Содержание
Введение
Теории, гипотезы и модели
«Большой взрыв» -его причины и хронология
Стадии и следствия эволюции
Научные обоснования расширения и эволюции Вселенной
Заключение
Список литературы
большой взрыв вселенная
Введение
Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется общим закономерностям. При этом он имеет свою долгую историю, в общих чертах известную современной науке. Приведем хронологию наиболее важных событий.
млрд. лет назад - Большой взрыв.
минуты спустя- образование вещественной основы Вселенной.
Через несколько сотен тысяч лет - появление атомов.
-17 млрд.лет - образование разномасштабных структур (галактик).
млрд. лет назад - появление звезд первого поколения, образование
атомов тяжелых элементов.
млрд. лет назад - рождение Солнца.
,6 млрд. лет назад - образование Земли.
,8 млрд. лет назад - зарождение жизни.
млн. лет назад - появление растений.
млн. лет назад - появление млекопитающих.
млн. лет назад - начало антропогенеза*.
Современной науке известны не только «даты», но во многом и сами механизмы эволюции Вселенной от Большого взрыва до наших дней. Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд; звезд и звездных систем - галактик; системы галактик - Метагалактики.
Представление об открытых системах, введенное неклассической термодинамикой, явилось основой для утверждения в современном естествознании общей концепции эволюции природы. Хотя отдельные эволюционные теории появились в конкретных науках еще в прошлом веке
( теория возникновения Солнечной системы Канта-Лапласа, теория геологической эволюции Ч.Лайеля и эволюционная теория Ч.Дарвина), тем
не менее, никакой глобальной эволюционной теории развития Вселенной до ХХ века не существовало. Благодаря широкому распространению системных идей, а в недавнее время и представлений о самоорганизации открытых систем, сейчас все настойчивее выдвигаются различные гипотезы и модели возникновения и эволюции Вселенной. Они усиленно обсуждаются в рамках современной космологии как науки о Вселенной, то есть едином целом и всей охваченной астрономическими наблюдениями её области, называемой Метагалактикой.
Теории, гипотезы и модели
Нет общепринятой теории происхождения галактик. Уж очень длинен и сложен путь от первичной маленькой неоднородности до галактики с сотнями миллиардов звезд, их сложными движениями и сложными процессами эволюции галактики в целом. Что собой представляла Вселенная до взрыва - никаких надежных данных пока не существует. Высказываются лишь некоторые предположения и гипотезы. Очевидно, что о первоначальной эволюции Вселенной мы можем судить только на основании тех результатов, которые известны нам сегодня. Сегодня эволюция Вселенной является научным фактом, всесторонне обоснованным многочисленными астрофизическими наблюдениями, имеющими под собой прочный теоретический базис всей физики. Строение и эволюция Вселенной изучается космологией. В этой науке перекрещиваются методы исследования и идеи, существенно различные по своему характеру. Предметом космологии является весь окружающий нас мегамир, вся «Большая Вселенная».Модели Вселенной, как и любые другие, строятся на основе тех теоретических представлений, которые существуют в данное время в космологии. Особенности развития космологии нашли отражение в различных моделях Вселенной. Общим для них является представление о нестационарном, изотропном и однородном характере её моделей.
Нестационарность означает, что Вселенная не может находиться в статическом, неизменном состоянии, а должна либо расширяться, либо сжиматься. «Разбегание» галактик, по-видимому, свидетельствует о ее расширении, хотя существуют модели, в которых наблюдаемое в настоящее
время расширение рассматривается как одна из стадий так называемой пульсирующей Вселенной, когда вслед за расширением происходит её сжатие.
Изотропность указывает на то, что во Вселенной не существует каких-либо выделенных точек и направлений, то есть ее свойства не зависят от направления.
Однородность характеризует распределение в среднем вещества во Вселенной.
Перечисленные утверждения часто называют космологическими постулатами*. К ним также дополняют правдоподобное требование об отсутствии во Вселенной сил, препятствующих силам тяготения. При таких предположениях модели оказываются наиболее простыми. В их основе лежат
уравнения общей теории относительности Эйнштейна, а также представления о кривизне пространства-времени и связи этой кривизны с плотностью массы вещества. С точки зрения общей теории относительности, кривизна пространства-времени, как мы знаем, определяется распределением тяготеющих масс. Но независимо от этого модели можно рассматривать и чисто геометрически.
В зависимости от кривизны пространства различают:
открытую модель, в которой кривизна отрицательна или равна нулю. Расстояния между скоплениями галактик со временем непрерывно увеличиваются, что соответствует бесконечной Вселенной;
- замкнутую модель с положительной кривизной. В замкнутых моделях Вселенная оказывается конечной, но столь же неограниченной, так как, двигаясь по ней, нельзя достичь какой-либо границы.
Независимо от того, рассматриваются ли открытые или замкнутые модели Вселенной, все ученые сходятся в том, что для объяснения расширения Вселенной необходимо следующее допущение: что первоначально Вселенная находилась в условиях, которые трудно вообразить на Земле. Эти условия характеризуются наличием высокой температуры и давления в сингулярности*, в которой была сосредоточена материя. Это допущение вполне согласуется с установлением расширения Вселенной, которое могло начаться с некоторого положения, где она находилась в очень горячем состоянии и постепенно охлаждалась по мере расширения. Такая модель «горячей» Вселенной впоследствии была названа стандартной.
В современной науке выдвинут так называемый антропный принцип в космологии. Суть его в том, что жизнь во Вселенной возможна только при тех значениях универсальных постоянных, физических констант, которые в действительности имеют место. Если значение физических констант имело бы хоть ничтожное отклонение от существующих, то возникновение жизни было бы в принципе невозможно. Это значит, что уже в начальных физических условиях существования Вселенной заложена возможность возникновения жизни.
Разные схемы строения Вселенной господствовали в науке, сменяя друг друга на протяжении веков. Но почти все эти схемы объединяло одно- это были именно схемы строения- не развития, эволюции, становления, а вечно неизменный механизм часов Вселенной. Идея стационарности всей Вселенной казалась сама собой разумеющейся.
По стандартной модели первоначально Вселенная находилась в сверх плотном и сверхгорячем состоянии. Она находилась в условиях, которые трудно вообразить на земле. Эта модель предполагает, что начальная температура внутри сингулярности превышала 1013 градусов по абсолютной шкале Кельвина*, в которой начало шкалы соответствует -273 градусам шкалы Цельсия. Плотность материи равнялась бы приблизительно 1093г/см3 - огромная величина, которую трудно даже вообразить. В этом состоянии Вселенная представляла собой по сути не мегаобъект, а микрообъект ничтожно малых масштабов. Плотность вещества во Вселенной была гораздо больше сегодняшней. Отдельные галактики, отдельные звезды и т.д. не могли существовать как изолированные тела. Вся материя находилась в состоянии непрерывно распределенного однородного вещества.Примерно20млрд. лет отделяет нашу эпоху от начала процесса расширения Вселенной, когда вся наблюдаемая нами Вселенная была сжата в комочек, в миллиарды раз меньший булавочной головки. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и
вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью - точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. Более того, нет уверенности, что наука когда-либо познает и объяснит такие состояния.
Так что если сингулярность и является начальным простейшим состоянием нашей расширяющейся Вселенной, то наука не располагает о нем информацией. Причины возникновения такого начального состояния (или сингулярности - эту гипотезу и сегодня поддерживают многие ученые), а также характер пребывания материи в этом состоянии считаются неясными и выходящими за рамки компетенции любой современной физической теории. Такое состояние можно назвать хаосом, из которого в последующем развитии системы шаг за шагом формировался порядок. Хаос оказался неустойчивым, это послужило исходным толчком для последующего развития Вселенной.
«Большой взрыв» - его причины и хронология
Относительно более надёжными являются представления об эволюции Вселенной после взрыва и начавшегося её расширения.
По современным представлениям космическая эволюция дает начало всем процессам и формам развития материальных систем во Вселенной. Хотя в настоящее время существует множество различных гипотез ее происхождения и эволюции, но в качестве стандартной модели принимается
гипотеза «большого взрыва». Она опирается на следующие эмпирические и теоретические данные:
1. Эмпирические факты внегалактической астрономии о непрерывном удалении наиболее далеких от нас галактик.
. Открытие в 1965г. микроволнового излучения, названного впоследствии реликтовым, поскольку оно несет информацию о ранней истории Вселенной.
. Постулат о разрушении симметрий между микрочастицами, с одной стороны, и силами, действующими между ними, с другой.
По стандартной модели, как отмечалось выше, первоначально Вселенная находилась в сверхплотном и сверхгорячем состоянии. Роль базовой формы материи очевидно играет вакуум. На самой ранней фазе эволюции Вселенной именно ему отводится ведущая роль. Экстремальные условия начала, когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют ложным вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества.
В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательное давление, которое равносильно гравитационному отталкиванию такой величины, которое и вызвало безудержное и стремительное расширение Вселенной - Большой взрыв. Это и было первотолчком, началом.
С началом стремительного расширения Вселенной возникает время и пространство. По разным оценкам период раздувания занимает невообразимо малый промежуток времени - до 10-33с после начала. Он называется инфляционным периодом. За это время Вселенная успевает раздуться до гигантского пузыря, радиус которого на несколько порядков превышает радиус современной нам Вселенной, но там практически отсутствуют частицы вещества. Это еще не то расширение, о котором мы говорили, а предпосылка к нему. К концу фазы инфляции Вселенная была пустой и холодной. Но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно горячей. Этот всплеск тепла обусловлен огромными запасами энергии, заключенными в ложном вакууме. Когда это состояние вакуума распалось, его энергия высвободилась в виде излучения, которое мгновенно нагрело Вселенную до 1027К. С этого момента Вселенная развивалась согласно стандартной теории горячего Большого взрыва.
Доступная астрономическим наблюдениям современная Вселенная состоит на 99% из водорода и гелия, но в первоначальном плазмоподобном сгустке не было ни водорода, ни гелия. Теория Большого взрыва утверждает, что от появления протовещества до образования ядер водорода и гелия прошло немногим более трех секунд. На этом временном промежутке стремительно преобразовывались вакуум и вещество, а этапы преобразования определялись процессами расширения и остывания сгустка.
Рассмотрим эти 3 секунды более подробно.
Первый кадр. Начиная с 1/100 секунды после взрыва, когда температура стала равной 100 млрд. градусов по Кельвину, Вселенная была «заполнена везде одинаковым, однородным по свойствам супом из вещества и излучения, причем каждая частица в нем очень быстро сталкивается с другими частицами.» ( Вайнберг С. «Первые три минуты», 1981).
Такими частицами были электрон, позитрон, фотон, нейтрино и антинейтрино.
Второй кадр. Температура Вселенной упала до 30 млрд. градусов, но качественно ее состав не изменился.
Третий кадр. Со времени первого кадра прошло чуть больше секунды, температура Вселенной упала до 10 млрд. градусов. Уменьшение плотности и температуры настолько увеличили среднее свободное время существования нейтрино и антинейтрино, что они начинают вести себя как свободные частицы перестают находиться в тепловом равновесии с другими частицами. Однако существующая температура все еще не позволяет протонам и нейтронам объединиться в атомные ядра.
Четвертый кадр. Температура Вселенной теперь понизилась до 3 млрд. градусов, которая ниже пороговой для электронов и позитронов. Поэтому они начинают быстро исчезать, превращаясь в излучение. Уменьшение температуры создает условия для образования небольшого числа стабильных
легких ядер, например, гелия. Нейтроны продолжают превращаться в протоны, хотя и значительно медленнее.
Пятый кадр. Температура Вселенной упала до 1 млрд. градусов, что, однако, в 70 раз выше, чем в центре Солнца. Со времени первого кадра проходит чуть больше 3 минут.
Шестой кадр. Со времени первого кадра прошло более 34 минут.
Температура Вселенной упала до 300 млн. градусов. В этот период все электроны и позитроны исчезают, за исключением небольшого количества электронов, необходимых для компенсации заряда протонов. Но температура ещё слишком высока, чтобы могли возникнуть стабильные ядра.
Разумеется, многое в стандартной гипотезе образования Вселенной ещё неясного и спорного. Прежде всего, остается нерешенным вопрос о структуре и состоянии материи первоначальной Вселенной. Ведь кроме тех элементарных частиц, которые рассматриваются в стандартной модели, существуют и другие «кандидаты» на эту роль. Популярной остается также кварковая* модель, которая в качестве исходных частиц рассматривает кварки, из которых по современным представлениям построены известные теперь элементарные частицы.
Пройдет ещё свыше 700 000 лет, когда электроны и ядра начнут образовывать устойчивые атомы легких элементов, преимущественно водорода и гелия. В этот период происходит разъединение вещества и излучения.
Стадии и следствия эволюции
Как уже говорилось выше, эволюция Вселенной началась приблизительно 15-20 млрд. лет над и , соответственно, она охватывает две стадии: микро- и макроэволюцию.
Микроэволюция привела к образованию атомов и молекул , а тем самым явилась предпосылкой для возникновения макроэволюции, в результате которой возникли окружающие нас макротела и их системы вплоть до систем галактических и внегалактических. Однако для их формирования существенное значение имело нарушение симметрий между различными физическими взаимодействиями.
Этот период существования Вселенной можно образно представить как периодическую смену темноты светом. Нарушение этой симметрии произошло после дальнейшего расширения Вселенной и, соответственно, понижения ее температуры. Именно на этой стадии возникли более тяжелые ядерные частицы-протоны и нейтроны.
Самым же главным результатом этой стадии микроэволюции нашей области Вселенной было образование крайне незначительного перевеса вещества.
Как раз из этого излишка в процессе дальнейшей эволюции возникло
то огромное богатство и разнообразие материальных образований, явлений и
форм, начиная то атомов, молекул, кристаллов, минералов и кончая разнообразными горными образованьями, планетами, звездами и звездными ассоциациями, галактиками и скоплениями галактик.
Микроэволюция обеспечила условия для развертывания макроэволюции. Освобождение гравитационных сил, произошедшее вследствие разрушения их симметрии с ядерными силами примерно 700 000 лет после взрыва, привело к образованию звезд, галактик и других космических систем. Гравитационные силы и ударные волны способствовали возникновению и развитию ядерных реакций внутри звезд и ядер галактик и их скоплений. Следовательно, микро- и макроэволюции взаимно обуславливали и дополняли друг друга, вот почему они представляют собой две ветви единого процесса. Отсюда становится ясным, что возникновение и эволюция физических, химических, геологических и других систем неорганической природы прочно укладывается в рамки космической и земной эволюции.
Наиболее важным для понимания места человека во Вселенной является возникновение жизни на Земле и социально-экономическая и культурно историческая эволюция человечества.
Биологическая и экологическая эволюции представляют собой необходимые предпосылки для возникновения общества, не говоря уже о том, что многие наши интуитивные представления об эволюции вообще заимствованы их существовавших в разное время биологических знаний.
Биологической эволюции предшествовала длительная предбиотическая эволюция, связанная с переходом от неорганической материи к органической, а затем к элементарным формам жизни. Предполагают, что по мере охлаждения Земли возникали все условия для образования сложных органических молекул из молекул неорганических.
В ходе дальнейшей эволюции возникают первые живые клетки, сначала без ядер, называемые прокариотами, а затем клетки с ядрами- экуариоты.
На предбиотической стадии эволюции до возникновения первых живых клеток, существовали материальные системы, обладавшие способностью к самовоспроизведению, метаболизму и развитию через мутации и конкуренцию с другими системами для отбора. Эти фундаментальные свойства, характеризующие жизнь, возникли в результате самоорганизации структур.
Нельзя также не отметить, что жизнь сама готовит условия для своей дальнейшей эволюции. Предполагают, что первыми стали осваивать Землю
растения, которые появились примерно 50 млн.лет назад. Спустя примерно столько же лет появились первые животные- гипертрофы, которые стали использовать растения в качестве пищи. В результате дальнейшей эволюции
из этих основных царств живых систем возникло огромное разнообразие форм и видов растений и животных
Научные обоснования расширения и эволюции Вселенной
Идея статичности Вселенной была очень привлекательна, т.к. она питалась фактом видимой стационарности, неизменности астрономических тел и систем, будь то солнечная система, звёзды и т.д. Мысль об эволюции представлялась нелепой, и эта мысль с большим трудом овладевала сознанием даже крупных ученых.
И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система.
В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.
Ключевым понятием механической картины мира было понятие движения. Именно законы движения Ньютон считал фундаментальными законами мироздания. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Мерой инертности является масса, другое важнейшее понятие классической механики. Универсальным свойством тел является тяготение.
Новая физическая гравитационная картина мира, опирающаяся на строгие математические обоснования, представлена в классической механике И. Ньютона. Ее вершиной стала теория тяготения, провозгласившая универсальный закон природы - закон всемирного тяготения. Согласно этому закону предметы притягиваются с силой, прямо пропорциональной их массе. Она изменяется обратно пропорционально квадрату расстояния между ними. Другими словами, если расстояние увеличивается вдвое, то сила тяжести уменьшается в 4 раза. За математическими выкладками Ньютона лежит озарение, которое пришло к ученому в саду, когда он увидел, как яблоко падает на землю. Эта легенда хорошо известна. Но даже если этого случая и не было в действительности, открытый закон справедлив: яблоко и Луна, булыжники и планеты - всем управляет одна и та же сила. Закон тяготения универсален.
Распространив на всю Вселенную закон тяготения, Ньютон рассмотрел и возможную ее структуру. Он пришел к выводу, что Вселенная является не конечной, а бесконечной. Лишь в этом случае в ней может существовать множество космических объектов - центров гравитации. Так, в рамках ньютоновской гравитационной модели Вселенной утверждается представление о бесконечном пространстве, в котором находятся космические объекты, связанные между собой силой тяготения.
А.Эйнштейном была создана релятивистская теория тяготения (общая теория относительности), которая является теоретическим фундаментом науки о строении Вселенной. Он понимал важную роль теории относительности для космологии. Но уравнения общей теории относительности в применении ко Вселенной не давали статических решений, т.е. решений, описывающих состояние, не меняющееся со временем. Идея статичного мира казалась настолько привлекательной, что А.Эйнштейн не поверил своим уравнениям и стал их изменять. Сегодня эти поиски статических решений космологических уравнений кажутся принципиально неправильными уже потому, что теперь установлена эволюция всех тех небесных тел и систем небесных тел, где раньше видели только неизменное свечение или постоянное движение по круговым орбитам.
Но именно на основе теории А.Эйнштейна советский ученый А.А.Фридман в 1922-24г. построил математические модели движущегося вещества во всей Вселенной под действием сил тяготения. Он доказал, что вещество Вселенной не может находиться в покое -Вселенная не может быть стационарной; она должна либо расширяться, либо сжиматься и, следовательно, плотность вещества во Вселенной должна либо уменьшаться, либо увеличиваться. Решение уравнений А. А. Фридмана допускает три возможности.
1.Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния.
2.Если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется.
3.Если плотность больше критической, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния. По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т.е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными.
Остается нерешенным вопрос: «куда», «во что» расширяется Вселенная? Этот вопрос неправилен сам по себе. Вселенная-это все, что существует. Вне Вселенной ничего нет. Причем нет не только галактик или какой либо другой материи, но и вообще ничего- ни пространства, ни времени. Нет той пустоты, в которую можно расширяться. Так куда же растягивается Вселенная?! Ведь она и так простирается до бесконечности. Очевидно, таковы свойства бесконечности. Увеличив бесконечность вдвое, будем иметь все ту же бесконечность. Тогда возникает еще один важнейший вопрос: почему Вселенная именно расширяется? Что придало скорости галактикам?
В 1929 году 20 века американский астроном Эдвин Хаблл исследовал спектры света, приходящего из галактик. Спектры туманностей принадлежавшие водороду, гелию и другим «земным элементам», смещены к линиям красного света. Это явление получило название красное смещение. При этом для разных галактик величина смещения различна и пропорциональна расстоянию от Земли до соответствующей галактики: чем дальше от нас туманность, тем больше смещение, и наоборот. Следовательно все галактики удаляются от нас, причем чем дальше находится галактика, тем скорость этого удаления больше. Скорость была огромной: от 2-3 сотен до 1100км/сек.Это триумфальное открытие подтвердило расширение Вселенной. Также он вычислил расстояние до целого ряда галактик.
Оказалось, что существует простая зависимость между скоростью удаления галактик и расстоянием до неё:
закон пропорциональности скорости удаления галактик их расстоянию.
Коэффициент пропорциональности Н -постоянная Хаббла.
Американскому астрофизику В.М.Слайферу удалось вычислить расстояние до некоторых галактик с помощью пульсирующих звезд, меняющих свой блеск-цефеид. Цефеиды были открыты и в других галактиках. Было окончательно установлено, что галактики- далекие звездные системы, подобные нашей.
В 1842г. австрийский физик и астроном К.Доплер сформулировал принцип акустики и оптики. На основе этого принципа была выведена формула, названная эффектом Доплера
Но эта формула применима и справедлива для скоростей , намного меньше скорости света С, когда применима механика Ньютона.
Согласно выводов ученых, разбегание галактик происходит именно от нас. Неужели мы находимся в центре Вселенной? Нет. Дело в том, что галактики удаляются не только от нашей галактики, но и друг от друга. Если бы мы находились в другой галактике, то видели бы точно такую же картину разбегания, как и из нашей звездной системы.
Заключение
Возникновение и развитие современной релятивистской космологии имеет большое мировоззренческое значение. Оно во многом изменило наши прежние представления о научной картине мира. Особенно радикальным было открытие так называемого красного смещения, свидетельствующего о расширении Вселенной. Важной проблемой остается и оценка возраста Вселенной, которая определяется по длительности ее расширения. Если бы расширение Вселенной происходило с постоянной скоростью, равной в настоящее время 75км/сек, то время, истекшее с начала «Большого взрыва», составило бы 13 млрд.лет. Однако есть основания считать, что ее расширение происходит с замедлением. Тогда возраст Вселенной будет меньше. С другой стороны, если допустить существование отталкивающих космологических сил, тогда возраст Вселенной будет больше.
Главный же итог современных космологических исследований состоит в том, что они показали, что вселенная не находится в стационарном состоянии, она непрерывно изменяется вследствие понижения температуры и связанного с этим процесса ее расширения. Именно в результате такого процесса происходит эволюция материи, связанная с появлением все новых и сложных структур.
В конце XIX - начале XX вв. физика вышла на уровень исследования микромира, для описания которого концептуальные построения классической физики оказались непригодными.
В результате научных открытий были опровергнуты представления об атомах как о последних неделимых структурных элементах материи.
Об атомизме Демокрита (V век до н.э.) нобелевский лауреат, физик в середине ХХ века Р.Фейнман: « Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям перешла только одна фраза, то какое утверждение, составленное из наименьшего числа слов принесло бы наибольшую информацию? Я считаю, что это - атомная гипотеза. Все тела состоят из атомов - маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому».В одной этой фразе содержится невероятное количество информации о мире, стоит только приложить к ней немного воображения и чуть соображения.
Вселенная эволюционирует, бурные процессы изменения материи происходили в прошлом, происходят сейчас и будут происходить в будущем.
Наши сегодняшние представления о Вселенной крайне далеки от рисовавшейся иногда в прошлом картины неизменной «в среднем» Вселенной, неизменном пространстве которой происходят в неизменном времени вечно повторяющиеся процессы. Все оказалось гораздо сложнее и интереснее…
Список литературы
Новиков И.Д. Эволюция Вселенной/Новиков И.Д.-М.,1990
Рузавин Г.И. Концепции современного естествознания: курс лекций/ Рузавин Г.И.-М.:ПРОЕКТ,2004.-336с.
Будний И.В.,Смирнова Е.А.,Малышева З.Г. Концепции современного естествознания: учебно-методическое пособие-М.:МУБиНТ,2001.-65с.
Лихин А.Ф. Концепции современного естествознания: учебное пособие/Лихин А.Ф.-М.:Проспект,2006.
Циолковский К.Э. Очерки о Вселенной/Циолковский К.Э.-М.: Паимс,1992.
Теги: Теория "большого взрыва" и эволюция Вселенной Реферат Биологияdodiplom.ru
Курганская государственная сельскохозяйственная
академия им. Т. С. Мальцева
Кафедра концепции современного естествознания
Происхождение Вселенной
Теория Большого взрыва
Выполнил: студент I курса, эконо-мического факультета, I группы, I подгруппы Аленькин Константин
Проверил: Калинин С.С.
Лесниково 1999 г.
План:
1. История Вселенной согласно стандартной модели Большого взрыва.
2. Будущее Вселенной.
3. Какая судьба ожидает вечно расширяющуюся Вселенную?
Список использованной литературы.
История Вселенной согласно стандартной модели
Большого взрыва
В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступные пониманию в рамках современной физики. Мы можем лишь размышлять над тем, каковы были те первые мгновения; например, возможно, что четыре фундаментальные силы природы были вначале слиты воедино. Однако есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. Эта самовзаимодействующая масса находилась в состоянии так называемого теплового равновесия.
В те первые мгновения все имевшиеся частицы должны были непрерывно возникать и аннигилировать. Любая материальная частица имеет некоторую массу, и поэтому для ее образования требуется наличие определенной «пороговой , энергии»; пока плотность энергии фотонов оставалась достав точно высокой, могли возникать любые частицы. Мы знаем также, что, когда частицы рождаются из гамма-излучения (фотонов высокой энергии), они рождаются парами, состоящими из частицы и античастицы, например электрона и позитрона. В условии сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц.
Когда возраст Вселенной достиг одной сотой доли секунды, ее температура упала примерно до 1011К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, но некоторые из этих частиц все-таки избежали взаимной аннигиляции со своими античастицами - иначе в современной нам Вселенной не было бы вещества! Через 1 с после Большого взрыва температура понизилась примерно до 1010К, и нейтрино, по существу, перестали взаимодействовать с веществом: Вселенная стала практически прозрачной для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10с уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиляции, оставив после себя лишь незначительное количество электронов, достаточное, однако, для того, чтобы, объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.
Судя по всему, должна была существовать некоторая диспропорция между частицами (протонами, нейтронами, электронами и т. д.) и античастицами (антипротонами, антинейтронами, позитронами и т. д.), так как все частицы (а не только все античастицы) исчезли бы в процессе аннигиляции. В окружающей нас части Вселенной вещества несравнимо больше, чем антивещества, которое лишь изредка встречается в виде отдельных античастиц. Не исключено, конечно, что на ранней стадии эволюции Вселенной в ней были области, где доминировало вещество, и области с преобладанием антивещества - в этом случае возможно существование звезд и целых галактик, состоящих из антивещества; на больших расстояниях они были бы неотличимы от привычных нам звезд и галактик из вещества. Однако у нас нет никаких свидетельств в пользу этого предположения, поэтому более разумным кажется считать, что с самого начала возник небольшой, но заметный дисбаланс частиц и античастиц. В настоящее время разрабатывается ряд теорий, в которых такой дисбаланс находит вполне естественное объяснение.
Через 3 мин после Большого взрыва температура Вселенной понизилась до 109К и возникли подходящие условия для образования атомов гелия: на это были затрачены практически все имевшиеся в наличии нейтроны. Спустя примерно еще минуту почти все вещество Вселенной состояло из ядер водорода и гелия, находившихся примерно в той же количественной пропорции, какую мы наблюдаем сегодня. Начиная с этого момента, расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрачной для электромагнитного излучения - возникло то, что сейчас наблюдают как реликтовое фоновое излучение.
После того как вещество стало прозрачным для электромагнитного излучения, в действие вступило тяготение: оно начало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звезды и планеты - все эти объекты образовались из первичного вещества, которое, в свою очередь, выделилось из быстро остывавшего и терявшего плотность первичного огненного шара; тяготению же предстоит определить путь эволюции и исход жизни всей Вселенной в целом. Тем не менее, многие вопросы, касающиеся эпохи, последовавшей за эпохой отделения излучения от вещества, остаются пока без ответа; в частности, остается нерешенным вопрос формирования галактик и звезд. Образовались ли галактики раньше первого поколения звезд или наоборот? Почему вещество сосредоточилось в дискретных образованиях - звездах, галактиках, скоплениях и сверхскоплениях, - когда Вселенная как целое разлеталась в разные стороны?
Есть два основных взгляда на проблему формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли существовать случайно распределенные области с плотностью выше средней. В результате действия сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества, в которых затем начался процесс фрагментации, приведший к образованию облаков меньших размеров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших - галактических размеров - сгустках опять-таки под действием притяжения в случайных неоднородностях плотности началось формирование звезд. Существует и другая точка зрения на ход развития событий: вначале из флуктуаций плотности в расширяющемся первичном шаре сформировались многочисленные (малые) галактики, которые с течением времени объединились в скопления, в сверхскопления и, возможно, даже в более крупные иерархические структуры.
Главным пунктом в этом споре является вопрос, имел ли процесс Большого взрыва вихревой, турбулентный, характер или протекал более гладко. Турбулентности в крупномасштабной структуре сегодняшней Вселенной отсутствуют. Вселенная выглядит удивительно сглаженной в крупных масштабах; несмотря на некоторые отклонения, в целом далекие галактики и скопления распределены по всему небу в высшей степени равномерно, а степень изотропности фонового излучения также довольно высока (выше, чем 1:3000). Все эти факты, видимо, говорят о том, что Большой взрыв был безвихревым, упорядоченным процессом расширения. Но откуда же в таком случае возникли флуктуации плотности, ставшие позднее галактиками? Решение этого вопроса затрудняется тем, что мы не располагаем наблюдательными данными, относящимися к критическому моменту образования звездных систем;
Согласно общепринятой точке зрения, микроволновое фоновое излучение дает нам информацию о той эпохе, когда возраст Вселенной насчитывал примерно 700 000 лет, чему соответствует красное смещение около 1000. Самый далекий от нас квазар имеет смещение 3,6, т.е. наблюдаемый свет этого квазара был испущен им, когда возраст Вселенной составлял чуть меньше 2 млрд. лет. В промежутке времени от 700 000 до 2 млрд. лет во Вселенной должно было произойти многое, в том числе сформировались галактики. Тем не менее, последние данные, скорее всего, свидетельствует в пользу второй из двух упомянутых выше гипотез, согласно которой образование галактик предшествовало формированию скоплений и сверхскоплений.
Успешное объяснение ряда явлений с помощью модели Большого взрыва привело к тому, что, как правило, не вызывает сомнения реальность происхождения микроволнового фонового излучения из расширяющегося первичного огненного шара в тот момент, когда вещество Вселенной стало прозрачным. Возможно, однако, что это слишком простое объяснение. В 1978 г., пытаясь найти обоснование для наблюдаемого соотношения фотонов и барионов (барионы - «тяжелые» элементарные частицы, к которым, в частности, относятся протоны и нейтроны) - 108:1, - М.Рис высказал предположение, что фоновое излучение может быть результатом «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет; многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые частично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смещения, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение.
Эта точка зрения не получила широкого признания, однако интересно отметить, что в 1979 г. Д.П.Вуди и П.Л.Ричарде из Калифорнийского университета опубликовали результаты наблюдений, как будто указывающие на некоторые отклонения характеристик микроволнового фонового излучения от кривой излучения абсолютно черного тела: кривая фонового излучения выглядит «острее», чем ей следовало бы быть. Позднее в том же году М.Роуэн-Робинсон, Дж.Негропонте и Дж.Силк (Колледж королевы Марии, Лондон) указали, что «горб» на кривой микроволнового излучения, обнаруженный Вуди и Ричардсом, может быть объяснен излучением пылевых облаков, образовавшихся вслед за «эпидемией» массового формирования звезд, что соответствует гипотезе М. Риса. Пока рано говорить, выдержит ли эта новая идея последующий анализ, но если она соответствует истине, то это означает, что подавляющее количество всей массы Вселенной содержится в невидимых остатках звезд первичного, догалактического, поколения ив настоящее время может находиться в массивных темных гало, окружающих яркие галактики, которые мы наблюдаем сегодня.
Будущее Вселенной
Оставляя в стороне спорный вопрос, касающийся образования галактик, посмотрим, что говорят современная теория и данные наблюдений относительно будущего развития Вселенной и ее вероятного конца.
Вне всякого сомнения, именно гравитационное взаимодействие определит дальнейший ход событий. Достаточно ли во. Вселенной вещества для того, чтобы силы тяготения в конечном счете остановили процесс расширения и заставили галактики вновь начать падать друг на друга, в результате чего Вселенная закончила бы свое существование в неком «Большом сжатии». Или же наоборот. Вселенная будет расширяться бесконечно?
Процесс расширения Вселенной можно рассматривать, используя уже знакомое нам понятие скорости убегания. Согласно закону всемирного тяготения Ньютона, эффективная гравитационная сила, действующая на частицу, находящуюся внутри пустой сферической оболочки, равна нулю—. притяжение, вызываемое разными частями оболочки, взаимно компенсируется. То же имеет место и в общей теории относительности. Следовательно, если выбрать для исследования типичную сферическую область Вселенной, то все остальное можно считать полой толстостенной оболочкой, расположенной вне интересующей нас области, поскольку в силу космологического принципа все направления во Вселенной равноправны, а вещество в ней распределено равномерно. Тогда можно допустить, что на галактику, расположенную у края выбранной нами области, действуют силы притяжения только со стороны вещества, находящегося внутри выбранной сферы. Если это вещество распределено равномерно, то галактика будет притягиваться к центру сферы так, как если бы там была сосредоточена вся заключенная внутри сферы масса. В своем движении относительно центра сферы эта «пробная» галактика должна вести себя, как снаряд, выпущенный «наружу» из этой точки. Если скорость галактики достаточно велика, т. е. если она превышает скорость убегания, характерную для этой сферической области, то галактика будет продолжать свое движение вечно (открытая вселенная), но если скорость галактики недостаточна, то она в конце концов уменьшится до нуля, после чего галактика начнет двигаться к центру сферы (замкнутая вселенная).
Зная скорость разбегания галактик - она определяется значением постоянной Хаббла, - можно оценить необходимую величину массы, которая должна содержаться в данном объеме пространства, чтобы расширение когда-то прекратилось; иначе говоря, требуется рассчитать среднее значение плотности вещества, которая обеспечила бы существование замкнутой вселенной. Если окажется, что средняя плотность вещества превышает некоторое значение, называемое критической плотностью, то Вселенная через какое-то время должна перестать расширяться - тогда поле битвы останется за силами тяготения и коллапс вещества Вселенной будет неизбежным.
Принимая Но=55 км/с*Мпс, находим, что значение критической плотности примерно равно 5-10-27 кг/м3, или в среднем примерно 3 атома водорода в 1 м3 - это очень немного! При такой плотности Вселенная должна быть очень большой, а вещество в ней - очень разреженным. Определение средней плотности вещества во Вселенной - одна из важнейших задач современной астрономии.
Другой способ выяснения, открыта или замкнута Вселенная, заключается в непосредственном измерении замедления расширения, т.е. в измерении величины, известной под названием параметра замедления qо. Производя наблюдения очень удаленных объектов, мы как бы путешествуем во времени в далекое прошлое, когда - если верна теория Большого взрыва - Вселенная расширялась быстрее, чем сейчас. В принципе, производя измерения в очень широком интервале расстояний до галактик и их красных смещений, можно выявить отклонения от закона Хаббла вплоть до самых удаленных звездных систем. Но на практике этот метод не дал, по крайней мере на сегодняшний день, согласующихся между собой надежных результатов. Здесь остается еще много трудностей, включая проблему правильной оценки расстояний и возможность неизвестных пока процессов эволюции: например, вполне возможно, что в прошлом галактики имели большую светимость, чем сейчас, но вопрос в том, насколько большую? Чтобы определить, является ли наша Вселенная открытой или замкнутой, необходимо исследовать объекты с красным смещением выше 0,5, а это соответствует расстояниям, значительно превышающим те, на которых можно увидеть обычные галактики (положение может изменить космический телескоп, выведенный на орбиту вокруг Земли, создание которого планируется на 80-е годы). Ясно, что в качестве объектов исследования следует взять квазары, но в их природе, эволюции и расстояниях до них слишком много неясного, так что надежность полученных результатов остается пока сомнительной. На сегодняшний день мы располагаем наблюдательными данными, свидетельствующими в пользу как открытой, так и замкнутой модели.
Предпринимались также попытки определять возраст Вселенной разными методами и сравнивать его с хаббловским временем - тем возрастом, который имела бы Вселенная, не будь замедления расширения (около 18 млрд. лет при Но=55 км/с*Мпс). Оценки возраста самых старых звезд в шаровых скоплениях, делавшиеся на основе их химического состава с использованием современных теорий звездной эволюции, дали значения в интервале 8-18 млрд. лет, тогда как метод радиоактивной датировки дает гораздо меньшую цифру - около 6 млрд. лет. В 1978г. Д.Казанас и Д.Н.Шрамм из Чикагского университета, основываясь на данных своих наблюдений, пришли к выводу, что лучше всего согласующийся с известными фактами возраст Вселенной должен составлять 13,5-15,5 млрд. лет, что соответствует открытой, вечно расширяющейся вселенной.
С другой стороны, в 1977г. Д.Линден-Белл в Кембридже получил значение Но, примерно равное 110 км/с*Мпс, основываясь при этом на своей модели, разработанной для объяснения кажущегося разбегания со сверхсветовыми скоростями радиокомпонентов некоторых квазаров. Это значение Но, если оно, конечно, верно, должно означать, что определяемый из закона Хаббла возраст Вселенной составляет всего 9 млрд. лет, а эта величина находится на грани противоречия с возрастом, наиболее старых из известных звезд.
Если принять во внимание замедление скорости разбегания галактик (т.е. расширения Вселенной), то возникает существенная проблема, как «увязать» этот возраст с простейшей моделью Большого взрыва. В результатах, опубликованных Д.Хэйнсом в 1979г. в Кембридже, хаббловский возраст Вселенной оценивается в 13 млрд. лет, а в том же году М.Ааронсом в Стьюартской обсерватории, Дж.Хучра в Гарвардском университете и Дж.Моулд в Национальной обсерватории Кит-Пик опубликовали результаты, основанные на измерении светимости галактик в инфракрасном диапазоне, которые указывают на возраст Вселенной около 10 млрд. лет (Но=100 км/с*Мпс).
Еще позднее, в 1980г., Ж.М.Люк, Ж.Л.Бирк и Ш.Ж.Альянд из Парижского университета опубликовали результаты анализа найденного в метеоритах радиоактивного элемента рения, который имеет очень большой период полураспада (половина любого количества этого элемента распадается, превращаясь в осмий, в течение 60 млрд. лет). Сравнивая количества рения и осмия в веществе метеоритов и считая при этом, что рений образовался при взрывах сверхновых на раннем этапе эволюции Вселенной, эти ученые установили, что возраст Вселенной, по-видимому, составляет от 13 до 22 млрд. лет.
Итак, хотя сегодня большинство астрономов и сходятся во мнении, что значение Но должно соответствовать возрасту Вселенной, равному примерно 18 млрд. лет, в этом вопросе по-прежнему имеются большие расхождения, и до сих пор не представляется возможным сравнить возраст Вселенной, следующий из закона Хаббла, с возрастом отдельных составных частей Вселенной, чтобы таким образом оценить степень замедления расширения Вселенной.
Какая судьба ожидает вечно расширяющуюся
Вселенную?
Если наша Вселенная будет неограниченно расширяться - а об этом свидетельствуют почти все данные наблюдений, - то что ее ожидает в будущем? По мере расширения пространства материя становится все более разреженной, галактики и скопления все более удаляются друг от друга, а температура фонового излучения неуклонно приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарных частиц и холодного излучения будут бессмысленно разлетаться в непрерывно разрежающейся пустоте.
Впрочем, черные дыры не останутся без работы. Имея на то достаточно времени, черные дыры поглотят огромное количество вещества Вселенной. Если теория Хокинга верна, то черные дыры будут испускать излучение, но черным дырам с массой Солнца потребуется очень длительное время, прежде чем это что-то заметно изменит. Фоновое излучение остынет гораздо раньше, чем черные дыры начнут излучать больше, чем они будут поглощать из этого фонового излучения. Такой момент наступит только тогда, когда возраст Вселенной станет примерно в десять миллионов раз больше предполагаемого на сегодня. Должно пройти около 1066 лет, прежде чем черные дыры солнечной массы начнут взрываться, выбрасывая потоки частиц и излучения.
Дж.Б.Берроу из Оксфордского университета и Ф.Тип-лер из Калифорнийского университета нарисовали такую картину отдаленного будущего неограниченно расширяющейся вселенной. Даже внутри старой нейтронной звезды сохраняется еще достаточно энергии, чтобы время от времени сообщать частицам, находящимся вблизи ее поверхности, скорость, превышающую скорость убегания; предполагается, что в результате этого через достаточно продолжительное время все вещество нейтронной звезды должно испариться. Распадутся и черные дыры, вызвав рождение (в равных пропорциях) частиц и античастиц. По мнению Берроу и Типлера, если запас энергии во Вселенной достаточен только для того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно-позитронных парах перевесит и гравитационное притяжение, и общее расширение Вселенной как целого; поэтому за конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадией существования материи окажутся не разлетающиеся холодные темные тела или черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры.
Второе начало термодинамики предсказывает, что конец Эволюции Вселенной наступит, когда выравняется температура ее вещества - так как тепло передается от более теплых тел к более холодным, различие их температур со временем сглаживается и совершение работы становится невозможным. Эта мысль о «тепловой смерти» Вселенной была высказана еще в 1854г. Германом Гельмгольцем (1821-1894). Небезынтересно отметить, что наше современное представление о неограниченно расширяющейся Вселенной вместе с концепцией квантового излучения черных дыр, которая основана на аналогии между гравитацией и термодинамикой, по существу, привело, только более кружным путем, к выводам, сделанным Гельмгольцем.
Мы не знаем с определенностью, каков должен быть исход противоборства расширения Вселенной и гравитационного притяжения ее вещества. Если победит тяготение, Вселенная когда-нибудь сколлапсирует в процессе Большого сжатия, которое может оказаться либо концом ее существования, либо прелюдией к новому циклу расширения. Бел» же силы тяготения проиграют сражение, то расширение будет продолжаться неограниченно долго, но тем не менее гравитация будет играть существенную роль в определении окончательного состояния вещества Вселенной: станет ли оно безбрежным морем однородного излучения или же будет рассеиваться множеством темных холодных масс. В неясном далеком будущем прошедшая эпоха звездной активности может показаться лишь кратчайшим мгновением в бесконечной жизни Вселенной.
Так неужели, же Вселенная обречена на вечное расширение? Пока все данные говорят именно об этом, хотя нельзя без боли думать о превращении нашего удивительного и сложного мира в бесформенную темную пустоту. По-видимому, многим была бы больше по душе пульсирующая модель, дающая надежду на возрождение пусть не живых существ, но по крайней мере таких привычных нам вещей, как вещество и излучение. Однако, что бы мы ни предпринимал», это не изменит ни плотности космического вещества, ни судьбы космоса - нам остается принимать его таким, каков он есть: Вселенную не выбирают.
Список использованной литературы:
1. И. Николсон. Тяготение, чёрные дыры и Вселенная. 1983г.
2. И. Д. Новиков. Чёрные дыры и Вселенная. 1985г.
3. И. Д. Новиков. Эволюция Вселенной. 1982г.
4. Дж. Силк. Большой взрыв. Рождение и эволюция Вселенной. 1982г.
www.referatmix.ru
академия им. Т. С. МальцеваКафедра концепции современного естествознанияПроисхождение Вселенной
Теория Большого взрыва
Выполнил: студент I курса, эконо-мического факультета, I группы, I подгруппы Аленькин КонстантинПроверил: Калинин С.С.Лесниково 1999 г.
План:
1. История Вселенной согласно стандартной модели Большого взрыва.
2. Будущее Вселенной.
3. Какая судьба ожидает вечно расширяющуюся Вселенную?
Список использованной литературы.
История Вселенной согласно стандартной модели
Большого взрыва
В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступные пониманию в рамках современной физики. Мы можем лишь размышлять над тем, каковы были те первые мгновения; например, возможно, что четыре фундаментальные силы природы были вначале слиты воедино. Однако есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. Эта самовзаимодействующая масса находилась в состоянии так называемого теплового равновесия.
В те первые мгновения все имевшиеся частицы должны были непрерывно возникать и аннигилировать. Любая материальная частица имеет некоторую массу, и поэтому для ее образования требуется наличие определенной «пороговой , энергии»; пока плотность энергии фотонов оставалась достав точно высокой, могли возникать любые частицы. Мы знаем также, что, когда частицы рождаются из гамма-излучения (фотонов высокой энергии), они рождаются парами, состоящими из частицы и античастицы, например электрона и позитрона. В условии сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц.
Когда возраст Вселенной достиг одной сотой доли секунды, ее температура упала примерно до 1011К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, но некоторые из этих частиц все-таки избежали взаимной аннигиляции со своими античастицами - иначе в современной нам Вселенной не было бы вещества! Через 1 с после Большого взрыва температура понизилась примерно до 1010К, и нейтрино, по существу, перестали взаимодействовать с веществом: Вселенная стала практически прозрачной для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10с уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиляции, оставив после себя лишь незначительное количество электронов, достаточное, однако, для того, чтобы, объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.
Судя по всему, должна была существовать некоторая диспропорция между частицами (протонами, нейтронами, электронами и т. д.) и античастицами (антипротонами, антинейтронами, позитронами и т. д.), так как все частицы (а не только все античастицы) исчезли бы в процессе аннигиляции. В окружающей нас части Вселенной вещества несравнимо больше, чем антивещества, которое лишь изредка встречается в виде отдельных античастиц. Не исключено, конечно, что на ранней стадии эволюции Вселенной в ней были области, где доминировало вещество, и области с преобладанием антивещества - в этом случае возможно существование звезд и целых галактик, состоящих из антивещества; на больших расстояниях они были бы неотличимы от привычных нам звезд и галактик из вещества. Однако у нас нет никаких свидетельств в пользу этого предположения, поэтому более разумным кажется считать, что с самого начала возник небольшой, но заметный дисбаланс частиц и античастиц. В настоящее время разрабатывается ряд теорий, в которых такой дисбаланс находит вполне естественное объяснение.
Через 3 мин после Большого взрыва температура Вселенной понизилась до 109К и возникли подходящие условия для образования атомов гелия: на это были затрачены практически все имевшиеся в наличии нейтроны. Спустя примерно еще минуту почти все вещество Вселенной состояло из ядер водорода и гелия, находившихся примерно в той же количественной пропорции, какую мы наблюдаем сегодня. Начиная с этого момента, расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрачной для электромагнитного излучения - возникло то, что сейчас наблюдают как реликтовое фоновое излучение.
После того как вещество стало прозрачным для электромагнитного излучения, в действие вступило тяготение: оно начало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звезды и планеты - все эти объекты образовались из первичного вещества, которое, в свою очередь, выделилось из быстро остывавшего и терявшего плотность первичного огненного шара; тяготению же предстоит определить путь эволюции и исход жизни всей Вселенной в целом. Тем не менее, многие вопросы, касающиеся эпохи, последовавшей за эпохой отделения излучения от вещества, остаются пока без ответа; в частности, остается нерешенным вопрос формирования галактик и звезд. Образовались ли галактики раньше первого поколения звезд или наоборот? Почему вещество сосредоточилось в дискретных образованиях - звездах, галактиках, скоплениях и сверхскоплениях, - когда Вселенная как целое разлеталась в разные стороны?
Есть два основных взгляда на проблему формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли существовать случайно распределенные области с плотностью выше средней. В результате действия сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества, в которых затем начался процесс фрагментации, приведший к образованию облаков меньших размеров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших - галактических размеров - сгустках опять-таки под действием притяжения в случайных неоднородностях плотности началось формирование звезд. Существует и другая точка зрения на ход развития событий: вначале из флуктуаций плотности в расширяющемся первичном шаре сформировались многочисленные (малые) галактики, которые с течением времени объединились в скопления, в сверхскопления и, возможно, даже в более крупные иерархические структуры.
Главным пунктом в этом споре является вопрос, имел ли процесс Большого взрыва вихревой, турбулентный, характер или протекал более гладко. Турбулентности в крупномасштабной структуре сегодняшней Вселенной отсутствуют. Вселенная выглядит удивительно сглаженной в крупных масштабах; несмотря на некоторые отклонения, в целом далекие галактики и скопления распределены по всему небу в высшей степени равномерно, а степень изотропности фонового излучения также довольно высока (выше, чем 1:3000). Все эти факты, видимо, говорят о том, что Большой взрыв был безвихревым, упорядоченным процессом расширения. Но откуда же в таком случае возникли флуктуации плотности, ставшие позднее галактиками? Решение этого вопроса затрудняется тем, что мы не располагаем наблюдательными данными, относящимися к критическому моменту образования звездных систем;
Согласно общепринятой точке зрения, микроволновое фоновое излучение дает нам информацию о той эпохе, когда возраст Вселенной насчитывал примерно 700 000 лет, чему соответствует красное смещение около 1000. Самый далекий от нас квазар имеет смещение 3,6, т.е. наблюдаемый свет этого квазара был испущен им, когда возраст Вселенной составлял чуть меньше 2 млрд. лет. В промежутке времени от 700 000 до 2 млрд. лет во Вселенной должно было произойти многое, в том числе сформировались галактики. Тем не менее, последние данные, скорее всего, свидетельствует в пользу второй из двух упомянутых выше гипотез, согласно которой образование галактик предшествовало формированию скоплений и сверхскоплений.
Успешное объяснение ряда явлений с помощью модели Большого взрыва привело к тому, что, как правило, не вызывает сомнения реальность происхождения микроволнового фонового излучения из расширяющегося первичного огненного шара в тот момент, когда вещество Вселенной стало прозрачным. Возможно, однако, что это слишком простое объяснение. В 1978 г., пытаясь найти обоснование для наблюдаемого соотношения фотонов и барионов (барионы - «тяжелые» элементарные частицы, к которым, в частности, относятся протоны и нейтроны) - 108:1, - М.Рис высказал предположение, что фоновое излучение может быть результатом «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет; многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые частично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смещения, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение.
Эта точка зрения не получила широкого признания, однако интересно отметить, что в 1979 г. Д.П.Вуди и П.Л.Ричарде из Калифорнийского университета опубликовали результаты наблюдений, как будто указывающие на некоторые отклонения характеристик микроволнового фонового излучения от кривой излучения абсолютно черного тела: кривая фонового излучения выглядит «острее», чем ей следовало бы быть. Позднее в том же году М.Роуэн-Робинсон, Дж.Негропонте и Дж.Силк (Колледж королевы Марии, Лондон) указали, что «горб» на кривой микроволнового излучения, обнаруженный Вуди и Ричардсом, может быть объяснен излучением пылевых облаков, образовавшихся вслед за «эпидемией» массового формирования звезд, что соответствует гипотезе М. Риса. Пока рано говорить, выдержит ли эта новая идея последующий анализ, но если она соответствует истине, то это означает, что подавляющее количество всей массы Вселенной содержится в невидимых остатках звезд первичного, догалактического, поколения ив настоящее время может находиться в массивных темных гало, окружающих яркие галактики, которые мы наблюдаем сегодня.
Будущее Вселенной
Оставляя в стороне спорный вопрос, касающийся образования галактик, посмотрим, что говорят современная теория и данные наблюдений относительно будущего развития Вселенной и ее вероятного конца.
Вне всякого сомнения, именно гравитационное взаимодействие определит дальнейший ход событий. Достаточно ли во. Вселенной вещества для того, чтобы силы тяготения в конечном счете остановили процесс расширения и заставили галактики вновь начать падать друг на друга, в результате чего Вселенная закончила бы свое существование в неком «Большом сжатии». Или же наоборот. Вселенная будет расширяться бесконечно?
Процесс расширения Вселенной можно рассматривать, используя уже знакомое нам понятие скорости убегания. Согласно закону всемирного тяготения Ньютона, эффективная гравитационная сила, действующая на частицу, находящуюся внутри пустой сферической оболочки, равна нулю—. притяжение, вызываемое разными частями оболочки, взаимно компенсируется. То же имеет место и в общей теории относительности. Следовательно, если выбрать для исследования типичную сферическую область Вселенной, то все остальное можно считать полой толстостенной оболочкой, расположенной вне интересующей нас области, поскольку в силу космологического принципа все направления во Вселенной равноправны, а вещество в ней распределено равномерно. Тогда можно допустить, что на галактику, расположенную у края выбранной нами области, действуют силы притяжения только со стороны вещества, находящегося внутри выбранной сферы. Если это вещество распределено равномерно, то галактика будет притягиваться к центру сферы так, как если бы там была сосредоточена вся заключенная внутри сферы масса. В своем движении относительно центра сферы эта «пробная» галактика должна вести себя, как снаряд, выпущенный «наружу» из этой точки. Если скорость галактики достаточно велика, т. е. если она превышает скорость убегания, характерную для этой сферической области, то галактика будет продолжать свое движение вечно (открытая вселенная), но если скорость галактики недостаточна, то она в конце концов уменьшится до нуля, после чего галактика начнет двигаться к центру сферы (замкнутая вселенная).
Зная скорость разбегания галактик - она определяется значением постоянной Хаббла, - можно оценить необходимую величину массы, которая должна содержаться в данном объеме пространства, чтобы расширение когда-то прекратилось; иначе говоря, требуется рассчитать среднее значение плотности вещества, которая обеспечила бы существование замкнутой вселенной. Если окажется, что средняя плотность вещества превышает некоторое значение, называемое критической плотностью, то Вселенная через какое-то время должна перестать расширяться - тогда поле битвы останется за силами тяготения и коллапс вещества Вселенной будет неизбежным.
Принимая Но=55 км/с*Мпс, находим, что значение критической плотности примерно равно 5-10-27 кг/м3, или в среднем примерно 3 атома водорода в 1 м3 - это очень немного! При такой плотности Вселенная должна быть очень большой, а вещество в ней - очень разреженным. Определение средней плотности вещества во Вселенной - одна из важнейших задач современной астрономии.
Другой способ выяснения, открыта или замкнута Вселенная, заключается в непосредственном измерении замедления расширения, т.е. в измерении величины, известной под названием параметра замедления qо. Производя наблюдения очень удаленных объектов, мы как бы путешествуем во времени в далекое прошлое, когда - если верна теория Большого взрыва - Вселенная расширялась быстрее, чем сейчас. В принципе, производя измерения в очень широком интервале расстояний до галактик и их красных смещений, можно выявить отклонения от закона Хаббла вплоть до самых удаленных звездных систем. Но на практике этот метод не дал, по крайней мере на сегодняшний день, согласующихся между собой надежных результатов. Здесь остается еще много трудностей, включая проблему правильной оценки расстояний и возможность неизвестных пока процессов эволюции: например, вполне возможно, что в прошлом галактики имели большую светимость, чем сейчас, но вопрос в том, насколько большую? Чтобы определить, является ли наша Вселенная открытой или замкнутой, необходимо исследовать объекты с красным смещением выше 0,5, а это соответствует расстояниям, значительно превышающим те, на которых можно увидеть обычные галактики (положение может изменить космический телескоп, выведенный на орбиту вокруг Земли, создание которого планируется на 80-е годы). Ясно, что в качестве объектов исследования следует взять квазары, но в их природе, эволюции и расстояниях до них слишком много неясного, так что надежность полученных результатов остается пока сомнительной. На сегодняшний день мы располагаем наблюдательными данными, свидетельствующими в пользу как открытой, так и замкнутой модели.
Предпринимались также попытки определять возраст Вселенной разными методами и сравнивать его с хаббловским временем - тем возрастом, который имела бы Вселенная, не будь замедления расширения (около 18 млрд. лет при Но=55 км/с*Мпс). Оценки возраста самых старых звезд в шаровых скоплениях, делавшиеся на основе их химического состава с использованием современных теорий звездной эволюции, дали значения в интервале 8-18 млрд. лет, тогда как метод радиоактивной датировки дает гораздо меньшую цифру - около 6 млрд. лет. В 1978г. Д.Казанас и Д.Н.Шрамм из Чикагского университета, основываясь на данных своих наблюдений, пришли к выводу, что лучше всего согласующийся с известными фактами возраст Вселенной должен составлять 13,5-15,5 млрд. лет, что соответствует открытой, вечно расширяющейся вселенной.
С другой стороны, в 1977г. Д.Линден-Белл в Кембридже получил значение Но, примерно равное 110 км/с*Мпс, основываясь при этом на своей модели, разработанной для объяснения кажущегося разбегания со сверхсветовыми скоростями радиокомпонентов некоторых квазаров. Это значение Но, если оно, конечно, верно, должно означать, что определяемый из закона Хаббла возраст Вселенной составляет всего 9 млрд. лет, а эта величина находится на грани противоречия с возрастом, наиболее старых из известных звезд.
Если принять во внимание замедление скорости разбегания галактик (т.е. расширения Вселенной), то возникает существенная проблема, как «увязать» этот возраст с простейшей моделью Большого взрыва. В результатах, опубликованных Д.Хэйнсом в 1979г. в Кембридже, хаббловский возраст Вселенной оценивается в 13 млрд. лет, а в том же году М.Ааронсом в Стьюартской обсерватории, Дж.Хучра в Гарвардском университете и Дж.Моулд в Национальной обсерватории Кит-Пик опубликовали результаты, основанные на измерении светимости галактик в инфракрасном диапазоне, которые указывают на возраст Вселенной около 10 млрд. лет (Но=100 км/с*Мпс).
Еще позднее, в 1980г., Ж.М.Люк, Ж.Л.Бирк и Ш.Ж.Альянд из Парижского университета опубликовали результаты анализа найденного в метеоритах радиоактивного элемента рения, который имеет очень большой период полураспада (половина любого количества этого элемента распадается, превращаясь в осмий, в течение 60 млрд. лет). Сравнивая количества рения и осмия в веществе метеоритов и считая при этом, что рений образовался при взрывах сверхновых на раннем этапе эволюции Вселенной, эти ученые установили, что возраст Вселенной, по-видимому, составляет от 13 до 22 млрд. лет.
Итак, хотя сегодня большинство астрономов и сходятся во мнении, что значение Но должно соответствовать возрасту Вселенной, равному примерно 18 млрд. лет, в этом вопросе по-прежнему имеются большие расхождения, и до сих пор не представляется возможным сравнить возраст Вселенной, следующий из закона Хаббла, с возрастом отдельных составных частей Вселенной, чтобы таким образом оценить степень замедления расширения Вселенной.
www.coolreferat.com
академия им. Т. С. МальцеваКафедра концепции современного естествознанияПроисхождение Вселенной
Теория Большого взрыва
Выполнил: студент I курса, эконо-мического факультета, I группы, I подгруппы Аленькин КонстантинПроверил: Калинин С.С.Лесниково 1999 г.
План:
1. История Вселенной согласно стандартной модели Большого взрыва.
2. Будущее Вселенной.
3. Какая судьба ожидает вечно расширяющуюся Вселенную?
Список использованной литературы.
История Вселенной согласно стандартной модели
Большого взрыва
В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступные пониманию в рамках современной физики. Мы можем лишь размышлять над тем, каковы были те первые мгновения; например, возможно, что четыре фундаментальные силы природы были вначале слиты воедино. Однако есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. Эта самовзаимодействующая масса находилась в состоянии так называемого теплового равновесия.
В те первые мгновения все имевшиеся частицы должны были непрерывно возникать и аннигилировать. Любая материальная частица имеет некоторую массу, и поэтому для ее образования требуется наличие определенной «пороговой , энергии»; пока плотность энергии фотонов оставалась достав точно высокой, могли возникать любые частицы. Мы знаем также, что, когда частицы рождаются из гамма-излучения (фотонов высокой энергии), они рождаются парами, состоящими из частицы и античастицы, например электрона и позитрона. В условии сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц.
Когда возраст Вселенной достиг одной сотой доли секунды, ее температура упала примерно до 1011К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, но некоторые из этих частиц все-таки избежали взаимной аннигиляции со своими античастицами - иначе в современной нам Вселенной не было бы вещества! Через 1 с после Большого взрыва температура понизилась примерно до 1010К, и нейтрино, по существу, перестали взаимодействовать с веществом: Вселенная стала практически прозрачной для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10с уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиляции, оставив после себя лишь незначительное количество электронов, достаточное, однако, для того, чтобы, объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.
Судя по всему, должна была существовать некоторая диспропорция между частицами (протонами, нейтронами, электронами и т. д.) и античастицами (антипротонами, антинейтронами, позитронами и т. д.), так как все частицы (а не только все античастицы) исчезли бы в процессе аннигиляции. В окружающей нас части Вселенной вещества несравнимо больше, чем антивещества, которое лишь изредка встречается в виде отдельных античастиц. Не исключено, конечно, что на ранней стадии эволюции Вселенной в ней были области, где доминировало вещество, и области с преобладанием антивещества - в этом случае возможно существование звезд и целых галактик, состоящих из антивещества; на больших расстояниях они были бы неотличимы от привычных нам звезд и галактик из вещества. Однако у нас нет никаких свидетельств в пользу этого предположения, поэтому более разумным кажется считать, что с самого начала возник небольшой, но заметный дисбаланс частиц и античастиц. В настоящее время разрабатывается ряд теорий, в которых такой дисбаланс находит вполне естественное объяснение.
Через 3 мин после Большого взрыва температура Вселенной понизилась до 109К и возникли подходящие условия для образования атомов гелия: на это были затрачены практически все имевшиеся в наличии нейтроны. Спустя примерно еще минуту почти все вещество Вселенной состояло из ядер водорода и гелия, находившихся примерно в той же количественной пропорции, какую мы наблюдаем сегодня. Начиная с этого момента, расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрачной для электромагнитного излучения - возникло то, что сейчас наблюдают как реликтовое фоновое излучение.
После того как вещество стало прозрачным для электромагнитного излучения, в действие вступило тяготение: оно начало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звезды и планеты - все эти объекты образовались из первичного вещества, которое, в свою очередь, выделилось из быстро остывавшего и терявшего плотность первичного огненного шара; тяготению же предстоит определить путь эволюции и исход жизни всей Вселенной в целом. Тем не менее, многие вопросы, касающиеся эпохи, последовавшей за эпохой отделения излучения от вещества, остаются пока без ответа; в частности, остается нерешенным вопрос формирования галактик и звезд. Образовались ли галактики раньше первого поколения звезд или наоборот? Почему вещество сосредоточилось в дискретных образованиях - звездах, галактиках, скоплениях и сверхскоплениях, - когда Вселенная как целое разлеталась в разные стороны?
Есть два основных взгляда на проблему формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли существовать случайно распределенные области с плотностью выше средней. В результате действия сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества, в которых затем начался процесс фрагментации, приведший к образованию облаков меньших размеров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших - галактических размеров - сгустках опять-таки под действием притяжения в случайных неоднородностях плотности началось формирование звезд. Существует и другая точка зрения на ход развития событий: вначале из флуктуаций плотности в расширяющемся первичном шаре сформировались многочисленные (малые) галактики, которые с течением времени объединились в скопления, в сверхскопления и, возможно, даже в более крупные иерархические структуры.
Главным пунктом в этом споре является вопрос, имел ли процесс Большого взрыва вихревой, турбулентный, характер или протекал более гладко. Турбулентности в крупномасштабной структуре сегодняшней Вселенной отсутствуют. Вселенная выглядит удивительно сглаженной в крупных масштабах; несмотря на некоторые отклонения, в целом далекие галактики и скопления распределены по всему небу в высшей степени равномерно, а степень изотропности фонового излучения также довольно высока (выше, чем 1:3000). Все эти факты, видимо, говорят о том, что Большой взрыв был безвихревым, упорядоченным процессом расширения. Но откуда же в таком случае возникли флуктуации плотности, ставшие позднее галактиками? Решение этого вопроса затрудняется тем, что мы не располагаем наблюдательными данными, относящимися к критическому моменту образования звездных систем;
Согласно общепринятой точке зрения, микроволновое фоновое излучение дает нам информацию о той эпохе, когда возраст Вселенной насчитывал примерно 700 000 лет, чему соответствует красное смещение около 1000. Самый далекий от нас квазар имеет смещение 3,6, т.е. наблюдаемый свет этого квазара был испущен им, когда возраст Вселенной составлял чуть меньше 2 млрд. лет. В промежутке времени от 700 000 до 2 млрд. лет во Вселенной должно было произойти многое, в том числе сформировались галактики. Тем не менее, последние данные, скорее всего, свидетельствует в пользу второй из двух упомянутых выше гипотез, согласно которой образование галактик предшествовало формированию скоплений и сверхскоплений.
Успешное объяснение ряда явлений с помощью модели Большого взрыва привело к тому, что, как правило, не вызывает сомнения реальность происхождения микроволнового фонового излучения из расширяющегося первичного огненного шара в тот момент, когда вещество Вселенной стало прозрачным. Возможно, однако, что это слишком простое объяснение. В 1978 г., пытаясь найти обоснование для наблюдаемого соотношения фотонов и барионов (барионы - «тяжелые» элементарные частицы, к которым, в частности, относятся протоны и нейтроны) - 108:1, - М.Рис высказал предположение, что фоновое излучение может быть результатом «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет; многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые частично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смещения, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение.
Эта точка зрения не получила широкого признания, однако интересно отметить, что в 1979 г. Д.П.Вуди и П.Л.Ричарде из Калифорнийского университета опубликовали результаты наблюдений, как будто указывающие на некоторые отклонения характеристик микроволнового фонового излучения от кривой излучения абсолютно черного тела: кривая фонового излучения выглядит «острее», чем ей следовало бы быть. Позднее в том же году М.Роуэн-Робинсон, Дж.Негропонте и Дж.Силк (Колледж королевы Марии, Лондон) указали, что «горб» на кривой микроволнового излучения, обнаруженный Вуди и Ричардсом, может быть объяснен излучением пылевых облаков, образовавшихся вслед за «эпидемией» массового формирования звезд, что соответствует гипотезе М. Риса. Пока рано говорить, выдержит ли эта новая идея последующий анализ, но если она соответствует истине, то это означает, что подавляющее количество всей массы Вселенной содержится в невидимых остатках звезд первичного, догалактического, поколения ив настоящее время может находиться в массивных темных гало, окружающих яркие галактики, которые мы наблюдаем сегодня.
Будущее Вселенной
Оставляя в стороне спорный вопрос, касающийся образования галактик, посмотрим, что говорят современная теория и данные наблюдений относительно будущего развития Вселенной и ее вероятного конца.
Вне всякого сомнения, именно гравитационное взаимодействие определит дальнейший ход событий. Достаточно ли во. Вселенной вещества для того, чтобы силы тяготения в конечном счете остановили процесс расширения и заставили галактики вновь начать падать друг на друга, в результате чего Вселенная закончила бы свое существование в неком «Большом сжатии». Или же наоборот. Вселенная будет расширяться бесконечно?
Процесс расширения Вселенной можно рассматривать, используя уже знакомое нам понятие скорости убегания. Согласно закону всемирного тяготения Ньютона, эффективная гравитационная сила, действующая на частицу, находящуюся внутри пустой сферической оболочки, равна нулю—. притяжение, вызываемое разными частями оболочки, взаимно компенсируется. То же имеет место и в общей теории относительности. Следовательно, если выбрать для исследования типичную сферическую область Вселенной, то все остальное можно считать полой толстостенной оболочкой, расположенной вне интересующей нас области, поскольку в силу космологического принципа все направления во Вселенной равноправны, а вещество в ней распределено равномерно. Тогда можно допустить, что на галактику, расположенную у края выбранной нами области, действуют силы притяжения только со стороны вещества, находящегося внутри выбранной сферы. Если это вещество распределено равномерно, то галактика будет притягиваться к центру сферы так, как если бы там была сосредоточена вся заключенная внутри сферы масса. В своем движении относительно центра сферы эта «пробная» галактика должна вести себя, как снаряд, выпущенный «наружу» из этой точки. Если скорость галактики достаточно велика, т. е. если она превышает скорость убегания, характерную для этой сферической области, то галактика будет продолжать свое движение вечно (открытая вселенная), но если скорость галактики недостаточна, то она в конце концов уменьшится до нуля, после чего галактика начнет двигаться к центру сферы (замкнутая вселенная).
Зная скорость разбегания галактик - она определяется значением постоянной Хаббла, - можно оценить необходимую величину массы, которая должна содержаться в данном объеме пространства, чтобы расширение когда-то прекратилось; иначе говоря, требуется рассчитать среднее значение плотности вещества, которая обеспечила бы существование замкнутой вселенной. Если окажется, что средняя плотность вещества превышает некоторое значение, называемое критической плотностью, то Вселенная через какое-то время должна перестать расширяться - тогда поле битвы останется за силами тяготения и коллапс вещества Вселенной будет неизбежным.
Принимая Но=55 км/с*Мпс, находим, что значение критической плотности примерно равно 5-10-27 кг/м3, или в среднем примерно 3 атома водорода в 1 м3 - это очень немного! При такой плотности Вселенная должна быть очень большой, а вещество в ней - очень разреженным. Определение средней плотности вещества во Вселенной - одна из важнейших задач современной астрономии.
Другой способ выяснения, открыта или замкнута Вселенная, заключается в непосредственном измерении замедления расширения, т.е. в измерении величины, известной под названием параметра замедления qо. Производя наблюдения очень удаленных объектов, мы как бы путешествуем во времени в далекое прошлое, когда - если верна теория Большого взрыва - Вселенная расширялась быстрее, чем сейчас. В принципе, производя измерения в очень широком интервале расстояний до галактик и их красных смещений, можно выявить отклонения от закона Хаббла вплоть до самых удаленных звездных систем. Но на практике этот метод не дал, по крайней мере на сегодняшний день, согласующихся между собой надежных результатов. Здесь остается еще много трудностей, включая проблему правильной оценки расстояний и возможность неизвестных пока процессов эволюции: например, вполне возможно, что в прошлом галактики имели большую светимость, чем сейчас, но вопрос в том, насколько большую? Чтобы определить, является ли наша Вселенная открытой или замкнутой, необходимо исследовать объекты с красным смещением выше 0,5, а это соответствует расстояниям, значительно превышающим те, на которых можно увидеть обычные галактики (положение может изменить космический телескоп, выведенный на орбиту вокруг Земли, создание которого планируется на 80-е годы). Ясно, что в качестве объектов исследования следует взять квазары, но в их природе, эволюции и расстояниях до них слишком много неясного, так что надежность полученных результатов остается пока сомнительной. На сегодняшний день мы располагаем наблюдательными данными, свидетельствующими в пользу как открытой, так и замкнутой модели.
Предпринимались также попытки определять возраст Вселенной разными методами и сравнивать его с хаббловским временем - тем возрастом, который имела бы Вселенная, не будь замедления расширения (около 18 млрд. лет при Но=55 км/с*Мпс). Оценки возраста самых старых звезд в шаровых скоплениях, делавшиеся на основе их химического состава с использованием современных теорий звездной эволюции, дали значения в интервале 8-18 млрд. лет, тогда как метод радиоактивной датировки дает гораздо меньшую цифру - около 6 млрд. лет. В 1978г. Д.Казанас и Д.Н.Шрамм из Чикагского университета, основываясь на данных своих наблюдений, пришли к выводу, что лучше всего согласующийся с известными фактами возраст Вселенной должен составлять 13,5-15,5 млрд. лет, что соответствует открытой, вечно расширяющейся вселенной.
С другой стороны, в 1977г. Д.Линден-Белл в Кембридже получил значение Но, примерно равное 110 км/с*Мпс, основываясь при этом на своей модели, разработанной для объяснения кажущегося разбегания со сверхсветовыми скоростями радиокомпонентов некоторых квазаров. Это значение Но, если оно, конечно, верно, должно означать, что определяемый из закона Хаббла возраст Вселенной составляет всего 9 млрд. лет, а эта величина находится на грани противоречия с возрастом, наиболее старых из известных звезд.
Если принять во внимание замедление скорости разбегания галактик (т.е. расширения Вселенной), то возникает существенная проблема, как «увязать» этот возраст с простейшей моделью Большого взрыва. В результатах, опубликованных Д.Хэйнсом в 1979г. в Кембридже, хаббловский возраст Вселенной оценивается в 13 млрд. лет, а в том же году М.Ааронсом в Стьюартской обсерватории, Дж.Хучра в Гарвардском университете и Дж.Моулд в Национальной обсерватории Кит-Пик опубликовали результаты, основанные на измерении светимости галактик в инфракрасном диапазоне, которые указывают на возраст Вселенной около 10 млрд. лет (Но=100 км/с*Мпс).
Еще позднее, в 1980г., Ж.М.Люк, Ж.Л.Бирк и Ш.Ж.Альянд из Парижского университета опубликовали результаты анализа найденного в метеоритах радиоактивного элемента рения, который имеет очень большой период полураспада (половина любого количества этого элемента распадается, превращаясь в осмий, в течение 60 млрд. лет). Сравнивая количества рения и осмия в веществе метеоритов и считая при этом, что рений образовался при взрывах сверхновых на раннем этапе эволюции Вселенной, эти ученые установили, что возраст Вселенной, по-видимому, составляет от 13 до 22 млрд. лет.
Итак, хотя сегодня большинство астрономов и сходятся во мнении, что значение Но должно соответствовать возрасту Вселенной, равному примерно 18 млрд. лет, в этом вопросе по-прежнему имеются большие расхождения, и до сих пор не представляется возможным сравнить возраст Вселенной, следующий из закона Хаббла, с возрастом отдельных составных частей Вселенной, чтобы таким образом оценить степень замедления расширения Вселенной.
Какая судьба ожидает вечно расширяющуюсяВселенную?
Если наша Вселенная будет неограниченно расширяться - а об этом свидетельствуют почти все данные наблюдений, - то что ее ожидает в будущем? По мере расширения пространства материя становится все более разреженной, галактики и скопления все более удаляются друг от друга, а температура фонового излучения неуклонно приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарных частиц и холодного излучения будут бессмысленно разлетаться в непрерывно разрежающейся пустоте.
Впрочем, черные дыры не останутся без работы. Имея на то достаточно времени, черные дыры поглотят огромное количество вещества Вселенной. Если теория Хокинга верна, то черные дыры будут испускать излучение, но черным дырам с массой Солнца потребуется очень длительное время, прежде чем это что-то заметно изменит. Фоновое излучение остынет гораздо раньше, чем черные дыры начнут излучать больше, чем они будут поглощать из этого фонового излучения. Такой момент наступит только тогда, когда возраст Вселенной станет примерно в десять миллионов раз больше предполагаемого на сегодня. Должно пройти около 1066 лет, прежде чем черные дыры солнечной массы начнут взрываться, выбрасывая потоки частиц и излучения.
Дж.Б.Берроу из Оксфордского университета и Ф.Тип-лер из Калифорнийского университета нарисовали такую картину отдаленного будущего неограниченно расширяющейся вселенной. Даже внутри старой нейтронной звезды сохраняется еще достаточно энергии, чтобы время от времени сообщать частицам, находящимся вблизи ее поверхности, скорость, превышающую скорость убегания; предполагается, что в результате этого через достаточно продолжительное время все вещество нейтронной звезды должно испариться. Распадутся и черные дыры, вызвав рождение (в равных пропорциях) частиц и античастиц. По мнению Берроу и Типлера, если запас энергии во Вселенной достаточен только для того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно-позитронных парах перевесит и гравитационное притяжение, и общее расширение Вселенной как целого; поэтому за конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадией существования материи окажутся не разлетающиеся холодные темные тела или черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры.
Второе начало термодинамики предсказывает, что конец Эволюции Вселенной наступит, когда выравняется температура ее вещества - так как тепло передается от более теплых тел к более холодным, различие их температур со временем сглаживается и совершение работы становится невозможным. Эта мысль о «тепловой смерти» Вселенной была высказана еще в 1854г. Германом Гельмгольцем (1821-1894). Небезынтересно отметить, что наше современное представление о неограниченно расширяющейся Вселенной вместе с концепцией квантового излучения черных дыр, которая основана на аналогии между гравитацией и термодинамикой, по существу, привело, только более кружным путем, к выводам, сделанным Гельмгольцем.
Мы не знаем с определенностью, каков должен быть исход противоборства расширения Вселенной и гравитационного притяжения ее вещества. Если победит тяготение, Вселенная когда-нибудь сколлапсирует в процессе Большого сжатия, которое может оказаться либо концом ее существования, либо прелюдией к новому циклу расширения. Бел» же силы тяготения проиграют сражение, то расширение будет продолжаться неограниченно долго, но тем не менее гравитация будет играть существенную роль в определении окончательного состояния вещества Вселенной: станет ли оно безбрежным морем однородного излучения или же будет рассеиваться множеством темных холодных масс. В неясном далеком будущем прошедшая эпоха звездной активности может показаться лишь кратчайшим мгновением в бесконечной жизни Вселенной.
Так неужели, же Вселенная обречена на вечное расширение? Пока все данные говорят именно об этом, хотя нельзя без боли думать о превращении нашего удивительного и сложного мира в бесформенную темную пустоту. По-видимому, многим была бы больше по душе пульсирующая модель, дающая надежду на возрождение пусть не живых существ, но по крайней мере таких привычных нам вещей, как вещество и излучение. Однако, что бы мы ни предпринимал», это не изменит ни плотности космического вещества, ни судьбы космоса - нам остается принимать его таким, каков он есть: Вселенную не выбирают.Список использованной литературы:
1. И. Николсон. Тяготение, чёрные дыры и Вселенная. 1983г.
2. И. Д. Новиков. Чёрные дыры и Вселенная. 1985г.
3. И. Д. Новиков. Эволюция Вселенной. 1982г.
4. Дж. Силк. Большой взрыв. Рождение и эволюция Вселенной. 1982г.
bukvasha.ru
works.tarefer.ru