Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Теория о бесконечности простых чисел-близнецов. Реферат теория чисел


Читать реферат по математике: "Теория чисел"

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Содержание.

    Введение 2 I. Краткий исторический очерк 3 II. Поле алгебраических чисел 4 2.1. Понятие числового поля 4 2.2. Алгебраическое число 5 2.3. Поле алгебраических чисел 11 III. Рациональные приближения алгебраических чисел 14 3.1 Теорема Лиувиля 14 3.2 Трансцендентные числа Лиувиля 16 Заключение 18

Курсовая по алгебре

Тема: “Алгебраические числа” Введение.

Первоначальные элементы математики связаны с появлением навыков счета, возникающих в примитивной форме на сравнительно ранних ступенях развития человеческого общества, в процессе трудовой деятельности.

Исторически теория чисел возникла как непосредственное развитие арифметики. В настоящее время в теорию чисел включают значительно более широкий круг вопросов, выходящих за рамки изучения натуральных чисел. В теории чисел рассматриваются не только натуральные числа, но и множество всех целых чисел, а так же множество рациональных чисел.

Если рассматривать корни многочленов: f(x)=xn+a1xn-1+…+an с целыми коэффициентами, то обычные целые числа соответствуют случаю, когда этот многочлен имеет степень n=1. Во множестве комплексных чисел естественно выделить так называемые целые алгебраические числа, представляющие собой корни многочленов с целыми коэффициентами.

Изучение свойств таких чисел составляет содержание одного из важнейших разделов современной теории чисел, называемого алгебраической теорией чисел. Она связана с изучением различных классов алгебраических чисел.

I. Краткий исторический очерк. Огромное значение в развитии теории чисел имели замечательные работы К. Гаусса (1777-1855). Гаусс наряду с изучением обычных чисел начал рассматривать так же и арифметику чисел, получивших название целых гауссовских чисел, а именно числа вида a+bi, где a и b – обычные целые числа. Эти его исследования положили начала алгебраической теории чисел.

Теория алгебраических чисел была построена в работах Куммера (1810-1893) и Дирихле (1805-1859) и развита затем Кронекером (1823-1891), Дедекиндом (1831-1916) и Е.И. Золотаревым (1847-1878). Работы Лиувилля (1809-1882) и Эрмита (1822-1901) явились основой трансцендентных чисел.

Вопросы аппроксимации алгебраических чисел рациональными были существенно продвинуты в начале века А. Туэ, а затем в пятидесятых годах в работах К. Рота.

В последнее время все большее внимание специалистов по теории чисел привлекает алгебраическая теория чисел.

Здесь надо назвать работы Г. Хассе, Е. Гекке, а в особенности французского математика А. Вейля, результаты которого были использованы во многих теорико-числовых исследованиях, как например Д. Берджессом в проблеме о наименьшем квадратичном вычете.

К алгебраической теории чисел относятся и интересные работы советского математика И.Р. Шафаревича, а так же работы Б.Н. Делонга по теории кубических форм.

II. Поле алгебраических чисел. 2.1 Понятие числового поля

Естественный и важный подход к выделению и изучению тех или иных множеств чисел связан с замкнутостью множеств чисел относительно тех или иных действий. Определение 1: Мы говорим, что некоторое множество чисел М замкнуто относительно некоторого действия, если для всяких двух чисел их М, для которых определен результат данного действия над ним, число, является этим результатом, всегда принадлежащим М. Пример:

    N Множество натуральных чисел замкнуто относительно сложения, т.к. a, bN (a+b) N.

В отношении умножения множество N так же замкнуто. Но оно не является замкнутым относительно вычитания и деления. Действительно:

5, 7 N, но 5-7=-2 N,

3, 2N, но 3:2=1,5 N

    Множество целых чисел Z замкнуто относительно сложения, вычитания и умножения. Множество чисел вида 2к, кN, замкнуто относительно умножения и деления.

2к2l=2k+l

2к:2l=2k-l

В связи с замкнутостью действий на множестве выделились классы числовых множеств.

Рассмотрим один их классов, называемых полем. Определение 2: Множество чисел М, содержащие не менее двух чисел, называется числовым полем, если оно замкнуто относительно действий сложения, вычитания, умножения и деления. Последнее означает, что для любых a, b M, должно иметь место a+b, a-b, a*b M. Так же для любого aM и любого b0 из М, должно выполняться a:bM. Пример:

Среди важнейших числовых полей наиболее важными являются:

    поле всех рациональных чисел; поле всех вещественных чисел; поле всех комплексных чисел.

Что касается множества всех целых чисел, то оно не является числовым полем, ибо не замкнуто относительно деления.

Существует бесконечно много числовых полей. Нас, в данном случае интересует поле алгебраических чисел. 2.2 Определение алгебраического числа.

Существуют различные признаки, по которым их общего множества Z выделяю те или иные подмножества, подвергаемые специальному изучению. С точки зрения важного для алгебры понятия алгебраического уравнения, естественным представляется выделение классов чисел, являющихся корнями алгебраических уравнений, коэффициенты которых принадлежат тому или иному классу чисел.

Определение 3: Число Z называется алгебраическим, если оно является корнем какого-нибудь алгебраического уравнения с целыми коэффициентами:

anxn+an-1xn-1+…+a1x+a0=0

(a0, a1, … ,anZ; an0),

т.е. выполняется:

anzn+an-1zn-1+…+a1z+a0=0 Числа не являющиеся алгебраическими называются трансцендентными.

В определении алгебраического числа можно допустить, чтобы коэффициенты a0, a1, … ,an-1, an были любыми рациональными числами, поскольку, умножив левую и правую части уравнения на целое число, являющиеся общим кратным знаменателем всех коэффициентов, мы получили уравнение с целыми коэффициентами, корнем которого будет наше число.

К алгебраическим числам принадлежат, в частности, и все рациональные числа. Действительно, рациональное число z= (p, qN) очевидно является корнем уравнения: qx-p=0.

Также всякое значение корня любой степени из рационального числа является алгебраическим числом. Действительно, число z= (p, qN) является корнем уравнения:

qxn-p=0.

Существуют и другие алгебраические числа, нежели указанное выше.

Пример:

    Чиcло z= является алгебраическим. Действительно, возводя в квадрат обе части равенства, определяющего число z, получим: z2=2+2+3. Отсюда z2-5=. Возводя в квадрат обе части этого равенства, получим: z4-10z2+25=24. Отсюда следует, что число z является корнем следующего уравнения:

x4-10x2+1=0

    Всякое число z=a+bi, у которого компоненты a и b – рациональные числа, являются алгебраическими. Докажем это.

,(p, q, N).

Из равенства , получаем: . Отсюда, возводя в квадрат, получим: . Следовательно, я является корнем уравнения:

все коэффициенты которого целые числа.

В дальнейшем мы будем рассматривать только действительные алгебраические числа, не оговаривая этого каждый раз.

Из f(x)=0 следует f(z)(x)=0, где в качестве (x) можно взять любой многочлен с целыми коэффициентами. Таким образом для любого алгебраического числа z, из всех этих многочленов обычно рассматривают многочлен наименьшей степени. Определение 4: Число n называется степенью алгебраического числа z, если z есть корень некоторого многочлена n-ой степени с рациональными коэффициентами и не существует тождественно не равного нулю многочлена с рациональными коэффициентами степени, меньшей чем n, корнем которого является z.

Если корень многочлена n-ой степени с целыми рациональными коэффициентами z не является корнем ни одного тождественно неравного нулю многочлена с целыми коэффициентами степени меньшей чем n, то z не может быть корнем и тождественно неравного нулю многочлена с рациональными коэффициентами степени меньшей чем n, т.е. z – алгебраическое число степени n.

Рациональные числа являются алгебраическими числами первой степени. Любая квадратическая иррациональность представляет собой алгебраическое число 2-й степени, так как, являясь корнем квадратичного уравнения с целыми коэффициентами, она не является корнем какого-либо уравнения 1-й степени с целыми коэффициентами. Алгебраические числа 3-й степени часто называют кубическими иррациональностями, а 4-й степени биквадратическими иррациональностями. Пример:

    - алгебраическое число 3-й степени, т.е. кубическая иррациональность. Действительно, это число есть корень многочлена

referat.co

Реферат - Теория чисел (программа-калькулятор) - формирование заданного подмножества натурального ряда с помощью общего делителя

МОСКОВСКИЙ АВИАЦИООНЫЙ ИНСТИТУТ (МАИ)

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (МАИ)

(ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Факультет

«СИСТЕМЫ УПРАВЛЕНИЯ, ИНФОРМАТИКА И

ЭЛЕКТРОЭНЕРГЕТИКА»

Кафедра 308

«Информационные технологии»

< >

Группа 03-119

Пояснительная записка к курсовой работепо дисциплине:

«Теория чисел»

Выполнил: Тузов И.И.

Руководитель: доцент, к.т.н. Гридин А.Н.

Москва 2010

ЗАДАНИЕ

Разработать программу-калькулятор CalcKurs на языке программирования Pascal, реализующую следующие функции:

1.формирование заданного подмножества натурального ряда с помощью общего делителя;

2.факторизация числа с опциями;

3.нахождение НОД и НОК для заданной совокупности натурального ряда;

4.нахождение рациональных решений уравнения с целочисленными коэффициентами;

5.представление рациональной дроби в виде цепной;

6.представление цепной дроби в виде рациональной.

Оборудование и ПО:

Название Windows: Windows Seven (6.1.7600) Ultimate

Название процессора: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz

Установлено памяти: 1 022,49 MB

Среда программирования: Turbo Pascal 7.0

2

ОГЛАВЛЕНИЕ

Задание……………………………………….…………………………………………………2

Оглавление…………………………………….……………………………………………….3

1. Введение….………………………………………………………………………………….4

2. Специальная часть……………...……………………………………………….………..5-17

2.1. Интерфейс программы…………………………………………………………………5

2.2. Описание процедур…………………………………………………………………6-17

2.2.1. DelOstatok..…..….…………………………………………………………………..6-7

2.2.2. Factor………....….…………………………………………………………………..8-9

2.2.3. NodNok…..….……………………………………………………………………10-11

2.2.4. SuperGorner..………..…………………………………….………………………12-13

2.2.5. Express…………………………………………………………………………….14-15

2.2.6. AntiExp………….………………………………………………………………...16-17

3. Заключение……...……….………………………………………………………………….18

4. Список использованных источников……………….……………………………………..19

Приложение..…………………………………………….…………………………………20-23

Листинг программы…..……………………………….………………………………...20-23

3

1.ВВЕДЕНИЕ

Теория чисел— это одно из направлений математики, которое иногда называют «высшей арифметикой». Данная наука изучает натуральные числа и некоторые сходные с ними объекты, рассматривает различные свойства (делимость, разложимость, взаимосвязи и так далее), алгоритмы поиска чисел, а также определяет ряд достаточно интересных наборов натуральных чисел.

Так, к примеру, в рамках теории чисел рассматриваются вопросы делимости целых чисел друг на друга, алгоритм Евклида для поиска наибольшего общего делителя, поиск наименьшего общего кратного, малая и большая теоремы Ферма. В качестве самых известных рядов натуральных чисел можно привести ряд Фибоначчи, простые числа, совершенные и дружественные числа, степени и суперстепени натуральных чисел.[1]

Вне самой математики теория чисел имеет довольно мало приложений, и развивалась она не ради решения прикладных задач, а как искусство ради искусства, обладающее своей внутренней красотой, тонкостью и трудностью. Тем не менее теория чисел оказала большое влияние на математическую науку, поскольку некоторые разделы математики (в том числе и такие, которые впоследствии нашли применение в физике) были первоначально созданы для решения особенно сложных проблем теории чисел.[2]

Разработанная программа включает в себя набор из нескольких основных операций, которые могут понадобиться при решении более сложных задач.

Назначениепрограммы CalcKurs.

Программа CalcKurs выполняет следующие функции:

1.формирование заданного подмножества натурального ряда с помощью общего делителя;

2.факторизация числа с опциями;

3.нахождение НОД и НОК для заданной совокупности натурального ряда;

4.нахождение рациональных решений уравнения с целочисленными коэффициентами;

5.представление рациональной дроби в виде цепной;

6.представление цепной дроби в виде рациональной.

4

2.СПЕЦИАЛЬНАЯ ЧАСТЬ

Интерфейспрограммы

< >

< >

5

Описание процедур

procedure DelOstatok;

Назначение.

Данная процедура формирует заданное подмножество натурального ряда с помощью общего делителя.

Алгоритм.

Ищется общий делитель совокупности делителей (общий делитель ищется с помощью нахождения наименьшего общего кратного делителей). На заданном множестве (кол-во цифр в числах) ищем первый элемент, который будет удовлетворять заданному условию (делится на НОК с остатком), запоминаем элемент и прерываем цикл.

Формируем подмножество с помощью прибавления к первому элементу делителя, суммируем количество элементов, пока элементы не станут больше заданной размерности.

Пример.

Делитель=10, остаток=3, размерность=2 (от 10 до 99)

Количество элементов=9

Подмножество элементов={13, 23, 33, 43, 53, 63, 73, 83, 93}

Тесты.

1.Некорректные данные

< >

2.Корректные данные

<p style=«text-indent: 0.00mm; text-align: left

www.ronl.ru

Реферат - Теория о бесконечности простых чисел-близнецов

Боги создают Законы, люди – теории.

Теория о бесконечности простых чисел-близнецов.

Простое число- это целое положительное число больше единицы, которое не делится без остатка ни на одно другое целое положительное число, кроме единицы и самого себя.

Все остальные числа составные. Можно ещё назвать их сложными, так как первые у нас называются простые.

Простые числа-близнецы, это числа, находящиеся на расстоянии друг от друга в 2 единицы.

Простое число имеет в себе функцию F1 :

F1 = Q1: Q1 + Q1: 1. (Q1 – простое число).

Сложное число имеет в себе две функции – F1 и F2 :

F2 = Q2 : ( 1 + 1… ). (Q2 — сложное число).

Значит: Q1 = F1, а Q2 = F1 + F2. Независима может быть функция F1. F2 – только в паре с первой функцией. Если бы на определённом этапе роста всех чисел, исчезло простое число, то, осталась бы одна функция. И не F2, и не F1, а F3 :

F3 = Q3 : Q3….. 1. (Q3 – безликое число. Сложное же есть там, где есть простое, то есть функция простого.)

Как видим, по нашим понятиям, которые есть у нас теперь, сложное не может быть без наличия простого. Такие доводы, которые здесь приводятся, скорее всего, философские. Теперь мы имеем и другие.

2200 лет тому назад Евклид, доказал существование бесконечного множества простых чисел. Его рассуждение можно уложить в одну фразу: если бы имелось лишь конечное число простых, то можно было бы их перемножить и, прибавив единицу, получить число, которое не делится ни на одно простое, что невозможно. В XVIII веке Эйлер доказал более сильное утверждение, а именно что ряд, составленный из величин, обратных простым, расходится, т.е. его частичные суммы становятся с ростом количества слагаемых больше любого заданного числа. В его доказательстве была использована функция

ζ(s) = 1 +

1

2s

+

1

3s

+ ...,

То, что простых чисел бесконечно много, ещё говорит и то, что мы можем высчитать их количество на определённой цифровой дали. Джоунз, Лэл и Бландон приводят данные о действительном количестве простых чисел и простых чисел-близнецов в этом и в некоторых других интервалах той же длины около больших степеней десяти. Видно, что реальные значения очень хорошо согласуются с ожидаемым результатом.

Интервал [n, n + 150 000]

Число простых

Число простых-близнецов

ожидаемое

фактическое

ожидаемое

фактическое

n = 100 000 000

8142

8154

584

604

n = 1 000 000 000

7238

7242

461

466

n = 10 000 000 000

6514

6511

374

389

n = 100 000 000 000

5922

5974

309

276

n = 1 000 000 000 000

5429

5433

259

276

n = 10 000 000 000 000

5011

5065

211

208

n = 100 000 000 000 000

4653

4643

191

186

n = 1 000 000 000 000 000

4343

4251

166

161

Мы можем даже установить очень большое простое число:

p

число цифр в числе p

Год открытия

кто открыл

2127 – 1

39

1876

Люка

(2148 + 1)/17

44

1951

Феррье

114(2127 – 1) + 1 180(2127 – 1)2 + 1

41

79

1951

Миллер + Уиллер + EDSAC 1

2521 – 1 2607 – 1 21279 – 1 22203 – 1 22281 – 1

157

183

386

664

687

1952

Лемер + Робинсон + SWAC

23217 – 1

969

1957

Ризель + BESK

24253 – 1 24423 – 1

1281

1332

1961

Хурвитц + Селфридж + IBM 7090

29689 – 1 29941 – 1 211213 – 1

2917

2993

3376

1963

Гиллис + ILIAC 2

219937 – 1

6002

1971

Таккермэн + IBM 360

Бесконечность простых чисел для нас уже факт. Вернее, у нас есть доказательства, которым мы верим, что это так! Верно ли то же самое для чисел-близнецов? Эта задачу не смог решить и Эратосфен. Теперь, в наше время, «проблема близнецов» остается единственной не решенной задачей, которая пришла нам от Античности. Тот, кому удастся решить её, совершит величайший прорыв в теории простых чисел со времен Евклида.

Попробуем её решить! А вдруг… Ход дальнейших рассуждений может порой казаться сумбурным и не слаженным, что вполне допускает появление мелких ошибок. Но самое главное это итог! Самое главное это выводы сделанные в итоге, а не по ходу рассуждений.

Как мы знаем, система чисел вообще, это система. Она бесконечна вдаль и бесконечна внутрь. Вся эта система покоится на первичном принципе:

Q0 +1 = Q1.

Она не меняется во всей системе чисел. То что эта система бесконечна, нам любезно доказали те два ангела, которые взялись делить зёрнышко риса и Луну. Они так и продолжают делить их, и у никого нет шансов первым закончить деление.

Вся эта система чисел, делится и на простые числа и сложные. Все они бесконечны. Однако в этой системе (простых и сложных), есть пары простых чисел-близнецов. Справедливости ради отметим, что пары есть и у сложных, среди нечётных. Сложных больше, и поэтому нас, их пары не беспокоят. Мы обеспокоены жизнью простых чисел-близнецов.

А есть ли своя система в образовании простых и сложных, и есть ли у них своя первичная основа, которая даёт жизнь вообще простым и сложным? По логике, если мы можем с великой точностью высчитать их количество на определённом этапе, то и должна быть система. Без наличия таковой, мы бы не смогли строить такие точные, на зависть синоптикам, прогнозы.

Все простые числа, это нечётные числа. Нечётные числа это – 1,3,5,7,9,11,13,...∞. Нечётные числа не могут делиться без остатка на чётные. Возьмём начало их. 1 – подходит для всех. 3 – уже нет, и так далее.

Начинаем строить первичный принцип-систему построения простых чисел(Система 3):

Как видим (пока видим!), каждое третье число, есть сложное – так как оно делится на три. И по этому видим что возможны только пары близнецы, но не тройняшки, и т.д… И цифры между 21 и 27, реальные кандидаты в простые числа и в пару. Если бы была только такая система, то все числа между верхними, были бы простыми и парами одновременно.

Далее, у нас выстраивается новая система (Система 5):

Как видим, она уже корректирует первичную Систему 3, и 25 переводит в разряд сложных. Первая же, в свою очередь корректирует вторую, и 27 во второй переводит в разряд сложных.

Идём ещё далее (Система 7):

Которая также осуществляет свою корректировку. Система 9, то есть нахождение чисел делящихся на 9, можно сказать, что копирует Систему 3, и поэтому Системы с номерами сложных, не участвуют в построении.

Система 11, также корректирует Систему 3, но уже только каждую четвёртую единицу Системы 3. Система 13 уже в свою очередь каждую пятую единицу Системы 3. Если мы говорим что каждую пятую, то это означает то что это максимум возможности.

Как видим, первичной системой в образовании простых и сложных среди нечётных является Система 3:

Какой же мизерный шанс у оставшихся двух потенциальных кандидатов в простые числа, стать простыми! И тем более остаться парой!

Теперь мы Систему 3, удлиним до 4 её членов ( Х – постоянные сложные, такие как 21,27):

Теперь заполним пустующие клетки возможными вариантами:

— сложное число. – простое число.

Как видим, есть только четыре варианта для заполнения пустот. Какое же заманчивое наваждение появляется здесь провести аналогию с 4 буквами ДНК! Так вот, если бы здесь работал принцип теории вероятности со случайным появлением вариантов, то у каждой пары был бы реальный шанс достойно отстаивать свои 25%. У нас же как мы знаем не так. Значит, что-то корректирует нашу теорию вероятности. Кажется, мы уже ответили на этот вопрос, говоря о Системе 5, Системе 7,...∞.

Теперь допустим, что из 4 вариантов, в один момент, в результате корректировки, выпадает 1 вариант, и это вариант есть пара простых-близнецов.

Сейчас уже имеется вот такой вид, а вернее только такие варианты:

Возможно ли это?

Теперь вначале опишем работу с 4 вариантами (в первоначальном виде)при помощи простых уравнений (У – простое число, Х – сложное):

Пара №1. Пара №2. Пара №3. Пара №4.

У + 2 = Х или У Х + 2 = У или Х У + 2 = Х или У Х + 2 = У или Х

Х – 2 = У или Х У – 2 = Х или У У – 2 = У или Х У – 2 = Х или У

Указывая что равно Х или У, мы имеем ввиду то что зная одно число мы точно не можем знать статус рядом стоящего.

Теперь опишем с отсутствием пары простых-близнецов. Здесь всего три варианта, так что повторяющийся мы опустим в описании(кстати это может быть любой из трёх):

Пара №1. Пара №2. Пара №3.

У + 2 = Х Х + 2 = У или Х Х + 2 = У или Х

Х – 2 = У или Х У – 2 = Х Х – 2 = У или Х.

Теперь выведем общие формулы, отдельно для 4 вариантов и для 3 ( с отсутствием пары простых-близнецов). Эти формулы необходимо читать со средины (выделена жирным шрифтом), вправо и влево:

4 варианта (№1) 3 варианта (№2)

Х или У = 2 – Х + 2 = У или Х Х или У = 2 – Х + 2 = У или Х

У или Х = 2 – У + 2 = Х или У Х = 2 – У + 2 = Х

Как видим что в варианте №1 нет противоречий. И так он работает до пары 100 000 000 061 – 100 000 000 063, и так далее до более дальней известной нам пары.

В варианте №2 уже явно бросаются в глаза противоречия. Если У – 2, всегда равно Х и У + 2, всегда равно Х, то при Х + 2 и Х – 2, не всегда равно У и возможно Х.

У – 2 = Х, но Х + 2 = У или Х

У + 2 = Х, но Х – 2 = У или Х

Как видим, система построения простых-сложных, при исчезновении пары простых-близнецов, ломается и превращается в несистему. И здесь число, и его статус, внутреннее наполнение, зависят не от него самого, а от рядом стоящего числа. И при этом, что самое главное, без какой бы то либо взаимосвязи. И если Система ломается с её 4 вариантами, то все наши прогнозы о времени после поломки Системы равняются нулю. И доказательство о том, что простые числа бесконечны также должно исчезнуть. Да и вообще то, что все числа бесконечны!

При Х + 6 и Х – 6 в Системе №3, при Х + 10 и Х – 10 в Системе №5, и т.д., также есть зависимость, но здесь и Х делится на одно число и добавляемая цифра также на его делится. У нас же при варианте №2, такого нет. Получаемое число не может делиться на 2, так как оно нечётное, а то число к которому добавляем оно простое, и оно не содержит в себе функцию F2 (см. вначале теории).

О возможности таких вариантов:

пожалуй, не стоит и говорить. Доказательства исходят из всего вышесказанного!

Допустим, что вышесказанное – это мираж ума, который создан для самообмана в поисках найти желаемое. Допустим! Хотя это вышесказанное по праву относится к философским догмам(!) математики. Но нам необходимо все догмы подтверждать эмпирически (доказательствами), иначе… мы превратимся в инквизиторов запрещающих Копернику верить фактам!

Теперь попробуем пойти далее в своих рассуждениях. Попробуем найти то, что миражом ума никак нельзя назвать. Вначале просмотрим на таблицу, показывающею рост

простых и вообще чисел, а также на процентное соотношение простых к сложным, и на падение такого роста( см. приложение №1).

Мы за основу подсчёта брали десятикратное увеличение общих чисел. Как же происходит рост простых? Он происходит, правда с отставанием от общего роста числового поля, что легко наводит на мысль об исчезновении их вообще где то там в бесконечности.

Просмотрим начальный этап. Вот мы все числа обработали Системой№3 и Системой№5. И вот что у нас получилось:

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

Штрихкод Матрицы3-5. Теперь берём Систему №7:

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

Начинаем соединять Матрицу 3-5 с Системой 7:

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

0

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

и получаем новую Матрицу 3-5-7:

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

Теперь схематично посмотрим на любой отрезок:

0 Qn Бесконечность

Qn

Бесконечность

Слева направо вверху от 0 это увеличение цифрового поля, а сверху вниз от 0 – увеличение матричного поля за счёт увеличения цифрового.

Вот мы имеем цифровое Qn и это цифровое поле обрабатываем Системами №3-....-Qn. Получилась Матрица 3… Qn.

Далее допустим что она обрабатывает и далее (что и есть) но не включаются в работу Системы больше Qn. Допустим что Qn это 10 000, и мы остановим работу Матрицы 3… Qn на этапе 100 000( цифрового поля). Увеличили цифровое поле в 10 раз. Простые числа и пары близнецов-простых также увеличатся в 10 раз.

Теперь мы пускаем в ход соответствующие Системы. Они начинают чистку матрицы Системы№3… Qn, добавляя Системы до Q313 (но достаточно и меньше Систем, и об этом позже). Насколько они её почистят от простых и пар?! Такое стремление будет стремиться к 1:0,9 = 1,1111 раз. Увеличение цифрового поля ведёт к увеличению (в 10 раз), а увеличение системного – к уменьшению (в 1,11… раз).Это если рассматривать в общем.

Возможности новой Системы в очистке предыдущей Матрицы, всегда падают с возможностями предыдущей Системы.

Система№3, Система№5, Система№7, Система№9, Система№11,...∞, всегда чёткие Системы, которые можно описать простой формулой. При наложении Систем, уже образуется Система, которую пожалуй трудно описать линейной формулой. Она будет длиной во внутренний шаг Матрицы. Она единична и неповторима. Она Матрица-Система. Это относится к Системе3-5-7, Системе№3-5-7-9-11, и т.д.., которые мы уже называем Матрицами. Так вот когда к Матрице-Системе добавляется новая Система, то она, систематически ищет расположение простых(и пар) в Матрице-Системе. Если в Матрице-Системе есть пары, то одна Система не может их убрать. Необходимо множество Систем, но с увеличением множества падает вероятность убирания пар, и появляются «чёрные дыры» в новых Матрицах.

С увеличением цифрового и системного поля с 100 000 000 000 000 до

1 000 000 000 000 000, новые Системы из цифрового поля 900 000 000 000 000 000 убрали 22 пар с цифровых участков в 150 000. Если грубо подсчитать, то получится на одну пару ушло множество Систем из цифрового поля 40 909 090 909 090 909.

А вот с 100 000 000 до 1 000 000 000, на одну пару уходило Систем из цифрового поля 6 521 739, а это в 6 272 727 398 раз меньше. По крайней мере если соотносить цифровые поля. Системы как мы знаем это только Системы с номером простого числа.

Когда мы сравниваем участки в 150 000, по наличию в них простых и пар, то мы должны помнить что эти участки находятся в разных зонах действия Систем.

Придём ли мы к нулю? А разве можно с прогрессирующим убыванием прийти к этому? Если кто-то попытается, то вечность терпеливо подождёт, а мы так и не узнаем (если будем ждать в надежде на такой успех).

Так что с увеличением в N-раз цифрового поля, то и простые и пары простых-близнецов также будут стремиться к увеличению в N-раз. И это будет бесконечно! Также как если бы мы решили отрезок 0—1, делить на 10, получив 0,1 и далее его, разделив на 10, получив 0,11… и так далее, что бы прийти к 0. Мы никогда так к нему не прийдём! Но это стремление бесконечно!

Опять же, самая большая известная пара это — 100 000 000 061 – 100 000 000 063(есть и большая!).

Сколько (!!!!) Систем производило чистку матрицы, но оставила эту пару не тронутой.

Теперь приступим к завершающему уточнению нашей теории, так как мы выше рассматривали только более статистику а не сам принцип построения(образования) простых и пар.

Посмотрим, как новая Система убирает сохранившиеся пары.

5---ХООХО≠≠ХООХО≠ХОО........

7---ООООХООХХООХХООХООООХО≠ООООХООХХООХХООХООООХО≠ОООО

ХООХХООХХООХООООХО≠ООООХОО........

11—ХОООООООООООООХОООХОООХОООООХОООХОООООООООООООХОХ

ОООХОХОООООООХООХООХОООООООХООХООООООХОООООООХООХ

ООХОООООООХОХОООХОХОООООООООООООХОООХООООООХОООХ

ОООХОООООООООООООХО≠ ХОООООООООООООХОООХОООХОООООХ

ОООХОООООООООООООХОХО...(прервано на 3003).

13—ОООООООООХОООХОООООООХОХООООХОООХОООХООООХООХ

ООООООООООХОООООООХОООХООООХОООООООООООХООООООООХ

ООООООООХОООООООООООХОООХООООХОООХОООХООООХОХ

ОООООООООХООООООООООООХООООООООХООООХОО...(3003)

≠ — знак обозначающий начало работы системы внутри(смена внутренних шагов) Матрицы.

О – пара простых близнецов не убранная при работе новой Системыn, наложенной на Матрицу..

Х — пара простых близнецов удалённая при работе новой Системыn .

Пары указаны не в хронологическом порядке. К примеру, вначале до работы Системы 13, выписаны только целые пары, а потом при включении Системы13, показано какие из них были убраны.

По таблице, мы видим сколько пар остаётся после включения новой Системы. Если после Системы 3 было 100% пар, то после Системы5 – осталось 60%. Далее, эти 60%.воспринимаются как 100% перед Системой7. Так вот, после обработки Матрицы3-5, Системой7, уже осталось 68,18..%. И так далее. Как видим, вся система работы Систем и Матриц, направлена в сторону сохранения пар. Это направление идёт к 100%.

Система

5

7

11

13

Осталось % пар

60

68,18..

81,87...

84,83..

Теперь просмотрим на реальное, хронологическое, расположение пар.

Матрица 3

ОООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООО

Матрица 3-5

ОООХО-30-ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО..

Матрица 3-5-7

ОООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО-210-ХООХОХОХХО

ХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХ

ОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХО

ХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХ

ОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХО

ХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХ

ОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХО...

Матрица 3-5-7-11

ОООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХХХООХОХХХХОХОХХХХ

ОХХХХХО ХОХХОХОХОХХОХООХХХОХХОХОХХХХООХХХХОХОХХОХО

ХООХОХОХХОХХХХОХОХХХХОХХХХХОХХХХОХОХООХОХООХХХОХХО

ХХХХХХООХХХХХХОХХОХОХООХОХОХХОХОХХХХОХХХХООХХХХОХХ

ХХОХОХХОХОХООХОХОХХОХХХХХХООХХХХХХОХХОХХХООХОХООХО

ХОХХХХОХХХХХОХХХХОХОХХХХОХХОХОХООХОХОХХОХОХХХХООХХ

ХХОХОХХОХХХООХОХХОХОХОХХОХОХОХХХХХОХХХХОХОХХХХОХООХХ

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХОХХО-2310-ХХОХОХОХХОХ

ОХХХХООХХХХОХОХХОХОХООХХХООХОХХХХОХОХХХХОХХХХХОХОХ

ХОХОХОХХОХООХХХОХХОХОХХХХООХХХХОХОХХОХОХООХОХОХХО

ХХХХО… прервано на 3003.

Матрица 3-5-7-11-13.

ХХОХОХОХХОХОХХХХООХХХХОХОХХХХОХООХХХХОХОХХХХОХОХХХХО

ХХХХХОХОХХХХОХХХХОХООХХХОХХХХОХХХХОХХХХХХОХХОХОХХОХОХОХХОХХХХХХОХХХХОХХХХХХХХХХОХОХООХОХООХХХОХХОХХХХХХО

ХХХХХХХОХХОХОХООХОХОХХХХОХХХХОХХХХОХХХХХОХХХХОХОХХО

ХХХООХОХОХХОХХХХХХООХХХХХХОХХОХХХООХХХООХОХОХХХХО

ХХХХХОХХХХОХОХХХХХХХОХОХООХОХОХХОХОХХХХХОХХХХОХОХХО

ХХХООХОХХОХОХОХХОХХХОХХХОХХХХОХХХХХХОХООХХХОХХОХОХХО

ХХХХХХООХХХХОХХХХОХОХОХХОХХХХОХХХХОХОХХХХООХХХХОХОХХОХОХОХХХХООХОХХХХОХОХХХХОХХХХХОХОХХОХОХОХХОХХОХХХОХХОХОХХХХООХХХХОХОХХХХОХООХОХХХХОХХХХО… прервано на 3003. Шаг внутренней системы на 30 030.

О – пара простых близнецов сохранённая на Матрице.

Х — пара простых близнецов удалённая (как пара) на Матрице.

Пары указаны в хронологическом порядке, от начала.

Как мы видим, Матрица складывается из внутренней системы, которая повторяется и ещё её можно назвать повторяющимися шагами внутренней системы. Внутреннея система у каждой матрицы одна. Каждый шаг(R) равен сумме перемноженных членов матрицы, и увеличенных вдвое, так как мы имеем дело только с нечётными числами. Они отличаются друг от друга на 2 единицы. К примеру:

Матрица 3-5-7-11

R=(3×5×7×11)×2=2310

Так на каждой Матрице, имеется бесконечное число шагов, как бы небыли великие шаги. Как никак а мы имеем дело с бесконечностью.

Теперь представим условную Матрицуn (Мn ), с длиной внутреннего шага в N(в шаге под N, необходимо понимать Rn× 2 ):

Мn — Rn× 2

Теперь, на эту Матрицу накладываем новую(внешнею) Систему(С) – Nпоследний член Матрицы +2. Соответственно и изменится вид Матрицы и длина шага:

Мn(n+2) — Rn× (n+2) × 2

Теперь допустим невозможное, что на определённом этапе, и на определённой Матрице(Мn ), в каждом шаге осталось по одной паре простых близнецов:

Rn× 2 — 1 пара

и она, пара, расположена на расстоянии:

(С) – Nпоследний член Матрицы +2

Внешняя Система- Nпоследний член Матрицы +2, наложивший на Матрицу(Мn ), с первого «удара» уберёт эту пару. Но это произойдёт на первом Rn× 2. Для того чтобы это проделать и далее, Система- Nпоследний член Матрицы +2 должна прийти к началу второго Rn× 2. Так ли это?

Теперь вернёмся к:

Матрица 3-5-7-11

R=(3×5×7×11)×2=2310

По этому примеру мы видим, что все члены Матрицы, это простые числа 3-5-7-11. Они идут по порядку. Здесь мы видим отсутствие числа 9, так как оно составное. Так вот, при работе Матриц, и конкретно после Матрицы 3-5-7-11, вход вступает Система 13. Потом уже Матрица будет иметь следующий вид- Матрица 3-5-7-11-13.

Рассматривая пример с оставшейся одной парой, представим что она (пара) осталась на шаге Матрицы 3-5-7-11, и находится на расстоянии 13, то есть первого «удара» Системы 13. Далее, чтобы Система 13 убрала и другие пары на следующих R, то Система 13, должна выйти к началу шага R2 и т.д… А это в свою очередь означает, что должно быть так:

(3×5×7×11)×2=2310: 13 = целое число.

Но:

2310: 13=177,6923...

Оставим в стороне умножение на 2, уже по этой операции видно что удваивание нечётного числа приводит к чётному, и при делении чётного (2310) на нечётное, не всегда приводит к целому числу в результате. Нас же это не всегда не устраивает. Как мы уже говорили, Матрица состоит из нечётных простых чисел, то и результат умножение ряда простых с последующим делением на следующее простое, не может дать целое число, так как это следующее, есть простое, и значит, оно не соприкасается с позади стоящими. Тоесть оно не делимо на них с целым показателем в итоге. А иначе бы это простое небыло бы простым.

Так вот, после первого «удара» уже на втором, третьем… Система 13 сбивается, и оставляет пары невредимыми. Сколько, об этом позже.

Одна пара на шаге маловероятна, если вообще не вероятна. Долгое время считалось, что чем больше простые числа, тем больше расстояние между ними. В окрестностях целого числа х, расстояние между смежными простыми числами пропорционально логарифму х. Это среднее значение расстояний.Но новые открытия доказали, что в отдельных случаях расстояние может быть значительно меньше.

«Вероятность того, что число Х является простым, приблизительно равна 1/ln x. Это означает, что количество простых чисел в интервале длины А поблизости от Х должно быть примерно равно a/ln x.

Соответственно вероятность того, что два числа вблизи Х оба окажутся простыми, приблизительно равна 1/lnІ x. Ожидаемое же количество простых чисел-близнецов в интервале от x до x + a приблизительно равно a/lnІ x. На самом деле в реальности, ожидаемая величина немного больше, так как если уже известно, что число n простое, то это изменяет шансы, что и n + 2 будет простым. В связи с этим, ожидаемое количество простых чисел-близнецов в интервале [x, x+a] равно Ca/lnІ x. C – постоянная, приблизительно равная 1,3 (C = 1,3203236316...).

Более вероятно, но опять чисто теоретически и чисто иллюзорно, можно представить, что в один момент, на какой, то Матрице, все пары выстроятся в чёткий ряд, с шагом, который проделывает новая Система. Но опять же, на втором внутреннем шаге прежней Матрицы, Система даст сбой, и в итоге будут те, же показатели.

Так работая, Система 13, на Матрице 3-5-7-11 с длиной внутреннего матричного шага в 2310, выстраивает новый внутренний шаг, с новой внутренней системой на новой Матрице 3-5-7-11-13. Теперь этот шаг увеличивается с 2310 до 30 030, то есть в 13 раз. А это значит, что внутренний шаг на Матрице стал длиннее, но количество таких внутренних шагов на Матрице, осталось прежним—БЕСКОНЕЧНЫМ!

Теперь посмотрим на реальное положение дел:

Матрица

Кол-во не пар, на шаге

Кол-во пар на шаге

% пар

Матрица 3-5

2

3

60

Матрица 3-5-7

20

15

42

Матрица 3-5-7-11

246

136

35

Как видим, как бы процентное количество пар не уменьшалось на каждом новом шаге, но количество пар растёт. Система построения Матриц гарантирует жизнь простым и парам.

А есть ли у нас возможность подсчитать количество пар на каждом внутреннем шаге Матрицы?

Матрица 3

ОООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООО

Матрица 3-5

ХООХО-30-ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО..

Матрица 3-5-7

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО-210-ХООХОХОХХО

ХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХ

ОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХО

ХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХ

ОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХО

ХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХ

ОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХО...

Матрица 3-5-7-11

ХХОХОХОХХОХОХХХХООХХХХОХОХХОХОХООХХХООХОХХХХОХОХХХХ

ОХХХХХО ХОХХОХОХОХХОХООХХХОХХОХОХХХХООХХХХОХОХХОХО

ХООХОХОХХОХХХХОХОХХХХОХХХХХОХХХХОХОХООХОХООХХХОХХО

ХХХХХХООХХХХХХОХХОХОХООХОХОХХОХОХХХХОХХХХООХХХХОХХ

ХХОХОХХОХОХООХОХОХХОХХХХХХООХХХХХХОХХОХХХООХОХООХО

ХОХХХХОХХХХХОХХХХОХОХХХХОХХОХОХООХОХОХХОХОХХХХООХХ

ХХОХОХХОХХХООХОХХОХОХОХХОХОХОХХХХХОХХХХОХОХХХХОХООХХ

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХОХХО-2310-ХХОХОХОХХОХ

ОХХХХООХХХХОХОХХОХОХООХХХООХОХХХХОХОХХХХОХХХХХОХОХ

ХОХОХОХХОХООХХХОХХОХОХХХХООХХХХОХОХХОХОХООХОХОХХО

ХХХХО… прервано на 3003.

Матрица 3-5-7-11-13.

ХХОХОХОХХОХОХХХХООХХХХОХОХХХХОХООХХХХОХОХХХХОХОХХХХО

ХХХХХОХОХХХХОХХХХОХООХХХОХХХХОХХХХОХХХХХХОХХОХОХХОХОХОХХОХХХХХХОХХХХОХХХХХХХХХХОХОХООХОХООХХХОХХОХХХХХХО

ХХХХХХХОХХОХОХООХОХОХХХХОХХХХОХХХХОХХХХХОХХХХОХОХХО

ХХХООХОХОХХОХХХХХХООХХХХХХОХХОХХХООХХХООХОХОХХХХО

ХХХХХОХХХХОХОХХХХХХХОХОХООХОХОХХОХОХХХХХОХХХХОХОХХО

ХХХООХОХХОХОХОХХОХХХОХХХОХХХХОХХХХХХОХООХХХОХХОХОХХО

ХХХХХХООХХХХОХХХХОХОХОХХОХХХХОХХХХОХОХХХХООХХХХОХОХХОХОХОХХХХООХОХХХХОХОХХХХОХХХХХОХОХХОХОХОХХОХХОХХХОХХОХОХХХХООХХХХОХОХХХХОХООХОХХХХОХХХХО...

Теперь посмотрим на порядковое расположение количества убранных и не убранных пар на Матрицах в одном шаге.

Чёрный шрифт-количество убранных пар.

Красный шрифт-количество не убранных пар.

Жирный красный шрифт-середина Матрицы.

Матрица 3-5

1—2—1—1

Матрица 3-5-7

1—2—1—1—1—1—2—1—1—1—4—2—4—1—1—1—2—1—1—1—1—2—1—1

Матрица 3-5-7-11

2—1—1—1—1—2—1—1—1—4—2—4—1—1—1—2—1—1—1—1—2—3—2—1—1-

-4—1—1—1—4—1—5—1—1—1—2—1—1—1—1—2—1—1—2—3—1—2—1—1—1-

-4—2—4—1—1—1—2—1—1—1—1—2—1—1—1—1—2—1—4—1—1—1—4—1—5-

-1—4—1—1—1—1—2—1—1—1—2—3—1—2—1—6—2—6—1—2—1—1—1—1—2-

-1—1—1—1—2—1—1—1—4—1—4—2—4—1—4—1—1—1—2—1—1—1—1—2—1-

-1—1—1—2—1—6—2—6—1—2—1—3—2—1—1—1—2—1—1—1—1—4—1—5—1-

-4—1—1—1—4—1—2—1—1—1—1—2—1—1—1—1—2—1—1—1—4—2—4—1—1-

-1—2—1—3—2—1—1—2—1—1—1—1—2—1—1—1—5—1-- 4—1—1—1—4—1—1-

-2-- 3—2—1—1—1—1—2—1—1—1—4—2—4—1—1—1—2—1—1—1—1—2—1

Как видим, середина Матричного шага состоит из 2 неубранных (кандидатов в неубранные) пар. Далее середины имеется добавочная 1 неубранная пара. Если бы её не было, то можно было бы говорить о зеркальной 100% симметричности шага Матрицы. «Зеркалом» служат 2 неубранных пар в середине. Добавочная 1 неубранная пара в конце шага, служит как бы разделом шагов на Матрице.

И по принципу построения Матрицы с шагами и с центром в шаге и соответственно зеркальным отображением пар на шаге, то никакая Система и никакое число Систем не могут физически убрать все пары с Матрицы. Если не могут убрать, то и есть те, которые они не могут убрать. И эти пары мы называем реальными.

Выше мы определили, как образуется длина внутреннего шага на Матрице. На нём как мы видим, есть определённое число неубранных пар. Можно ли просчитать это число? Кажется что да!

Попробуем это сделать! Возьмём начало начал Матрицу и одновременно Систему 3. Пара как мы знаем, есть то, что находится внутри этого начала. Тоесть изначально два простых (которые образуют пару) и третье сложное:

3---

2---О

1---О

Значит один раз из трёх, Система 3 образовав Матрицу 3, получила целую пару. Далее добавляем к ней Систему 5:

5---

4---

3---

2---О

1---О

Получаем, что у Системы 5 есть три варианта что бы не убрать пару, которая впереди. Теперь опишем для Системы 7, Системы 11:

7--- 11---

6--- 10---

5--- 9---

4--- 8---

3--- 7---

2---О 5---

1---О 4---

3---

2---О

1---О

Здесь напомним себе что Систему образует только простое число, и поэтому Системы 9 нет. В принципе она есть, но она ничего не меняет и поэтому её Системой нельзя назвать.

Теперь попробуем подсчитать. На Матрице 3 у нас:

1 внутренний шаг= 1 паре.

На Матрице 3-5 внутренний шаг равен:

1 внутренний шаг=1×3=3 пары.

На Матрице 3-5-7 и Матрице 3-5-7-11:

1 внутренний шаг=1×3×5=15 пар.

1 внутренний шаг=1×3×5×9=135 пар.

Теперь посмотрим как распределяются члены на Матрице в одном внутреннем шаге, для того что бы следующея пара осталась не тронутой. Для того что бы показать как это реально на Матрице, мы цифры от 3 до 11, заменим. 3=0, 4=2, 5=4, 6=6, 7=8, 8=10, 9=12, 10=14, 11=16. 1 и 2, это простые образующие пару. Если, к примеру, шаг Системы 5 у нас равен 0, то это означает что шаг Системы 3 и шаг Системы 5 совпали. Если, к примеру, шаг Системы 7 равен -2, то это означает, что в конкретном месте на цифровом поле определённый шаг Системы 7 отстаёт от определённого шага Системы 3 на 2 единицы. В принципе всё отставание показано от Системы 3.

Матрица 3-5. Шаг Системы 5-- -4, 0, -2.

Матрица 3-5-7. Шаг Системы 5: Шаг Системы 7:

-4 -2

0 -8

-2 -6

-4 -4

-2 -8

-4 -6

-4 -8

0 0

0 -2

-2 0

0 -4

-2 -2

-4 0

0 -6

-2 -4

Матрица 3-5-7-11.

5

7

11

5

7

11

5

7

11

5

7

11

5

7

11

-8

-4

-4

-4

-8

-10

-4

-8

-2

-4

-6

-2

-6

-16

-2

-8

-4

-2

-8

-6

-14

-8

-2

-4

-4

-6

-4

-6

-16

-4

-4

-2

-4

-4

-2

-6

-14

-2

-8

-2

-4

-8

-2

-2

-2

-16

-4

-2

-16

-4

-4

-4

-4

-6

-14

-8

-4

-6

-8

-2

-8

-0

-4

-8

-2

-6

-6

-12

-2

-6

-12

-4

-6

-12

-6

-4

-2

-2

-4

-2

-4

-4

-2

-4

-2

-14

-2

-2

-14

-4

-2

-14

-4

-6

-10

-2

-12

-2

-4

-4

-4

-2

-6

-10

-2

-2

-2

-4

-6

-10

-4

-4

-2

-10

-2

-2

-10

-2

-2

-12

-2

-4

-4

-6

-8

-2

-4

-4

-2

-4

-2

-12

-4

-8

-16

-2

-2

-8

-6

-6

-6

-8

-2

-6

-8

-6

-4

-4

-2

-8

-4

-2

-10

-2

-8

-16

-2

-8

-2

-4

-16

-8

-14

-8

-16

-4

-6

-6

-4

-16

-4

-2

-6

-2

-6

-4

-2

-6

-6

-4

-8

-14

-2

-2

-6

-8

-12

-4

-4

-16

-2

-8

-14

-2

-6

-6

-2

-2

-6

-2

-2

-8

-12

-4

-6

-4

-4

-14

-2

-4

-14

-4

-4

-14

-4

-6

-2

-4

-8

-12

-2

-2

-4

-4

-2

-4

-2

-8

-10

-4

-8

-10

-2

-4

-4

-16

-8

-10

-4

-6

-16

-2

-16

-6

-2

-6

-4

-8

-8

-2

-2

-4

-12

-2

-4

-12

-4

-4

-12

-14

-2

-14

-2

-2

-2

-4

-2

-2

-2

-8

-8

-2

-4

-10

-4

-14

-8

-8

-4

-8

-6

-2

-12

-2

-2

-2

-4

-10

-4

-4

-10

-12

-4

-8

-4

-12

-4

-2

-2

-8

-6

-2

-10

-4

-10

-2

-4

-8

-8

-6

-4

-8

-4

-4

-6

-6

-16

Подведём ещё раз некоторые итоги.

Из Матрицы 3 с чередующими парами, Система 5- из трёх пар выстраивает свою Матрицу 3-5, с внутренним шагом в 3 неубранные пары. Далее из Матрицы 3-5, Система 7 из её Матрицы, выстраивает свой шаг – длиной в 15 неубранных пар. Система 11 из Матрицы 3-5-7 соответственно 135 пар. Система 13 из Матрицы 3-5-7-11 уже выстраивает внутренний шаг с 1485 неубранными парами. Внутренний шаг Матрицы 3-5 равен 30, Матрицы 3-5-7 равен 210, Матрицы 3-5-7-11 равен 2310, Матрицы 3-5-7-11-13 равен 30030. Теперь мы получаем, что насыщенность пар на цифровом поле падает. 30:3=10, 210:15=14, 2310:135=17,11.., 30030:1485=20,22…

Но! Все эти пары, которые мы считаем, они виртуальны. То есть те варианты, которые предлагает конкретная Система для дальнейших Систем. Наибольшее число и наивозможнейшее число вариантов для пар. И эти виртуальные пары, которые мы больше называем теоретическими состоят из:

Теоретические=простые близнецы (реальные пары)+сложные числа из простых близнецов(в том случае когда одно из чисел теоретических пар становится сложным).

Реальные пары, это те пары, которые находятся в пределах конкретного цифрового поля. Возьмём наши поля – 30, 210, 2310, 30030. Так вот все пары, которые в этом поле они уже вечны, так как прошли обработку всеми возможными для этих цифровых полей Систем. Для того чтобы узнать Матрицу (последнею) для этих полей мы вначале вычисляем квадратные корни от 30, 210, 2310, 30030. Это будет – 5,47.., 14,49.., 48,06.., 173,29… Теперь находим ближайшее простое число – 5, 13, 47, 173. Значит, имеем Матрицы: Матрица 3-5, Матрица 3-5-7-11-13, Матрица 3-....47, Матрица 3-...173. И кстати у Гауса задача по нахождению простых чисел намного бы упростилась, если бы он не искал целые делители, а использовал метод Систем. К примеру, чтобы найти простые до 121, не обязательно все числа до 121 делить на возможные делители, то есть 1/3 210, а выстроить Матрицу 3-11. Если число не подпадает под действие Матрицы 3-11 то оно и простое.

И что бы узнать все пары до 30030, нам необходимо их обработать Системами от 3 до 173.

А вот как выглядит расположение пар на цифровом поле 2310:

ОООХОХОХХОХОХХХХООХХХХОХОХХХХОХООХХХХОХОХХХХОХОХХХХО

ХХХХХОХХХХХХХХХХХОХОХХХХОХХХХХХХХХОХХХХХХХОХХХХОХХО

ХХХОХХОХХХХХХХХХХХХХХХХХХХХХХХХОХООХХХХОХХХОХХХХХХХХ

ХХХХХХХХХХХХХХОХОХХОХОХХХХОХХХХХХХХХОХХХХХХХХХХХХО

ХХХХХХХОХОХОХХОХХХХХХХХХХХХХХХХХОХХХОХХХХООХХХХХХХХХ

ХХХХХХХХХХОХОХХХХХХХОХХХХОХХХОХХХХХХХХХХОХХХХХХХХХХ

ХХХООХХХХХХХХОХХОХХХХХХХОХХХХОХХХХХХХХООХХХОХХОХО

ХХХХХХХХХХХХХХХОХХХХОХХХХХХО – 69 пар.( О – пара, Х – не пара).

На внутреннем шаге в 2310 Матрицы 3-5-7-11, было 135 пар. Уменьшилось в 1,9565… раз.

На внутреннем шаге в 210 Матрицы 3-5-7 было 15 пар, а осталось 14, что меньше в 1,0714.

Казалось бы уменьшение увеличивается, но не забудем о разных цифровых полях, и о количестве обрабатываемых Систем. Цифровое поле 210 обработано Матрицей 3-..13. Цифровое поле увеличилось в 11 раз, а число пар в 4,9285… раз.

Матрица

Количество пар на внутреннем шаге

Длина шага Матрицы и количество шагов Системы

Плотность сохранённых пар

Количество пар убранных новой Системой

Кратность уменьшения количества убранных пар

3

1

6 (1)

6

3-5

3

30 (3)

10

Из 5-- 2

2,5

3-..7

15

210 (15)

14

Из 21-- 6

3,5

3-..11

135

2310 (105)

17,11..

Из 165-- 30

5,5

3-..13

1485

30030 (1155)

20,22..

Из 1755—

270

6,5

3-..17

22275

510510 (15015)

22,91..

Из 25245—

2970

8,5

3-..19

378675

9699690

(255255)

25,61..

Из 423225—

44550

9,5

3-..23

7952175

223092870

(4849845)

28,05..

Из 8709525—

757350

11,5

3-..29

214708725

6469693230

(111546435)

30,13..

Из 230613075—

15904350

14,5

3-..31

6226553025

200560490130

(3234846615)

32,21..

Из 6655970475—

429417450

15,5

Кратность уменьшения при дальнейшем исчезновении пар должна идти не от 1 а к 1. К примеру, если бы пар было 1755 и убралось 1755, то кратность стала бы 1, и пары исчезли. Но кратность идёт не к 1 а от 1, что гарантирует вечную жизнь парам.

Более того, если рассматривать матричное строительство при увеличении внутреннего матричного шага и соответственно пар, то мы увидим что вначале мы число пар увеличиваем в N раз а потом уменьшаем это число в N-X раз.

Матрица 3-5 N= 5 N-X= 2,5

Матрица 3-7 N= 7 N-X= 3,5

Матрица 3-11 N= 11 N-X= 5,5

Матрица 3-13 N= 13 N-X= 6,5

Матрица 3-17 N= 17 N-X= 8,5

Матрица 3-19 N= 19 N-X= 9,5

Матрица 3-23 N= 23 N-X= 11,5

Матрица 3-29 N= 29 N-X= 14,5

Матрица 3-31 N= 31 N-X= 15,5

Посмотрим же, сколько реальных пар выдаёт новая Матрица. Если мы имеем Матрицу 3-..13, а потом после включения к ней Системы 17 получаем новую Матрицу 3-..17. На цифровом поле 172 -132, появляются новые пары и простые вообще. Это поле с 169 до 289. Это если рассматривать цифровое поле N12 — N02. В целом же показатели по Матрицам такие(здесь имеется ввиду первый внутренний шаг Матрицы):

Матрица 3-5 выдаёт реальных 3(4 пара 29 и 31, а первый шаг Матрицы 3-5 равен 30). Плотность -10.

Матрица 3-5-7 выдаёт реальных 14. Плотность – 15.

Матрица 3-5-7-11 выдаёт реальных 67 (68 это 2309 и 2311, а первый шаг равен 2310). Плотность – 34,47.

И так далее, с увеличением числа реальных пар в Матрице, и увеличение плотности пар.

N0

N02

N1

N12

Разница

N12 - N02

«Удары»

N

Количество

целых пар

Количество

Всех пар

Плотность

целых пар

13

169

17

289

120

2

7

20

3,5

17

289

19

361

72

1

2

12

2

19

361

23

529

168

1

4

28

2

23

529

29

841

312

2

8

52

2,6

29

841

31

961

120

1

2

20

2

31

961

37

1369

408

3

11

68

3,6

37

1369

41

1681

312

2

6

52

3

41

1681

43

1849

168

1

3

28

3

43

1849

47

2209

360

1

11

60

5,5

47

2209

53

2809

600

2

13

100

4,3

53

2809

59

3481

672

2

12

112

4

59

3481

61

3721

240

1

5

40

5

61

3721

67

4489

768

3

19

128

6,3

67

4489

71

5041

552

2

11

92

5,5

71

5041

73

5329

288

1

3

48

3

73

5329

79

6241

912

2

15

152

5

79

6241

83

6889

648

1

14

108

4,6

311

96721

313

97969

1248

1

18

208

18

313

97969

317

100489

2520

1

24

420

12

317

100489

331

109561

9072

2

86

1512

12,2

331

109561

337

113569

4008

1

40

668

13,3

337

113569

347

120409

6840

3

70

1140

14

347

120409

349

121801

1392

1

14

232

14

349

121801

353

124609

2808

1

29

468

14,5

853

727609

857

734449

6840

2

42

1140

21

857

734449

859

737881

3432

1

27

572

27

859

737881

863

744769

6888

1

50

1148

25

863

744769

877

769129

24360

4

157

4060

22,4

877

769129

881

776161

7032

2

57

1172

28,5

881

776161

883

779689

3528

1

25

588

25

883

779689

887

786769

7080

1

55

1180

27,5

И так далее. Как видно из таблицы, каждая Матрица выдаёт новые пары и это количество растёт. При определении плотности целых пар, выводилось среднее число, так как расстояние между простыми, и соответственно между Системами разное. А это приводит к большей и меньшей разности между N0 и N1. Среднее выводилось на разницу в N0 и N1 в 2 единицы. К примеру, Система 13 и Система 17 имеет разницу в 4 единицы и количество целых пар в расстоянии 172 -132 равна 7. Среднее получаем 7 разделив на 2=3.5

Как мы видим, что чем больше расстояние между Системами, тем больше выдаётся новых реальных пар. При минимальном расстоянии в 2 единицы (то есть между простыми образующими пару) и минимальное количество реальных пар, но и оно это количество растёт. Вот ещё один парадокс, исчезновение пар, на каком то цифровом поле, приводит к образованию большего количества пар.

Выдача новых реальных пар происходит в окошке N12 — N02. Это окошко имеет свою чёткую тенденцию роста. По принципу построения Матриц мы видим, что сколько бы не было велико Систем в образовании Матриц, но взаимообращение их на Матрицах всегда выдаёт пробелы в 6 единиц и 4 единицы. Всё здесь заложено с самого начала. При обращении нечётных чисел, каждое второе обращение выпадает из системы нечётных:

3×2=6(выпадание)

3×3=9(не выпадание)

3×4=12(выпадание)

3×5=15(не выпадание)

поэтому реальное обращение происходит при двойном обращении:

3+6(3×2)+6+...

5+10(5×2)+10+...

Как видим, изначально в Системе построения Матриц заложен принцип максимального расхождения в 6 единиц, то есть двух нечётных чисел. Тоесть пары простых.

И опять же именно поэтому при обращении всех нечётных чисел, на каждой Матрице в каждом шаге есть пробеги в 6 единиц и 4 единицы. Взаимное обращение членов на Матрице с перебором всех вариантов обращения включает и такие варианты. Не теоретически и по вероятностной теории, а практически. И их количество можно подсчитать точно. Далее, взаимное обращение членов на Матрице, включает и максимально возможное сближение в одном цифровом пространстве членов, с пробегом в 4 единицы, и с пробегами в 6 единиц. При максимальном заполнении пространства в 4 единицы, мы имеем места, где невозможно образования пар. И это максимально возможное пространство оно имеет свои чёткие границы. Столько сколько может выдать взаимообращение членов.

Вот как это происходит вначале:

Матрица

N12 — N02

Разница N12 — N02

Максимальное заполнение цифрового пространства на Матрице с пробегом не более 4 единиц

3-5

52 – 72 (25 – 49)

24

6

3-5-7

72 – 112 (49 – 121)

72

24

3-5-7-11

112 – 132 (121-169)

48

36

3-5-7-11-13

132 – 172 (169-289)

120

60

Как видим, максимальное заполнение отстаёт от разницы N12 — N02, и это отставание имеет тенденцию к увеличения разрыва. А это гарантирует то что в N12 — N02, обязательно появится реальная пара.

Мы знаем, что при строительстве Матриц, есть теоретические пары и они вечны. При обращении Матриц выдаются реальные, которые закрепляются в памяти на остальных. Процесс закрепления происходит в окошке N12 — N02, так как Система N1 может, что-то изменить с N12, потому что до этого она повторяет шаги ранее имеющихся Систем. Так вот с момента строительства реальных пар обращение членов на Матрице, такое, что оно не может заполнить весь N12 — N02 так что бы разница между обращениями была не более 4. И как показывает практика таких обращений с увеличением числа членов и соответственно увеличение разрыва N12 — N02, число пробелов в 6 единиц растёт. Имеет общею тенденцию роста. Почему такое происходит? По той же причине, по которой все члены Матрицы собираются в одной точке и далее идёт повторение шагов. Напряжённость на Матрице в месте начала образования новых реальных членов такая, какая она есть. И это доказано парой 2003663613×2195000 плюс/минус 1 (данные от 2007 года). Это доказано самим принципом обращения членов на Матрице. Они всегда производят разницы в 6 и 4 единицы.

Как бы не было велико матрично-цифровое поле, но с увеличением матричного поля растёт количество пар на внутреннем шаге Матрицы, как реальных, так и теоретических. Количество теоретических пар, всегда больше количества шагов новой Системы. Реально пары могли бы исчезнуть на Матрице3-5 и Матрице3-5-7, так как там число пар и число шагов совпадает 3-3,15-15. А уже далее идёт нарастающий разрыв 135-105, 1485-1155 и т.д… Хотя новая Системаn, может «убить» пару только с n2 шага. Так что и Матрице 3-5 и Матрице 3-5-7 шансов было просто больше, но они не 100%. Количество, же внутренних шагов на каждой Матрице БЕСКОНЕЧНО.

Плотность всех пар на Матрице намного отстаёт от разницы N12 — N02, и это отставание имеет тенденцию к увеличению. Что также ведёт к появлению большего количества реальных пар. Плотность целых пар, выведена среднее, на N12 — N02 при разнице N1 — N0 = 2. Если разница больше и к примеру в три раза, то общее число целых пар разделено на 3.Удары N0, это количество шагов Системы N0, не включая шаг N02. Однако необходимо учитывать что и шаг N02 способен убрать пару. Так что реальное число шагов Системы N0(как ещё мы называем это ударами) всегда больше на один, от тех что указаны в таблице. Это те последние удары Систем в данном промежутке цифрового поля, после которых уже не убранные пары переводятся из теоретических в реальные. И как мы видим, что как бы не увеличивалось цифровое поле и количество теоретических пар в нём (в промежутке N02 — N12 , но количество ударов можно сказать остаётся прежним.

Система построения Матриц гарантирует бесконечность реальных пар. И более того, каждая Система выдаёт своё количество пар, и это количество растёт.

Выше мы рассмотрели то как мы можем высчитать количество пар на Матрице. Но, можно ли применить иной способ и по нему высчитать количество простых и расстояний между членами Матрицы в 2 единицы. То есть участки с сложными.

Попробуем!

Расстояние между членами на Матрицах:

Матрица 3-5.

2-4-6-далее в обратном порядке до конца внутреннего шага. До 30.

Матрица 3-5-7.

2-2-2-6-6-4-2-6-2-4-6-4-2-4-2-6-2-4-6-2-4-4-2-4-2-2-4-6-далее в обратном порядке до конца внутреннего шага. До 210.

Матрица 3-5-7-11.

2-2-2-2-4-6-4-2-6-2-4-6-4-2-4-2-6-2-4-6-2-4-4-2-4-2-2-4-6-6-4-2-2-2-2-2-4-4-2-6-2-2-2-6-2-

-4-2-4-6-4-2-6-2-2-2-6-6-2-2-2-2-4-2-2-2-6-6-4-2-6-2-4-4-2-4-2-4-2-6-2-4-6-2-4-4-2-4-2-2-

-4-6-4-2-4-2-2-4-2-4-2-2-2-6-4-2-6-2-4-2-4-6-4-2-6-2-4-6-2-4-2-2-2-6-2-2-2-6-6-4-2-4-2-2-

-4-6-4-2-2-2-2-6-2-4-6-2-4-4-2-4-2-2-2-2-6-6-4-2-2-4-2-4-4-2-6-4-2-6-2-4-2-2-2-6-4-2-6-2-4-

-6-6-2-2-2-6-2-2-2-6-4-2-4-2-6-2-4-2-4-4-2-4-2-6-2-4-6-2-4-4-2-4-2-2-4-6-2-4-4-2-2-4-2-4-

-4-2-6-4-2-4-2-2-4-2-4-6-2-2-2-6-2-4-6-6-2-2-2-6-2-2-2-6-6-4-2-2-4-2-4-6-4-2-4-2-6-2-4-4-

-2-2-4-4-2-4-2-2-4-6-6-4-2-2-4-2-4-4-2-4-2-4-2-6-2-4-2-4-6-4-2-6-2-4-6-6-2-2-2-6-2-2-2-6-

-2-4-4-2-6-2-4-6-4-2-4-2-4-2-2-4-6-2-4-2-2-2-4-2-2-4-6-далее в обратном порядке до конца внутреннего шага. До 2310.

Количество расстояний на внутренних шагах.

Матрица 3-5.

2---4

4---4

6---4

Матрица 3-5-7.

2---24

4---18

6---15

Матрица 3-5-7-11.

2---330

4---210

6---135.

Представим, что первоначальной Матрицей является не Матрица 3 а Матрица 11. Посмотрим, что мы увидим на Матрице 11-13.

Матрица 11-13.

Количество расстояний на внутренних шагах.

2---2

4---2

6---2

8---2

10---2

12---2

14---2

16---2

18---2

20---2

22---2

Как видим, что первоначальная Матрица закладывает максимум расстояний в 22(11×2), а далее этот максимум дробится, при этом оставляя и сам максимум. Минимум расстояний в 2 единицы, определяется «генетически» (максимум также определяется подобным образом) минимумом расстояний между нечётными. Менее (минимум) не может быть и больше тоже. Это реальный минимум. А 22(11×2), – это реальный максимум. Но, в данном случае первоначальная Матрица11 может быть только при иной цифровой системе. И так как Матрица 11 построена на цифровой системе, где есть и 1,3,5,7,9 то вскоре вид Мега Матрицы примет вид такой какой бы он есть при первоначальной Матрице3.

Теперь посмотрим, как работает новая СистемаХ при убирании пар и простых на предыдущей Матрице.

Возьмём для примера Систему13, которая обрабатывает Матрицу3-11, с её внутренними шагами равными 2310, и соответственным центром в 1155. Вот Система 13 проделывает 53 шага (13×53) и число 689 делает составным. Более того убирает имеющеюся до этого теоретическую пару близнецов 689-691. Теперь это не пара. Если теоретическая пара была расположена на таком расстоянии, то она имеет своё зеркальное отражение на каждом шаге:

1) 1155-689=466

2) 1155+466=1621

3) Зеркальное отражение пары (А)689-691=(Б)1619-1621

Далее, если вход вступает Система 13, то она увеличивает матричный шаг в 13 раз:

2310×13=30 030

Теперь, если пары А и Б на первом шаге были на расстоянии от 0 в 689-691 и 1619-1621 единиц, то на оставшихся 12 шагах Матрицы3-13 уже(показано по примеру 689 и 1621):

1) 689 1621

2) 2999 3931

3) 5309 6241

4) 7619 8551

5) 9929 10861

6) 12239 13171

7) 14549 15481

8) 16859 17791

9) 19169 20101

10)21479 22411

11)23789 24721

12)26099 27031

13)28409 29341

Первое попадание в эти пары произошло в 689. Теперь посмотрим как обстоят дела далее. Посмотрим:

1) 689(0) 1621(-9,+4)

2) 2999(-9,+4) 3931(-5,+8)

3) 5309(-5,+8) 6241(-1,+12)

4) 7619(-1,+12) 8551(-10,+3)

5) 9929(-10,+3) 10861(-6,+7)

6) 12239(-6,+7) 13171(-2,+11)

7) 14549(-2,+11) 15481(-11,+2)

8) 16859(-11,+2) 17791(-7,+6)

9) 19169(-7,+6) 20101(-3,+10)

10)21479(-3,+10) 22411(-12,+1)

11)23789(-12,+1) 24721(-8,+5)

12)26099(-8,+5) 27031(-4,+9)

13)28409(-4,+9) 29341(0)

Теперь мы видим, что именно в эти точки произошло два попадания, это 689(0) и 29341(0). Но мы имеем дело с парами. Что бы исчезла пара необходимо убрать один из её членов. Поэтому в первом ряду 689 расположены на первом месте по Матрице 3:

687 693

689 691

А зеркальное отражение 689, то есть 1621 на втором месте:

1617 1623

1619 1621

Поэтому для первого ряда достаточно попаданий в 0 и +2, а для второго 0 и -2. Что мы и видим:

1) 689(0) 6)13171(-2,+11)

8) 16859(-11,+2) 13) 29341(0)

Возьмём другие примеры:

1) 13×97=1261

1) 1049(-9,+4) 1261(0)

2) 3359(-5,+8) 3571(-9,+4)

3) 5669(-1,+12) 5881(-5,+8)

4) 7979(-10,+3) 8191(-1,+12)

5) 10289(-6,+7) 10501(-10,+3)

6) 12599(-2,+11) 12811(-6,+7)

7) 14909(-11,+2) 15121(-2,+11)

8) 17219(-7,+6) 17431(-11,+2)

9) 19529(-3,+10) 19741(-7,+6)

10) 21839(-12,+1) 22051(-3,+10)

11) 24149(-8,+5) 24361(-12,+1)

12) 26459(-4,+9) 26671(-8,+5)

13) 28769(0) 28981(-4,+9)

1047 1053

1049 1051

1257 1263

1259 1261

2) 13×131=1703

Итог:

6) 12157(-2,+11) 1) 1703(0)

13) 28327(0) 8) 17873(-11,+2)

3) 13×857=11141

Итог:

5) 11141(0) 2) 2719(-2,+11)

12) 27311(-11,+2) 9) 18889(0)

4) 13×977=12701(ситуация, когда пары находятся в средине матричного шага и расстояние между парами равна или менее шагу системы).

12699 12705 12711

12701 12703 12707 12709

1) 1151(-7,+6) 1) 1159(-2,+11)(попадание в 1157)

6) 12701(0) 6) 12709(-8,+6)

8) 17321(-5,+8) 8) 17329(0)

13)2887(-11,+2) 13)2879(-6,+7)(попадание в 2889)

Как видим, Система 13 из 26 пар(13×2) может и убирает только 4. И это есть закономерность. Правда есть и исключение. В шаге 2310(как и в других шагах, других Матриц) на конце имеется теоретическая пара 2309-2311, у которой нет зеркального отражения. Если быть точным то зеркальное отражение имеет только простое число, которое составляет эту пару. Так вот, здесь дела обстоят так:

Если 13×533=6929, то:

1) 2309(-8,+5)

2) 4619(-4,+9)

3) 6929(0)

4) 9239(-9,+4)

5) 11549(-5,+8)

6) 13859(-1,+12)

7) 16169(-10,+3)

8) 18479(-6,+7)

9) 20789(-2,+11)

10) 23099(-11,+2)

11) 25409(-7,+6)

12) 27719(-3,+10)

13) 30029(-12,+1)

6927 6933

6929 6931

Из 13 пар (13×1) убирается только 2.

Теперь посмотрим на работу Системы17:

Матрица 3-13 имеет внутренний шаг 30030. Система 17 выстраивает Матрицу 3-17, забирая в свой внутренний шаг 17 шагов Матрицы 3-13. Получается длина внутреннего шага Матрицы 3-17 равна 510 510.

17×71=1207

1) 1207(0) 28823(-8,+9)

2) 31237(-8,+9) 58853(-16,+1)

3) 61267(-16,+1) 88883(-7,+10)

4) 91297(-7,+10) 118913(-15,+2)

5) 121327(-15,+2) 148943(-6,+11)

6) 151357(-6,+11) 178973(-14,+3)

7) 181387(-14,+3) 209003(-5,+12)

8) 211417(-5,+12) 239033(-13,+4)

9) 241447(-13,+4) 269063(-4,+13)

10) 271477(-4,+13) 299093(-12,+5)

11) 301507(-12,+5) 329123(-3,+14)

12) 331537(-3,+14) 359153(-11,+6)

13) 361567(-11,+6) 389183(-2,+15)

14) 391597(-2,+15) 419213(-10,+7)

15) 421627(-10,+7) 449243(-1,+16)

16) 451657(-1,+16) 479273(-9,+8)

17) 481687(-9,+8) 509303(0)

1) 1207(0) 4) 118913(-15,+2)

14) 391597(-2,+15) 17) 509303(0)

Как видим, здесь из 34(17×2) пар убираются 4. При рассмотрении убирания пар на стыке шагов, мы обнаружим что из 17(17×1) пар убирается 2.

При убирании простых(не пар) также из убирается 2, но уже не из 17 а из 34(17×2).

И так далее при работе Систем. Количество пар растёт от величины Системы в 2 раза, но убирается строго 4 или 2.

Исходя из этого можно чётко просчитать сколько будет пар и простых, и расстояний в 2 единицы на новой Матрице.

Пример:

Матрица 3-5-7.

(2,4,6—расстояния между членами).

2---24

4---18(простое)

6---15(пара близнецов)

Включается работа Системы11 для построения Матрицы 3-5-7-11(3-11). Для построения шага новой Матрицы 3-11, необходимо взять 11 шагов предыдущей Матрицы3-7. Вначале мы имеем:

1)2---24×11=264

4---18(простое) ×11= 198

6---15(пара близнецов) ×11=165

2)Отнимаем количество пар, у которых «отмирание» происходит в 2 единицы.

165 -11=154

3) Мы имеем 154 пары у которых «отмирание» в 4 единицы.

11 пар, в 2 единицы.

4) Из 11 осталось 9.

Из 154:

154:22(11×2)=7

7×4=28

154-28=126

5) Всего осталось:

126+9=135

6) Всего убралось 30 пар.

Значит появилось 30 новых одиночек (простых) и новых 30 расстояний в 2 единицы между членами.

7) Из прежних 198 простых одиночек, осталось:

198:22(11×2)=9

9×2=18.

198-18=180.

8) Всего простых одиночек осталось:

180+30=210

Убралось 18 простых и появилось дополнительно 18×2=36 расстояний в 2 единицы между членами.

9) Вначале расстояний в 2 единицы было 264. Теперь:

264+36+30=330

И это соответствует Матрице3-11. И подобным образом можно высчитать положение для других Матриц.

Как видим, опять же ни одна новая Система не может вычистить предыдущею Матрицу от простых и пар. Более того с каждым разом, возможности новой Системы падают с возможностью предыдущей:

1) Система 11 из 22 теоретических пар убирает 4. Это основное, если не считать разовый случай с парами между шагами. Но там из 11 убирается 2. Процент тоже.

2) Система 13 из 26 теоретических убирает 4 пары.

3)

4) Система 41 из 82 теоретических пар убирает 4.

5) И так далее...

Нам необходимо здесь помнить то, что мы имеем дело с бесконечностью простых и пар. А это не множество, а НЕПРЕРЫВНОСТЬ. Просто, чем далее мы уходим вдаль тем более плотность пар и простых падает, но не прерывается сама НЕПРЕРЫВНОСТЬ (то есть БЕСКОНЕЧНОСТЬ).

Как мы знаем, выдача реальных происходит в окошке N02 — N12. А какое же там расстояние между членами в предыдущей Системе и настоящей? Посмотрим:

1) Система 3 и Система 5.

3—9—15—21—

5—15—25—

32 (N02 )=9

52 (N12 )=25

Совместное расположение 3—5—9--15—21—25—

И расстояния между членами 2—4—6—6—4—

Как видим расстояния между N02 — N12 равны 6—6—4

2) Система 7 и Система 11

7—21—35—49—63—77—91—105—119--

11—33—55—77—99—121--

72 (N02 )=49

112 (N12 )=121

Совместное расположение 7-11-21-33-35-49-55-63-77-91-99-105-119-121-

Расстояния N02 — N12 равны 6-8-14-14-8-6-4-2

В целом здесь находится максимум расширения между членами, что позволяет новой Матрице выкладывать на МегаМатрицу новые реальные простые и пары. И это увеличение имеет свой количественный рост. Увеличивается расстояние между N02 и N12 и увеличивается расширение (расстояние) между членами Систем.

И ещё, что бы нам полностью понять то что мы ищем, то есть бесконечность пар, то мы должны для себя усвоить что, Система простых и сложных есть только в среде нечётных чисел. Чётным числам такая Система не знакома. У них её нет! Так вот, в Системе простых и сложных, при минимальной единице их построения в 2 единицы из общей Системы чисел, есть сцепленные простые (то есть наши пары, так как между ними нет простого числа в нашей Системе простых и сложных) и простые разъединённые (те которые разъединены 2,3,4,… сложными). В Системе простых и сложных имеется два типа простых! И у пары не просто разрыв в 2 единицы, так как в этом случае она мало чем отличается от других разрывов, а у пары особый свой статус. Между её членами нет составных чисел. И нам необходимо было знать, исчезнут ли сцепленные.

Вот как выглядит взаимоотношение членов на промежутке N02 — N12 :

9 (32 ) – 25(52 ). Члены 3 и 5.

6-6-4.

25(52 ) – 49(72 ). Члены 3,5,7.

2-6-2-4-6-4.

49(72 ) – 121(112 ). Члены 3,5,7,11.

2-4-2-6-2-4-6-2-4-4-2-4-2-2-4-6-6-4-2-2-2.

121(112 ) – 169(132 ). Члены 3,5,7,11,13.

2-2-4-4-2-6-2-2-2-6-2-4-2-4-4.

169(132 ) – 289(172 ). Члены 3,5,7,11,13,17.

2-4-2-6-2-2-2-6-6-2-2-2-2-4-2-2-2-2-4-6-4-2-6-2-2-2-4-2-4-2-6-2-4-6-2-2.

289(172 ) – 361(192 ). Члены 3,5,7,11,13,17,19.

2-4-2-2-2-2-2-4-6-4-2-2-2-2-2-4-2-4-2-2-2-6-4-2-4.

361(192 ) – 529(232 ). Члены 3,5,7,11,13,17,19,23.

2-2-4-2-4-2-4-4-2-4-2-2-4-4-2-2-4-2-2-2-6-2-2-2-6-2-4-4-2-4-2-2-4-6-4-2-2-2-2-

-4-2-2-4-4-2-2-4-4-2-4-2-2-2-2-6-2-2.

529(232 ) – 729(272 ). Члены 3,5,7,11,13,17,19,23,27.

2-2-2-2-2-4-2-4-2-2-2-4-2-4-2-6-2-4-2-2-2-4-2-4-2-6-2-4-2-4-6-2-2-2-2-4-2-2-2-

-6-4-2-4-2-6-2-2-2-2-4-4-2-4-2-2-4-2-2-2-4-2-2-4-2-2-2-4-2-2-4.

Под взаимоотношением членов, необходимо понимать то что если Системы 3,5,7,11,13,17,19,23,27 совершают свои шаги то в промежутке 529(232 ) – 729(272 ) все их шаги будут иметь между собой(между двумя ближайшими) соответствующее отношение. При отношении в 6 единиц, то между ними находится пара простых, а если 4 – то простое.

Как мы видим из этого соотношения и от данных из предыдущей таблицы о плотности целых пар в промежутке N02 — N12, то это нам говорит о том, что напряжённость цифрового поля и Матриц в промежутке N02 — N12, такая, что в ней есть места для промежутков в 4 и 6, и количество таких промежутков растёт. А это то место где Матрицы выбрасывают пары и простые из теоретических в реальные!

Да и ещё. В Системе построения простых и сложных(составных) первоначальным членом является ПАРА, а не простое разъединённое. Вспомним начало начал — Матрицу 3. Там только одни пары, а одиночки уже приходят позже. Матрицы 1 нет! Только с Матрицы 3 всё и начинается. А начало там, где всё и начинается. И опять же, основа основ в простых, не одиночки, а пары. Одиночки — это пух летающий вокруг боя пар за своё выживание. Если бы пары погибли (а именно они поддерживают жизнь простых, то есть эту Систему) то со временем исчезли бы и их осколки. Но и пары вечны и часть их осколков. Вся наша беда ранее была в том, что мы за единицу принимали одиночки. Но единица измерения и построения простых это пара, а одиночки это осколки, разбросанные на разное расстояние. Поэтому мы и не могли найти хотя бы какую то Систему построения!

Попробуем ещё раз обобщить. Матрица NN имеет свою длину шага PN, которая равна N1 ×…× NN. Количество пар на PN равна (N1 -2)×...×( NN -2).

Пары на Матрице NN расположены в каждом шаге PN зеркальным образом до средины и от средины N1 ×…× NN. Расстояние между парами чередуется разными соотношениями 6×..0,1,2,3,… Последняя Система, которая может окончательно вычистить первый PN от пар будет ближайшая Система к корню квадратному от числа N1 ×…× NN. Мы получаем что, начиная с NN до N1 ×…× NN, есть определённое число пар, которое мы можем легко высчитать:

(N1 -2)×...×( NN -2) – (количество пар до NN ) = Х

И высчитать другим способом, по которому высчитываем количество простых и расстояний в 2 единицы.

Теперь кратко все основные аргументы из этой теории в доказательство бесконечности пар:

1. Можно вывести общие формулы взаимного расположения чисел при варианте с парами и при отсутствия пар. Эти формулы необходимо читать со средины (выделена жирным шрифтом), вправо и влево:

(№1) (№2)

Х или У = 2 – Х + 2 = У или Х Х или У = 2 – Х + 2 = У или Х

У или Х = 2 – У + 2 = Х или У Х = 2 – У + 2 = Х

Как видим, что в варианте №1 нет противоречий. И так он работает до последней известной нам пары.

В варианте №2 уже явно бросаются в глаза противоречия. Если У – 2, всегда равно Х и У + 2, всегда равно Х, то при Х + 2 и Х – 2, не всегда равно У и возможно Х.

У – 2 = Х, но Х + 2 = У или Х

У + 2 = Х, но Х – 2 = У или Х

Как видим, система построения простых-сложных, при исчезновении пары простых-близнецов, ломается и превращается в несистему. И здесь число, и его статус, внутреннее наполнение, зависят не от него самого, а от рядом стоящего числа. И при этом, что самое главное, без какой бы то либо взаимосвязи.

(Подробнее на стр.6-7.).

2. Блок Систем образует свою Матрицу, которая состоит из чередующихся своих шагов. На каждой Матрице длина шага увеличивается и увеличивается число пар, которые можно высчитать. Число же шагов на каждой Матрице бесконечно. Расположение пар на шаге и на Матрице расположены так что они не могут попасть в поле действия следующей Системы (то есть убраны следующей Системой).

(Подробнее на стр. 12-20).

3. В окошке выдачи реальных пар N02 — N12 ( в узлах расстоянием в 6) с самого начала имеются пары. С каждым увеличением N число выданных пар растёт. Каждое простое число, в дальнейшем образовав Систему, выдаёт новые пары и новые простые. А если быть точным, то в промежутке N02 — N12 оставляет реальные пары и простые, которые уже не может убрать никакая система.

(Подробнее на стр. 20-22.)

4. Число выданных пар и соответственно исчезновение реальных пар не может прийти к абсолютному нулю, так как с этим должны исчезнуть и теоретические пары. А это невозможно.

(Подробнее на стр.22-24.).

5. Краткое описание теории:

При нахождении и построении системы простых и пар, Система нахождения и построения использует Матрицы и Системы. Системы (S) представляют собой простые числа, на которые ищут делитель числа с предыдущей Матрицы (М).

Матрица есть общее количество, не найденных к делению чисел, которые обработаны определённым количеством S.

На каждой М есть свои повторяющиеся шаги (Р). Точка повторения есть:

(S1 × S2 ×...× Sпоследний член М )×2,4,6,… (увеличение на 2).

Каждый шаг Р, представляет собой центр Рцентр, с равномерным размещением членов М в разные стороны. Если на Матрице есть реальные пары, то, как минимум они расположены в обратном порядке в конце Р. Остальные шаги повторяют первый.

Количество пар на шаге высчитывается по формуле:

S1-2 × S2-2 ×...× Sпоследний член М-2

И методом, указанным на стр.27-28, который позволяет высчитать простые и промежутки с расстоянием в 2 единицы.

Все пары и простые на М, разделяются на:

М= реальные (до Sпоследний член М2) + теоретические(далее до Sпоследний член М2 ).

Исходя из принципа построения М, на ней никогда не могут исчезнуть теоретические. Те, которые можно назвать ещё кандидатами в простые и пары, на момент обработки чисел последней S.

Как бы не был велик шаг на М, но всегда их количество бесконечно.

С увеличением работы Матриц, количество шагов остаётся прежним – бесконечным. Количество пар и простых на Р увеличивается, и одновременно увеличивается ширина цифрового поля на Р.

Так как S состоят из простых чисел, то соединение в одной точке простых чисел от начала – может быть только в:

S1 × S2 ×...× Sпоследний член М

и поэтому когда на Матрицу накладывается новая Sпоследний член М+новый член, то он не может выйти на точку:

S1 × S2 ×...× Sпоследний член М

для того что бы, найденные пары в первом шаге для перевода из простых в составные, перевести и их копии в следующих шагах. Более того, работая в каком то шаге, и найдя в первой половине Р до Рцентра, уже во второй половине, его ассиметричность первому не позволяет S прийти в эту точку.

В связи с вышеизложенным мы видим, что никакая S не способна перевести все пары и простые из теоретических в разряд не пар и не простых. Только бесконечный ряд S может бесконечно совершать такой переход и никогда не завершит!

И если не может убрать, то и есть простые и пары, которые нельзя убрать. То есть в теоретических есть реальные. Если мы говорим что не подпадают под действия Систем, то это те пары и простые которые сами образуют Системы.

И (если забыть про доказательство Евклида) то если простые невозможно убрать и реальные простые вечны, то и такое же происходит и с парами.

(Подробнее на стр.1-27.).

6. Кто то представляет в доказательство своей теории проверку до 100 000, кто то до 1 000 000, кто то… На настоящий момент, автор этой теории приводит в доказательство последнею известную нам пару 2003663613×2195000 плюс/минус 1( данные от 2007 года). Если она нам известна, то Системы чисел (то есть две Системы) из этой пары образуют большее количество реальных пар, чем находится в промежутке NХ2 – NУ2. Более того, во всех N02 — N12 до NХ2 – NУ2 (где NХ и NУ числа из последней пары) есть пары, и число этих пар имеет тенденцию к увеличению. И эта пара не последняя в бесконечном ряду всех пар!

7. Попробуем ещё раз и ещё как можно более кратко понять суть данной теории.

На каждой Матрице выстраиваются реальные пары и теоретические. Реальные пары, это пары которые закрепляются в генетической памяти Матриц (а почему бы по этому принципу не работать вообще генной инженерии при установлении не меняемых кодов?!).

Изначальный принцип Матрицы3, состоит в том, что расстояние между членами до 6 единиц. Далее при постройке новых Матриц, это расстояние делится на 6 единиц, 4 единицы, 2 единицы (это наши пары, простые и составные). Больше не может быть и меньше тоже. Сколько бы Систем не включалось в построение Матриц, при взаимном обращении Систем на Матрицах, оно обязательно включает эти расстояния. И этот принцип откладывается на МегаМатрице, что влечёт появление новых пар и простых. Так как простых бесконечно много, и они образуют Системы и последующее образование новых Матриц, то и на МегаМатрице идёт бесконечный процесс появления новых пар. То есть расстояний между членами Матриц в 6 единиц.

При конечности пар и соответственного перехода взаимного обращения членов с расстояниями в 6,4,2 единицы на обращение в 4,2 единицы это возможно только при исчезновении теоретических пар (расстояний в 6 единиц) на Матрицах. А это невозможно.

Если бы вдруг, по каким то безумным законам, теоретические оставались (а они никуда и никогда не исчезнут!) но при постройке Матриц ни одна из теоретических не переводилась в реальные, и так далее в бесконечность, то мы бы наблюдали ещё более безумное противоречие. Во-первых, с тем, что мы знаем, что никакая Система не может вычистить Матрицу от теоретических пар. Если никакая, то и никогда. А по безумным законам, если с определённой Матрицы перестанут образовываться реальные пары и они никогда не образуются, то все теоретические пары на ней подпадают под действие последующих Систем, что говорит о конечном существовании теоретических пар. А это невозможно. Если ещё представить что процесс уничтожения теоретических пар бесконечен при сохранении статуса не появления реальных, ( лично автору не легко было это сделать, то есть представить нереальное за реальное)то тогда с начала этого процесса, взаимное обращение членов на Матрицах (и МегаМатрице) постепенно и бесконечно переходит в режим расстояний 4 и 2 единицы. Это невозможно, так как режим с расстоянием в 6 единиц, заложен на первичной Матрице, и он может быть изменён только новой первичной Матрицей с расстоянием в 4 единицы. А это невозможно, так как в этом случае, где то в бесконечности все теоретические попадают под действия Систем, а по нашей теории это невозможно никогда и нигде. Все последующие Системы и соответственно Матрицы, могут только увеличивать расстояния между парами (что и происходит), но не сам принцип в 6 единиц, который бесконечен.

Принцип расстояния между членами в максимум 6 единиц (то есть парами-близнецами), заложен первоначальной Матрицей3. Расстояние между её членами есть 6 единиц. Для того чтобы принцип перешёл в 4 единицы (то есть с одними простыми и без пар-близнецов) для этого должна быть первоначальная Матрица Х с расстоянием между её членами в 4 единицы. А это невозможно.

И это правило (а если хотите то и Закон) работает (и можно естественно его проверить) до самой дальней, известной нам пары (которая указана в теории). И если вывести корень квадратный из любого из чисел этой пары, а потом найти простые числа, между которыми он находится, а потом их (эти найденные простые числа) возвести в корень квадратный, то в их промежутке будет ещё множество пар. И это множество будет больше чем пар, к примеру, в промежутке 7 778 521(2789 в квадрате) – 7 789 681(2791 в квадрате).

И так будет бесконечно!

Ещё одна закономерность в строительстве Матриц.

Возьмём первоначальную Матрицу3:

Х1 —о1 —У1 —о2 —У2 —о3 --Х2

Х1 и Х2 – нечётные числа делящиеся на 3, то есть шаги Системы3.

У1 и У2 – нечётные числа не делящиеся на три и кандидаты в простые и пары.

О1, О2, О3 – чётные числа, которые находятся между нечётными, но они в строительстве Матриц не участвуют.

Так вот, если мы любое У1 и У2 возведём в квадрат, то результат такого действия всегда будет находиться на месте У2(n). Как мы видим У1 и У2 в решётке Матрицы3 расположены на первом и втором месте, но возведение в квадрат У1 и У2, всегда окажется на втором месте. Как мы знаем, любая Система начинает работать на Матрице с места, возведённого в квадрат числа Системы, и поэтому всегда начало таких работ всех Систем расположено на расстоянии, которое делится на 6. Именно поэтому, любое число из числа У1 и У2 возведённое в квадрат, а потом добавив к результату два или отняв 4, можно разделить на три, что бы получить целое число.

Кстати О1 и О3 после возведения в квадрат, всегда оказываются на месте О1 (n).

7.1.Заключение №1.Мы знаем (из сути построения Матриц), что никакая Система не может убрать все пары на предыдущей Матрице, то значит на любой Матрицех есть бесконечное множество пар Рх и соответственно если никакая Система то и множество Систем (Cх ) не могут убрать Рх. Выходит что:

Рх > Сх

То есть, не все пары подпадают под действие Системх .

И это преимущество постоянно, что говорит о том, что постоянно (бесконечно) на цифровом поле будут появляться реальные пары. Разве можно что то убрать, если к тому, что мы имеем, добавляем Х, а потом отнимаем Х-У?!

Мы имеем дело с доказательством того что невозможно убрать вообще а не с доказательством того что невозможно убрать теперь. А это главное!

7.2.Заключение №2. Если бы пары реальные исчезли, начиная с Матрицых, то все теоретические Рх подпадали под действие Системх.

Из двух заключений верно первое, так как оно реальное, а второе невозможное.

Открытие данной Системы и Закона построения, простых и пар, приоткрывает двери для ряда новых удивительных открытий в мире простых чисел и пар. Автор этой теории пользовался простым калькулятором и очень сожалел об отсутствии сложных вычислительных программ. Так что те, кто их имеет, обязательно одарит мир новыми удивительными открытиями. Имеет прекрасную возможность подкорректировать по форме (а не по сути!) то, что автор этой теории не смог сделать по техническим причинам. Во всяком случае, указан путь. Используя метод построения Матриц, на его основе легко создать компьютерную программу, которая будет искать новые Системы (простые и пары) с последующим их включением для нахождения новых Систем (простых и пар). Возможности поиска новых простых и пар всегда будут ограничены возможности программы обрабатывать N-ое количество цифрового ряда. Использованный ранее метод, базирующий на вероятностной теории и прогнозировании (типа вполне вероятно, вероятно на 90%..) показал лишь то что мы умеем строить хорошие прогнозы. Но математика от нас требует, то что бы 2×2=4, а не, то что больше вероятности, что будет 4, а не 5.

ЗАКЛЮЧЕНИЕ:

Сколько бы мы не взяли простых от начала по порядку их расположения, все они образуют свою Матрицу, с внутренним шагом длиной равной сумме перемножения этих простых умноженной на два. Шаг на Матрице имеет середину, которая есть сумма перемножения простых. От середины влево и вправо расположены пары близнецов и одиночки простые зеркальным образом. Количество пар близнецов и простых на Матрице поддаётся вычислению. Количество внутренних шагов на Матрице бесконечно.

При наложении на Матрицу новой Системы(то есть добавления следующего по порядку простого), длина Матрицы увеличивается в N раз, а количество пар вначале увеличивается в (N-2) раз а потом уменьшается в ((N-2)-Х) раз. N- постоянно увеличивающееся величина, а Х-постоянно уменьшающееся величина.

Таким образом, ни одна Система, ни множество Систем не может вычистить любую предыдущею Матрицу от пар близнецов. Есть те пары, которые невозможно вычистить, так как они сами являются Системами (простыми). От этого количество простых близнецов бесконечно.

Как видим из вышеизложенного, что то что простые (разъединённые простые) и простые-близнецы(сцепленные простые) бесконечны, это так просто, что трудно в это поверить. Как никак, а целых 22 столетия не смогли чётко установить конечность или же бесконечность простых-близнецов!

Наполеон

Как же Истина проста!

Мефистофель

Да потому что знаешь!

А что твердят твои уста,

Когда во тьме блуждаешь?!

(Из неопубликованной поэмы автора

«Откровение Мефистофеля».)

Валерий Демидович Рига 09 июля 2008 год.

www.ronl.ru

Зарождение и создание теории действительного числа

Зарождение и создание теории действительного числа

Содержание

1. Зарождение и развитие понятия числа

2. Проблема несоизмеримых или Первый кризис в основании математики

2.1 Следствия первого кризиса и попытки его преодоления

3. Становление теории предела

4. Создание теории действительного числа

4.1 Карл Вейерштрасс

4.2 Георг Кантор

4.3 Рихард Дедекинд

Заключение

1 Зарождение и развитие понятия числа

В основе математики лежит понятие числа, одно из самых ранних и самых абстрактных. Оно возникло как обобщение счета отдельных предметов. Счет присущ не только человеку, но и, в некоторой форме, и животным, например кошке, которая чувствует наличие при себе всех своих котят.

Наиболее ранняя форма счета носит конкретно-чувственный характер. Такой счет можно обнаружить у первобытных людей и у животных. Однако нельзя с уверенностью сказать, что только человек способен к абстрактному счету. Есть данные о способности приматов к символизации счета «Приматы способны распознавать и обобщать признак «число элементов», устанавливать соответствие между этим отвлеченным признаком и ранее нейтральными для них стимулами — арабскими цифрами. Оперируя цифрами как символами, они способны ранжировать множества и упорядочивать их по признаку «число», а также совершать число действий, соответствующее цифре. Наконец, они способны к выполнению операций, изоморфных сложению, но этот вопрос требует более точных исследований.»[12]. Там же отмечается высокая способность к символизации и обобщении по признаку «количества» у врановых.

Переход от «чувственного счета» к абстрактному осуществляется при помощи взаимооднозначного соответствия между двумя множествами, одно из которых позже принимается как бы за эталон. Взаимооднозначное соответствие по началу носит также конкретно-чувственный характер(например, расположение элементов друг напротив друга). Таким способом пользуются даже современные люди, когда считают что-либо загибая пальцы. Считается, что именно счет на пальцах лежит в основе десятичной системы исчисления, принятой у европейских народов [10, стр. 11]. На этом этапе обобщения появляется знаковое обозначение числа. Первоначально это были зарубки на дереве, костях, узелки на веревках, количество которых совпадало со значением числа. Конкретно-чувственное происхождение чисел находит свое отражение в языке. «Вначале счет производился с помощью подручных средств:пальцев камней, еловых шишек и т.д. Следы этого сохранились в названии математических счислений: calculus, которое имеет латинское происхождение и означает: счет камешками»[11, стр. 17]. С развитием культуры и общества появляется потребность в использовании более больших чисел, так появляются разнообразные числовые системы. Современная десятичная система появилась в результате развития древних систем счисления. К системам счисления предшествующим десятичной относятся:

• Иероглифические непозиционные системы. К ней относится Римская система. В ней числа формируется из набора узловых чисел обозначенных иероглифами. Число образуется из этого набора путем дописывания справа или слева узлового числа других узловых чисел. Значения числа вычисляется по аддитивному или субстрактивному принципу.

• Алфавитные системы счисления. Здесь числа записываются при помощи букв. Чтобы отличить буквы от чисел, каждой букве приписывается отличительный признак. Буквы используемые для записи чисел берутся в группы по 9 штук. Для записи единиц десятков и сотен используются разные группы букв, что существенно осложняет ее использование.

• Позиционные недесятичные системы счисления.

Почти одновременно со счетом зарождаются математические операции сложения и вычитания(когда уменьшаемое больше вычитаемого). Позже появляется умножение, как повторное сложение. Деление появляется значительно позже, чем умножение, хотя представления о простых дробях () появляется сравнительно рано. Понятие о натуральных числах, как о бесконечном наборе чисел, возникло не сразу. Представления о неисчислимо больших числах сохранились в языке, например в русском словами «тьма», «много». Наиболее отчетливое представление о безграничном продолжении ряда натуральных чисел обнаружено у греческих математиков. В XII-VII веках до н.э. (времена Гомера) самым большим числом было мириада (1000), которое позже стала обозначать 10000. В III в до н.э. Архимед в своем труде «Исчиление песчинок» опроверг возможность построить сколь угодно большое число.

Однако даже в математике Древней Греции не было единого представления о том, что такое число. Так в школе Пифагора и Платона считали единицу не числом, а «эмбрионом числа». Стоит отметить, что мифологическое сознание древнегреческого общества еще не до конца воспринимало математические и философские абстракции. «Наименее доступны пониманию широких кругов были именно числа, эти наиболее абстрактные элементы науки того времени»[7, стр. 83]. По этим и другим причинам математика, ее методы и результаты выглядели мистически. Наиболее развитым и философски обоснованным мистическим взглядом на числа были пифагорейство и неопифагорейство. Упрощая, можно сказать, что пифагореизм в основе гармонии мира видел число, для пифагореизма все числа имели мистический смысл. Подобные взгляды можно встретить и сегодня. Однако следует признать, что проникновение в философию понятий математики чаще всего было плодотворным. В качестве примера можно привести категорию «Количество» в философии Канта и в диалектической логике, а также парадоксы теории множеств.

Хотя аксиоматически сначала строится множество натуральных чисел, потом целые числа, а потом уже рациональные, исторически рациональные числа появились раньше отрицательных чисел и нуля.

Первоначально понятие нуля возникло в качестве обозначения нулевого разряда в записи чисел. Первое достоверное использование нуля обнаружено в Индии и относится к IX веку. Однако точное происхождение цифры ноль в позиционных системах не известно. «Одни исследователи(Г. Фреуденталь) предполагают, что нуль был заимствован у греков...Другие(Дж. Нидэм), наоборот, считают, что нуль пришел в Индию с востока»[10, стр. 183]. В Индии наиболее ясно и полно исследовали вопрос о применимости к 0 арифметических операций, математиком Бхаскара даже исследовался вопрос о делении на на 0.

Также в индийской математике было наиболее отчетливое представление об отрицательных числах. «Индийские математики, начиная с Брахмагунты(VII в.н.э.), систематически пользовались отрицательными числами и трактовали положительное число как имущество, а отрицательное как долг»[10, стр. 190], хотя мы не можем утверждать, что отрицательные числа впервые появились в Индии. Было установлено, что квадрат отрицательного числа — число положительное, также ставились вопросы о наличии квадратного корня из отрицательного числа. Действиям с отрицательными числами посвящена целая глава в произведении Бхаскары «Виджаганита».

Менее ясные представления об отрицательных числах были и у китайцев. Их появление было связано с задачами, которые сегодня называются системы линейных уравнений. «Так как все вычисления, в том числе и преобразования матрицы, производились на счетной доске, то для обозначения отрицательных чисел применялись счетные палочки другого цвета или формы, а в случае записи применялись иероглифы разных цветов»[11, стр.84]. Юшкевич высказывает предположение о том, что представление об отрицательных числах имел Диофант [10, стр. 145].

Хотя идея ввести обозначение для «ничего» возникла в математике достаточно давно, но как число нуль долгое время не воспринимался. Тем более полноправными числами не воспринимались отрицательные числа, мысль о том, что есть что-то меньше чем «ничто» многим казалась абсурдной. «...еще Кардано называет отрицательные числа «фиктивными» [10, стр. 315].

Интерпретация отрицательного числа как «долга» у индусов переняли арабы, использование отрицательных чисел встречается в работах арабского математика Абу-л-Вафы. Считается, что термин долг был заимствован математиком Средневековья Леонардо Пизанским(ок. 1170-после 1250, известен как Фибоначчи) у арабов. Кроме «долга» существовал термин «меньше, чем ничто». Зачатки геометрической интерпретации отрицательных чисел появляется в работе М. Штифеля «Полная арифметика», но только после работ Ферма и Декарта отношение к отрицательным числам кардинально изменилось. Применение отрицательных чисел и нуля сыграло важную роль в математике, позволило обобщить многие задачи, упростить некоторые вычисления и формализовать многие алгоритмы.

Как было отмечено ранее, дроби появились намного раньше чем целые числа () и даже раньше чем операция деления. Они возникли из потребности делить целое на части, а также выражать величину через ее части. Дроби вида называемые долями известны человечеству со времен зарождения математического знания. Так египтяне имели обозначения для дробей вида (единичные), а также для , однако если им встречались дроби другого вида, они раскладывали их на сумму единичных дробей. Единичные дроби использовались на ранних этапах греками и шумерами. Дроби общего вида появляются в Греции, хотя изначально не принимаются как числа. Греки впервые построили, по нашим понятиям группу положительных рациональных чисел. «Только в Греции начали оперировать с дробями вида , причем умели производить с ними все действия арифметики с тем ограничением, что вычитать можно было из большего меньшее»[10, стр. 71].

Дроби также были издавна известны в Индии, упоминания о таких дробях как относятся к середине II тысячелетия до н.э. Причем индийцы записывали их способом, напоминающий современный: числитель над знаменателем, но без разделительной черты. Также указывались правила обращения с такими объектами, аналогичные современным правилам обращения с дробями.

Несколько слов стоит сказать о происхождении десятичных дробей. Прообразом для десятичных дробей послужили шестидесятиричные дроби, используемые вавилонянами. Она напоминала современный способ записи дробей тем, что позволяла записывать целю и дробную часть однотипно, что значительно упрощало вычисления. Постепенно, возникают догадки,что это удобство не связано с какими-то особенными свойствами число 60. «Зреет мысль о том, что в основу системы таких дробей может быть положено и другое число...Понимание этой мысли можно видеть уже в учебнике арифметики середины XII в., приписываемом Иоанну Севильскому. Иордан Немораррий(XIII в.) дает даже специальное название таким систематическим дробям, аналогичным шестидесятеричным»[6, стр. 240]. Идея десятичных дробей использовалась некоторыми математиками, но до XIV века строгого их построения не было. В середине XIV в. французский математик Бонфис сделал попытку развить идею десятичного числа. Однако его работа носила эскизный характер и не была опубликована.

В первой половине XV теорию десятичного числа построил самаркандский математик Джемшид Гиясэддином ал-Каши. Он описал десятичную записи числа и описал правила обращения с десятичными дробями. Однако работы ал-Каши оставались неизвестными вплоть до середины XX века.

В Европе десятичные дроби появились благодаря инженеру Симону Стевину(1548-1620). Он объединил отдельные идеи и представления о десятичных дробях и пламенно их пропагандировал. Большой интерес матетиков вызвали периодические дроби. Они были впервые обнаружены арабским матетиком ал-Марадини в XV в. В Европе вопрос о периодических дробях был серьезно рассмотрен Валлисом в 1676 в трактате по алгебре. Вопросами периодических дробей занимались также Лейбниц, Ламберт, Эйлер, Бернулли, Гаусс и др.

2 Проблема несоизмеримых или Первый кризис в основании математики

Как видно из предыдущего исторического экскурса, твердого понимания что такое число долгое время не было. С точки зрения древних греков, числом было только натуральное число большее единицы. Несколько более прогрессивная система счисления была у вавлонян, использущих шестидесятиричные дроби. Вавилоняне знали теорему Пифагора и сталкивались с проблемой извлечения корней из чисел не имеющих точного квадрата. Однако, нет данных о том, рассматривали ли они этот вопрос теоретически. «Обладание подобной[шестидесятиричной] системой и вытекающая отсюда уверенность в числовых расчетах неизбежно приводили к «наивному» понятию действительного числа, почти совпадающему с тем, которое в наши дни можно встретить в элементарных учебниках математики (связанное с десятичной системой счисления) или у физиков и инженеров. Это понятие не поддается точному определению, но его можно выразить, сказав, что число рассматривается как определенное благодаря возможности получать его приближенные значения и вводить их в вычисления.»[2, стр. 146]. Такой же прагматический подход к иррациональным числам был распространен в Индии и Китае.

Несмотря на несовершенную систему счисления, строгость и теоретичность греческой математики способствовала развитию представлений о числе. Как уже было отмечено выше, каждое число греки видели как сумму единиц. Единица была образующей каждого числа, а все числа состояли измерялись единицей. Такой же подход был к геометрическим объектам. В основе теории соизмеримости лежала идея о том, что существует единая единица измерения всех отрезков, такая что каждый отрезок можно отождествить с натуральным числом, по количеству в нем единичных отрезков. Отсюда естественным образом следовало, что отношение двух отрезков можно было описать двумя целыми числами, или, говоря современным языком, рациональным числом. Подобные взгляды были распространены в греческой философии; так, пифагорейцы считали, что под все можно подвести число, Фалес пытался объяснить многообразие мира из единого начала.

Однако благодаря теореме Пифагора открыта иррациональность, которая была серьезным ударом учению пифагорейцев. Школой Пифагора было установлено, что отношение диагонали квадрата к его стороне не может быть рациональным числом. Доказательство этого факта имеется в «Началах» Евклида. Полагают, что это и есть пифагорейское доказательство [10, стр. 73]. Приведем его в современной трактовке[10, стр. 73].

Пусть — диагональ квадрата, а — его сторона. Тогда их отношение равно отношению целых чисел. Выберем такие числа, чтобы они были взаимопростыми.

Возведем эту дробь в квадрат . По теореме Пифагора , следовательно

(1)

Отсюда следует, что - четное число. Из свойств четных и нечетных чисел следует, что и четное, следовательно . Подставляя в (1), имеем

Из чего следует что, четное число, а значит и n четное, что невозможно т.к. m и n взамопростые.

Это замечательный пример того, что математики называют красивым доказательством, некоторые исследователи полагают, что это было первое в истории доказательство «от противного»[1, стр.235]. Возможно, доказательству этой теоремы предшествовали попытки найти практически общую меру этих двух величин[7, стр. 92].

Это открытие потрясло греков. «...проблема несоизмеримости получила громкую известность среди широких кругов образованных людей»[10, стр. 73]. Есть легенда о том, что Пифагор в благодарность богам принес в жертву сто быков[7, стр. 91]. Возможно было даже мнение что этот результат должен остаться тайным[1, стр.235].

Несоизмеримость не имела геометрического осмысления. Это явление назвали «алогон», не поддающееся осмыслению. Термин «иррациональность» является латинским переводом этого слова[7, стр.91]. В истории математики крушение пифагорейской арифметики называют Первым кризисом математики.

Вслед за открытием иррациональности последовало открытие иррациональности чисел , сделанное Теодором(Феодором) из Кирены. Ученик Теодора Теэтет(начало IV в. до н.э.) доказал несколько теорем и критериев несоизмеримости, в частности он предложил метод для доказательства иррациональностей вида . Теэтет классифицировал иррациональности, также он считается творцом общей теории делимости.

2.1 Следствия первого кризиса и попытки его преодоления

Открытие несоизмеримости оказало огромное влияние на греческую мысль. «Именно с открытием несоизмеримых величин в греческую математику проникло понятие бесконечности»[1, стр. 235]. Дело в том, что до открытия несоизмеримости греки находили общую меру при помощи алгоритма Евклида. Но случае несоизмеримых отрезков алгоритм переставал быть конечным. Этот факт побудил греков к рассмотрению бесконечности. Однако понятие бесконечности давалось грекам с трудом и глубоко смущало их. Трудности связанные с понятием бесконечного привели к еще большему кризису в математике и нашли отражение в знаменитых апориях Зенона Элейского. Эти апории(парадоксы) вскрывали противоречия между теми кто считал что материя и время бесконечно делимыи теми, кто считал что существуют первичные неделимые единицы. Приведем самые интересные для затронутой темы парадоксы по [10].

1. Парадокс «Дихотомия» построенный в предположении, что пространство делимо до бесконечности.

Движущееся тело никогда не достигнет конца пути, потому что сначала оно должно дойти до середины отрезка, потом до середины остатка отрезка, потом до четверти отрезка и так далее. Таким образом тело должно пройти бесконечный набор точек.

2. Парадокс «Стрела», построенный в предположении, что время пространство и время состоят из неделимых элементов.

Стрела в некоторый момент времени находится в точке в неподвижном состоянии. Так как это верно в каждый момент времени, то стрела покоится.

Несмотря на то что, в этих парадоксах отражено незнание греками понятия предела, эти парадоксы не так просты. Вопросы, поставленные Зеноном, обсуждались философами и математиками во все времена. В частности такими математикам как Гильберт и Вейль. Но для греческих математиков вопрос был в том, допустимо или не допустимо использовать бесконечность в математике. Этот вопрос в греческой математике стоял очень остро. Например, Протагор(V в. до н.э) отрицал даже все математические абстракции[10, стр. 94].

Первая концепция бесконечного, которая стала общепринятой в греческой математике, была выдвинута Анаксагором(V в. до н.э.) и развита Евдоксом Книдским. Евдоксу принадлежит метод исчерпывания, который был призван разрешить проблему несоизмеримых. Для этого он строит теорию величин аксиоматически. Величины в понимании Евдокса имеют различную природу - отрезки, числа, время, но все величины характеризуются1:

1. Транзитивностью. «Равные одному и тому же равны между собой».

2. «Если к равным прибавляются равные, то и остатки будут равны».

3. «Если от равных отнимаются равные, то и остатки будут равны».

4. Эквивалентностью. «...совмещающиеся друг с другом равны между собой».

5. Все величины одного вида упорядочены, т.е.

.

6. «...целое больше части».

7. «величины имеют отношение друг с другом, если они взятые кратно могут превзойти друг друга» (или в современной трактовке: если , то найдется такое что ).Эту аксиому Евдокс вводит, чтобы исключить бесконечно большие величины. Она известна в математике под названием аксиомы Архимеда, однако Архимед не только не был ее автором, но даже подчеркивал, что это аксиома была известна до него[2, стр. 148].

Построение этой аксиоматики было значительным шагом в сторону теории действительного числа.

На множестве величин Евдокс определил операцию отношения. Два отношения и считались равными если для любых целых чисел выполнялось одно из следующих условий:

1. и

2. и

3. и .

Аналогичным способом определялись и неравенства между отношениями. Этот оператор разбивал все величины на классы пропорциональных друг другу. Евдокс также установил транзитивность операции отношения.

Как отмечено в [2, стр. 149], введение единозначного оператора отношения для любого вида величин, подразумевало что для любой пары величин а величины найдется величина такого же вида, что и , такая что , но явно это положение не формулировалось и не рассматривалось.

Как видно из определения, каждое несоизмеримое отношение определяло два класса рациональных чисел. Существенным пробелом являлось то, что не устанавливалось обратное соответствие.

Но основе построения Евдокса возник метод исчерпывания, основанный на аксиоме Архимеда. Теперь математики не приписывали длины отрезкам, а сравнивали их с другими отрезками. «... метод исчерпывания ... позволил грекам решать задачи, ставшие впоследствии предметом исчисления бесконечно малых»[1, стр. 239].

После разгрома античной культуры, ее достижения подхватили арабы, в том числе и «Начала» Евклида в которых описаны иррациональные числа. Однако математика арабов носила больше практический, вычислительный характер. «Преобладающее место ... заняло создание разнообразных вычислительных методов и измерительных средств для нужд торговли, административного управления, землемерия, картографии, астрономии, календаря и т.д.»[11, стр. 98]. Это способствовало тому, что арабы оперировали с иррациональными числами формально не уделяя особого внимание теоретическому обоснованию иррациональных чисел. По этой причине грань между «настоящими» числами и иррациональными постепенно стиралась. Также были сведены воедино несоизмеримость геометрических отрезков и арифметическая иррациональность.

В 1077 Омар Хайям, пытаясь преодолеть проблему несоизмеримости, в своем труде «Комментарии к трудностям во введениях книги Евклида» определяет, два отношения равными, если равны все соответствующие неполные частные разложения этих дробей в непрерывные дроби. Хайям показал равносильность этого определения с античным и ввел умножение и деление отношений. В заключении своей работы Хайам приходит к необходимости обобщения понятия числа и расширения его на иррациональные числа. Идеи Хайама получили признание среди арабских математиков. Его идеи развил Ат-Туси, а в XIII в. каждое отношение с уверенностью приравнивалась к числу[11, стр. 101]. Здесь интересно отметить, что в Европе до XVI в. существовало представление о несоизмеримых.

В Средневековой Европе вопросы, связанные с бесконечностью имели большей частью схоластический и метафизический характер.

3 Становление теории предела

Строгая математическое построение понятия вещественного числа стала возможной благодаря теории предела.

Человек, получивший современное математическое образование с трудом представляет себе дифференциальное и интегральное исчисление без аппарата теории предела. Однако, исторически производная появилась раньше предела. Причины такого явления в[1] объясняются насущной потребностью естествознания в XVII веке методах дифференциального и интегрального исчисления.

В XVII идеи связанные с инфинитезимальными методами начали бурно развиваться. Здесь стоит отметить таких математиков как Декарт, Ферма, Паскаль, Торричелли, Кавальери, Роберваль, Барроу. Метод квадратур, разработанный в античности, нашел широкое применение и развитие. Исследовался вопрос касательных — было дано определение, более общее чем античное, были построены методы отыскания касательных. Были сделаны попытки ввести производную. Было даже установлено, что задача о нахождении касательной обратна к задаче о квадратуре.

Несмотря на отсутствие строгости «...математики достигали все большего мастерства в обращении с понятиями, лежащими в основе исчисления бесконечно малых»[1, стр. 263].

Методы бесконечно малых завоевывают популярность у математиков и все больше используются и совершенствуются. Интегральное и дифференциальное исчисление постепенно оформляется и обобщается трудами таких ученых как Ньютон(1643-1727) и Лейбниц(1646-1716). Так, Ньютон установил связь между производной и интегралом, предложил новый метод решения уравнений при помощи производной. Он разработал метод флюксий, который связал производную с мгновенной скоростью и ускорением. При помощи этого метода он разрабатывал интегральное и дифференциальное исчисление. Также Ньютон предложил алгоритм для нахождения производной функции, основанный на ранней форме теории пределов. Основой и мощным средством метода флюксий было разложение функций в ряды, правда без должного обоснования их сходимости.

Лейбницу мы обязаны большим количеством удобных и красивых обозначений в интегральном и дифференциальном исчислении. К своим результатам Лейбниц пришел независимо от Ньютона. Пользуясь знаниями из комбинаторики он разработал формальный метод вычисления интегралов. Лейбниц ввел понятие дифференциала определив его через касательные, нашел некоторые правила нахождения дифференциала сложной функции, а также ввёл дифференциалы высших порядков. Также Лейбницем были разработаны методы поиска точек экстремума и точек перегиба. Сильной стороной теории Лейбница, с точки зрения практических вычислений, была алгоритмичность и формальность.

И Ньютон, и Лейбниц решили множество практически важных задач, пользуюясь понятиями бесконечно малых величин, их точки зрения на производную и интеграл отличались друг от друга. Так Ньютон для решения дифференциальных задач использует метод флюксий, а Лейбниц дифференциалы. Ньютон рассматривает интегрирование как задачу обратную дифференцированию(в наших понятиях, отыскание первообразной), а Лейбниц рассматривает интеграл как сумму площадей бесконечно малых прямоугольников. Вполне естесственно, что две эти концепции были конкурирующими друг другу.

Ньютон и Лейбниц, используя в своих выкладках бесконечно малые, не могли объяснить их природу, потому что не представляли себе малой величины и конечной и отличной от 0. Оба ученные близко подошли к понятию предела, но «..узкая концепция числа, не допускавшая отождествления некоторых отношений с числами, была отчасти причиной того, что ни в ньютоновской, ни в лейбницевой теориях не могло "прорезаться" понятие предела»[1, стр. 275]. Математики пользовались интуитивными и геометрическими соображениями. Функции понимались как кривые, полученные некоторым движением(так же как их рассматривали древние греки). «Первые создатели анализа и их последователи принимали как нечто само собой разумеющееся справедливость двух основным представлений о пространстве и механическом движени»[4, стр. 36]. Вероятно по этой причине связь между непрерывность и дифференцируемость долгое время считались почти синонимами.

Однако метод бесконечно малых доказал свою плодотворность и нужность математике, от этого проблема фундамента для интегрального и дифференциального исчисления становилась еще более острой. Споры были не только среди математиков; жестким нападкам подвергалась вся математика, например, со стороны богослова Д. Беркли. Это состояние математики XVII-XVII получило название второго кризиса математики.

Вслед за Ньютоном и Лейбницем попытки определить понятие бесконечно малой предпринимались Эйлером, Даламбером и Лагранжем. Эти попытки нельзя назвать бесполезными, этими работами укрепилось в матетике понятие функций, что сыграло свою роль дальнейшие поиски теории предела. Однако построить связанную и логически обоснованую теорию не получилось.

Таким образом к XIX веку в математике сложилась парадоксальная ситуация. Налицо были несомненные успехи математических наук в естествознании, разработана методика обращения с рядами, дифференцирования и интегрирования, решены многие важные задачи, но понимния на чем основан математический анализ не было. Необходимость разобраться с фундаметом новой математики стала всеобщей и насущной.

Построением стройной и строгой теории бесконечно малых мы обязаны Огюстену Луи Коши(1789-1857). Следует признать, что Коши был не первым математиком, кто пришел к этой идее, но, исторически, его работы сыграли в развитии математического анализа ключевую роль. Коши дал общее определение предела в описательной форме: «Если значения, последовательно приписываемые одной и той же переменной, неограниченно приближаются к фиксированному значению, так что в конце концов отличаются от него сколь угодно мало, то последнее называют пределом всех остальных»2. С точки зрения этого определения стало понтным что такое бесконечно малая величина — это всего лишь величина, имеющая предел равный 0, затем Коши определил понятие производной и показал связь этого определения с дифференциалами Лейбница. Также он построил первую строгую теорию интегрирования и доказал связь интегрирования и дифференцирования.

Переоценить вклад Коши в математику трудно. Его работами открывалась новая эпоха в математике, «...начинается так называемая "арифметизация" всей математики»[3, стр. 117]. Благодаря работам Коши математический анализ прочно и заслуженно занял в математике одно из главных мест. Методы Коши получили всеобщее распрастранение, применялись оттачивались весь XIX век. Идеи и методы Коши плодотворно пользуются и обобщаются современными математиками и сегодня.

4 Создание теории действительного числа

После «наведения порядка» в математическом анализе встал вопрос о ситуации в арифметике. «К необходимости разработки теории действительных чисел приводили многие задачи анализа и некоторые способы рассуждений, применявшиеся при решении этих задач»[4, стр. 61]. Проблема основания, понимания того, что же такое число, в XIX в. еще не была решена. С нашей точки зрения, это была задача о пополнении множества рациональных чисел. Ее пытались решить следующим способом(приведен по [4]):

Определим иррациональное число как предел последовательности рациональных чисел. Надо показать, что такая последовательность сходится. Для этого воспользуемся критерием Коши, который будет справедлив для любых рациональных значений, однако для того чтобы ответить на вопрос будет ли он справедлив для действительных чисел необходимо иметь определенными иррациональные числа. Получался замкнутый круг.

Эта задача была решена в XIX веке с разных точек зрения и независимо друг от друга Вейерштрассом, Дедекиндом, Кантором и Мерэ.

4.1 Карл Вейерштрасс

Карл Вейерштрасс родился в городе Остенфельд (предместье Эннигерло), в семье секретаря бургомистра. В 1834 г. с успехом закончил Пандерборнскую гимназию, его имя было в списке 11 самых талантливых учеников. По настоянию отца в 1834 году Вейерштрасс поступает в Боннский университет для получения юридического образования. Но юридические науки его не увлекали, большую часть времени он уделял занятиям математикой. Через 4 года Вейерштрасс бросает университет, не сдав ни одного экзамена. В 1839 году поступает в Мюнстерскую академию, а в 1841 году блестяще сдает выпускную работу. После окончания университета работает учителем в провинциальных городах Германии. В 1845 публикует статью по абелевым функциям, за которую получает докторскую степень от Кенигсбергского университета. В 1861 избирается членом Баварской академии наук. С 1856 по 1889 читает лекции в Берлинском унивеситете. Умер Вейрштрасс в 1897 году.

Математическое творчество отличается стремлением к ясности и строгости. Как пишет о нем Пуанкаре[5]: «Вейерштрасс отказывается пользоваться интуицией или по крайней мере оставляет ей только ту часть, которую не может у нее отнять» Работы Вейерштрасса охватывают широкий круг проблем: абелевы и эллиптические функции, комплексные величины, теория рядов и многие другие.

Вейерштрасс сыграл главную роль в арифметизации математического анализа. Он стремился к тому, чтобы все понятия математики перевести в буквенно-числовые. Он ушел от любых интуитивных и геометрических представлений понятия функции. Чтобы уйти от туманных формулировок вроде «Неограниченное приближение одной величины к другой», был создан язык , который позволял теперь рассматривать функции как числовые соответствия между множествами, непрерывность которых можно установить при помощи арифметических неравенств. Вейерштрасс опроверг некоторые интуитивные представления о функциях, например, он построил непрерывную функцию не имеющей производной ни в одной точке.

Вейерштрасс придерживался точки зрения, что строгость анализа зависит от арифметики. Поэтому он начинает работать над приведением в порядок доставшегося от греков математического наследства несоизмеримых. Он отделяет понятие числа от понятия величины.

Приблизительно в 1863 году Карл Вейерштрасс создает теорию вещественных чисел, которая разрешает логические нестыковки арифметики. К сожалению, он не издавал её, а изложил на лекции своим ученикам. Вейерштрасс дал свое построение в терминах точных частей единицы, но здесь оно рассмотрено в современной трактовке.

Положим что у нас есть рациональные числа. Возьмем множество рациональных такое, что его сумма любого конечного числа элементов не превосходит заданных границ. Если мы будем теперь составлять из этих чисел сумму, то если сумма будет конечной. Таким образом, конечная сумма этих чисел будет представлять рациональное число, мы можем сопоставить любому рациональному числу некоторый конечный набор из некоторого множества . С иррациональным числом этот набор будет бесконечным. Далее, возьмем два бесконечных набора. Будем считать что рациональные числа представлены несократимыми дробями. Рассмотрим набор чисел натуральных чисел . Если для сумма дробей вида из первого множества совпадает с суммой таких же дробей из второго множества, то иррациональные числа совпадают друг с другом. Рассмотрим первый номер для которого это равенство не выполняется. Если для имеет место равенство , где суммы составлены по таким рациональным числам, которые имеют вид , то первое число больше второго. Если имеется обратное неравенство, то второе число больше первого. Сложение чисел определяется операцией объединения множеств. Вычитание определяется как операция обратная сложению. Составление агрегата вида , где умножение составляется по всевозможным элементам, определяет умножение.

Таким образом, Вейерштрасс построил вещественное число. Стоит отметить, что он не приравнивает число к ряду, тем самым избегает логической ошибки своих предшественников. Из этого построения видно, что оно определяет взаимооднозначное соответствие: с одной стороны из рационального чисел можно построить вещественной число, с другой каждое вещественной число можно определить некоторым построением из вещественных чисел. Кроме того, оно использует актуально бесконечные множества.

Стоит еще раз подчеркнуть, что Вейерштрасс в своем определении вещественного числа исходит только из арифметики, не связывая их с точками на прямой.

Построение вещественных чисел позволило перейти от механического, геометрического понятия предела к теоретико-множественному. Также при помощи строго определения понятия числа Вейерштрасс развил теорию аналитических функций. Также в работах Вейерштрасса встречается прообраз того, что мы называем мощностью множеств.

4.2 Георг Кантор

Родился 3 марта 1845 в Санкт-Петербурге и рос там до 11-летнего возраста. Отец семейства был членом Петербургской фондовой биржи. Когда он заболел, семья, рассчитывая на более мягкий климат, в 1856 году переехала в Германию: сначала в Висбаден, а потом во Франкфурт. В 1860 году Георг закончил с отличием реальное училище в Дармштадте; учителя отмечали его исключительные способности к математике, в частности, к тригонометрии. Продолжил он образование в Федеральном политехнический институте в Цюрихе. Спустя год, после смерти отца, Георг получил наследство и перевёлся в Берлинский университет. Там он посещает посещает лекции Кронекера, Вейерштрасса, Куммера. Лето 1866 года Кантор провёл в университете Гёттингена, важном центре математической мысли. В 1967 году в Берлине получил степень доктора за работу по теории чисел «De aequationibus secundi gradus indeterminatis».

После непродолжительной работы преподавателем в Берлинской школе для девочек, Кантор занимает место в Галльском университете Мартина Лютера, где и пройдёт вся его карьера. В 1872 году он становится адъюнкт-профессором, тогда же, во время отпуска, завязывает дружбу с Рихардом Дедекиндом. В 34 года Кантор становится профессором математики. В 1879-84 он систематически излагает своё учение о бесконечности; «ввёл понятия предельной точки, производного множества, построил пример совершенного множества, развил одну из теорий иррациональных чисел, сформулировал одну из аксиом непрерывности» [8]. Несмотря на такую успешную карьеру, мечтает о должности в более престижном университете, например, Берлинском. Однако, мечтам не удаётся воплотиться в жизнь: многие современники, в том числе Кронекер, который рассматривается сейчас как один из основателей конструктивной математики, с неприязнью относятся к канторовской теории множеств, поскольку та утверждает существование множеств, удовлетворяющих неким свойствам, — без предоставления конкретных примеров множеств, элементы которых бы действительно удовлетворяли этим свойствам.

В 1984 году Кантор испытал приступ глубокой депрессии и на время отходит от математики, смещая свои интересы в сторону философии. Затем возвращается к работе. В 1897 году он прекращает научное творчество. Умер Кантор в Галле 6 января 1918.

Одна из актуальных проблем XIX века была проблема бесконечного деления отрезков и существование точки , принадлежавшей всем таким стягивающимся отрезкам. Эта задача требовала понятия действительного числа.

Построение Кантором теории действительного числа было опубликовано 1872 году, почти одновременно с теорией Вейерштрасса и Дедекинда. В своем построении Кантор исходит из наличия рациональных чисел. Затем он вводит фундаментальные последовательности Коши и приписывает им формальный предел. Далее, он рассматривает разбивает все последовательности на классы эквивалентности. К одному и тому же классу последовательности относятся тогда и только тогда, когда их разность стремится к нуль, то есть . Далее, формальные пределы равны друг другу, если они имеют две такие фундаментальные последовательности, которые эквивалентны друг другу или . Отношение порядка определяется следующим образом.

Если и то . Если то .

Таким образом, классы эквивалентности описывают некоторые вещественные числа. Назовем их вещественными числами первого порядка. Если мы попробуем образовать вещественное число большего порядка, составляя фундаментальные последовательности Коши, то получим опять множество вещественных чисел первого порядка. Иными словами, множество вещественных чисел замкнуто.

Кантор обращает внимание тот факт, что в определении вещественного числа лежит актуально бесконечное множество рациональных чисел: «...к определению какого-нибудь иррационального числа всегда принадлежит некоторое строго определенное множество первой мощность рациональных чисел»3.

Заметим, что построение Кантора можно обобщить на другие объекты, что была сделано Кантором и его последователями, «разработка теорий действительного числа была достаточно существенной предпосылкой создания теории множеств»[4, стр. 63]. Например, на основе своего построения вещественного числа Кантор впоследствии свою теорию трансфинитных чисел.

Кроме того, Кантор ввел понятие мощности множеств и доказал неэквивалентность иррациональных и рациональных чисел.

4.3 Рихард Дедекинд

Дедекинд Рихард Юлиус Вильгельм родился 6 октября 1831 года в Брауншвейге (Нижняя Саксония). Там он провёл большую часть своей жизни и умер 12 февраля 1916 года. Отучившись в Карловском коллегиуме в его родном городе, в 1850 году Дедекинд поступает в Гёттингенский университет, ведущий и старейший в Нижней Саксонии. В числе его университетских друзей был Бернхард Риман.

В 1852 году в возрасте 21 год Дедекинд получает докторскую степень за работу над диссертацией по теории интегралов Эйлера. Затем, отучившись в Берлинском университете 2 года, он вернулся в Гёттинген и в должности приват-доцента преподавал курсы теории вероятности и геометрии. В 1855 году, после смерти Гаусса, его кафедру занял Дирихле, общение с которым оказало огромное влияние на Дедекинда; они стали близкими друзьями. Первое время Дедекинд изучал эллиптические и абелевы функции. Кроме того, он был первым в Гёттингене, кто преподавал теорию Галуа и ввёл в широкое употребление предложенное Галуа понятие поля.

В 1858 году Дедекинд начал преподавать в Техническом университете в Цюрихе. Когда в 1862 году Карловский коллегиум был преобразован в Технический институт, Дедекинд возвращается в родной Брауншвейг на должность профессора, где до конца своей жизни преподаёт.

В 1971 году при переиздании "Лекций по теории чисел" Дирихле, в десятом (в более поздних изданиях — одиннадцатом) дополнении он изложил свои труды, за которые получил научное признание. «Этой и другими своими работами, в которых введены понятия кольца, модуля и идеала, Дедекинд заложил основы современного аксиоматического изложения математических теорий» [13].

В том же году он знакомится с Георгом Кантором. Знакомство перешло в долголетнюю дружбу и сотрудничество; Дедекинд стал одним из первых сторонников канторовской теории множеств. Сформулировал (1888 год) систему аксиом арифметики (ее обычно называют аксиомами Пеано), содержащую, в частности, точную формулировку принципа полной математической индукции. Ввел в математику в самом общем виде теоретико-множественное понятие отображения. В 1894 году Дедекинд ушёл на заслуженный отдых, но продолжал иногда читать лекции и публиковаться.

Он никогда не был женат и проживал со своей незамужней сестрой Юлией. Дедекинд избирался членом в Академии Берлина (1880 год) и Рима, а также в Французскую Академию наук (1900). Он получил докторские степени в университетах Осло, Цюриха и Брауншвейга. Издал лекции по теории чисел, читанные Дирихле, труды Гаусса, а также (совместно с Г. Вебером) полное собрание сочинений Римана.

Дедекинд, также как и Вейерштрасс, обнаружил логическую трудность перехода от геометрического анализа к арифметическому, состоящую в неопределенности вещественного числа. Свое построение действительного числа Дедекинд относит к осени 1858 года. Поход к вещественному числу Дедекинда близок к подходу Евдокса настолько, что некоторые математики не сразу видели различие[10]. Дедекинд исходит из геометрического представления о том, что точка делит прямую на две части, которые условно можно назвать правой и левой. Далее Дедекинд определяет сечение множества рациональных чисел как пару подмножеств Q, такую что любой элемент из одного множества всегда больше любого элемента из другого множества. Для определенности будем считать, что . Сечения могут быть определены рациональным числом, тогда либо имеет минимальный элемент, либо имеет максимальный элемент. Если же мы построим сечение обладающее таким свойством, то оно определяет рациональное число. Однако, существуют сечения не имеющие такое свойство, например сечение всех рациональных чисел, определенное неравенством . Таким образом, при помощи сечения можно определить новое число,которое однозначно определяется сечением. Отношение равенства и порядка устанавливаются при помощи двух множеств сечения — Дедекинд показал, что существует только три соотношения между классами сечения, которые и определяют упорядоченность поля вещественных чисел. Как и Кантор, он доказал полноту построенного множества чисел.

Дедекинд дал одно из первых определений непрерывности: «Если разбить все величины какой-то области, устроенной непрерывным образом, на два таких класса, что каждая величина первого класса меньше любой величины второго класса, то либо в первом классе существует наибольшая величина, либо во втором классе существует наименьшая величина»4.

Следует отметить, что несмотря на безусловную строгость построения, в подходе Дедекинда ощущается большая геометричность, чем у Вейерштрасса, «и Дедекинд и Кантор сразу же выдвигают аксиому о взаимооднозначном соответствии между построенными ими действительными числами и точками прямой»[4, стр. 62].

Заключение

Новые воззрения в математическом анализе не приживались гладко. Жестко критиковал учение Вейерштрасса, например, Кронекер. Критику Кантора можно уверенно сравнить с травлей. Но время доказало правильность выбранного курса. Привычный нам вид математического здания во многом был построен благодаря таким ученным как Вейерштрасс, Кантор и Дедекинд.

Построение вещественного числа завершило постройку фундамента для математического анализа. Вопрос аксиоматического построения анализа был практически завершен: все, что оставалось сделать - это построить аксиоматику целых и рациональных чисел. Эта задача была завершена Ж. Пеано в 1889 году. Однако, построение вещественного числа не является узкоспециальным вопросом математики, как, например, Великая теорема ферма. Благодаря работам Вейерштрасса, Кантора и Дедекинда в обращение вошли актуально бесконечные объекты: вещественное число, стало фактически первым таким объектом. Строгие построения основанные на аксиоматике, способствовали переходу математиков от «чувственного», «интуитивного» к абстрактному и строгому. Обобщенные методы построения вещественного числа стали впоследствии основой для теории множеств, функционального анализа, интеграла Лебега. Так что с уверенностью можно сказать, что ни один человек не может стать математиком, не зная работ трех великих творцов математики XIX века.

Список литературы

[1] А. Даан-Дальмедико, Ж. Пейффер. Пути и лабиринты. Очерки по истории математики. М.: Мир, 1986.

[2] Н. Бурбаки. Очерки по истории математики. М.: ИЛ, 1963.

[3] Ф. Клейн. Лекции о развитии математики в XIX столетии. М.-Л.: ГОНТИ, 1937.

[4] Ф.А. Медведев. Развитие теории множеств в XIX. М.: Наука, 1937.

[5] П.Я. Кочина. Карл Вейерштрасс. М.: Наука, 1937.

[6] И.Я. Депман. История арифметики. M.:Просвещение, 1965.

[7] Э.Кольман. История математики в древности. М.: Физматгиз, 1961.

[8] Большая советская энциклопедия. — 3-е изд. / Гл. ред. Прохоров А. М. — М.: Сов. энцикл., 1978.

[9] Энциклопедический словарь. М.: ГНИ «Большая Советская энциклопедия», 1953.

[10] История математики с древнейших времен до начала XIX столетия, под ред. А.П. Юшкевича. М.:Наука, 1970.

[11] К.А. Рыбников. История математики. Т.1. изд. МГУ, 1960.

[12] З.А. Зорина, И.И. Полетаева. Элементарное мышление животных:учебное пособие. M.: Аспект Пресс, 2002.

[13] Математика XIX века. Том 1. Математическая логика. Алгебра. Теория чисел. Теория вероятностей. Под ред. А. Н. Колмогорова и А. П. Юшкевича. М.: Наука, 1978.

topref.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.