ВЭУна 1,5 МВт. а в стадии монтажа в 2000 г. находились 2 генератора: четырехполюсный асинхронный и асинхронный с возможностью регулирования скольжения на10%. Фирма GET выпускает ВЭУ мощностью по 1,2МВт с двухлопастной турбиной диаметром 61 м.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Пятнадцать таких установок входят в составкомплекса

Wismar. Следующая разработка – трехлопастнаятурбина мощностью 1,5 МВт для комплекса на земле Маклебург,Передняя Полирания.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Фирма

Tacke имеет в своем активе ВЭУмощностью 1,5 МВт с высотой опоры 112,5 м. Демонстрационные испытания установкиподтвердили несомненные ее преимущества перед серийными ВЭУмощностью 600 кВт.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Если оценивать успехи ветроэнергетики помаксимальной мощности отдельных агрегатов, то бесспорным лидером являются США.В 1999 г. на ВЭС

Big Spring в штате Texas были сданы в эксплуатацию 4 ВЭУединичной мощностью по 1650 кВт. Отметка верхней точки установки достигает 113м, что выше статуи Свободы. Основные рабочие характеристики этих ВЭУ впечатляют: диаметр ротора ветроколеса – 66 м, площадь размаха ротора – 3 420 м². ВЭУ рассчитана наследующие параметры: начальная скорость ветра – 4 м/с, оптимальная -  17,7 м/с, максимальная – 25 м/с. Чтобыизбежать энергетических потерь, связанных с возможным взаимодействием ивлиянием работы отдельных ВЭУ друг от друга,расстояние между ними принято равным 3,5 диаметра ротора в направлении ветра и10 диаметрам ротора между рядами ВЭУ в группе.

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Несколько ранее на этой же ВЭС были введены в эксплуатацию 46 ВЭУмощностью по 600 кВт каждая. С учетом новых вводов полная мощность

Big Spring составила 34 МВт. Проектный годовойобъем производства электроэнергии на этой электростанции составляет 117 млн.кВт·ч. Полная стоимость сооружения ВЭС Big Spring оценивается в 40 млн. долларов США,т.е. более 1 170 долларов/кВт установленной мощности. Себестоимостьэлектроэнергии, вырабатываемой на ВЭС  Big Spring, оказалась значительно ниже, чем на ранее построенныхэлектростанциях, но все же  заметно вышетой цены, которую планировала получить компания Enron Wind Power Corp. (входящая в недавно обанкротившийсяхолдинг Enron Corp.).

<span Courier New"; mso-fareast-font-family:«Arial Unicode MS»;letter-spacing:1.0pt">    Необходимо отметить, что в США, как и вЕвропе, за последние 15 лет себестоимость электроэнергии, вырабатываемой на ВЭС, удалось снизить в несколько раз. Объясняется это, преждевсего, внедрением новых технологий. Так, лопасти ветроколес, изготовляемые внастоящее время из стеклопластика или древесины, пропитанной эпоксидной смолой,удалось увеличить до 40 м и даже более, как в случае с

Big Spring (в 80-е гг. рекордными считалисьлопасти в 13 м). Это позволило в последние годы строить боле

www.ronl.ru

Реферат Ветроэнергетика. Перспективы использования в Республике Беларусь

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИ УНИВЕРСИТЕТ

Кафедра: “ЮНЕСКО”

РЕФЕРАТ

на тему: “Ветроэнергетика. Перспективы использования в

Республике Беларусь”

2 курс

Минск, 2002

“Нетрадиционная энергетика” нетрадиционна

потому, что не везде ещё у нас есть традиция –

беречь родную природу.

Разуваев В.А.

Историю человеческого общества (в том числе и нашей Беларуси) можно рассматривать по-разному. Например, как историю жизни и поступков королей, императоров, президентов. А можно - как историю развития энергетики.

Солнце по-разному обогревает разные участки земной поверхности – горы и долины, океаны и сушу. Воздушный океан, на дне которого мы живем, всегда неспокоен. Постоянно и повсюду дуют ветры – от легкого ветерка, приносящего желанную прохладу в летний зной, до могучих и грозных ураганов.

Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей. Да и использовать эту энергию научились за тысячу лет до нашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряные мельницы служили единственным источником энергии для тех человеческих поселений, где не было рек или моря.

В Европе количество водяных мельниц в конце VXIII века доходило до полумиллиона. В Беларуси в середине XIX века, например, в Гродненской губернии насчитывалось 258 ветряных мельниц.

Ограниченность мировых запасов топлива и энергии, неравномерность их распределения по планете, ухудшение экологической ситуации все острее ставят вопрос о всемирном использовании нетрадиционных экологически чистых энерготехнологий и использовании возобновляемых энергоресурсов.

И теперь интерес к использованию энергии ветра, источника нескончаемого, не прошел, и, более того, техника ХХ века открыла для этого совершенно новые возможности.

Активное использование экологически чистых источников энергии сейчас своего рода признак хорошего тона, всячески приветствуется как мировой общественностью, так и правительствами развитых стран.

Из таких энергоресурсов наиболее распространенным и доступным является ветер. Эксплуатация ветроустановок не требует топлива и воды, они могут быть полностью автоматизированы, отчуждаемая территория минимальна и по расчетам составляет 3 – 5 м²/кВт установленной мощности. Эти установки практически полной заводской готовности, и для их монтажа требуется минимум времени (фундамент и подключение к сети). Вот почему ветроэнергетика бурно развивается.

Для эффективной работы ветроустановок необходимы определенные требования по их размещению. Так, для относительно постоянной работы ветроэнергетических установок требуется их размещение в местностях, где ветровой потенциал составляет 2500 часов в год.

Ветровые условия района применительно к ветроиспользованию характеризуются ветроэнергетическим потенциалом, который включает в себя различные показателя ветра, определяемые по результатам многолетних наблюдений: среднегодовые и среднемесячные скорости ветра; повторяемость скорости и направление ветра в течение года, месяца, суток; данные о порывистости, затишьях и максимальных значениях скорости ветра; изменения его с высотой и т. п.

Достоверность оценки ветрового потенциала местности – наиболее важный фактор, определяющий эффективность ветроэнергетических станций.

Следует отметить, что была разработана классификация силы ветра по шкале Бофора и изучено влияние ее на характеристики ветроэнергетических установок различных классов и условия их работы.

Сила ветра по шкале Бофора и ее влияние на

ветроустановки и условия их работы.

Баллы Боффора

Скорость ветра, м/с

Хар-ка ветра

Наблюд.

эффекты действия

Воздействие

ветра на ВЭУ

Условия для работы ВЭУ

1

0,4 – 1,8

Тихий

Дым из труб слегка отклоняется; на воде появляется рябь

Нет

Отсутствует

2

1,8 – 3,6

Легкий

Ветер ощущается лицом, шелестят листья, на воде отчетливые волнения

Нет

Отсутствует

3

3,6 – 5,8

Слабый

Колеблются листья на деревьях, развиваются легкие флаги; на отдельных волнах появляются барашки

Начинают вращаться лопасти тихоходных ВЭУ

Плохие для всех установок

4

5,8 – 8,5

Умеренный

Колеблются тонкие ветки деревьев, поднимается пыль, на воде много барашков

Начинают вращаться полеса всех ВЭУ

Хорошие

5

8,5 - 11

Свежий

Начинают раскачиваться лиственные деревья, все волны в барашках

Мощность ВЭУ достигает 30% проектной

Очень хорошие

Ветроустановки классифицируются по следующим признакам:

- положению ветроколеса относительно направления ветра;

- геометрии ветроколеса;

- по мощности ветроустановки.

В настоящее время технические средства включают два основных типа промышленных ветроустановок: горизонтальные – с горизонтально осевой турбиной (ветроколесом), когда ось вращения ветроколеса параллельна воздушному потоку; вертикальные – с вертикально осевой турбиной (ротором), когда ось вращения перпендикулярна воздушному потоку.

Ветроколесо с горизонтальной осью делятся на однолопастные, двухлопастные, трехлопастные, многолопастные; с вертикальной осью различают следующие конструкции роторов: чашечный анемометр, ротор Савониуса, ротор Дарье, также имеются конструкции с концентратами (усилителями) ветрового потока, такие, как ротор Масгрува, ротор Эванса, усилители потока специальной конструкции.

Следует отметить, что ветроколесо с вертикальной осью вращения, в отличие от таковых с горизонтальной, находятся в рабочем положении при любом направлении ветра, однако их принципиальными недостатками являются большая подверженность усталостным разрушениям из-за возникающих в них автоколебательных процессов и пульсация крутящего момента, приводящая к нежелательным пульсациям выходных параметров генератора. Из-за этого подавляющее большинство ветроагрегатов выполнено по горизонтально-осевой схеме, хотя продолжаются всесторонние проработки различных типов вертикально-осевых установок.

По мощности ветроустановки делятся на: малой мощности – до 100 кВт, средней – от 100 до 500 кВт, и большой (мегаваттного класса) – 0,5-4 МВт и более.

Часто идет речь о малой ветроэнергетике, назначение которой – обеспечение водоподъема для сельскохозяйственных целей, получение тепла и электропитания отдельных потребителей в неэлектрофицированных районах и т.п. Во многих странах налажено серийное производство ветроустановок малой мощности. Например, в России НПО "Ветроэн" серийно выпускает установки мощностью 4 кВт с диаметром колеса 6 м.

Следует отметить, что малая ветроэнергетика не требует больших территорий, ее можно развивать везде, где имеются для этого соответствующие условия.

Выбор характеристик ветроколеса для ветроустановки в конкретных ветровых условиях определяется целями, которые перед ней ставятся. Обычно это требование максимизации производства энергии за год, чтобы, например, уменьшить потребление топлива тепловыми станциями единой энергосистемы, либо обеспечение производства определенного минимума энергии даже при слабом ветре, чтобы, например, сохранить работоспособность насосов системы водоснабжения.

Одной из важнейших характеристик ветроколеса является его быстроходность, которая зависит от трех основных переменных: радиуса обметаемой ветроколесом окружности, скорости ветра, угловой скорости вращения колеса.

В настоящее время в мире установлены и находятся в эксплуатации ветроэнергетические установки (ВЭУ) суммарной мощностью более 25 000 МВт.

К началу 2001 г. мировой рынок ВЭУ оценивался следующими цифрами (табл. 1).

Табл. 1

Мировой рынок

Установленная мощность в 2000 г., МВт

Ожидаемая мощность в 2005 г.,

МВт % роста

Европейский

13 630

28 230 / 207

Североамериканский

2 847

5 890 / 207

Азиатский

1 728

3 840 / 222

Остальной

244

2 165 /887

Рынок ВЭУ в настоящее время является одним из наиболее быстроразвивающихся, его рост превышает 20% в год.

Ведущими производителями ВЭУ в мире в настоящее время являются фирмы Германии, Дании, Испании. На рынке ВЭУ существует острая конкуренция между ведущими фирмами. В последние годы некоторые крупные производители ВЭУ разорились и появились новые. На конце 2000 г. рынок распределялся примерно следующим образом (табл. 2).

Табл. 2

Фирма

Доля, % общего рынка

Примечание

1994 г.

2000 г.

Vestas (Дания)

20,4

17,9

-

Kenetech (США)

14,2

-

Разорилась

Enercon(Германия)

14,0

13,7

-

NEPC

8,5

-

-

Tacke (Германия)

10,4

-

Куплена

фирмой Enren(США)

Bonus (Дания)

7,5

11,5

-

NEG Micon (Дания)

17,0

13,4

-

Wind World (Дани)

3,3

-

Куплена фирмой NEG Micon

Ned Wind(Голландия)

3,2

-

-

Nordex (Германия)

3,0

8,3

-

WindMaster(Бельгия)

0,1

-

-

Остальные

2,3

14,1

-

Enron (США)

-

6,0

-

Gamesa (Испания)

-

13,9

-

MADE

-

1,9

-

Специалисты подсчитали, что в течение первого десятилетия XXI в. энергия ветра может обеспечить 10% потребности Западной Европы в электроэнергии. Используя большие неосвоенные запасы энергии ветра на морском побережье, европейские страны могут увеличить мощность ветроэнергетических установок до 40 тыс. МВт в 2010 г. и до 100 тыс. МВт в 2020 г. Если учесть, что суммарная мощность ВЭУ в Европе в 2000 г. составляла примерно 8 тыс. МВт, то приведенные цифры свидетельствуют о беспрецедентных темпах развития этого сектора энергетики.

Повышение единичных мощностей и совершенствование технологии улучшают экологические показатели производства энергии на ВЭУ. Стоимость 1 кВТ·ч электроэнергии, вырабатываемой на ВЭУ в 1980 г. составляла 0,45 – 0,60 немецких марок, а в 1995 г. снизилось до 0,11 – 0,25 немецких марки. По оценкам специалистов, в перспективе себестоимость электроэнергии на ВЭУ будет существенно снижаться.

Ведущее место в мире по производству электроэнергии на ветроэлектростанциях (ВЭС) занимает Германия. Причиной успешного развития ветроэнергетики послужили принятые руководством страны в 1991 г. Акт об энергосбережении и Акт о подводе в электросеть энергии от возобновляемых источников. Такие же законодательные акты были приняты в Дании и Испании, что позволило этим странам не только создать промышленное производство ветроустановок. Но и занять лидирующее положение в мире на ВЭС, так и по продажам оборудования на мировом рынке ветроустановок.

По данным на последний год XX в., установленная мощность ветроэлектростанций в Европе составила:

- в Германии – 4 443 МВт

- в Дании – 1 761 МВт

- в Испании – 1 225 МВт

- в Великобритании - 353 МВт.

Новым толчком к развитию ветроэнергетики, как уже отмечалось, явилось подписание Киотского протокола, по которому все западноевропейские страны должны снизить выбросы СО2 в атмосферу. С 1 апреля 2000 г в Германии вступил в действие утвержденный бундестагом новый закон, направленный на развитие возобновляемых источников энергии. В частности, новый закон определяет дифференцированные тарифы на электроэнергию, производимую ветроэнергетическими установками. За такую электроэнергию в течение 5 лет, начиная с даты приемки ВЭУ в эксплуатацию должна выплачиваться компенсация. Если ВЭУ будет установлена в море, то период компенсации увеличивается до 9 лет.

Опираясь на благоприятные экономические условия и на успехи машиностроителей, ветроэнергетика в ФРГ в последние годы развивается бурными темпами. Крупные ВЭУ мощностью 1 МВт и выше выпускают фирмы Vestas, GET и Tacke. Первая из них уже освоила выпуск ВЭУ на 1,5 МВт. а в стадии монтажа в 2000 г. находились 2 генератора: четырехполюсный асинхронный и асинхронный с возможностью регулирования скольжения на 10%. Фирма GET выпускает ВЭУ мощностью по 1,2 МВт с двухлопастной турбиной диаметром 61 м.

Пятнадцать таких установок входят в состав комплекса Wismar. Следующая разработка – трехлопастная турбина мощностью 1,5 МВт для комплекса на земле Маклебург, Передняя Полирания.

Фирма Tacke имеет в своем активе ВЭУ мощностью 1,5 МВт с высотой опоры 112,5 м. Демонстрационные испытания установки подтвердили несомненные ее преимущества перед серийными ВЭУ мощностью 600 кВт.

Если оценивать успехи ветроэнергетики по максимальной мощности отдельных агрегатов, то бесспорным лидером являются США. В 1999 г. на ВЭС BigSpring в штате Texas были сданы в эксплуатацию 4 ВЭУ единичной мощностью по 1650 кВт. Отметка верхней точки установки достигает 113 м, что выше статуи Свободы. Основные рабочие характеристики этих ВЭУ впечатляют: диаметр ротора ветроколеса – 66 м, площадь размаха ротора – 3 420 м². ВЭУ рассчитана на следующие параметры: начальная скорость ветра – 4 м/с, оптимальная - 17,7 м/с, максимальная – 25 м/с. Чтобы избежать энергетических потерь, связанных с возможным взаимодействием и влиянием работы отдельных ВЭУ друг от друга, расстояние между ними принято равным 3,5 диаметра ротора в направлении ветра и 10 диаметрам ротора между рядами ВЭУ в группе.

Несколько ранее на этой же ВЭС были введены в эксплуатацию 46 ВЭУ мощностью по 600 кВт каждая. С учетом новых вводов полная мощность BigSpring составила 34 МВт. Проектный годовой объем производства электроэнергии на этой электростанции составляет 117 млн. кВт·ч. Полная стоимость сооружения ВЭС BigSpring оценивается в 40 млн. долларов США, т.е. более 1 170 долларов/кВт установленной мощности. Себестоимость электроэнергии, вырабатываемой на ВЭС BigSpring, оказалась значительно ниже, чем на ранее построенных электростанциях, но все же заметно выше той цены, которую планировала получить компания EnronWindPowerCorp. (входящая в недавно обанкротившийся холдинг EnronCorp.).

Необходимо отметить, что в США, как и в Европе, за последние 15 лет себестоимость электроэнергии, вырабатываемой на ВЭС, удалось снизить в несколько раз. Объясняется это, прежде всего, внедрением новых технологий. Так, лопасти ветроколес, изготовляемые в настоящее время из стеклопластика или древесины, пропитанной эпоксидной смолой, удалось увеличить до 40 м и даже более, как в случае с BigSpring (в 80-е гг. рекордными считались лопасти в 13 м). Это позволило в последние годы строить более мощные ветроустановки, а значит – увеличивать выработку электроэнергии. Если в начале 80-х гг. средняя единичная мощность ВЭУ составляла 50 кВт, то к концу 90-х гг. она возросла до 500 – 750 кВт. За счет увеличения мощности себестоимость электроэнергии снизилась в 3 раза. Другие новшества, определившие повышение экономичности, - переменная частота вращения ветроколес, а также системы управления ВЭУ, реагирующие на изменение скорости ветра (ветроустановка ZondZ мощностью 750 кВт).

Значительных успехов в области ветроэнергетики добилась Дания. Этому способствовали как благоприятные географические условия, так и тарифная политика правительства страны. Подсчитано, что в Дании при среднегодовой скорости ветра чуть более 5 м/с удельная годовая производительность ВЭУ достигает 937 кВт·ч/м². В настоящее время в структуре потребления первичных энергоресурсов заметная величина (7%) приходится на нетрадиционные источники энергии, к которым относится и ветровая электроэнергетика.

Общее число ВЭУ в Дании насчитывает 3 300 агрегатов. Здесь построена первая ветроэлектростанция “морского базирования”, состоящая из 11 ВЭУ мощностью по 450 кВт каждая. Предполагается, что в 2002 г. на побережье Северного моря будет установлен парк ВЭУ общей мощностью 160 МВт, 180 ВЭУ по 2 МВт.

Дания является важнейшим экспортером оборудования для ветроэлектростанций. Подставки ВЭУ осуществляются в США (штат Калифорния), Индию, некоторые страны Европы. Изготовлением ВЭУ занимаются, как правило, предприятия сельскохозяйственного машиностроения: Vestas, Nordtank, Bonus, Nordex, Micon. Завод Vestas, например, ежегодно продает ВЭУ общей мощностью до 800 МВт. В настоящее время Дания осуществляет до 70% мирового оборота рынка ветроэнергетических установок.

Современные турбины рассчитаны на ресурс 120 тыс. ч в течение 20 лет. Для расширения диапазона снимаемой мощности на некоторых ВЭУ устанавливаются по 2 электрогенератора разной мощности: 600/150, 1000/200 или 1650/300 кВт.

По заявлению датских специалистов, стоимость ВЭУ при увеличении мощности от 150 до 600 кВт (в 4 раза) возрастает только в 3 раза. Поэтому увеличение мощности приводит к снижению удельных капитальных затрат. По последним данным, средняя удельная стоимость мощностей в ветроэнергетике при мощности ВЭУ 500 – 600 кВт составляет около 1000 долларов США/кВт, а для установок единичной мощностью 2000 кВт удельная стоимость снизится до 800 – 900 долларов США/кВт.

Эксплуатационные расходы также связаны с мощностью ВЭУ. В диапазоне мощностей 500 – 1000 кВт затраты составляют в среднем 0,5 – 0,9 цента/кВт·ч. У старых машин с 10-летним сроком эксплуатации этот показатель возрастает до 1,3 – 1,7 цента/кВт·ч.

В Дании разработаны и предлагаются к продаже блочные ветродизельные установки с контрольно-регулирующим блоком и дизелем малой мощности для резервирования и надежного регулирования. Такие установки обеспечивают работу одиночной ВЭУ мощностью от 100 кВт и группы ВЭУ мощностью до 7 МВт, которые работают в изолированных сетях или в сетях с малой пропускной способностью.

Успешно развивается ветроэнергетика ив других европейских странах. Испанская компания EHN (наиболее крупная в мире группа в области возобновляемых источников энергии) в 1999 г. ввела в эксплуатацию несколько мощных ВЭУ. В двух испанских провинциях – Наварра и Альбасете – на ветроэлектростанции производится 22% потребляемой электроэнергии.

В Швеции ВЭС общей мощностью 500 кВт размещены в море, вблизи острова Готланд. Проектируются и более мощные системы ВЭС – на 48 и 750 МВт.

Великобритания к наземным ВЭУ общей мощностью 353 МВт добавила в 2001 г. первую ВЭС морского базирования.

В Японии до последнего времени ветроэнергетика была развита слабо. Первые ВЭС были введены в эксплуатацию только в середине 70-х гг. В конце 90-х гг. установленная мощность ВЭС составляла 30 МВт, а единичная мощность комплекса ВЭУ не превышала 3,5 МВт. Между тем использование ВЭС было признано целесообразным для электроснабжения островов, небольших удаленных от опорных точек сети потребителей. Специалисты подсчитали, что увеличение единичной мощности ВЭУ позволит снизить стоимость электроэнергии.

Самая крупная в Японии ВЭС – ветропарк, расположенный в северной части острова Хонсю. Здесь действуют 11 ВЭУ общей мощностью 3 375 кВт. Недавно на острове Хоккастдо началось сооружение ветряной фермы из 30 генераторов мощностью по 1 МВт. Стоимость проекта 47,2 млн. долларов США.

Определенные успехи в области ветроэнергетики имеют и наши соседи из ближнего зарубежья. В частности, днепропетровская фирма “Энергетические системы и оборудования” (Украина) разработало ряд ветроэлектрических установок мощностью от 20 до 420 кВт. Выбранная вертикально-осевая схема ВЭУ ЕСО-0020 мощностью 20 кВт принцип работы, которой основан на использовании подъемной силы прямых лопастей, вращающихся вокруг вертикальной оси, является альтернативой традиционным для Европы и США горизонтально-пропеллерным конструкциям. Благодаря своим особенностям (независимость от направления ветра, тихоходность турбины, простота конструкции) вертикально-осевые установки по ряду характеристик превосходят горизонтально-пропеллерные. ВЭУ рассчитана на рабочий диапазон ветров от 5 до 20 м/с, срок службы – 20 лет. Стальная опорная башня имеет высоту 14 м., материал ветротурбины – алюминиевый сплав, частота вращения – от 40 до 95 об/мин. При среднегодовой скорости ветра 6,2 м/с выработка электроэнергии составит 60 тыс. кВт·ч/год.

По таким же схеме выполнена ВЭУ ЕСО-0420, но мощность этой вертикально-осевой ВЭУ – 420 кВт. Стальная опорная ферма имеет высоту 35 м, а диаметр турбины из алюминиевого сплава – 26 м. ВЭУ рассчитана на номинальную скорость ветра 13 м/с. Но может работать в диапазоне скоростей от 5 до 25 м/с. При среднегодовой скорости ветра 6,2 м/с ВЭУ ЕСО-0420 вырабатывает 1400 тыс. кВт·ч/год. Как и в первом случае, эта ВЭУ может работать параллельно с энергосистемой или дизельным источником энергии.

В России промышленное производство ветроэнергетических установок отсутствует. Между тем еще в 80-е гг. было показано, насколько перспективно создание мощных ветроэнергетических комплексов на Севере РФ. Был разработан проект уникального комплекса – ветроэнергетической системы Кольского полуострова, который протянется на 1 100 км. В нем предусматривается 238 ветроэнергетических групп, каждая из которых будет состоять из ВЭУ новой конструкции и имеет мощность не менее 1000 МВт.

В наши дни ветроэнергетические установки могут быть востребованы владельцами фермерских хозяйств, удаленных от сетей электроснабжения.

Как уже известно, идеальные места для "приручения" энергии ветра – это протяженные, продуваемые со всех сторон равнины, расположенные на возвышенностях. Именно на таких территориях среднегодовая скорость ветра превышает 5 м/с, что обеспечивает эффективную работу ветроэнергетических установок.

Беларусь богата подобными территориями. По оценкам специалистов, наиболее перспективными для развития ветроэнергетики в Беларуси являются центральная и западная часть Минской области, а также Витебская возвышенность. Более того, потенциал любой точки на территории Беларуси в отношении ее перспективности или неперспективности для ветроэнергетики может быть определен с помощью соответствующих расчетов, базирующихся на информации ветроэнергетического атласа страны и специального банка данных. Вопросы окупаемости и экономической эффективности ветроэнергетических установок – сфера, где еще не расставлены все точки над "и". Если подходить к этой проблеме глобально, учитывая перспективы постоянного удорожания энергетических ресурсов и их грядущий дефицит, ветроэнергетическая техника однозначно является перспективным вложением средств. Однако в нашей стране как-то не принято строить долгосрочные планы и активно развивать направления науки и техники, противоречащие традиционному мышлению.

Отечественные сторонники ветроэнергетической концепции считают, что окупаемость таких систем не превышает 4 лет.

Одна из первых ветроэнергетических установок в стране находится на выезде из Минска в могилевском направлении. Она была разработана минской фирмой "Аэролла". Другая ветроустановка, разработанная НПГП "Ветромаш", работает в Заславле, который практически является плацдармом для отработки новых решений по энергосбережению в Беларуси. В поселке Занарочь подготовлена площадка для установки ветростанции. И, наконец, в качестве положительного примера в области энергосбережения не недавно проходившей итоговой коллегии Минжилкоммунхоза было названо сооружение ветровой установки в Городке. Здесь такая система вырабатывает энергию на случай аварийного выхода из строя обычных систем энергообеспечения.

Энергетическая программа РБ до 2010 г. основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективными считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ВЭУ для водоподъема, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. тонн условного топлива в год.

Одним из высокоприоритетных белорусских Национальных проектов, включенных в Мировую солнечную программу на 1996 – 2005 гг., является создание двух экспериментальных промышленных ветроэнергетических установок мощностью 1,5 МВт каждая.

Беларусь располагает значительными ресурсами энергии ветра. По данным Государственного комитета по гидрометеорологии РБ и НП ГП “Ветромаш”, среднегодовая скорость ветра на территории республики составляет 4,3 м/с. При этом на четверти пригодной для внедрения ВЭУ территории среднегодовая скорость ветра превышает 5 м/с. Такая скорость ветра соответствует требованиям мировой практики по показателям коммерческой целесообразности внедрения ветротехники. При правильном выборе места установки ветроагрегата (на возвышенных открытых местах, на берегах водных массивов и т.п.) среднегодовая скорость ветра может достигать 6 – 7 м/с.

Максимально прогнозируемый ветроэнергетический ресурс территории республики составляет более 280 млрд. кВт·ч в год. Используя только 1% территории под ветроэнергетику уже в 2010 г. позволило бы выработать около 3 млрд. кВт·ч энергии. При условии 25% использования годового времени на выработку такого количества энергии потребуется до 8 000 ветроустановок мощностью от 100 до 500 кВт, которые позволили бы сэкономить ежегодно до 1 млн. тонн условного топлива. Окупаемость подобной ветротехники составляет около 4 лет.

Ветротехнические показатели ветроагрегатов, рекомендуемые к внедрению на территории Республики Беларусь

Зональная среднегодовая скорость ветра, м/с

Диапазон рабочих скоростей ветра ВЭУ, м/с

Расчетная скорость ветра,соответствую-щая номинальной мощности, м/с

Ориентировочная

Доля использования ВЭУ, %

До 4,5

3 – 20

8

40

4,5 – 5,5

4 – 24

9

30

Выше 5,5

4 – 24

10 – 12

30

Все эти проекты свидетельствуют о том, что в Беларуси для внедрения концепции ветроэнергетики на практике есть не только бесплатный ветер и благоприятные климатические предпосылки, но и люди, которые понимают, что лучше заботиться о будущем сегодня, чем обречь своих детей на бесперспективное завтра.

Литература:

1. Морозевич А.Н. «Основы информатики» - М.: ООО «Новое издание», 2001 г.;

2. Баштавой В.Г. и др. «Основы энергосбережения» - М.: Тэхналогия, 1999 г.;

3. Журнал «Энергоэффективность» №8 - М.: Минск, 2002 г.;

4. Журнал «Энергоэффективность» №10 - М.: Минск,2002 г.;

5. Журнал «Энергоэффективность» №1 - М.: Минск,2001 г.;

6. Журнал «Энергоэффективность» №11 - М.: Минск,2001 г.;

7. Лебедев Б.П., Матко П.М. «Энергия мира» - М.: Энергоатомиздат, 1989 г.

Реферат ПРАВО НА ТРУД В РЕСПУБЛИКИ БЕЛАРУСЬ Права человека — важнейший институт конституционного права. Особое развитие в сфере как внутригосударственного, так и международного права он получил во второй половине ХХ в., что явилось одним из наиболее значимых итогов правового развития человечества.

Реферат Аграрное право б) Определение и правовое положение органов, осуществляющих государственный контроль и государственное управление сельским хозяйством. б) Федеральный закон от 2 декабря 1994г. "О закупках и поставках сельскохозяйственной сельскохозяйственной продукции, сырья и продовольствия, для государственных нужд. 7.

Реферат Дизайн Термин "дизайн" появился в нашей стране недавно. До этого проекти­рование вещей назвалось "художественным конструированием", а теория создания вещей “технической эстетикой". В переводе с английского "дизайн" означает рисование. Это слово породило и производные понятия: “дизайнер" - художник-конструктор, "дизайн-форма” - внешняя форма предмета и др.

Реферат Экология Туймазинского района Республики Башкортостан На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества.

Реферат Земельный кадастр Республики Беларусь Для обеспечения рационального использо­вания и охраны земель, защиты прав собственников земли, зем­лепользователей и арендаторов и создания объективной основы для установления цены на землю, земельного налога, арендной платы в Республике Беларусь ведется Государственный земель­ный кадастр.

Реферат Союз России и Белоруссии. Военно-политическое значение, перспективы развития В мае 1997 г. состоялось подписание договора об объединении Белоруссии и России. Из этого договора следует, что при сохранении суверенитета партнеров создается наднациональный орган с широкими полномочиями, и новому союзу придается характер субъекта международного права.

Реферат Состояние и перспективы использования ветроэнергетики Солнце по-разному обогревает разные участки земной поверхности – горы и долины, океаны и сушу. Воздушный океан, на дне которого мы живем, всегда неспокоен. Постоянно и повсюду дуют ветры – от легкого ветерка, приносящего желанную прохладу в летний зной, до могучих и грозных ураганов. Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей.

Реферат Полиграф: использование и перспективы развития метода Ситуация, исторически сложившаяся вокруг полиграфов, довольно парадоксальна. Результаты проверки этим прибором не всегда принимаются в качестве доказательства в суде, степень научности метода подвергнута серьезнейшей критике в академических исследованиях, но при этом полиграфы очень широко востребованы и в правительственных учреждениях, и в правоохранительных органах, и в частном бизнесе.

nreferat.ru

Реферат Ветроэнергетика. Перспективы использования в Республике Беларусь

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬБЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИ УНИВЕРСИТЕТКафедра: “ЮНЕСКО”РЕФЕРАТна тему: “Ветроэнергетика. Перспективы использования в

Республике Беларусь”2 курс

Минск, 2002 “Нетрадиционная энергетика” нетрадиционна

потому, что не везде ещё у нас есть традиция –

беречь родную природу.Разуваев В.А.

Историю человеческого общества (в том числе и нашей Беларуси) можно рассматривать по-разному. Например, как историю жизни и поступков королей, императоров, президентов. А можно - как историю развития энергетики.Солнце по-разному обогревает разные участки земной поверхности – горы и долины, океаны и сушу. Воздушный океан, на дне которого мы живем, всегда неспокоен. Постоянно и повсюду дуют ветры – от легкого ветерка, приносящего желанную прохладу в летний зной, до могучих и грозных ураганов.

Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей. Да и использовать эту энергию научились за тысячу лет до нашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряные мельницы служили единственным источником энергии для тех человеческих поселений, где не было рек или моря.

В Европе количество водяных мельниц в конце VXIII века доходило до полумиллиона. В Беларуси в середине XIX века, например, в Гродненской губернии насчитывалось 258 ветряных мельниц.

Ограниченность мировых запасов топлива и энергии, неравномерность их распределения по планете, ухудшение экологической ситуации все острее ставят вопрос о всемирном использовании нетрадиционных экологически чистых энерготехнологий и использовании возобновляемых энергоресурсов.

И теперь интерес к использованию энергии ветра, источника нескончаемого, не прошел, и, более того, техника ХХ века открыла для этого совершенно новые возможности.

Активное использование экологически чистых источников энергии сейчас своего рода признак хорошего тона, всячески приветствуется как мировой общественностью, так и правительствами развитых стран.

Из таких энергоресурсов наиболее распространенным и доступным является ветер. Эксплуатация ветроустановок не требует топлива и воды, они могут быть полностью автоматизированы, отчуждаемая территория минимальна и по расчетам составляет 3 – 5 м²/кВт установленной мощности. Эти установки практически полной заводской готовности, и для их монтажа требуется минимум времени (фундамент и подключение к сети). Вот почему ветроэнергетика бурно развивается.

Для эффективной работы ветроустановок необходимы определенные требования по их размещению. Так, для относительно постоянной работы ветроэнергетических установок требуется их размещение в местностях, где ветровой потенциал составляет 2500 часов в год.

Ветровые условия района применительно к ветроиспользованию характеризуются ветроэнергетическим потенциалом, который включает в себя различные показателя ветра, определяемые по результатам многолетних наблюдений: среднегодовые и среднемесячные скорости ветра; повторяемость скорости и направление ветра в течение года, месяца, суток; данные о порывистости, затишьях и максимальных значениях скорости ветра; изменения его с высотой и т. п.

Достоверность оценки ветрового потенциала местности – наиболее важный фактор, определяющий эффективность ветроэнергетических станций.

Следует отметить, что была разработана классификация силы ветра по шкале Бофора и изучено влияние ее на характеристики ветроэнергетических установок различных классов и условия их работы.

Сила ветра по шкале Бофора и ее влияние на

ветроустановки и условия их работы.

Баллы Боффора Скорость ветра, м/с Хар-ка ветра Наблюд.

эффекты действия

Воздействие

ветра на ВЭУ

Условия для работы ВЭУ
1 0,4 – 1,8 Тихий Дым из труб слегка отклоняется; на воде появляется рябь Нет Отсутствует
2 1,8 – 3,6 Легкий Ветер ощущается лицом, шелестят листья, на воде отчетливые волнения Нет Отсутствует
3 3,6 – 5,8 Слабый Колеблются листья на деревьях, развиваются легкие флаги; на отдельных волнах появляются барашки Начинают вращаться лопасти тихоходных ВЭУ Плохие для всех установок
4 5,8 – 8,5 Умеренный Колеблются тонкие ветки деревьев, поднимается пыль, на воде много барашков Начинают вращаться полеса всех ВЭУ Хорошие
5 8,5 - 11 Свежий Начинают раскачиваться лиственные деревья, все волны в барашках Мощность ВЭУ достигает 30% проектной Очень хорошие

Ветроустановки классифицируются по следующим признакам:

- положению ветроколеса относительно направления ветра;

- геометрии ветроколеса;

- по мощности ветроустановки.

В настоящее время технические средства включают два основных типа промышленных ветроустановок: горизонтальные – с горизонтально осевой турбиной (ветроколесом), когда ось вращения ветроколеса параллельна воздушному потоку; вертикальные – с вертикально осевой турбиной (ротором), когда ось вращения перпендикулярна воздушному потоку.

Ветроколесо с горизонтальной осью делятся на однолопастные, двухлопастные, трехлопастные, многолопастные; с вертикальной осью различают следующие конструкции роторов: чашечный анемометр, ротор Савониуса, ротор Дарье, также имеются конструкции с концентратами (усилителями) ветрового потока, такие, как ротор Масгрува, ротор Эванса, усилители потока специальной конструкции.

Следует отметить, что ветроколесо с вертикальной осью вращения, в отличие от таковых с горизонтальной, находятся в рабочем положении при любом направлении ветра, однако их принципиальными недостатками являются большая подверженность усталостным разрушениям из-за возникающих в них автоколебательных процессов и пульсация крутящего момента, приводящая к нежелательным пульсациям выходных параметров генератора. Из-за этого подавляющее большинство ветроагрегатов выполнено по горизонтально-осевой схеме, хотя продолжаются всесторонние проработки различных типов вертикально-осевых установок.

По мощности ветроустановки делятся на: малой мощности – до 100 кВт, средней – от 100 до 500 кВт, и большой (мегаваттного класса) – 0,5-4 МВт и более.

Часто идет речь о малой ветроэнергетике, назначение которой – обеспечение водоподъема для сельскохозяйственных целей, получение тепла и электропитания отдельных потребителей в неэлектрофицированных районах и т.п. Во многих странах налажено серийное производство ветроустановок малой мощности. Например, в России НПО "Ветроэн" серийно выпускает установки мощностью 4 кВт с диаметром колеса 6 м.

Следует отметить, что малая ветроэнергетика не требует больших территорий, ее можно развивать везде, где имеются для этого соответствующие условия.

Выбор характеристик ветроколеса для ветроустановки в конкретных ветровых условиях определяется целями, которые перед ней ставятся. Обычно это требование максимизации производства энергии за год, чтобы, например, уменьшить потребление топлива тепловыми станциями единой энергосистемы, либо обеспечение производства определенного минимума энергии даже при слабом ветре, чтобы, например, сохранить работоспособность насосов системы водоснабжения.

Одной из важнейших характеристик ветроколеса является его быстроходность, которая зависит от трех основных переменных: радиуса обметаемой ветроколесом окружности, скорости ветра, угловой скорости вращения колеса.В настоящее время в мире установлены и находятся в эксплуатации ветроэнергетические установки (ВЭУ) суммарной мощностью более 25 000 МВт.

К началу 2001 г. мировой рынок ВЭУ оценивался следующими цифрами (табл. 1).

Табл. 1

Мировой рынок Установленная мощность в 2000 г., МВт Ожидаемая мощность в 2005 г.,

МВт % роста

Европейский 13 630 28 230 / 207
Североамериканский 2 847 5 890 / 207
Азиатский 1 728 3 840 / 222
Остальной 244 2 165 /887

Рынок ВЭУ в настоящее время является одним из наиболее быстроразвивающихся, его рост превышает 20% в год.

Ведущими производителями ВЭУ в мире в настоящее время являются фирмы Германии, Дании, Испании. На рынке ВЭУ существует острая конкуренция между ведущими фирмами. В последние годы некоторые крупные производители ВЭУ разорились и появились новые. На конце 2000 г. рынок распределялся примерно следующим образом (табл. 2).Табл. 2

Фирма Доля, % общего рынка Примечание
1994 г. 2000 г.
Vestas (Дания) 20,4 17,9 -
Kenetech (США) 14,2 - Разорилась
Enercon(Германия) 14,0 13,7 -
NEPC 8,5 - -
Tacke (Германия) 10,4 - Куплена

фирмой Enren(США)

Bonus (Дания) 7,5 11,5 -
NEG Micon (Дания) 17,0 13,4 -
Wind World (Дани) 3,3 - Куплена фирмой NEG Micon
Ned Wind(Голландия) 3,2 - -
Nordex (Германия) 3,0 8,3 -
Wind Master(Бельгия) 0,1 - -
Остальные 2,3 14,1 -
Enron (США) - 6,0 -
Gamesa (Испания) - 13,9 -
MADE - 1,9 -

Специалисты подсчитали, что в течение первого десятилетия XXI в. энергия ветра может обеспечить 10% потребности Западной Европы в электроэнергии. Используя большие неосвоенные запасы энергии ветра на морском побережье, европейские страны могут увеличить мощность ветроэнергетических установок до 40 тыс. МВт в 2010 г. и до 100 тыс. МВт в 2020 г. Если учесть, что суммарная мощность ВЭУ в Европе в 2000 г. составляла примерно 8 тыс. МВт, то приведенные цифры свидетельствуют о беспрецедентных темпах развития этого сектора энергетики.

Повышение единичных мощностей и совершенствование технологии улучшают экологические показатели производства энергии на ВЭУ. Стоимость 1 кВТ·ч электроэнергии, вырабатываемой на ВЭУ в 1980 г. составляла 0,45 – 0,60 немецких марок, а в 1995 г. снизилось до 0,11 – 0,25 немецких марки. По оценкам специалистов, в перспективе себестоимость электроэнергии на ВЭУ будет существенно снижаться.

Ведущее место в мире по производству электроэнергии на ветроэлектростанциях (ВЭС) занимает Германия. Причиной успешного развития ветроэнергетики послужили принятые руководством страны в 1991 г. Акт об энергосбережении и Акт о подводе в электросеть энергии от возобновляемых источников. Такие же законодательные акты были приняты в Дании и Испании, что позволило этим странам не только создать промышленное производство ветроустановок. Но и занять лидирующее положение в мире на ВЭС, так и по продажам оборудования на мировом рынке ветроустановок.

По данным на последний год XX в., установленная мощность ветроэлектростанций в Европе составила:

- в Германии – 4 443 МВт

- в Дании – 1 761 МВт

- в Испании – 1 225 МВт

- в Великобритании - 353 МВт.

Новым толчком к развитию ветроэнергетики, как уже отмечалось, явилось подписание Киотского протокола, по которому все западноевропейские страны должны снизить выбросы СО2 в атмосферу. С 1 апреля 2000 г в Германии вступил в действие утвержденный бундестагом новый закон, направленный на развитие возобновляемых источников энергии. В частности, новый закон определяет дифференцированные тарифы на электроэнергию, производимую ветроэнергетическими установками. За такую электроэнергию в течение 5 лет, начиная с даты приемки ВЭУ в эксплуатацию должна выплачиваться компенсация. Если ВЭУ будет установлена в море, то период компенсации увеличивается до 9 лет.

Опираясь на благоприятные экономические условия и на успехи машиностроителей, ветроэнергетика в ФРГ в последние годы развивается бурными темпами. Крупные ВЭУ мощностью 1 МВт и выше выпускают фирмы Vestas, GET и Tacke. Первая из них уже освоила выпуск ВЭУ на 1,5 МВт. а в стадии монтажа в 2000 г. находились 2 генератора: четырехполюсный асинхронный и асинхронный с возможностью регулирования скольжения на 10%. Фирма GET выпускает ВЭУ мощностью по 1,2 МВт с двухлопастной турбиной диаметром 61 м.

Пятнадцать таких установок входят в состав комплекса Wismar. Следующая разработка – трехлопастная турбина мощностью 1,5 МВт для комплекса на земле Маклебург, Передняя Полирания.

Фирма Tacke имеет в своем активе ВЭУ мощностью 1,5 МВт с высотой опоры 112,5 м. Демонстрационные испытания установки подтвердили несомненные ее преимущества перед серийными ВЭУ мощностью 600 кВт.

Если оценивать успехи ветроэнергетики по максимальной мощности отдельных агрегатов, то бесспорным лидером являются США. В 1999 г. на ВЭС Big Spring в штате Texas были сданы в эксплуатацию 4 ВЭУ единичной мощностью по 1650 кВт. Отметка верхней точки установки достигает 113 м, что выше статуи Свободы. Основные рабочие характеристики этих ВЭУ впечатляют: диаметр ротора ветроколеса – 66 м, площадь размаха ротора – 3 420 м². ВЭУ рассчитана на следующие параметры: начальная скорость ветра – 4 м/с, оптимальная - 17,7 м/с, максимальная – 25 м/с. Чтобы избежать энергетических потерь, связанных с возможным взаимодействием и влиянием работы отдельных ВЭУ друг от друга, расстояние между ними принято равным 3,5 диаметра ротора в направлении ветра и 10 диаметрам ротора между рядами ВЭУ в группе.

Несколько ранее на этой же ВЭС были введены в эксплуатацию 46 ВЭУ мощностью по 600 кВт каждая. С учетом новых вводов полная мощность Big Spring составила 34 МВт. Проектный годовой объем производства электроэнергии на этой электростанции составляет 117 млн. кВт·ч. Полная стоимость сооружения ВЭС Big Spring оценивается в 40 млн. долларов США, т.е. более 1 170 долларов/кВт установленной мощности. Себестоимость электроэнергии, вырабатываемой на ВЭС Big Spring, оказалась значительно ниже, чем на ранее построенных электростанциях, но все же заметно выше той цены, которую планировала получить компания Enron Wind Power Corp. (входящая в недавно обанкротившийся холдинг Enron Corp.).

Необходимо отметить, что в США, как и в Европе, за последние 15 лет себестоимость электроэнергии, вырабатываемой на ВЭС, удалось снизить в несколько раз. Объясняется это, прежде всего, внедрением новых технологий. Так, лопасти ветроколес, изготовляемые в настоящее время из стеклопластика или древесины, пропитанной эпоксидной смолой, удалось увеличить до 40 м и даже более, как в случае с Big Spring (в 80-е гг. рекордными считались лопасти в 13 м). Это позволило в последние годы строить более мощные ветроустановки, а значит – увеличивать выработку электроэнергии. Если в начале 80-х гг. средняя единичная мощность ВЭУ составляла 50 кВт, то к концу 90-х гг. она возросла до 500 – 750 кВт. За счет увеличения мощности себестоимость электроэнергии снизилась в 3 раза. Другие новшества, определившие повышение экономичности, - переменная частота вращения ветроколес, а также системы управления ВЭУ, реагирующие на изменение скорости ветра (ветроустановка Zond Z мощностью 750 кВт).

Значительных успехов в области ветроэнергетики добилась Дания. Этому способствовали как благоприятные географические условия, так и тарифная политика правительства страны. Подсчитано, что в Дании при среднегодовой скорости ветра чуть более 5 м/с удельная годовая производительность ВЭУ достигает 937 кВт·ч/м². В настоящее время в структуре потребления первичных энергоресурсов заметная величина (7%) приходится на нетрадиционные источники энергии, к которым относится и ветровая электроэнергетика.

Общее число ВЭУ в Дании насчитывает 3 300 агрегатов. Здесь построена первая ветроэлектростанция “морского базирования”, состоящая из 11 ВЭУ мощностью по 450 кВт каждая. Предполагается, что в 2002 г. на побережье Северного моря будет установлен парк ВЭУ общей мощностью 160 МВт, 180 ВЭУ по 2 МВт.

Дания является важнейшим экспортером оборудования для ветроэлектростанций. Подставки ВЭУ осуществляются в США (штат Калифорния), Индию, некоторые страны Европы. Изготовлением ВЭУ занимаются, как правило, предприятия сельскохозяйственного машиностроения: Vestas, Nordtank, Bonus, Nordex, Micon. Завод Vestas, например, ежегодно продает ВЭУ общей мощностью до 800 МВт. В настоящее время Дания осуществляет до 70% мирового оборота рынка ветроэнергетических установок.

Современные турбины рассчитаны на ресурс 120 тыс. ч в течение 20 лет. Для расширения диапазона снимаемой мощности на некоторых ВЭУ устанавливаются по 2 электрогенератора разной мощности: 600/150, 1000/200 или 1650/300 кВт.

По заявлению датских специалистов, стоимость ВЭУ при увеличении мощности от 150 до 600 кВт (в 4 раза) возрастает только в 3 раза. Поэтому увеличение мощности приводит к снижению удельных капитальных затрат. По последним данным, средняя удельная стоимость мощностей в ветроэнергетике при мощности ВЭУ 500 – 600 кВт составляет около 1000 долларов США/кВт, а для установок единичной мощностью 2000 кВт удельная стоимость снизится до 800 – 900 долларов США/кВт.

Эксплуатационные расходы также связаны с мощностью ВЭУ. В диапазоне мощностей 500 – 1000 кВт затраты составляют в среднем 0,5 – 0,9 цента/кВт·ч. У старых машин с 10-летним сроком эксплуатации этот показатель возрастает до 1,3 – 1,7 цента/кВт·ч.

В Дании разработаны и предлагаются к продаже блочные ветродизельные установки с контрольно-регулирующим блоком и дизелем малой мощности для резервирования и надежного регулирования. Такие установки обеспечивают работу одиночной ВЭУ мощностью от 100 кВт и группы ВЭУ мощностью до 7 МВт, которые работают в изолированных сетях или в сетях с малой пропускной способностью.

Успешно развивается ветроэнергетика ив других европейских странах. Испанская компания EHN (наиболее крупная в мире группа в области возобновляемых источников энергии) в 1999 г. ввела в эксплуатацию несколько мощных ВЭУ. В двух испанских провинциях – Наварра и Альбасете – на ветроэлектростанции производится 22% потребляемой электроэнергии.

В Швеции ВЭС общей мощностью 500 кВт размещены в море, вблизи острова Готланд. Проектируются и более мощные системы ВЭС – на 48 и 750 МВт.

Великобритания к наземным ВЭУ общей мощностью 353 МВт добавила в 2001 г. первую ВЭС морского базирования.

В Японии до последнего времени ветроэнергетика была развита слабо. Первые ВЭС были введены в эксплуатацию только в середине 70-х гг. В конце 90-х гг. установленная мощность ВЭС составляла 30 МВт, а единичная мощность комплекса ВЭУ не превышала 3,5 МВт. Между тем использование ВЭС было признано целесообразным для электроснабжения островов, небольших удаленных от опорных точек сети потребителей. Специалисты подсчитали, что увеличение единичной мощности ВЭУ позволит снизить стоимость электроэнергии.

Самая крупная в Японии ВЭС – ветропарк, расположенный в северной части острова Хонсю. Здесь действуют 11 ВЭУ общей мощностью 3 375 кВт. Недавно на острове Хоккастдо началось сооружение ветряной фермы из 30 генераторов мощностью по 1 МВт. Стоимость проекта 47,2 млн. долларов США.

Определенные успехи в области ветроэнергетики имеют и наши соседи из ближнего зарубежья. В частности, днепропетровская фирма “Энергетические системы и оборудования” (Украина) разработало ряд ветроэлектрических установок мощностью от 20 до 420 кВт. Выбранная вертикально-осевая схема ВЭУ ЕСО-0020 мощностью 20 кВт принцип работы, которой основан на использовании подъемной силы прямых лопастей, вращающихся вокруг вертикальной оси, является альтернативой традиционным для Европы и США горизонтально-пропеллерным конструкциям. Благодаря своим особенностям (независимость от направления ветра, тихоходность турбины, простота конструкции) вертикально-осевые установки по ряду характеристик превосходят горизонтально-пропеллерные. ВЭУ рассчитана на рабочий диапазон ветров от 5 до 20 м/с, срок службы – 20 лет. Стальная опорная башня имеет высоту 14 м., материал ветротурбины – алюминиевый сплав, частота вращения – от 40 до 95 об/мин. При среднегодовой скорости ветра 6,2 м/с выработка электроэнергии составит 60 тыс. кВт·ч/год.

По таким же схеме выполнена ВЭУ ЕСО-0420, но мощность этой вертикально-осевой ВЭУ – 420 кВт. Стальная опорная ферма имеет высоту 35 м, а диаметр турбины из алюминиевого сплава – 26 м. ВЭУ рассчитана на номинальную скорость ветра 13 м/с. Но может работать в диапазоне скоростей от 5 до 25 м/с. При среднегодовой скорости ветра 6,2 м/с ВЭУ ЕСО-0420 вырабатывает 1400 тыс. кВт·ч/год. Как и в первом случае, эта ВЭУ может работать параллельно с энергосистемой или дизельным источником энергии.

В России промышленное производство ветроэнергетических установок отсутствует. Между тем еще в 80-е гг. было показано, насколько перспективно создание мощных ветроэнергетических комплексов на Севере РФ. Был разработан проект уникального комплекса – ветроэнергетической системы Кольского полуострова, который протянется на 1 100 км. В нем предусматривается 238 ветроэнергетических групп, каждая из которых будет состоять из ВЭУ новой конструкции и имеет мощность не менее 1000 МВт.

В наши дни ветроэнергетические установки могут быть востребованы владельцами фермерских хозяйств, удаленных от сетей электроснабжения.

Как уже известно, идеальные места для "приручения" энергии ветра – это протяженные, продуваемые со всех сторон равнины, расположенные на возвышенностях. Именно на таких территориях среднегодовая скорость ветра превышает 5 м/с, что обеспечивает эффективную работу ветроэнергетических установок.

Беларусь богата подобными территориями. По оценкам специалистов, наиболее перспективными для развития ветроэнергетики в Беларуси являются центральная и западная часть Минской области, а также Витебская возвышенность. Более того, потенциал любой точки на территории Беларуси в отношении ее перспективности или неперспективности для ветроэнергетики может быть определен с помощью соответствующих расчетов, базирующихся на информации ветроэнергетического атласа страны и специального банка данных. Вопросы окупаемости и экономической эффективности ветроэнергетических установок – сфера, где еще не расставлены все точки над "и". Если подходить к этой проблеме глобально, учитывая перспективы постоянного удорожания энергетических ресурсов и их грядущий дефицит, ветроэнергетическая техника однозначно является перспективным вложением средств. Однако в нашей стране как-то не принято строить долгосрочные планы и активно развивать направления науки и техники, противоречащие традиционному мышлению.

Отечественные сторонники ветроэнергетической концепции считают, что окупаемость таких систем не превышает 4 лет.

Одна из первых ветроэнергетических установок в стране находится на выезде из Минска в могилевском направлении. Она была разработана минской фирмой "Аэролла". Другая ветроустановка, разработанная НПГП "Ветромаш", работает в Заславле, который практически является плацдармом для отработки новых решений по энергосбережению в Беларуси. В поселке Занарочь подготовлена площадка для установки ветростанции. И, наконец, в качестве положительного примера в области энергосбережения не недавно проходившей итоговой коллегии Минжилкоммунхоза было названо сооружение ветровой установки в Городке. Здесь такая система вырабатывает энергию на случай аварийного выхода из строя обычных систем энергообеспечения.

Энергетическая программа РБ до 2010 г. основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективными считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ВЭУ для водоподъема, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. тонн условного топлива в год.

Одним из высокоприоритетных белорусских Национальных проектов, включенных в Мировую солнечную программу на 1996 – 2005 гг., является создание двух экспериментальных промышленных ветроэнергетических установок мощностью 1,5 МВт каждая.

Беларусь располагает значительными ресурсами энергии ветра. По данным Государственного комитета по гидрометеорологии РБ и НП ГП “Ветромаш”, среднегодовая скорость ветра на территории республики составляет 4,3 м/с. При этом на четверти пригодной для внедрения ВЭУ территории среднегодовая скорость ветра превышает 5 м/с. Такая скорость ветра соответствует требованиям мировой практики по показателям коммерческой целесообразности внедрения ветротехники. При правильном выборе места установки ветроагрегата (на возвышенных открытых местах, на берегах водных массивов и т.п.) среднегодовая скорость ветра может достигать 6 – 7 м/с.

Максимально прогнозируемый ветроэнергетический ресурс территории республики составляет более 280 млрд. кВт·ч в год. Используя только 1% территории под ветроэнергетику уже в 2010 г. позволило бы выработать около 3 млрд. кВт·ч энергии. При условии 25% использования годового времени на выработку такого количества энергии потребуется до 8 000 ветроустановок мощностью от 100 до 500 кВт, которые позволили бы сэкономить ежегодно до 1 млн. тонн условного топлива. Окупаемость подобной ветротехники составляет около 4 лет.

Ветротехнические показатели ветроагрегатов, рекомендуемые к внедрению на территории Республики Беларусь

Зональная среднегодовая скорость ветра, м/с Диапазон рабочих скоростей ветра ВЭУ, м/с Расчетная скорость ветра,соответствую-щая номинальной мощности, м/с Ориентировочная

Доля использования ВЭУ, %

До 4,5 3 – 20 8 40
4,5 – 5,5 4 – 24 9 30
Выше 5,5 4 – 24 10 – 12 30
Все эти проекты свидетельствуют о том, что в Беларуси для внедрения концепции ветроэнергетики на практике есть не только бесплатный ветер и благоприятные климатические предпосылки, но и люди, которые понимают, что лучше заботиться о будущем сегодня, чем обречь своих детей на бесперспективное завтра.

Литература:1. Морозевич А.Н. «Основы информатики» - М.: ООО «Новое издание», 2001 г.;

2. Баштавой В.Г. и др. «Основы энергосбережения» - М.: Тэхналогия, 1999 г.;

3. Журнал «Энергоэффективность» №8 - М.: Минск, 2002 г.;

4. Журнал «Энергоэффективность» №10 - М.: Минск,2002 г.;

5. Журнал «Энергоэффективность» №1 - М.: Минск,2001 г.;

6. Журнал «Энергоэффективность» №11 - М.: Минск,2001 г.;

7. Лебедев Б.П., Матко П.М. «Энергия мира» - М.: Энергоатомиздат, 1989 г.

bukvasha.ru

Реферат - Ветроэнергетика. Перспективы использования в Республике Беларусь

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИ УНИВЕРСИТЕТ

Кафедра: “ЮНЕСКО”

РЕФЕРАТ

на тему: “Ветроэнергетика. Перспективы использования в

Республике Беларусь”

2 курс

Минск, 2002

“Нетрадиционная энергетика” нетрадиционна

потому, что не везде ещё у нас есть традиция –

беречь родную природу.

Разуваев В.А.

Историю человеческого общества (в том числе и нашей Беларуси) можно рассматривать по-разному. Например, как историю жизни и поступков королей, императоров, президентов. А можно — как историю развития энергетики.

Солнце по-разному обогревает разные участки земной поверхности – горы и долины, океаны и сушу. Воздушный океан, на дне которого мы живем, всегда неспокоен. Постоянно и повсюду дуют ветры – от легкого ветерка, приносящего желанную прохладу в летний зной, до могучих и грозных ураганов.

Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей. Да и использовать эту энергию научились за тысячу лет до нашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряные мельницы служили единственным источником энергии для тех человеческих поселений, где не было рек или моря.

В Европе количество водяных мельниц в конце VXIII века доходило до полумиллиона. В Беларуси в середине XIX века, например, в Гродненской губернии насчитывалось 258 ветряных мельниц.

Ограниченность мировых запасов топлива и энергии, неравномерность их распределения по планете, ухудшение экологической ситуации все острее ставят вопрос о всемирном использовании нетрадиционных экологически чистых энерготехнологий и использовании возобновляемых энергоресурсов.

И теперь интерес к использованию энергии ветра, источника нескончаемого, не прошел, и, более того, техника ХХ века открыла для этого совершенно новые возможности.

Активное использование экологически чистых источников энергии сейчас своего рода признак хорошего тона, всячески приветствуется как мировой общественностью, так и правительствами развитых стран.

Из таких энергоресурсов наиболее распространенным и доступным является ветер. Эксплуатация ветроустановок не требует топлива и воды, они могут быть полностью автоматизированы, отчуждаемая территория минимальна и по расчетам составляет 3 – 5 м²/кВт установленной мощности. Эти установки практически полной заводской готовности, и для их монтажа требуется минимум времени (фундамент и подключение к сети). Вот почему ветроэнергетика бурно развивается.

Для эффективной работы ветроустановок необходимы определенные требования по их размещению. Так, для относительно постоянной работы ветроэнергетических установок требуется их размещение в местностях, где ветровой потенциал составляет 2500 часов в год.

Ветровые условия района применительно к ветроиспользованию характеризуются ветроэнергетическим потенциалом, который включает в себя различные показателя ветра, определяемые по результатам многолетних наблюдений: среднегодовые и среднемесячные скорости ветра; повторяемость скорости и направление ветра в течение года, месяца, суток; данные о порывистости, затишьях и максимальных значениях скорости ветра; изменения его с высотой и т. п.

Достоверность оценки ветрового потенциала местности – наиболее важный фактор, определяющий эффективность ветроэнергетических станций.

Следует отметить, что была разработана классификация силы ветра по шкале Бофора и изучено влияние ее на характеристики ветроэнергетических установок различных классов и условия их работы.

Сила ветра по шкале Бофора и ее влияние на

ветроустановки и условия их работы.

Баллы Боффора

Скорость ветра, м/с

Хар-ка ветра

Наблюд.

эффекты действия

Воздействие

ветра на ВЭУ

Условия для работы ВЭУ

1

0,4 – 1,8

Тихий

Дым из труб слегка отклоняется; на воде появляется рябь

Нет

Отсутствует

2

1,8 – 3,6

Легкий

Ветер ощущается лицом, шелестят листья, на воде отчетливые волнения

Нет

Отсутствует

3

3,6 – 5,8

Слабый

Колеблются листья на деревьях, развиваются легкие флаги; на отдельных волнах появляются барашки

Начинают вращаться лопасти тихоходных ВЭУ

Плохие для всех установок

4

5,8 – 8,5

Умеренный

Колеблются тонкие ветки деревьев, поднимается пыль, на воде много барашков

Начинают вращаться полеса всех ВЭУ

Хорошие

5

8,5 — 11

Свежий

Начинают раскачиваться лиственные деревья, все волны в барашках

Мощность ВЭУ достигает 30% проектной

Очень хорошие

Ветроустановки классифицируются по следующим признакам:

— положению ветроколеса относительно направления ветра;

— геометрии ветроколеса;

— по мощности ветроустановки.

В настоящее время технические средства включают два основных типа промышленных ветроустановок: горизонтальные – с горизонтально осевой турбиной (ветроколесом), когда ось вращения ветроколеса параллельна воздушному потоку; вертикальные – с вертикально осевой турбиной (ротором), когда ось вращения перпендикулярна воздушному потоку.

Ветроколесо с горизонтальной осью делятся на однолопастные, двухлопастные, трехлопастные, многолопастные; с вертикальной осью различают следующие конструкции роторов: чашечный анемометр, ротор Савониуса, ротор Дарье, также имеются конструкции с концентратами (усилителями) ветрового потока, такие, как ротор Масгрува, ротор Эванса, усилители потока специальной конструкции.

Следует отметить, что ветроколесо с вертикальной осью вращения, в отличие от таковых с горизонтальной, находятся в рабочем положении при любом направлении ветра, однако их принципиальными недостатками являются большая подверженность усталостным разрушениям из-за возникающих в них автоколебательных процессов и пульсация крутящего момента, приводящая к нежелательным пульсациям выходных параметров генератора. Из-за этого подавляющее большинство ветроагрегатов выполнено по горизонтально-осевой схеме, хотя продолжаются всесторонние проработки различных типов вертикально-осевых установок.

По мощности ветроустановки делятся на: малой мощности – до 100 кВт, средней – от 100 до 500 кВт, и большой (мегаваттного класса) – 0,5-4 МВт и более.

Часто идет речь о малой ветроэнергетике, назначение которой – обеспечение водоподъема для сельскохозяйственных целей, получение тепла и электропитания отдельных потребителей в неэлектрофицированных районах и т.п. Во многих странах налажено серийное производство ветроустановок малой мощности. Например, в России НПО «Ветроэн» серийно выпускает установки мощностью 4 кВт с диаметром колеса 6 м.

Следует отметить, что малая ветроэнергетика не требует больших территорий, ее можно развивать везде, где имеются для этого соответствующие условия.

Выбор характеристик ветроколеса для ветроустановки в конкретных ветровых условиях определяется целями, которые перед ней ставятся. Обычно это требование максимизации производства энергии за год, чтобы, например, уменьшить потребление топлива тепловыми станциями единой энергосистемы, либо обеспечение производства определенного минимума энергии даже при слабом ветре, чтобы, например, сохранить работоспособность насосов системы водоснабжения.

Одной из важнейших характеристик ветроколеса является его быстроходность, которая зависит от трех основных переменных: радиуса обметаемой ветроколесом окружности, скорости ветра, угловой скорости вращения колеса.

В настоящее время в мире установлены и находятся в эксплуатации ветроэнергетические установки (ВЭУ) суммарной мощностью более 25 000 МВт.

К началу 2001 г. мировой рынок ВЭУ оценивался следующими цифрами (табл. 1).

Табл. 1

Мировой рынок

Установленная мощность в 2000 г., МВт

Ожидаемая мощность в 2005 г.,

МВт % роста

Европейский

13 630

28 230 / 207

Североамериканский

2 847

5 890 / 207

Азиатский

1 728

3 840 / 222

Остальной

244

2 165 /887

Рынок ВЭУ в настоящее время является одним из наиболее быстроразвивающихся, его рост превышает 20% в год.

Ведущими производителями ВЭУ в мире в настоящее время являются фирмы Германии, Дании, Испании. На рынке ВЭУ существует острая конкуренция между ведущими фирмами. В последние годы некоторые крупные производители ВЭУ разорились и появились новые. На конце 2000 г. рынок распределялся примерно следующим образом (табл. 2).

Табл. 2

Фирма

Доля, % общего рынка

Примечание

1994 г.

2000 г.

Vestas (Дания)

20,4

17,9

-

Kenetech (США)

14,2

-

Разорилась

Enercon(Германия)

14,0

13,7

-

NEPC

8,5

-

-

Tacke (Германия)

10,4

-

Куплена

фирмой Enren(США)

Bonus (Дания)

7,5

11,5

-

NEG Micon (Дания)

17,0

13,4

-

Wind World (Дани)

3,3

-

Куплена фирмой NEG Micon

Ned Wind(Голландия)

3,2

-

-

Nordex (Германия)

3,0

8,3

-

Wind Master(Бельгия)

0,1

-

-

Остальные

2,3

14,1

-

Enron (США)

-

6,0

-

Gamesa (Испания)

-

13,9

-

MADE

-

1,9

-

Специалисты подсчитали, что в течение первого десятилетия XXI в. энергия ветра может обеспечить 10% потребности Западной Европы в электроэнергии. Используя большие неосвоенные запасы энергии ветра на морском побережье, европейские страны могут увеличить мощность ветроэнергетических установок до 40 тыс. МВт в 2010 г. и до 100 тыс. МВт в 2020 г. Если учесть, что суммарная мощность ВЭУ в Европе в 2000 г. составляла примерно 8 тыс. МВт, то приведенные цифры свидетельствуют о беспрецедентных темпах развития этого сектора энергетики.

Повышение единичных мощностей и совершенствование технологии улучшают экологические показатели производства энергии на ВЭУ. Стоимость 1 кВТ·ч электроэнергии, вырабатываемой на ВЭУ в 1980 г. составляла 0,45 – 0,60 немецких марок, а в 1995 г. снизилось до 0,11 – 0,25 немецких марки. По оценкам специалистов, в перспективе себестоимость электроэнергии на ВЭУ будет существенно снижаться.

Ведущее место в мире по производству электроэнергии на ветроэлектростанциях (ВЭС) занимает Германия. Причиной успешного развития ветроэнергетики послужили принятые руководством страны в 1991 г. Акт об энергосбережении и Акт о подводе в электросеть энергии от возобновляемых источников. Такие же законодательные акты были приняты в Дании и Испании, что позволило этим странам не только создать промышленное производство ветроустановок. Но и занять лидирующее положение в мире на ВЭС, так и по продажам оборудования на мировом рынке ветроустановок.

По данным на последний год XX в., установленная мощность ветроэлектростанций в Европе составила:

— в Германии – 4 443 МВт

— в Дании – 1 761 МВт

— в Испании – 1 225 МВт

— в Великобритании — 353 МВт.

Новым толчком к развитию ветроэнергетики, как уже отмечалось, явилось подписание Киотского протокола, по которому все западноевропейские страны должны снизить выбросы СО2 в атмосферу. С 1 апреля 2000 г в Германии вступил в действие утвержденный бундестагом новый закон, направленный на развитие возобновляемых источников энергии. В частности, новый закон определяет дифференцированные тарифы на электроэнергию, производимую ветроэнергетическими установками. За такую электроэнергию в течение 5 лет, начиная с даты приемки ВЭУ в эксплуатацию должна выплачиваться компенсация. Если ВЭУ будет установлена в море, то период компенсации увеличивается до 9 лет.

Опираясь на благоприятные экономические условия и на успехи машиностроителей, ветроэнергетика в ФРГ в последние годы развивается бурными темпами. Крупные ВЭУ мощностью 1 МВт и выше выпускают фирмы Vestas, GET и Tacke. Первая из них уже освоила выпуск ВЭУ на 1,5 МВт. а в стадии монтажа в 2000 г. находились 2 генератора: четырехполюсный асинхронный и асинхронный с возможностью регулирования скольжения на 10%. Фирма GET выпускает ВЭУ мощностью по 1,2 МВт с двухлопастной турбиной диаметром 61 м.

Пятнадцать таких установок входят в состав комплекса Wismar. Следующая разработка – трехлопастная турбина мощностью 1,5 МВт для комплекса на земле Маклебург, Передняя Полирания.

Фирма Tacke имеет в своем активе ВЭУ мощностью 1,5 МВт с высотой опоры 112,5 м. Демонстрационные испытания установки подтвердили несомненные ее преимущества перед серийными ВЭУ мощностью 600 кВт.

Если оценивать успехи ветроэнергетики по максимальной мощности отдельных агрегатов, то бесспорным лидером являются США. В 1999 г. на ВЭС Big Spring в штате Texas были сданы в эксплуатацию 4 ВЭУ единичной мощностью по 1650 кВт. Отметка верхней точки установки достигает 113 м, что выше статуи Свободы. Основные рабочие характеристики этих ВЭУ впечатляют: диаметр ротора ветроколеса – 66 м, площадь размаха ротора – 3 420 м². ВЭУ рассчитана на следующие параметры: начальная скорость ветра – 4 м/с, оптимальная — 17,7 м/с, максимальная – 25 м/с. Чтобы избежать энергетических потерь, связанных с возможным взаимодействием и влиянием работы отдельных ВЭУ друг от друга, расстояние между ними принято равным 3,5 диаметра ротора в направлении ветра и 10 диаметрам ротора между рядами ВЭУ в группе.

Несколько ранее на этой же ВЭС были введены в эксплуатацию 46 ВЭУ мощностью по 600 кВт каждая. С учетом новых вводов полная мощность Big Spring составила 34 МВт. Проектный годовой объем производства электроэнергии на этой электростанции составляет 117 млн. кВт·ч. Полная стоимость сооружения ВЭС Big Spring оценивается в 40 млн. долларов США, т.е. более 1 170 долларов/кВт установленной мощности. Себестоимость электроэнергии, вырабатываемой на ВЭС Big Spring, оказалась значительно ниже, чем на ранее построенных электростанциях, но все же заметно выше той цены, которую планировала получить компания Enron Wind Power Corp. (входящая в недавно обанкротившийся холдинг Enron Corp.).

Необходимо отметить, что в США, как и в Европе, за последние 15 лет себестоимость электроэнергии, вырабатываемой на ВЭС, удалось снизить в несколько раз. Объясняется это, прежде всего, внедрением новых технологий. Так, лопасти ветроколес, изготовляемые в настоящее время из стеклопластика или древесины, пропитанной эпоксидной смолой, удалось увеличить до 40 м и даже более, как в случае с Big Spring (в 80-е гг. рекордными считались лопасти в 13 м). Это позволило в последние годы строить более мощные ветроустановки, а значит – увеличивать выработку электроэнергии. Если в начале 80-х гг. средняя единичная мощность ВЭУ составляла 50 кВт, то к концу 90-х гг. она возросла до 500 – 750 кВт. За счет увеличения мощности себестоимость электроэнергии снизилась в 3 раза. Другие новшества, определившие повышение экономичности, — переменная частота вращения ветроколес, а также системы управления ВЭУ, реагирующие на изменение скорости ветра (ветроустановка Zond Z мощностью 750 кВт).

Значительных успехов в области ветроэнергетики добилась Дания. Этому способствовали как благоприятные географические условия, так и тарифная политика правительства страны. Подсчитано, что в Дании при среднегодовой скорости ветра чуть более 5 м/с удельная годовая производительность ВЭУ достигает 937 кВт·ч/м². В настоящее время в структуре потребления первичных энергоресурсов заметная величина (7%) приходится на нетрадиционные источники энергии, к которым относится и ветровая электроэнергетика.

Общее число ВЭУ в Дании насчитывает 3 300 агрегатов. Здесь построена первая ветроэлектростанция “морского базирования”, состоящая из 11 ВЭУ мощностью по 450 кВт каждая. Предполагается, что в 2002 г. на побережье Северного моря будет установлен парк ВЭУ общей мощностью 160 МВт, 180 ВЭУ по 2 МВт.

Дания является важнейшим экспортером оборудования для ветроэлектростанций. Подставки ВЭУ осуществляются в США (штат Калифорния), Индию, некоторые страны Европы. Изготовлением ВЭУ занимаются, как правило, предприятия сельскохозяйственного машиностроения: Vestas, Nordtank, Bonus, Nordex, Micon. Завод Vestas, например, ежегодно продает ВЭУ общей мощностью до 800 МВт. В настоящее время Дания осуществляет до 70% мирового оборота рынка ветроэнергетических установок.

Современные турбины рассчитаны на ресурс 120 тыс. ч в течение 20 лет. Для расширения диапазона снимаемой мощности на некоторых ВЭУ устанавливаются по 2 электрогенератора разной мощности: 600/150, 1000/200 или 1650/300 кВт.

По заявлению датских специалистов, стоимость ВЭУ при увеличении мощности от 150 до 600 кВт (в 4 раза) возрастает только в 3 раза. Поэтому увеличение мощности приводит к снижению удельных капитальных затрат. По последним данным, средняя удельная стоимость мощностей в ветроэнергетике при мощности ВЭУ 500 – 600 кВт составляет около 1000 долларов США/кВт, а для установок единичной мощностью 2000 кВт удельная стоимость снизится до 800 – 900 долларов США/кВт.

Эксплуатационные расходы также связаны с мощностью ВЭУ. В диапазоне мощностей 500 – 1000 кВт затраты составляют в среднем 0,5 – 0,9 цента/кВт·ч. У старых машин с 10-летним сроком эксплуатации этот показатель возрастает до 1,3 – 1,7 цента/кВт·ч.

В Дании разработаны и предлагаются к продаже блочные ветродизельные установки с контрольно-регулирующим блоком и дизелем малой мощности для резервирования и надежного регулирования. Такие установки обеспечивают работу одиночной ВЭУ мощностью от 100 кВт и группы ВЭУ мощностью до 7 МВт, которые работают в изолированных сетях или в сетях с малой пропускной способностью.

Успешно развивается ветроэнергетика ив других европейских странах. Испанская компания EHN (наиболее крупная в мире группа в области возобновляемых источников энергии) в 1999 г. ввела в эксплуатацию несколько мощных ВЭУ. В двух испанских провинциях – Наварра и Альбасете – на ветроэлектростанции производится 22% потребляемой электроэнергии.

В Швеции ВЭС общей мощностью 500 кВт размещены в море, вблизи острова Готланд. Проектируются и более мощные системы ВЭС – на 48 и 750 МВт.

Великобритания к наземным ВЭУ общей мощностью 353 МВт добавила в 2001 г. первую ВЭС морского базирования.

В Японии до последнего времени ветроэнергетика была развита слабо. Первые ВЭС были введены в эксплуатацию только в середине 70-х гг. В конце 90-х гг. установленная мощность ВЭС составляла 30 МВт, а единичная мощность комплекса ВЭУ не превышала 3,5 МВт. Между тем использование ВЭС было признано целесообразным для электроснабжения островов, небольших удаленных от опорных точек сети потребителей. Специалисты подсчитали, что увеличение единичной мощности ВЭУ позволит снизить стоимость электроэнергии.

Самая крупная в Японии ВЭС – ветропарк, расположенный в северной части острова Хонсю. Здесь действуют 11 ВЭУ общей мощностью 3 375 кВт. Недавно на острове Хоккастдо началось сооружение ветряной фермы из 30 генераторов мощностью по 1 МВт. Стоимость проекта 47,2 млн. долларов США.

Определенные успехи в области ветроэнергетики имеют и наши соседи из ближнего зарубежья. В частности, днепропетровская фирма “Энергетические системы и оборудования” (Украина) разработало ряд ветроэлектрических установок мощностью от 20 до 420 кВт. Выбранная вертикально-осевая схема ВЭУ ЕСО-0020 мощностью 20 кВт принцип работы, которой основан на использовании подъемной силы прямых лопастей, вращающихся вокруг вертикальной оси, является альтернативой традиционным для Европы и США горизонтально-пропеллерным конструкциям. Благодаря своим особенностям (независимость от направления ветра, тихоходность турбины, простота конструкции) вертикально-осевые установки по ряду характеристик превосходят горизонтально-пропеллерные. ВЭУ рассчитана на рабочий диапазон ветров от 5 до 20 м/с, срок службы – 20 лет. Стальная опорная башня имеет высоту 14 м., материал ветротурбины – алюминиевый сплав, частота вращения – от 40 до 95 об/мин. При среднегодовой скорости ветра 6,2 м/с выработка электроэнергии составит 60 тыс. кВт·ч/год.

По таким же схеме выполнена ВЭУ ЕСО-0420, но мощность этой вертикально-осевой ВЭУ – 420 кВт. Стальная опорная ферма имеет высоту 35 м, а диаметр турбины из алюминиевого сплава – 26 м. ВЭУ рассчитана на номинальную скорость ветра 13 м/с. Но может работать в диапазоне скоростей от 5 до 25 м/с. При среднегодовой скорости ветра 6,2 м/с ВЭУ ЕСО-0420 вырабатывает 1400 тыс. кВт·ч/год. Как и в первом случае, эта ВЭУ может работать параллельно с энергосистемой или дизельным источником энергии.

В России промышленное производство ветроэнергетических установок отсутствует. Между тем еще в 80-е гг. было показано, насколько перспективно создание мощных ветроэнергетических комплексов на Севере РФ. Был разработан проект уникального комплекса – ветроэнергетической системы Кольского полуострова, который протянется на 1 100 км. В нем предусматривается 238 ветроэнергетических групп, каждая из которых будет состоять из ВЭУ новой конструкции и имеет мощность не менее 1000 МВт.

В наши дни ветроэнергетические установки могут быть востребованы владельцами фермерских хозяйств, удаленных от сетей электроснабжения.

Как уже известно, идеальные места для «приручения» энергии ветра – это протяженные, продуваемые со всех сторон равнины, расположенные на возвышенностях. Именно на таких территориях среднегодовая скорость ветра превышает 5 м/с, что обеспечивает эффективную работу ветроэнергетических установок.

Беларусь богата подобными территориями. По оценкам специалистов, наиболее перспективными для развития ветроэнергетики в Беларуси являются центральная и западная часть Минской области, а также Витебская возвышенность. Более того, потенциал любой точки на территории Беларуси в отношении ее перспективности или неперспективности для ветроэнергетики может быть определен с помощью соответствующих расчетов, базирующихся на информации ветроэнергетического атласа страны и специального банка данных. Вопросы окупаемости и экономической эффективности ветроэнергетических установок – сфера, где еще не расставлены все точки над «и». Если подходить к этой проблеме глобально, учитывая перспективы постоянного удорожания энергетических ресурсов и их грядущий дефицит, ветроэнергетическая техника однозначно является перспективным вложением средств. Однако в нашей стране как-то не принято строить долгосрочные планы и активно развивать направления науки и техники, противоречащие традиционному мышлению.

Отечественные сторонники ветроэнергетической концепции считают, что окупаемость таких систем не превышает 4 лет.

Одна из первых ветроэнергетических установок в стране находится на выезде из Минска в могилевском направлении. Она была разработана минской фирмой «Аэролла». Другая ветроустановка, разработанная НПГП «Ветромаш», работает в Заславле, который практически является плацдармом для отработки новых решений по энергосбережению в Беларуси. В поселке Занарочь подготовлена площадка для установки ветростанции. И, наконец, в качестве положительного примера в области энергосбережения не недавно проходившей итоговой коллегии Минжилкоммунхоза было названо сооружение ветровой установки в Городке. Здесь такая система вырабатывает энергию на случай аварийного выхода из строя обычных систем энергообеспечения.

Энергетическая программа РБ до 2010 г. основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективными считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ВЭУ для водоподъема, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. тонн условного топлива в год.

Одним из высокоприоритетных белорусских Национальных проектов, включенных в Мировую солнечную программу на 1996 – 2005 гг., является создание двух экспериментальных промышленных ветроэнергетических установок мощностью 1,5 МВт каждая.

Беларусь располагает значительными ресурсами энергии ветра. По данным Государственного комитета по гидрометеорологии РБ и НП ГП “Ветромаш”, среднегодовая скорость ветра на территории республики составляет 4,3 м/с. При этом на четверти пригодной для внедрения ВЭУ территории среднегодовая скорость ветра превышает 5 м/с. Такая скорость ветра соответствует требованиям мировой практики по показателям коммерческой целесообразности внедрения ветротехники. При правильном выборе места установки ветроагрегата (на возвышенных открытых местах, на берегах водных массивов и т.п.) среднегодовая скорость ветра может достигать 6 – 7 м/с.

Максимально прогнозируемый ветроэнергетический ресурс территории республики составляет более 280 млрд. кВт·ч в год. Используя только 1% территории под ветроэнергетику уже в 2010 г. позволило бы выработать около 3 млрд. кВт·ч энергии. При условии 25% использования годового времени на выработку такого количества энергии потребуется до 8 000 ветроустановок мощностью от 100 до 500 кВт, которые позволили бы сэкономить ежегодно до 1 млн. тонн условного топлива. Окупаемость подобной ветротехники составляет около 4 лет.

Ветротехнические показатели ветроагрегатов, рекомендуемые к внедрению на территории Республики Беларусь

Зональная среднегодовая скорость ветра, м/с

Диапазон рабочих скоростей ветра ВЭУ, м/с

Расчетная скорость ветра, соответствую-щая номинальной мощности, м/с

Ориентировочная

Доля использования ВЭУ, %

До 4,5

3 – 20

8

40

4,5 – 5,5

4 – 24

9

30

Выше 5,5

4 – 24

10 – 12

30

Все эти проекты свидетельствуют о том, что в Беларуси для внедрения концепции ветроэнергетики на практике есть не только бесплатный ветер и благоприятные климатические предпосылки, но и люди, которые понимают, что лучше заботиться о будущем сегодня, чем обречь своих детей на бесперспективное завтра.

Литература:

1. Морозевич А.Н. «Основы информатики» — М.: ООО «Новое издание», 2001 г.;

2. Баштавой В.Г. и др. «Основы энергосбережения» — М.: Тэхналогия, 1999 г.;

3. Журнал «Энергоэффективность» №8 — М.: Минск, 2002 г.;

4. Журнал «Энергоэффективность» №10 — М.: Минск,2002 г.;

5. Журнал «Энергоэффективность» №1 — М.: Минск,2001 г.;

6. Журнал «Энергоэффективность» №11 — М.: Минск,2001 г.;

7. Лебедев Б.П., Матко П.М. «Энергия мира» — М.: Энергоатомиздат, 1989 г.

www.ronl.ru

Ветроэнергетика. Перспективы использования в Республике Беларусь

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИ УНИВЕРСИТЕТ

Кафедра: “ЮНЕСКО”

РЕФЕРАТ

на тему: “Ветроэнергетика. Перспективы использования в

Республике Беларусь”

2 курс

Минск, 2002

“Нетрадиционная энергетика” нетрадиционна

потому, что не везде ещё у нас есть традиция –

беречь родную природу.

Разуваев В.А.

Историю человеческого общества (в том числе и нашей Беларуси) можно рассматривать по-разному. Например, как историю жизни и поступков королей, императоров, президентов. А можно - как историю развития энергетики.

Солнце по-разному обогревает разные участки земной поверхности – горы и долины, океаны и сушу. Воздушный океан, на дне которого мы живем, всегда неспокоен. Постоянно и повсюду дуют ветры – от легкого ветерка, приносящего желанную прохладу в летний зной, до могучих и грозных ураганов.

Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей. Да и использовать эту энергию научились за тысячу лет до нашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряные мельницы служили единственным источником энергии для тех человеческих поселений, где не было рек или моря.

В Европе количество водяных мельниц в конце VXIII века доходило до полумиллиона. В Беларуси в середине XIX века, например, в Гродненской губернии насчитывалось 258 ветряных мельниц.

Ограниченность мировых запасов топлива и энергии, неравномерность их распределения по планете, ухудшение экологической ситуации все острее ставят вопрос о всемирном использовании нетрадиционных экологически чистых энерготехнологий и использовании возобновляемых энергоресурсов.

И теперь интерес к использованию энергии ветра, источника нескончаемого, не прошел, и, более того, техника ХХ века открыла для этого совершенно новые возможности.

Активное использование экологически чистых источников энергии сейчас своего рода признак хорошего тона, всячески приветствуется как мировой общественностью, так и правительствами развитых стран.

Из таких энергоресурсов наиболее распространенным и доступным является ветер. Эксплуатация ветроустановок не требует топлива и воды, они могут быть полностью автоматизированы, отчуждаемая территория минимальна и по расчетам составляет 3 – 5 м²/кВт установленной мощности. Эти установки практически полной заводской готовности, и для их монтажа требуется минимум времени (фундамент и подключение к сети). Вот почему ветроэнергетика бурно развивается.

Для эффективной работы ветроустановок необходимы определенные требования по их размещению. Так, для относительно постоянной работы ветроэнергетических установок требуется их размещение в местностях, где ветровой потенциал составляет 2500 часов в год.

Ветровые условия района применительно к ветроиспользованию характеризуются ветроэнергетическим потенциалом, который включает в себя различные показателя ветра, определяемые по результатам многолетних наблюдений: среднегодовые и среднемесячные скорости ветра; повторяемость скорости и направление ветра в течение года, месяца, суток; данные о порывистости, затишьях и максимальных значениях скорости ветра; изменения его с высотой и т. п.

Достоверность оценки ветрового потенциала местности – наиболее важный фактор, определяющий эффективность ветроэнергетических станций.

Следует отметить, что была разработана классификация силы ветра по шкале Бофора и изучено влияние ее на характеристики ветроэнергетических установок различных классов и условия их работы.

Сила ветра по шкале Бофора и ее влияние на

ветроустановки и условия их работы.

Баллы Боффора

Скорость ветра, м/с

Хар-ка ветра

Наблюд.

эффекты действия

Воздействие

ветра на ВЭУ

Условия для работы ВЭУ

1

0,4 – 1,8

Тихий

Дым из труб слегка отклоняется; на воде появляется рябь

Нет

Отсутствует

2

1,8 – 3,6

Легкий

Ветер ощущается лицом, шелестят листья, на воде отчетливые волнения

Нет

Отсутствует

3

3,6 – 5,8

Слабый

Колеблются листья на деревьях, развиваются легкие флаги; на отдельных волнах появляются барашки

Начинают вращаться лопасти тихоходных ВЭУ

Плохие для всех установок

4

5,8 – 8,5

Умеренный

Колеблются тонкие ветки деревьев, поднимается пыль, на воде много барашков

Начинают вращаться полеса всех ВЭУ

Хорошие

5

8,5 - 11

Свежий

Начинают раскачиваться лиственные деревья, все волны в барашках

Мощность ВЭУ достигает 30% проектной

Очень хорошие

Ветроустановки классифицируются по следующим признакам:

- положению ветроколеса относительно направления ветра;

- геометрии ветроколеса;

- по мощности ветроустановки.

В настоящее время технические средства включают два основных типа промышленных ветроустановок: горизонтальные – с горизонтально осевой турбиной (ветроколесом), когда ось вращения ветроколеса параллельна воздушному потоку; вертикальные – с вертикально осевой турбиной (ротором), когда ось вращения перпендикулярна воздушному потоку.

Ветроколесо с горизонтальной осью делятся на однолопастные, двухлопастные, трехлопастные, многолопастные; с вертикальной осью различают следующие конструкции роторов: чашечный анемометр, ротор Савониуса, ротор Дарье, также имеются конструкции с концентратами (усилителями) ветрового потока, такие, как ротор Масгрува, ротор Эванса, усилители потока специальной конструкции.

Следует отметить, что ветроколесо с вертикальной осью вращения, в отличие от таковых с горизонтальной, находятся в рабочем положении при любом направлении ветра, однако их принципиальными недостатками являются большая подверженность усталостным разрушениям из-за возникающих в них автоколебательных процессов и пульсация крутящего момента, приводящая к нежелательным пульсациям выходных параметров генератора. Из-за этого подавляющее большинство ветроагрегатов выполнено по горизонтально-осевой схеме, хотя продолжаются всесторонние проработки различных типов вертикально-осевых установок.

По мощности ветроустановки делятся на: малой мощности – до 100 кВт, средней – от 100 до 500 кВт, и большой (мегаваттного класса) – 0,5-4 МВт и более.

Часто идет речь о малой ветроэнергетике, назначение которой – обеспечение водоподъема для сельскохозяйственных целей, получение тепла и электропитания отдельных потребителей в неэлектрофицированных районах и т.п. Во многих странах налажено серийное производство ветроустановок малой мощности. Например, в России НПО "Ветроэн" серийно выпускает установки мощностью 4 кВт с диаметром колеса 6 м.

Следует отметить, что малая ветроэнергетика не требует больших территорий, ее можно развивать везде, где имеются для этого соответствующие условия.

Выбор характеристик ветроколеса для ветроустановки в конкретных ветровых условиях определяется целями, которые перед ней ставятся. Обычно это требование максимизации производства энергии за год, чтобы, например, уменьшить потребление топлива тепловыми станциями единой энергосистемы, либо обеспечение производства определенного минимума энергии даже при слабом ветре, чтобы, например, сохранить работоспособность насосов системы водоснабжения.

Одной из важнейших характеристик ветроколеса является его быстроходность, которая зависит от трех основных переменных: радиуса обметаемой ветроколесом окружности, скорости ветра, угловой скорости вращения колеса.

В настоящее время в мире установлены и находятся в эксплуатации ветроэнергетические установки (ВЭУ) суммарной мощностью более 25 000 МВт.

К началу 2001 г. мировой рынок ВЭУ оценивался следующими цифрами (табл. 1).

Табл. 1

Мировой рынок

Установленная мощность в 2000 г., МВт

Ожидаемая мощность в 2005 г.,

МВт % роста

Европейский

13 630

28 230 / 207

Североамериканский

2 847

5 890 / 207

Азиатский

1 728

3 840 / 222

Остальной

244

2 165 /887

Рынок ВЭУ в настоящее время является одним из наиболее быстроразвивающихся, его рост превышает 20% в год.

Ведущими производителями ВЭУ в мире в настоящее время являются фирмы Германии, Дании, Испании. На рынке ВЭУ существует острая конкуренция между ведущими фирмами. В последние годы некоторые крупные производители ВЭУ разорились и появились новые. На конце 2000 г. рынок распределялся примерно следующим образом (табл. 2).

Табл. 2

Фирма

Доля, % общего рынка

Примечание

1994 г.

2000 г.

Vestas (Дания)

20,4

17,9

-

Kenetech (США)

14,2

-

Разорилась

Enercon(Германия)

14,0

13,7

-

NEPC

8,5

-

-

Tacke (Германия)

10,4

-

Куплена

фирмой Enren(США)

Bonus (Дания)

7,5

11,5

-

NEG Micon (Дания)

17,0

13,4

-

Wind World (Дани)

3,3

-

Куплена фирмой NEG Micon

Ned Wind(Голландия)

3,2

-

-

Nordex (Германия)

3,0

8,3

-

Wind Master(Бельгия)

0,1

-

-

Остальные

2,3

14,1

-

Enron (США)

-

6,0

-

Gamesa (Испания)

-

13,9

-

MADE

-

1,9

-

Специалисты подсчитали, что в течение первого десятилетия XXI в. энергия ветра может обеспечить 10% потребности Западной Европы в электроэнергии. Используя большие неосвоенные запасы энергии ветра на морском побережье, европейские страны могут увеличить мощность ветроэнергетических установок до 40 тыс. МВт в 2010 г. и до 100 тыс. МВт в 2020 г. Если учесть, что суммарная мощность ВЭУ в Европе в 2000 г. составляла примерно 8 тыс. МВт, то приведенные цифры свидетельствуют о беспрецедентных темпах развития этого сектора энергетики.

Повышение единичных мощностей и совершенствование технологии улучшают экологические показатели производства энергии на ВЭУ. Стоимость 1 кВТ·ч электроэнергии, вырабатываемой на ВЭУ в 1980 г. составляла 0,45 – 0,60 немецких марок, а в 1995 г. снизилось до 0,11 – 0,25 немецких марки. По оценкам специалистов, в перспективе себестоимость электроэнергии на ВЭУ будет существенно снижаться.

Ведущее место в мире по производству электроэнергии на ветроэлектростанциях (ВЭС) занимает Германия. Причиной успешного развития ветроэнергетики послужили принятые руководством страны в 1991 г. Акт об энергосбережении и Акт о подводе в электросеть энергии от возобновляемых источников. Такие же законодательные акты были приняты в Дании и Испании, что позволило этим странам не только создать промышленное производство ветроустановок. Но и занять лидирующее положение в мире на ВЭС, так и по продажам оборудования на мировом рынке ветроустановок.

По данным на последний год XX в., установленная мощность ветроэлектростанций в Европе составила:

- в Германии – 4 443 МВт

- в Дании – 1 761 МВт

- в Испании – 1 225 МВт

- в Великобритании - 353 МВт.

Новым толчком к развитию ветроэнергетики, как уже отмечалось, явилось подписание Киотского протокола, по которому все западноевропейские страны должны снизить выбросы СО2в атмосферу. С 1 апреля 2000 г в Германии вступил в действие утвержденный бундестагом новый закон, направленный на развитие возобновляемых источников энергии. В частности, новый закон определяет дифференцированные тарифы на электроэнергию, производимую ветроэнергетическими установками. За такую электроэнергию в течение 5 лет, начиная с даты приемки ВЭУ в эксплуатацию должна выплачиваться компенсация. Если ВЭУ будет установлена в море, то период компенсации увеличивается до 9 лет.

Опираясь на благоприятные экономические условия и на успехи машиностроителей, ветроэнергетика в ФРГ в последние годы развивается бурными темпами. Крупные ВЭУ мощностью 1 МВт и выше выпускают фирмы Vestas, GET и Tacke. Первая из них уже освоила выпуск ВЭУ на 1,5 МВт. а в стадии монтажа в 2000 г. находились 2 генератора: четырехполюсный асинхронный и асинхронный с возможностью регулирования скольжения на 10%. Фирма GET выпускает ВЭУ мощностью по 1,2 МВт с двухлопастной турбиной диаметром 61 м.

Пятнадцать таких установок входят в состав комплекса Wismar. Следующая разработка – трехлопастная турбина мощностью 1,5 МВт для комплекса на земле Маклебург, Передняя Полирания.

Фирма Tacke имеет в своем активе ВЭУ мощностью 1,5 МВт с высотой опоры 112,5 м. Демонстрационные испытания установки подтвердили несомненные ее преимущества перед серийными ВЭУ мощностью 600 кВт.

Если оценивать успехи ветроэнергетики по максимальной мощности отдельных агрегатов, то бесспорным лидером являются США. В 1999 г. на ВЭС Big Spring в штате Texas были сданы в эксплуатацию 4 ВЭУ единичной мощностью по 1650 кВт. Отметка верхней точки установки достигает 113 м, что выше статуи Свободы. Основные рабочие характеристики этих ВЭУ впечатляют: диаметр ротора ветроколеса – 66 м, площадь размаха ротора – 3 420 м². ВЭУ рассчитана на следующие параметры: начальная скорость ветра – 4 м/с, оптимальная - 17,7 м/с, максимальная – 25 м/с. Чтобы избежать энергетических потерь, связанных с возможным взаимодействием и влиянием работы отдельных ВЭУ друг от друга, расстояние между ними принято равным 3,5 диаметра ротора в направлении ветра и 10 диаметрам ротора между рядами ВЭУ в группе.

Несколько ранее на этой же ВЭС были введены в эксплуатацию 46 ВЭУ мощностью по 600 кВт каждая. С учетом новых вводов полная мощность Big Spring составила 34 МВт. Проектный годовой объем производства электроэнергии на этой электростанции составляет 117 млн. кВт·ч. Полная стоимость сооружения ВЭС Big Spring оценивается в 40 млн. долларов США, т.е. более 1 170 долларов/кВт установленной мощности. Себестоимость электроэнергии, вырабатываемой на ВЭС Big Spring, оказалась значительно ниже, чем на ранее построенных электростанциях, но все же заметно выше той цены, которую планировала получить компания Enron Wind Power Corp. (входящая в недавно обанкротившийся холдинг Enron Corp.).

Необходимо отметить, что в США, как и в Европе, за последние 15 лет себестоимость электроэнергии, вырабатываемой на ВЭС, удалось снизить в несколько раз. Объясняется это, прежде всего, внедрением новых технологий. Так, лопасти ветроколес, изготовляемые в настоящее время из стеклопластика или древесины, пропитанной эпоксидной смолой, удалось увеличить до 40 м и даже более, как в случае с Big Spring (в 80-е гг. рекордными считались лопасти в 13 м). Это позволило в последние годы строить более мощные ветроустановки, а значит – увеличивать выработку электроэнергии. Если в начале 80-х гг. средняя единичная мощность ВЭУ составляла 50 кВт, то к концу 90-х гг. она возросла до 500 – 750 кВт. За счет увеличения мощности себестоимость электроэнергии снизилась в 3 раза. Другие новшества, определившие повышение экономичности, - переменная частота вращения ветроколес, а также системы управления ВЭУ, реагирующие на изменение скорости ветра (ветроустановка Zond Z мощностью 750 кВт).

Значительных успехов в области ветроэнергетики добилась Дания. Этому способствовали как благоприятные географические условия, так и тарифная политика правительства страны. Подсчитано, что в Дании при среднегодовой скорости ветра чуть более 5 м/с удельная годовая производительность ВЭУ достигает 937 кВт·ч/м². В настоящее время в структуре потребления первичных энергоресурсов заметная величина (7%) приходится на нетрадиционные источники энергии, к которым относится и ветровая электроэнергетика.

Общее число ВЭУ в Дании насчитывает 3 300 агрегатов. Здесь построена первая ветроэлектростанция “морского базирования”, состоящая из 11 ВЭУ мощностью по 450 кВт каждая. Предполагается, что в 2002 г. на побережье Северного моря будет установлен парк ВЭУ общей мощностью 160 МВт, 180 ВЭУ по 2 МВт.

Дания является важнейшим экспортером оборудования для ветроэлектростанций. Подставки ВЭУ осуществляются в США (штат Калифорния), Индию, некоторые страны Европы. Изготовлением ВЭУ занимаются, как правило, предприятия сельскохозяйственного машиностроения: Vestas, Nordtank, Bonus, Nordex, Micon. Завод Vestas, например, ежегодно продает ВЭУ общей мощностью до 800 МВт. В настоящее время Дания осуществляет до 70% мирового оборота рынка ветроэнергетических установок.

Современные турбины рассчитаны на ресурс 120 тыс. ч в течение 20 лет. Для расширения диапазона снимаемой мощности на некоторых ВЭУ устанавливаются по 2 электрогенератора разной мощности: 600/150, 1000/200 или 1650/300 кВт.

По заявлению датских специалистов, стоимость ВЭУ при увеличении мощности от 150 до 600 кВт (в 4 раза) возрастает только в 3 раза. Поэтому увеличение мощности приводит к снижению удельных капитальных затрат. По последним данным, средняя удельная стоимость мощностей в ветроэнергетике при мощности ВЭУ 500 – 600 кВт составляет около 1000 долларов США/кВт, а для установок единичной мощностью 2000 кВт удельная стоимость снизится до 800 – 900 долларов США/кВт.

Эксплуатационные расходы также связаны с мощностью ВЭУ. В диапазоне мощностей 500 – 1000 кВт затраты составляют в среднем 0,5 – 0,9 цента/кВт·ч. У старых машин с 10-летним сроком эксплуатации этот показатель возрастает до 1,3 – 1,7 цента/кВт·ч.

В Дании разработаны и предлагаются к продаже блочные ветродизельные установки с контрольно-регулирующим блоком и дизелем малой мощности для резервирования и надежного регулирования. Такие установки обеспечивают работу одиночной ВЭУ мощностью от 100 кВт и группы ВЭУ мощностью до 7 МВт, которые работают в изолированных сетях или в сетях с малой пропускной способностью.

Успешно развивается ветроэнергетика ив других европейских странах. Испанская компания EHN (наиболее крупная в мире группа в области возобновляемых источников энергии) в 1999 г. ввела в эксплуатацию несколько мощных ВЭУ. В двух испанских провинциях – Наварра и Альбасете – на ветроэлектростанции производится 22% потребляемой электроэнергии.

В Швеции ВЭС общей мощностью 500 кВт размещены в море, вблизи острова Готланд. Проектируются и более мощные системы ВЭС – на 48 и 750 МВт.

Великобритания к наземным ВЭУ общей мощностью 353 МВт добавила в 2001 г. первую ВЭС морского базирования.

В Японии до последнего времени ветроэнергетика была развита слабо. Первые ВЭС были введены в эксплуатацию только в середине 70-х гг. В конце 90-х гг. установленная мощность ВЭС составляла 30 МВт, а единичная мощность комплекса ВЭУ не превышала 3,5 МВт. Между тем использование ВЭС было признано целесообразным для электроснабжения островов, небольших удаленных от опорных точек сети потребителей. Специалисты подсчитали, что увеличение единичной мощности ВЭУ позволит снизить стоимость электроэнергии.

Самая крупная в Японии ВЭС – ветропарк, расположенный в северной части острова Хонсю. Здесь действуют 11 ВЭУ общей мощностью 3 375 кВт. Недавно на острове Хоккастдо началось сооружение ветряной фермы из 30 генераторов мощностью по 1 МВт. Стоимость проекта 47,2 млн. долларов США.

Определенные успехи в области ветроэнергетики имеют и наши соседи из ближнего зарубежья. В частности, днепропетровская фирма “Энергетические системы и оборудования” (Украина) разработало ряд ветроэлектрических установок мощностью от 20 до 420 кВт. Выбранная вертикально-осевая схема ВЭУ ЕСО-0020 мощностью 20 кВт принцип работы, которой основан на использовании подъемной силы прямых лопастей, вращающихся вокруг вертикальной оси, является альтернативой традиционным для Европы и США горизонтально-пропеллерным конструкциям. Благодаря своим особенностям (независимость от направления ветра, тихоходность турбины, простота конструкции) вертикально-осевые установки по ряду характеристик превосходят горизонтально-пропеллерные. ВЭУ рассчитана на рабочий диапазон ветров от 5 до 20 м/с, срок службы – 20 лет. Стальная опорная башня имеет высоту 14 м., материал ветротурбины – алюминиевый сплав, частота вращения – от 40 до 95 об/мин. При среднегодовой скорости ветра 6,2 м/с выработка электроэнергии составит 60 тыс. кВт·ч/год.

По таким же схеме выполнена ВЭУ ЕСО-0420, но мощность этой вертикально-осевой ВЭУ – 420 кВт. Стальная опорная ферма имеет высоту 35 м, а диаметр турбины из алюминиевого сплава – 26 м. ВЭУ рассчитана на номинальную скорость ветра 13 м/с. Но может работать в диапазоне скоростей от 5 до 25 м/с. При среднегодовой скорости ветра 6,2 м/с ВЭУ ЕСО-0420 вырабатывает 1400 тыс. кВт·ч/год. Как и в первом случае, эта ВЭУ может работать параллельно с энергосистемой или дизельным источником энергии.

В России промышленное производство ветроэнергетических установок отсутствует. Между тем еще в 80-е гг. было показано, насколько перспективно создание мощных ветроэнергетических комплексов на Севере РФ. Был разработан проект уникального комплекса – ветроэнергетической системы Кольского полуострова, который протянется на 1 100 км. В нем предусматривается 238 ветроэнергетических групп, каждая из которых будет состоять из ВЭУ новой конструкции и имеет мощность не менее 1000 МВт.

В наши дни ветроэнергетические установки могут быть востребованы владельцами фермерских хозяйств, удаленных от сетей электроснабжения.

Как уже известно, идеальные места для "приручения" энергии ветра – это протяженные, продуваемые со всех сторон равнины, расположенные на возвышенностях. Именно на таких территориях среднегодовая скорость ветра превышает 5 м/с, что обеспечивает эффективную работу ветроэнергетических установок.

Беларусь богата подобными территориями. По оценкам специалистов, наиболее перспективными для развития ветроэнергетики в Беларуси являются центральная и западная часть Минской области, а также Витебская возвышенность. Более того, потенциал любой точки на территории Беларуси в отношении ее перспективности или неперспективности для ветроэнергетики может быть определен с помощью соответствующих расчетов, базирующихся на информации ветроэнергетического атласа страны и специального банка данных. Вопросы окупаемости и экономической эффективности ветроэнергетических установок – сфера, где еще не расставлены все точки над "и". Если подходить к этой проблеме глобально, учитывая перспективы постоянного удорожания энергетических ресурсов и их грядущий дефицит, ветроэнергетическая техника однозначно является перспективным вложением средств. Однако в нашей стране как-то не принято строить долгосрочные планы и активно развивать направления науки и техники, противоречащие традиционному мышлению.

Отечественные сторонники ветроэнергетической концепции считают, что окупаемость таких систем не превышает 4 лет.

Одна из первых ветроэнергетических установок в стране находится на выезде из Минска в могилевском направлении. Она была разработана минской фирмой "Аэролла". Другая ветроустановка, разработанная НПГП "Ветромаш", работает в Заславле, который практически является плацдармом для отработки новых решений по энергосбережению в Беларуси. В поселке Занарочь подготовлена площадка для установки ветростанции. И, наконец, в качестве положительного примера в области энергосбережения не недавно проходившей итоговой коллегии Минжилкоммунхоза было названо сооружение ветровой установки в Городке. Здесь такая система вырабатывает энергию на случай аварийного выхода из строя обычных систем энергообеспечения.

Энергетическая программа РБ до 2010 г. основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективными считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ВЭУ для водоподъема, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. тонн условного топлива в год.

Одним из высокоприоритетных белорусских Национальных проектов, включенных в Мировую солнечную программу на 1996 – 2005 гг., является создание двух экспериментальных промышленных ветроэнергетических установок мощностью 1,5 МВт каждая.

Беларусь располагает значительными ресурсами энергии ветра. По данным Государственного комитета по гидрометеорологии РБ и НП ГП “Ветромаш”, среднегодовая скорость ветра на территории республики составляет 4,3 м/с. При этом на четверти пригодной для внедрения ВЭУ территории среднегодовая скорость ветра превышает 5 м/с. Такая скорость ветра соответствует требованиям мировой практики по показателям коммерческой целесообразности внедрения ветротехники. При правильном выборе места установки ветроагрегата (на возвышенных открытых местах, на берегах водных массивов и т.п.) среднегодовая скорость ветра может достигать 6 – 7 м/с.

Максимально прогнозируемый ветроэнергетический ресурс территории республики составляет более 280 млрд. кВт·ч в год. Используя только 1% территории под ветроэнергетику уже в 2010 г. позволило бы выработать около 3 млрд. кВт·ч энергии. При условии 25% использования годового времени на выработку такого количества энергии потребуется до 8 000 ветроустановок мощностью от 100 до 500 кВт, которые позволили бы сэкономить ежегодно до 1 млн. тонн условного топлива. Окупаемость подобной ветротехники составляет около 4 лет.

Ветротехнические показатели ветроагрегатов, рекомендуемые к внедрению на территории Республики Беларусь

Зональная среднегодовая скорость ветра, м/с

Диапазон рабочих скоростей ветра ВЭУ, м/с

Расчетная скорость ветра,соответствую-щая номинальной мощности, м/с

Ориентировочная

Доля использования ВЭУ, %

До 4,5

3 – 20

8

40

4,5 – 5,5

4 – 24

9

30

Выше 5,5

4 – 24

10 – 12

30

Все эти проекты свидетельствуют о том, что в Беларуси для внедрения концепции ветроэнергетики на практике есть не только бесплатный ветер и благоприятные климатические предпосылки, но и люди, которые понимают, что лучше заботиться о будущем сегодня, чем обречь своих детей на бесперспективное завтра.

Литература:

1. Морозевич А.Н. «Основы информатики» - М.: ООО «Новое издание», 2001 г.;

2. Баштавой В.Г. и др. «Основы энергосбережения» - М.: Тэхналогия, 1999 г.;

3. Журнал «Энергоэффективность» №8 - М.: Минск, 2002 г.;

4. Журнал «Энергоэффективность» №10 - М.: Минск,2002 г.;

5. Журнал «Энергоэффективность» №1 - М.: Минск,2001 г.;

6. Журнал «Энергоэффективность» №11 - М.: Минск,2001 г.;

7. Лебедев Б.П., Матко П.М. «Энергия мира» - М.: Энергоатомиздат, 1989 г.

superbotanik.net

Ветроэнергетика. Перспективы использования в Республике Беларусь

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ  РЕСПУБЛИКИ  БЕЛАРУСЬ

 

БЕЛОРУССКИЙ  НАЦИОНАЛЬНЫЙ  ТЕХНИЧЕСКИ  УНИВЕРСИТЕТ

 

Кафедра: “ЮНЕСКО”

 

 

 

 

 

 

 

 

 

РЕФЕРАТ

 

на тему: “Ветроэнергетика.  Перспективы использования в

Республике Беларусь”

 

 

 

 

 

 

 

 

                                                                                                                            2 курс

 

                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

Минск, 2002

 

                                                            “Нетрадиционная энергетика” нетрадиционна

 потому, что не везде ещё у нас есть традиция –

                 беречь родную природу.

Разуваев В.А.

   

         Историю человеческого общества (в том числе  и нашей Беларуси) можно рассматривать по-разному.  Например, как историю жизни и поступков королей,  императоров, президентов. А можно  - как историю развития энергетики.

    Солнце по-разному обогревает разные участки земной поверхности – горы и долины, океаны и сушу. Воздушный океан, на дне которого мы живем, всегда неспокоен. Постоянно и повсюду дуют ветры – от легкого ветерка, приносящего желанную прохладу в летний зной, до могучих и грозных ураганов.

    Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей. Да и использовать эту энергию научились за тысячу лет до нашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряные мельницы служили единственным источником энергии для тех человеческих поселений, где не было рек или моря.

     В Европе количество водяных мельниц в конце VXIII века доходило до полумиллиона. В Беларуси в середине XIX века, например, в Гродненской губернии насчитывалось 258 ветряных мельниц.

    Ограниченность мировых запасов топлива и энергии, неравномерность их распределения по планете, ухудшение экологической ситуации все острее ставят вопрос о всемирном использовании нетрадиционных экологически чистых энерготехнологий и использовании возобновляемых энергоресурсов.

    И теперь интерес к использованию энергии ветра, источника нескончаемого, не прошел, и, более того, техника ХХ века открыла для этого совершенно новые возможности.

    Активное использование экологически чистых источников энергии сейчас своего рода признак хорошего тона, всячески приветствуется как мировой общественностью, так и правительствами развитых стран.

    Из таких энергоресурсов наиболее распространенным и доступным является ветер. Эксплуатация ветроустановок не требует топлива и воды, они могут быть полностью автоматизированы, отчуждаемая территория минимальна и по расчетам составляет 3 – 5 м²/кВт установленной мощности. Эти установки практически полной заводской готовности, и для их монтажа требуется минимум времени (фундамент и подключение к сети). Вот почему ветроэнергетика  бурно развивается.

Для эффективной работы ветроустановок необходимы определенные требования по их размещению. Так, для относительно постоянной работы ветроэнергетических установок требуется их размещение в местностях, где ветровой потенциал составляет 2500 часов в год. 

Ветровые условия района применительно к ветроиспользованию характеризуются ветроэнергетическим потенциалом, который включает в себя различные показателя ветра, определяемые по результатам многолетних наблюдений: среднегодовые и среднемесячные скорости ветра; повторяемость скорости и направление ветра в течение года, месяца, суток; данные о порывистости, затишьях и максимальных значениях скорости ветра; изменения его с высотой и т. п.

Достоверность оценки ветрового потенциала местности – наиболее важный фактор, определяющий эффективность ветроэнергетических станций. 

Следует отметить, что была разработана классификация силы ветра по шкале Бофора и изучено влияние ее на характеристики ветроэнергетических установок различных классов и условия их работы.

Сила ветра по шкале Бофора и ее влияние на

 ветроустановки и условия их работы.

 

 

Баллы Боффора

Скорость ветра, м/с

Хар-ка  ветра

Наблюд.

эффекты действия

Воздействие

ветра на ВЭУ

Условия для работы ВЭУ

 

 

1

 

 

0,4 – 1,8

 

 

Тихий

Дым из труб слегка отклоняется; на воде появляется рябь

 

 

Нет

 

 

Отсутствует

 

 

2

 

 

1,8 – 3,6

 

 

Легкий

Ветер ощущается лицом, шелестят листья, на воде отчетливые волнения

 

 

Нет

 

 

Отсутствует

 

 

3

 

 

3,6 – 5,8

 

 

Слабый

Колеблются листья на деревьях, развиваются легкие флаги; на отдельных волнах появляются барашки

 

Начинают вращаться лопасти тихоходных ВЭУ

 

 

Плохие для всех установок

 

 

4

 

 

5,8 – 8,5

 

 

Умеренный

Колеблются тонкие ветки деревьев, поднимается пыль, на воде много барашков

 

Начинают вращаться полеса всех ВЭУ

 

 

Хорошие

 

 

5

 

 

8,5 - 11

 

 

Свежий

Начинают раскачиваться лиственные деревья, все волны в барашках

Мощность ВЭУ достигает 30% проектной

 

Очень хорошие

 

Ветроустановки классифицируются по следующим признакам:

- положению ветроколеса относительно направления ветра;

- геометрии ветроколеса;

- по мощности ветроустановки.

В настоящее время технические средства включают два основных типа промышленных ветроустановок: горизонтальные – с горизонтально осевой турбиной (ветроколесом), когда ось вращения ветроколеса параллельна воздушному потоку; вертикальные – с вертикально осевой турбиной (ротором), когда ось вращения перпендикулярна воздушному потоку.

Ветроколесо с горизонтальной осью делятся на однолопастные, двухлопастные, трехлопастные, многолопастные; с вертикальной осью различают следующие конструкции роторов: чашечный анемометр, ротор Савониуса, ротор Дарье, также имеются конструкции с концентратами (усилителями) ветрового потока, такие, как ротор Масгрува, ротор Эванса, усилители потока специальной конструкции.

    Следует отметить, что ветроколесо с вертикальной осью вращения, в отличие от таковых с горизонтальной, находятся в рабочем положении при любом направлении ветра, однако их принципиальными недостатками являются большая подверженность усталостным разрушениям из-за возникающих в них автоколебательных процессов и пульсация крутящего момента, приводящая к нежелательным пульсациям выходных параметров генератора. Из-за этого подавляющее большинство ветроагрегатов выполнено по горизонтально-осевой схеме, хотя продолжаются всесторонние проработки различных типов вертикально-осевых установок.

По мощности ветроустановки делятся на: малой мощности – до 100 кВт, средней – от 100 до 500 кВт, и большой (мегаваттного класса) – 0,5-4 МВт и более.

Часто идет речь о малой ветроэнергетике, назначение которой – обеспечение водоподъема для сельскохозяйственных целей, получение тепла и электропитания отдельных потребителей в неэлектрофицированных районах и т.п. Во многих странах налажено серийное производство ветроустановок малой мощности. Например, в России НПО "Ветроэн" серийно выпускает установки мощностью 4 кВт с диаметром колеса 6 м.

Следует отметить, что малая ветроэнергетика не требует больших территорий, ее можно развивать везде, где имеются для этого соответствующие условия.

Выбор характеристик ветроколеса для ветроустановки в конкретных ветровых условиях определяется целями, которые перед ней ставятся. Обычно это требование максимизации производства энергии за год, чтобы, например, уменьшить потребление топлива тепловыми станциями единой энергосистемы, либо обеспечение производства определенного минимума энергии даже при слабом ветре, чтобы, например, сохранить работоспособность насосов системы водоснабжения.

Одной из важнейших характеристик ветроколеса является его быстроходность, которая зависит от трех основных переменных: радиуса обметаемой ветроколесом окружности, скорости ветра, угловой скорости вращения колеса.

 В настоящее время в мире установлены и находятся в эксплуатации ветроэнергетические установки (ВЭУ) суммарной мощностью более 25 000 МВт.

К началу 2001 г. мировой рынок ВЭУ оценивался следующими цифрами (табл. 1).

   

Табл. 1

Мировой рынок

Установленная мощность в 2000 г., МВт

Ожидаемая мощность в 2005 г.,

МВт % роста

Европейский

13 630

28 230 / 207

Североамериканский

2 847

5 890 / 207

Азиатский

1 728

3 840 / 222

Остальной

244

2 165 /887

   

    Рынок ВЭУ в настоящее время является одним из наиболее быстроразвивающихся, его рост превышает 20% в год.

    Ведущими производителями ВЭУ в мире в настоящее время являются фирмы Германии, Дании, Испании. На рынке ВЭУ существует острая конкуренция между ведущими фирмами. В последние годы некоторые крупные производители ВЭУ разорились и появились новые. На конце 2000 г. рынок распределялся примерно следующим образом (табл. 2).

Табл. 2

Фирма

Доля, % общего рынка

Примечание

1994 г.

2000 г.

Vestas (Дания)

20,4

17,9

-

Kenetech (США)

14,2

-

Разорилась

Enercon(Германия)

14,0

13,7

-

NEPC

8,5

-

-

Tacke (Германия)

 

10,4

 

-

Куплена

фирмой Enren(США)

Bonus (Дания)

7,5

11,5

-

NEG Micon (Дания)

17,0

13,4

-

Wind World (Дани)

 

3,3

 

-

Куплена фирмой NEG Micon

Ned Wind(Голландия)

3,2

-

-

Nordex (Германия)

3,0

8,3

-

Wind Master(Бельгия)

0,1

-

-

Остальные

2,3

14,1

-

Enron (США)

-

6,0

-

Gamesa (Испания)

-

13,9

-

MADE

-

1,9

-

   

   

    Специалисты подсчитали, что в течение первого десятилетия XXI в. энергия ветра может обеспечить 10% потребности Западной Европы в электроэнергии. Используя большие неосвоенные запасы энергии ветра на морском побережье, европейские страны могут увеличить мощность ветроэнергетических установок до 40 тыс. МВт в 2010 г. и до 100 тыс. МВт в 2020 г. Если учесть, что суммарная мощность ВЭУ в Европе в 2000 г. составляла  примерно 8 тыс. МВт, то приведенные цифры свидетельствуют о беспрецедентных темпах развития этого сектора энергетики.

    Повышение единичных мощностей и совершенствование технологии улучшают экологические показатели производства энергии на ВЭУ. Стоимость 1 кВТ·ч электроэнергии, вырабатываемой на ВЭУ в 1980 г. составляла 0,45 – 0,60 немецких марок, а в 1995 г. снизилось до 0,11 – 0,25 немецких марки. По оценкам специалистов, в перспективе себестоимость электроэнергии на ВЭУ будет существенно снижаться.

    Ведущее место в мире по производству электроэнергии на ветроэлектростанциях (ВЭС) занимает Германия. Причиной успешного развития ветроэнергетики послужили принятые руководством страны в 1991 г. Акт об энергосбережении и Акт о подводе в электросеть энергии от возобновляемых источников. Такие же законодательные акты были приняты в Дании и Испании, что позволило этим странам не только создать промышленное производство ветроустановок. Но и занять лидирующее положение в мире на ВЭС, так и по продажам оборудования на мировом рынке ветроустановок.

    По данным на последний год  XX в., установленная мощность ветроэлектростанций в Европе составила:

    - в Германии – 4 443 МВт

    - в Дании – 1 761 МВт

    - в Испании – 1 225 МВт

    - в Великобритании  - 353 МВт.

    Новым толчком к развитию ветроэнергетики, как уже отмечалось, явилось подписание Киотского протокола, по которому все западноевропейские страны должны снизить выбросы СО2 в атмосферу. С 1 апреля 2000 г в Германии вступил в действие утвержденный бундестагом новый закон, направленный на развитие возобновляемых источников энергии. В частности, новый закон определяет дифференцированные тарифы на электроэнергию, производимую ветроэнергетическими установками. За такую   электроэнергию   в  течение  5 лет, начиная   с даты   приемки ВЭУ в эксплуатацию должна  выплачиваться компенсация. Если ВЭУ будет установлена в море, то период компенсации увеличивается до 9 лет.

    Опираясь на благоприятные экономические условия и на успехи машиностроителей, ветроэнергетика в ФРГ в последние годы развивается бурными темпами. Крупные ВЭУ мощностью 1 МВт и выше выпускают фирмы Vestas, GET и Tacke. Первая из них уже освоила выпуск ВЭУ на 1,5 МВт. а в стадии монтажа в 2000 г. находились 2 генератора: четырехполюсный  асинхронный и асинхронный с возможностью регулирования скольжения на 10%. Фирма GET выпускает ВЭУ мощностью по 1,2 МВт с двухлопастной турбиной диаметром 61 м.

    Пятнадцать таких установок входят в состав комплекса Wismar. Следующая разработка – трехлопастная турбина мощностью 1,5 МВт для комплекса на земле Маклебург, Передняя Полирания.

    Фирма Tacke имеет в своем активе ВЭУ мощностью 1,5 МВт с высотой опоры 112,5 м. Демонстрационные испытания установки подтвердили несомненные ее преимущества перед серийными ВЭУ мощностью 600 кВт.

    Если оценивать успехи ветроэнергетики по максимальной мощности отдельных агрегатов, то бесспорным лидером являются США. В 1999 г. на ВЭС Big Spring в штате Texas были сданы в эксплуатацию 4 ВЭУ единичной мощностью по 1650 кВт. Отметка верхней точки установки достигает 113 м, что выше статуи Свободы. Основные рабочие характеристики этих ВЭУ впечатляют:  диаметр ротора ветроколеса – 66 м, площадь размаха ротора – 3 420 м². ВЭУ рассчитана на следующие параметры: начальная скорость ветра – 4 м/с, оптимальная -  17,7 м/с, максимальная – 25 м/с. Чтобы избежать энергетических потерь, связанных с возможным взаимодействием и влиянием работы отдельных ВЭУ друг от друга, расстояние между ними принято равным 3,5 диаметра ротора в направлении ветра и 10 диаметрам ротора между рядами ВЭУ в группе.

    Несколько ранее на этой же ВЭС были введены в эксплуатацию 46 ВЭУ мощностью по 600 кВт каждая. С учетом новых вводов полная мощность Big Spring составила 34 МВт. Проектный годовой объем производства электроэнергии на этой электростанции составляет 117 млн. кВт·ч. Полная стоимость сооружения ВЭС Big Spring оценивается в 40 млн. долларов США, т.е. более 1 170 долларов/кВт установленной мощности. Себестоимость электроэнергии, вырабатываемой на ВЭС  Big Spring, оказалась значительно ниже, чем на ранее построенных электростанциях, но все же  заметно выше той цены, которую планировала получить компания Enron Wind Power Corp. (входящая в недавно обанкротившийся холдинг Enron Corp.).

    Необходимо отметить, что в США, как и в Европе, за последние 15 лет себестоимость электроэнергии, вырабатываемой на ВЭС, удалось снизить в несколько раз. Объясняется это, прежде всего, внедрением новых технологий. Так, лопасти ветроколес, изготовляемые в настоящее время из стеклопластика или древесины, пропитанной эпоксидной смолой, удалось увеличить до 40 м и даже более, как в случае с Big Spring (в 80-е гг. рекордными считались лопасти в 13 м). Это позволило в последние годы строить более мощные ветроустановки, а значит – увеличивать выработку электроэнергии. Если в начале 80-х гг. средняя единичная мощность ВЭУ составляла 50 кВт, то к концу 90-х гг. она возросла  до 500 – 750 кВт. За счет увеличения мощности себестоимость электроэнергии снизилась в 3 раза. Другие новшества, определившие повышение экономичности, -  переменная частота вращения  ветроколес, а также системы управления ВЭУ, реагирующие на изменение скорости ветра (ветроустановка Zond Z мощностью 750 кВт).

    Значительных успехов в области ветроэнергетики добилась Дания. Этому способствовали как благоприятные географические условия, так и тарифная политика правительства страны. Подсчитано, что в Дании при среднегодовой скорости ветра чуть более 5 м/с удельная годовая производительность ВЭУ достигает 937 кВт·ч/м². В настоящее время в структуре потребления первичных энергоресурсов заметная величина (7%) приходится на нетрадиционные источники энергии, к которым относится и ветровая электроэнергетика.

    Общее число ВЭУ в Дании насчитывает 3 300 агрегатов. Здесь построена первая ветроэлектростанция “морского базирования”,  состоящая из 11 ВЭУ мощностью по 450 кВт каждая. Предполагается, что в 2002 г. на побережье Северного моря будет установлен парк ВЭУ общей мощностью 160 МВт, 180 ВЭУ по 2 МВт.

    Дания  является важнейшим экспортером оборудования для ветроэлектростанций. Подставки ВЭУ осуществляются в США (штат Калифорния), Индию, некоторые страны Европы. Изготовлением ВЭУ занимаются, как правило, предприятия сельскохозяйственного машиностроения: Vestas, Nordtank, Bonus, Nordex, Micon. Завод Vestas, например, ежегодно продает ВЭУ общей мощностью до 800 МВт. В настоящее время Дания осуществляет до 70% мирового оборота рынка ветроэнергетических установок.

    Современные турбины рассчитаны на ресурс 120 тыс. ч в течение 20 лет. Для расширения диапазона снимаемой мощности на некоторых ВЭУ устанавливаются по 2 электрогенератора разной  мощности: 600/150, 1000/200 или 1650/300 кВт.

    По заявлению датских специалистов, стоимость ВЭУ при увеличении мощности от 150 до 600 кВт (в 4 раза) возрастает только в 3 раза. Поэтому увеличение мощности приводит к снижению удельных капитальных затрат. По последним данным, средняя удельная стоимость мощностей в ветроэнергетике при мощности ВЭУ 500 – 600 кВт составляет около 1000 долларов США/кВт, а для установок единичной мощностью 2000 кВт удельная стоимость снизится до 800 – 900 долларов США/кВт.

    Эксплуатационные расходы также связаны с мощностью ВЭУ. В диапазоне  мощностей 500 – 1000 кВт затраты составляют в среднем 0,5 – 0,9 цента/кВт·ч. У старых машин с 10-летним сроком эксплуатации этот показатель возрастает до 1,3 – 1,7 цента/кВт·ч.

    В Дании разработаны и предлагаются к продаже блочные ветродизельные установки с контрольно-регулирующим блоком и дизелем малой мощности для резервирования и надежного регулирования. Такие  установки обеспечивают работу одиночной ВЭУ мощностью от 100 кВт и группы ВЭУ мощностью до 7 МВт, которые работают в изолированных сетях или в сетях с малой пропускной способностью.

    Успешно развивается ветроэнергетика ив других европейских странах. Испанская компания EHN (наиболее крупная в мире группа в области возобновляемых источников энергии) в 1999 г. ввела в эксплуатацию несколько мощных ВЭУ. В двух испанских провинциях – Наварра и Альбасете – на ветроэлектростанции производится 22% потребляемой электроэнергии.

    В Швеции ВЭС общей мощностью 500 кВт размещены в море, вблизи острова Готланд. Проектируются и более  мощные системы ВЭС – на 48 и 750 МВт.

    Великобритания к наземным ВЭУ общей мощностью 353 МВт добавила в 2001 г. первую ВЭС морского базирования.

    В Японии до последнего времени ветроэнергетика  была развита слабо. Первые ВЭС были введены в эксплуатацию только в середине 70-х гг. В конце 90-х гг. установленная мощность ВЭС составляла 30 МВт, а единичная мощность комплекса ВЭУ не превышала 3,5 МВт. Между тем использование ВЭС было признано целесообразным для электроснабжения островов, небольших удаленных от опорных точек сети потребителей. Специалисты подсчитали, что увеличение единичной мощности ВЭУ позволит снизить стоимость электроэнергии.

    Самая крупная в Японии ВЭС – ветропарк, расположенный в северной части острова Хонсю. Здесь действуют 11 ВЭУ общей мощностью 3 375 кВт. Недавно на острове Хоккастдо началось сооружение ветряной фермы из 30 генераторов мощностью по 1 МВт. Стоимость проекта 47,2 млн. долларов США.

    Определенные успехи в области ветроэнергетики имеют и наши соседи из ближнего зарубежья. В частности, днепропетровская фирма “Энергетические системы и оборудования” (Украина) разработало ряд ветроэлектрических установок мощностью от 20 до 420 кВт. Выбранная вертикально-осевая схема ВЭУ ЕСО-0020 мощностью 20 кВт принцип  работы, которой основан на использовании подъемной силы прямых лопастей, вращающихся вокруг вертикальной оси, является альтернативой  традиционным для Европы и США горизонтально-пропеллерным конструкциям. Благодаря своим особенностям (независимость от направления ветра, тихоходность турбины, простота конструкции) вертикально-осевые установки по ряду характеристик превосходят горизонтально-пропеллерные. ВЭУ рассчитана на рабочий диапазон ветров от 5 до 20 м/с, срок службы – 20 лет. Стальная опорная башня имеет высоту 14 м., материал ветротурбины – алюминиевый сплав, частота вращения – от 40 до 95 об/мин. При среднегодовой скорости ветра 6,2 м/с выработка электроэнергии составит 60 тыс. кВт·ч/год.

    По таким же  схеме выполнена ВЭУ ЕСО-0420, но мощность этой вертикально-осевой ВЭУ – 420 кВт. Стальная опорная ферма имеет высоту 35 м, а диаметр турбины из алюминиевого сплава – 26 м. ВЭУ рассчитана на номинальную скорость ветра 13 м/с. Но может работать в диапазоне скоростей от 5 до 25 м/с. При среднегодовой скорости ветра 6,2 м/с ВЭУ ЕСО-0420 вырабатывает 1400 тыс. кВт·ч/год. Как и в первом случае, эта ВЭУ может работать параллельно с энергосистемой или дизельным источником энергии.

    В России промышленное производство ветроэнергетических установок отсутствует. Между тем еще в 80-е гг. было показано, насколько перспективно создание мощных ветроэнергетических комплексов  на Севере РФ. Был разработан проект уникального комплекса – ветроэнергетической системы Кольского полуострова, который протянется на 1 100 км. В нем предусматривается 238 ветроэнергетических групп, каждая из которых будет состоять из ВЭУ новой конструкции и имеет мощность не менее 1000 МВт.

    В наши дни ветроэнергетические установки могут быть востребованы владельцами фермерских хозяйств, удаленных от сетей  электроснабжения.

Как уже известно, идеальные места для "приручения" энергии ветра – это протяженные, продуваемые со всех сторон равнины, расположенные на возвышенностях. Именно на таких территориях среднегодовая скорость ветра превышает 5 м/с, что обеспечивает эффективную работу ветроэнергетических установок.

Беларусь богата подобными территориями. По оценкам специалистов, наиболее перспективными для развития ветроэнергетики в Беларуси являются центральная и западная часть Минской области, а также Витебская возвышенность. Более того, потенциал любой точки на территории Беларуси в отношении ее перспективности или неперспективности для ветроэнергетики может быть определен с помощью соответствующих расчетов, базирующихся на информации ветроэнергетического атласа страны и специального банка данных. Вопросы окупаемости и экономической эффективности ветроэнергетических установок – сфера, где еще не расставлены все точки над "и". Если подходить к этой проблеме глобально, учитывая перспективы постоянного удорожания энергетических ресурсов и их грядущий дефицит, ветроэнергетическая техника однозначно является перспективным вложением средств. Однако в нашей стране как-то не принято строить долгосрочные планы и активно развивать направления науки и техники, противоречащие традиционному мышлению.

Отечественные сторонники ветроэнергетической концепции считают, что окупаемость таких систем не превышает 4 лет.

Одна из первых ветроэнергетических установок в стране находится на выезде из Минска в могилевском направлении. Она была разработана минской фирмой "Аэролла". Другая ветроустановка, разработанная НПГП "Ветромаш", работает в Заславле, который практически является плацдармом для отработки новых решений по энергосбережению в Беларуси. В поселке Занарочь подготовлена площадка для установки ветростанции. И, наконец, в качестве положительного примера в области энергосбережения не недавно проходившей итоговой коллегии Минжилкоммунхоза было названо  сооружение ветровой установки в Городке. Здесь такая система вырабатывает энергию на случай аварийного выхода из строя обычных систем энергообеспечения.

Энергетическая программа РБ до 2010 г. основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективными считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ВЭУ для водоподъема, электроподогрева воды и электроснабжения автономных потребителей  к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. тонн условного топлива в год.

Одним из  высокоприоритетных белорусских Национальных проектов, включенных в Мировую солнечную программу на 1996 – 2005 гг., является создание двух экспериментальных промышленных ветроэнергетических установок мощностью 1,5 МВт каждая.

Беларусь располагает значительными ресурсами энергии ветра. По данным Государственного комитета по гидрометеорологии  РБ и НП ГП “Ветромаш”, среднегодовая скорость ветра на территории республики составляет 4,3 м/с. При этом на четверти пригодной для внедрения ВЭУ территории среднегодовая скорость ветра превышает 5 м/с. Такая скорость ветра соответствует требованиям мировой практики по показателям коммерческой целесообразности внедрения ветротехники. При правильном выборе места установки ветроагрегата (на возвышенных открытых местах, на берегах водных массивов и т.п.) среднегодовая скорость ветра может достигать 6 – 7 м/с.

Максимально прогнозируемый ветроэнергетический ресурс территории республики составляет более 280 млрд. кВт·ч в год. Используя только 1% территории под ветроэнергетику уже в 2010 г. позволило бы выработать около 3 млрд. кВт·ч энергии. При условии 25% использования годового времени на  выработку  такого  количества  энергии потребуется до 8 000  ветроустановок мощностью от 100 до 500 кВт, которые позволили бы сэкономить ежегодно до 1 млн. тонн условного топлива. Окупаемость подобной ветротехники составляет около 4 лет.

Ветротехнические показатели ветроагрегатов, рекомендуемые к внедрению на территории Республики Беларусь

 

Зональная среднегодовая скорость ветра, м/с

 

Диапазон рабочих скоростей ветра ВЭУ, м/с

 

Расчетная скорость ветра,соответствую-щая номинальной мощности, м/с

 

Ориентировочная 

Доля использования ВЭУ, %

До 4,5

3 – 20

8

40

4,5 – 5,5

4 – 24

9

30

Выше 5,5

4 – 24

10 – 12

30

Все эти  проекты свидетельствуют о том, что в Беларуси для внедрения концепции ветроэнергетики на практике есть не только бесплатный ветер и благоприятные климатические предпосылки, но и люди, которые понимают, что лучше заботиться о будущем сегодня, чем обречь своих детей на бесперспективное завтра.

   

Литература:

1. Морозевич А.Н. «Основы информатики» - М.: ООО «Новое издание», 2001 г.;

2. Баштавой В.Г. и др. «Основы энергосбережения» - М.: Тэхналогия, 1999 г.;

3. Журнал «Энергоэффективность» №8 - М.: Минск, 2002 г.;

4. Журнал «Энергоэффективность» №10 - М.: Минск,2002 г.;

5. Журнал «Энергоэффективность» №1 - М.: Минск,2001 г.;

6. Журнал «Энергоэффективность» №11 - М.: Минск,2001 г.;

7. Лебедев Б.П., Матко П.М. «Энергия мира» - М.: Энергоатомиздат, 1989 г.

 

Теги: Ветроэнергетика. Перспективы использования в Республике Беларусь  Другое  Экономика отраслей

dodiplom.ru

Реферат «Ветроэнергетика»

ГУО «Средняя школа №31 г. Могилева»

РЕФЕРАТ

«Ветроэнергетика»

Выполнил учащийся 10 «А» класса

ГУО «Средняя школа №31 г.Могилева»

Антонов Даниил

Проверила учитель информатики: Билиевская К.С.

Могилев 2013

СОДЕРЖАНИЕ

  1. Введение
  2. Зарубежный опыт использования ветроуста
  3. Ветроэнергетика в Республике Беларусь
  4. Заключение
  5. Список литературы
1. ВВЕДЕНИЕ

Быстрый рост энергопотребления, удорожание топлива и энергии, обострение экономических и экологических проблем топливно-энергетического комплекса требует более обоснованной и тщательной проработки принципов использования природных ресурсов и стратегии развития энергетики. Поэтому с каждым годом все более актуален поиск и освоение альтернативных нетрадиционных источников энергии, к которым, в частности, относится ветроэнергетика.

Вопрос развития энергетических технологий, основанных на собственных ресурсах, становится для Республики Беларусь все более актуальным. Об этом говорится на самом высоком уровне: «Энергосбережение, использование альтернативных видов энергоносителей, прежде всего своих, возобновляемых, выходит на уровень задач национального значения» (из Послания Президента Республики Беларусь Национальному собранию).

Специалисты подсчитали, что в течение первого десятилетия XXI в. энергия ветра может обеспечить 10% потребности Европы в электроэнергии. Используя большие неосвоенные запасы энергии ветра на морском побережье, европейские страны могут увеличить мощность ветроэнергетических установок (ВЭУ) до 40 тыс. МВт в 2010 г. и до 100 тыс. МВт в 2020 г. Если учесть, что суммарная мощность ВЭУ в Европе в 2000 г. составляла примерно 8 тыс. МВт, то приведенные цифры свидетельствуют о беспрецедентных темпах развития этого сектора энергетики.

Повышение единичных мощностей и совершенствование технологии улучшают экономические показатели производства энергии на ВЭУ. Стоимость 1 кВт*Ч электроэнергии, вырабатываемой на ВЭУ, в 1980 г. составляла 0,45-0,60 нем. марки, а в 1995 г. снизилась до 0,11-0,25 нем. марки. По оценкам специалистов, в перспективе себестоимость электроэнергии на ВЭУ будет существенно снижаться.

2. ЗАРУБЕЖНЫЙ ОПЫТ ИСПОЛЬЗОВАНИЯ ВЕТРОУСТАНОВОК

Среди возобновляемых источников энергии ветроэнергетика в мире занимает важное место. По оценкам Pacific Northwest Laboratory (США), площадь, на которой среднегодовая скорость ветра на высоте 8-10 м превышает 6,1 м/с, составляет 25% поверхности земли. С учетом экономических, технических, экологических и других ограничений к 2020 г. можно было бы установить ветроэлектростанции общей мощностью около 450 млн. кВт со среднегодовой выработкой электроэнергии более 900 млрд. кВт*ч в год, что составило бы примерно 3,5% вырабатываемой в мире электроэнергии.

Ведущее место в мире по производству электроэнергии на ветроэлектростанциях (ВЭС) занимает Германия. Причиной успешного развития ветроэнергетики послужили принятые руководством страны в 1991 г. Акт об энергосбережении и Акт о подводе в электросеть энергии от возобновляемых источников. Такие же законодательные акты были приняты в Дании и Испании, что позволило этим странам не только создать промышленное производство ветроустановок, но и занять лидирующее положение в мире как по выработке электроэнергии на ВЭС, так и по продажам оборудования на мировом рынке ветроустановок.

По данным на последний год XX в., установленная мощность ветроэлектростанции в Европе составляла:

  • в Германии — 4443 МВт,
  • в Дании —1761 МВт,
  • в Испании — 1225 МВт,
  • в Великобритании — 353 МВт.
Новым толчком к развитию ветроэнергетики, явилось подписание Киотского протокола, по которому все западноевропейские страны должны снизить выбросы С02 в атмосферу. С 1 апреля 2000 г. в Германии вступил в действие утвержденный бундестагом новый закон, направленный на развитие возобновляемых источников энергии. В частности, новый закон определяет дифференцированные тарифы на электроэнергию, производимую ветроэнергетическими установками. За такую электроэнергию в течение 5 лет, начиная с даты приемки ВЭУ в эксплуатацию, должна выплачиваться компенсация. Если ВЭУ будет установлена в море, то период компенсации увеличивается до 9 лет.

Опираясь на благоприятные экономические условия и на успехи машиностроителей, ветроэнергетика в ФРГ в последние годы развивается бурными темпами. Крупные ВЭУ мощностью 1 МВт и выше выпускают фирмы Vestas, GET и Таске. Первая из них уже освоила выпуск ВЭУ на 1,5 МВт, а в стадии монтажа в 2000 г. находились 2 ВЭУ по 1,65 МВт. Ротор турбины этих мощных установок вращает 2 генератора: четырехполюсный асинхронный и асинхронный с возможностью регулирования скольжения на 10%. Фирма GET выпускает ВЭУ мощностью по 1,2 МВт с двухлопастной турбиной диаметром 61 м. Пятнадцать таких установок входят в состав комплекса Wismar. Следующая разработка — трехлопастная турбина мощностью 1,5 МВт для комплекса на земле Маклебург, Передняя Померания. Фирма Таске имеет в своем активе ВЭУ мощностью 1,5 МВт с высотой опоры 112,5 м. Демонстрационные испытания установки подтвердили несомненные ее преимущества перед серийными ВЭУ мощностью 600 кВт.

Если оценивать успехи ветроэнергетики по максимальной мощности отдельных агрегатов, то бесспорным лидером являются США. В 1999 г. на ВЭС Big Spring в штате Техас были сданы в эксплуатацию 4 ВЭУ единичной мощностью по 1650 кВт. Отметка верхней точки установки достигает 113 м, что выше статуи Свободы. Основные рабочие характеристики этих ВЭУ впечатляют: диаметр ротора ветроколеса — 66 м, площадь размаха ротора — 3420 м2. ВЭУ рассчитана на следующие параметры: начальная скорость ветра — 4 м/с, оптимальная — 17,7 м/с, максимальная — 25 м/с. Чтобы избежать энергетических потерь, связанных с возможным взаимодействием и влиянием работы отдельных ВЭУ друг на друга, расстояние между ними принято равным 3,5 диаметра ротора в направлении ветра и 10 диаметрам ротора между рядами ВЭУ в группе.

Несколько ранее на этой же ВЭС были введены в эксплуатацию 46 ВЭУ мощностью по 600 кВт каждая. С учетом новых вводов полная мощность Big Spring составила 34 МВт. Проектный годовой объем производства электроэнергии на этой электростанции составляет 117 млн. кВт*ч. Полная стоимость сооружения ВЭС Big Spring оценивается в 40 млн. долларов США, т. е. более 1170 долларов/кВт установленной мощности. Себестоимость электроэнергии, вырабатываемой на ВЭС Big Spring, оказалась значительно ниже, чем на ранее построенных электростанциях, но все же заметно выше той цены, которую планировала получить компания Enron Wind Power Corp. (входившая в недавно обанкротившийся холдинг Enron Corp.).

Необходимо отметить, что в США, как и в Европе, за последние 15 лет себестоимость электроэнергии, вырабатываемой на ВЭС, удалось снизить в несколько раз. Объясняется это, прежде всего, внедрением новых технологий. Так, лопасти ветроколес, изготавливаемые в настоящее время из стеклопластика или древесины, пропитанной эпоксидной смолой, удалось увеличить до 40 м и даже более, как в случае с Big Spring (в 80-е гг. рекордными считались лопасти в 13 м). Это позволило в последние годы строить более мощные ветроустановки, а значит — увеличивать выработку электроэнергии. Если в начале 80-х гг. средняя единичная мощность ВЭУ составляла 50 кВт, то к концу 90-х гг. она возросла до 500-750 кВт. За счет увеличения мощности себестоимость электроэнергии снизилась в 3 раза. Другие новшества, определившие повышение экономичности, — переменная частота вращения ветроколес, а также системы управления ВЭУ, реагирующие на изменение скорости ветра (ветроустановка Zond Z мощностью 750 кВт).

Значительных успехов в области ветроэнергетики добилась Дания. Этому способствовали как благоприятные географические условия, так и тарифная политика правительства страны. Подсчитано, что в Дании при среднегодовой скорости ветра чуть более 5 м/с удельная годовая производительность ВЭУ достигает 937 кВт*ч/м2. В настоящее время в структуре потребления первичных энергоресурсов заметная величина (7%) приходится на нетрадиционные источники энергии, к которым относится и ветровая электроэнергетика.

Общее число ВЭУ в Дании насчитывает 3300 агрегатов. Здесь построена первая ветроэлектростанция «морского базирования», состоящая из 11 ВЭУ мощностью по 450 кВт каждая.

Дания является важнейшим экспортером оборудования для ветроэлектростанций. Поставки ВЭУ осуществляются в США (шт. Калифорния), Индию, некоторые страны Европы. Изготовлением ВЭУ занимаются, как правило, предприятия сельскохозяйственного машиностроения: Vestas, Nordtank, Bonus, Nordex, Micon. Завод Vestas, например, ежегодно продает ВЭУ общей мощностью до 800 МВт. В настоящее время Дания осуществляет до 70% мирового оборота рынка ветроэнергетических установок.

Современные турбины рассчитаны на ресурс 120 тыс. ч в течение 20 лет. Для расширения диапазона снимаемой мощности на некоторых ВЭУ устанавливают по 2 электрогенератора разной мощности: 600/150, 1000/200 или 1650/300 кВт.

По заявлению датских специалистов, стоимость ВЭУ при увеличении мощности от 150 до 600 кВт (в 4 раза) возрастает только в 3 раза. Поэтому увеличение мощности приводит к снижению удельных капитальных затрат. По последним данным, средняя удельная стоимость мощностей в ветроэнергетике при мощности ВЭУ 500-600 кВт составляет около 1000 долларов США/кВт, а для установок единичной мощностью 2000 кВт удельная стоимость снизится до 800-900 долларов США/кВт.

Эксплуатационные расходы также связаны с мощностью ВЭУ. В диапазоне мощностей 500-1000 кВт затраты составляют в среднем 0,5-0,9 цента/кВт-ч. У старых машин с 10-летним сроком эксплуатации этот показатель возрастает до 1,3-1,7 цента/кВт-ч.

В Дании разработаны и предлагаются к продаже блочные ветродизельные установки с контрольно-регулирующим блоком и дизелем малой мощности для резервирования и надежного регулирования. Такие установки обеспечивают работу одиночной ВЭУ мощностью от 100 кВт или группы ВЭУ мощностью до 7 МВт, которые работают в изолированных сетях или в сетях с малой пропускной способностью.

Успешно развивается ветроэнергетика и в других европейских странах. Испанская компания EHN (наиболее крупная в мире группа в области возобновляемых источников энергии) в 1999 г. ввела в эксплуатацию несколько мощных ВЭУ. В двух испанских провинциях — Наварра и Альбасете — на ветроэле-ктростанциях производится 22% потребляемой электроэнергии.

В Швеции ВЭС общей мощностью 500 кВт размещены в море, вблизи острова Готланд. Проектируются и более мощные системы ВЭС — на 48 и 750 МВт.

Великобритания к наземным ВЭУ общей мощностью 353 МВт добавила в 2001 г. первую ВЭС морского базирования.

В Японии до последнего времени ветроэнергетика была развита слабо. Первые ВЭС были введены в эксплуатацию только в середине 70-х гг. В конце 90-х гг. установленная мощность ВЭС составляла 30 МВт, а единичная мощность комплекса ВЭУ не превышала 3,5 МВт. Между тем использование ВЭС было признано целесообразным для электроснабжения островов, небольших и удаленных от опорных точек сети потребителей. Специалисты подсчитали, что увеличение единичной мощности ВЭУ позволит снизить стоимость электроэнергии.

Самая крупная в Японии ВЭС — ветропарк, расположенный в северной части острова Хонсю. Здесь действуют 11 ВЭУ общей мощностью 3375 кВт. Недавно на острове Хоккайдо началось сооружение ветряной фермы из 30 генераторов мощностью по 1 МВт. Стоимость проекта — 47,2 млн. долларов США.

Определенные успехи в области ветроэнергетики имеют и наши соседи из ближнего зарубежья. В частности, днепропетровская фирма «Энергетические системы и оборудование» (Украина) разработала ряд ветроэлектрических установок мощностью от 20 до 420 кВт. Вертикально-осевая схема, принцип работы которой основан на использовании подъемной силы прямых лопастей, вращающихся вокруг вертикальной оси, является альтернативой традиционным для Европы и США горизонтально-пропеллерным конструкциям. Благодаря своим особенностям (независимость от направления ветра, тихоходность турбины, простота конструкции) вертикально-осевые установки по ряду характеристик превосходят горизонтально-пропеллерные. ВЭУ рассчитана на рабочий диапазон ветров от 5 до 20 м/с, срок службы — 20 лет. Стальная опорная башня имеет высоту 14 м. Материал ветротурбины — алюминиевый сплав, частота вращения — от 40 до 95 об/мин. При среднегодовой скорости ветра 6,2 м/с выработка электроэнергии составит 60 тыс. кВт*ч/год.

В России, промышленное производство ветроэнергетических установок отсутствует. Между тем еще в 80-е гг. было показано, насколько перспективно создание мощных ветроэнергетических комплексов на Севере России. Был разработан проект уникального комплекса — ветроэнергетической системы Кольского полуострова, которая протянется на 1100 км. В нем предусматривается 238 ветроэнергетических групп, каждая из которых будет состоять из ВЭУ новой конструкции и иметь мощность не менее 1000 МВт.

3. ВЕТРОЭНЕРГЕТИКА В РЕСПУБЛИКЕ БЕЛАРУСЬ

В Беларуси средняя скорость ветра, как правило, не превышает 4-6 м/с, что не позволяло до сих пор эффективно использовать уже созданные в мире апробированные ветроустановки, способные преобразовывать энергию ветра в электроэнергию с помощью лопастных установок, основанных на принципах подъемной силы крыла.

Имеющиеся до недавнего времени разработки, позволяющие преобразовывать энергию ветра в электроэнергию с помощью традиционных лопастных ВЭУ, в условиях Беларуси экономически неоправданны. Однако современные технические разработки позволяют создавать ВЭУ с пусковой скоростью ветра от 3 м/сек и номинальной скоростью эксплуатации 7-8 м/сек. Стоимость таких установок составляет 800 - 1200 долларов США за 1 кВт установленной мощности, что делает их существенно более привлекательными для использования.

В сложившейся ситуации белорусским ученым, практическим специалистам в области альтернативных видов энергии виделся один путь: разработка собственной нестандартной ветроустановки, адаптированной к нашим условиям. Учитывая это, в республике, начиная с 1993 года, проводились теоретические и экспериментальные исследования с целью создания ветроустановок, способных работать при малых скоростях ветра и быть конкурентоспособными по отношению к традиционным источникам энергии.

Позднее к процессу создания отечественного, адаптированного к нашим природным условиям ветроагрегата подключился директор по науке и технологиям 000 «Аэролла», к.т.н. В.А. Пашков. В конечном итоге, в рамках государственной научно-технической программы «Энергосбережение» при поддержке Комитета по энергоэффективности и Национальной Академии наук Беларуси в 1996 году был создан небольшой макет ветроустановки, которая переросла в машину мощностью 110 кВт, а затем — в 250 кВт.

В 2002 году уникальный ветряк мощностью 250 кВт, адаптированный к нашим белорусским ветрам, разместился на одной из самых высоких точек Дзержинского района Минской области. Установка смонтирована на стальной решетчатой опоре высотой 35 м. В качестве аэродинамических элементов используются вращающиеся усеченные конусы (роторы) — так называемые цилиндры Магнуса.

Уникальность этого агрегата — в его тихоходности. Конструктивно он состоит из следующих элементов: ветротурбины с двумя роторами, трансмиссии (планетарного редуктора), генератора, системы контроля. ВЭУ находится в опытно-промышленной эксплуатации с октября 2001 г. По данным предварительных испытаний, коэффициент эффективности съема ветровой энергии в среднем составил около 50%.

Местные органы власти, Комитет по энергоэффективности при Совете Министров Республики Беларусь, Национальная Академия наук оказывают всевозможное содействие развитию ветроэнергетики в республике и внедрению в серийное производство роторных ветроэнергетических установок. Начало этому уже положено. Советом Министров Республики Беларусь постановлением от 30 декабря 2004 гола № 1680 утверждена Целевая программа обеспечения в республике не менее 25 процентов объема производства электрической и тепловой энергии за счет использования местных видов топлива и альтернативных источников энергии на период до 2012 года разработанная во исполнение поручения Президента Республики Беларусь Лукашенко А.Г. от 25 октября 2004 г. № 09/124-1348., в которой предусмотрены направления работ по развитию ветроэнергетики. Кроме того, по поручению Совета Министров Республики Беларусь Министерством экономики предусмотрено стимулирование развития нетрадиционных видов, энергии. Энергетики обязаны приобретать так называемую экологически чистую энергию по двойному тарифу. Это пусть небольшая, но реальная поддержка развитию дополнительных экологически чистых источников энергии и определенный задел на перспективу.

Строительство ВЭУ на территории Республики Беларусь полностью поддерживает Министерство природных ресурсов и охраны окружающей среды Республики Беларусь. С точки зрения экологии, ветроэнергетика — самый приемлемый и щадящий для природы вид нетрадиционной энергетики. Установка ветряков не нарушает ландшафт, не наносит урон растительному и животному миру, как, например, гидроэнергетика. Кроме того, возле такой «ветровой машины» возможно максимальное использование земель под нужды сельского хозяйства.

4. ЗАКЛЮЧЕНИЕ

Для условий Республики Беларусь, как уже отмечалось выше, характерны относительно слабые континентальные ветры со средней скоростью 4-6 м/сек, поэтому при выборе площадок ветроэнергетических установок требуются специальные исследования по их внедрению.

В настоящее время на территории республики выявлено 1840 площадок для размещения ВЭУ с теоретически возможным энергетическим потенциалом 1600 МВт и годовой выработкой электроэнергии 6,5 млрд. кВт-ч.

Для получения объективной оценки о возможности изъятия полного ветропотенциала (с помощью новых ВЭУ) требуется завершить цикл экспериментальных исследований и определить необходимые инвестиции для развития названного направления. С учетом необходимости параллельной работы ветроэнергетических установок с энергосистемой схема намного усложняется и, естественно, значительно увеличатся затраты на создание и эксплуатацию ветроэнергетических установок. При этом в затратах следует учитывать необходимость создания и содержания резерва мощностей на других типах электростанций. Все эти проблемы необходимо решить белорусским ученым.

Одним из основных направлений использования ветроэнергетических установок на ближайшую перспективу будет их применение для привода насосных установок небольшой мощности (5-8 кВт) и подогрева воды в сельскохозяйственном производстве. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки.

Прогнозируемые годовые объемы использования ветроэнергетического потенциала Республики Беларусь для производства электрической энергии до 2012 года, определенные Целевой программой обеспечения в республике не менее 25 процентов объема производства электрической и тепловой энергии за счет использования местных видов топлива и альтернативных источников энергии на период до 2012 года представлена ниже в таблице 1.

Таблица 1 Прогнозируемые годовые объемы использования ветроэнергетического потенциала Республики Беларусь для производства электрической энергии до 2012 года

Суммарная установленная Выработка
Годы мощность ветроэнергетических электроэнергии, млн.
установок, МВт кВт*ч/год
2006 1,7 3,04
2007 2,2 3,94
2008 3,7 6,62
2009 3,7 6,62
2010 3,7 6,62
2011 5,2 9,31
2012 5,2 9,31
5. СПИСОК ЛИТЕРАТУРЫ
  1. Безрученко В.А. «Ветро-ретро» / Электро. Электротехника, электроэнергетика, электротехническая промышленность. - 2002. - №5. -С. 50-51.
  2. Затопляев Б.С. «Состояние и тенденции развития мировой ветроэнергетики» / Энергетика за рубежом. - 2003. - №3. - С. 12-16.
  3. Пшенник Ю.Е. «Пробиваться через толпу всегда труднее» / Энергоэффективность. - 2004. - №7. - С. 16.
  4. Федосеенко Н.В. «В Дзержинском районе введена в действие уникальная ветроустановка отечественного производства» / Энергоэффективность. - 2002. - №7. - С. 7-8.
5. Григораш О.В. «Нетрадиционные автономные источники электроэнергии» / Промышленная энергетика. - 2001. - №4. - С. 37-40.

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.