Доклад: Гравитационное взаимодействие системы Земля – Луна. Реферат система земля луна


Система Земля - Луна » Привет Студент!

 

Проблемы, связанные с образованием Луны, рассматривались большей частью отдельно от общих космогонических теорий солнечной системы, описанных выше. Луна представляет собой довольно аномальное тело солнечной системы. Она обладает гораздо большей массой по сравнению с массой своей главной планеты, в отличие от любого другого спутника в солнечной системе. Луна характеризуется необычно низкой плотностью: в среднем всего лишь 3,34 г/см3, что ниже плотности метеоритов и намного меньше средней плотности внутренних планет типа Земли. Эти необычные характеристики дали повод многим ученым для утверждения, что образование Луны довольно необычное событие в истории солнечной системы.

Существует четыре основных типа теорий, пытающихся объяснить происхождение Луны. Это теории деления, теории атмосферной конденсации, теории двойных планет, согласно которым Луна образуется на орбите вокруг Земли, и теории захвата, допускающие возможность образования Луны где-то в другом месте солнечной системы и ее последующего захвата Землей. Все эти теории имеют своих приверженцев и в настоящее время. Проведенные в последнее время исследования Луны и лунных пород дали в руки ученых большое количество граничных условий, которым должны удовлетворять эти теории, но не дающие пока возможности остановить выбор на какой-либо одной из них.

В теории деления предполагается, что Луна оказалась на орбите вокруг Земли в результате какой-то катастрофы, происшедшей с Землей. Впервые такая теория была выдвинута Джорджем Дарвином в последние годы XIX столетия. Дарвин полагал, что первоначально период вращения Земли составлял около 4 час., т. е. что он примерно в два раза превышал резонансный период Земли. Вследствие этого на Земле могли возникнуть огромные приливные горбы, в результате отделения одного из которых и образовалась Луна. Эта теория в 1930 г. была подвергнута серьезной критике Джефрейсом, согласно которому приливная диссипация должна быть слишком велика, чтобы могло произойти отделение Луны. Несколько позднее появились модифицированные приливные теории, согласно которым предполагалось, что Земля на ранних стадиях своего развития вращалась еще быстрее, в режиме, близком к ротационной неустойчивости, причем такая ротационная неустойчивость, имевшая место во время образования железного ядра Земли, снижает момент инерции и повышает скорость вращения до уровня, превышающего скорость, достаточную для разрыва. Если бы Земля действительно вращалась настолько быстро, чтобы это могло произойти, то ее первоначальный момент количества движения намного превышал бы теперешний угловой кинетический момент системы Земля — Луна, в связи с чем потребовалось бы искать процесс, объясняющий уменьшение момента количества движения.

Теории атмосферной конденсации, или, по выражению Рингвуда, теории осадков, исходят из предположения образования Луны с небольшим содержанием внутреннего железа. Сторонники этих теорий считают, что Земля образовалась в пространстве очень быстро, так что растущая Земля сохраняла большое количество гравитационной энергии аккумуляции, а ее внешние слои должны были быть в таком сильном разогретом состоянии, что силикаты, а также продукты их распада присутствовали в этих слоях в газообразной форме. Если такая система приходит в столкновение с крупной планетезималью, то под ее влиянием она начинает быстро вращаться, при этом внешняя часть атмосферы может быть вовлечена в орбитальное движение и из нее может произойти выпадение кремниевых веществ, требующихся для образования Луны. Из этих кремниевых обломков на орбите вокруг Земли и образуется затем Луна.

Многие исследователи высказывали предположение о том, что Луна образовалась поблизости от Земли как самостоятельное тело в процессе формирования солнечной системы. Основная трудность, возникающая перед сторонниками этой гипотезы, состоит в том, что необходимо дать объяснение низкой плотности Луны, причем до сих пор еще не было предложено никакого простого механизма, который помог бы объяснить, каким образом могла возникнуть Луна с плотностью, намного уступающей плотности Земли, если вещества, из которых образовались эти два небесных тела, подобны. Луна должна была образоваться довольно близко к Земле. Некоторые расчеты орбитального движения Луны, проведенные при обратном отсчете времени, показывают, что Луна была близка к Земле значительно позднее того времени, когда образовалась Земля, однако эти расчеты обычно допускают постоянное запаздывание приливной фазы, а неопределенность в фактическом запаздывании фазы приливной волны вносит соответствующую неопределенность в шкалу времени. Высказывались различные варианты образования простейшей двойной планеты. Так, например, два возможных варианта теории были предложены Мак-Дональдом. Согласно первому варианту, на орбите около Земли образовался небольшой спутник Земли. Этот спутник столкнулся с приблизившимся более крупным небесным телом, в результате чего произошел захват последнего. Согласно второму варианту, около земной орбиты происходила аккумуляция множества мелких тел, подобно спутникам планет-гигантов, причем наиболее близко расположенное к центру и наиболее массивное из них удалялось от Земли под влиянием приливного торможения, захватывая при своем удалении другие тела.

Существует много различных гипотез захвата Луны. Они имеют как геохимический, так и динамический характер. В геохимическом варианте теории захвата рассматриваются возможные условия, способные объяснить низкую среднюю плотность лунного вещества, однако остаются в стороне детали динамики захвата. Динамическая теория, наоборот, игнорирует геохимические аспекты, концентрируя все внимание на механизме диссипации независимого движения Луны, ведущем к ее захвату, и последующей динамической истории лунной орбиты. В последнее время относительно подробно динамические теории рассматривались Каулом. В своем первоначальном виде, по мнению Герстенкорна, теории захвата исходят из того, что на первых порах Луна сближалась с Землей, двигаясь по орбите в обратном направлении, а затем над полюсом Земли произошло обращение этой эллиптической орбиты в орбиту прямого движения. Все эти варианты теории встречаются с трудностями, так как они пренебрегают важными деталями динамики. Наиболее современная формулировка динамической теории захвата Луны с орбиты прямого движения принадлежит Зингеру. По окончательному мнению Каулы, динамические теории захвата Луны маловероятны, но не исключены.

Перед всеми этими теориями стоит важнейшая задача: дать объяснение низкой средней плотности Луны. Сторонникам теории распада и атмосферной конденсации необходимо найти приемлемый единый механизм химической дифференциации, действующий до разделения Земли и Луны. Этот механизм, имеющий важное значение, выпадает из теорий, допускающих аккумуляцию Луны на околоземной орбите из вещества, подобного земному, что является главным недостатком этих теорий. Несколько лучше положение с теориями захвата, если иметь в виду, что условия для образования небесного тела лунного состава существуют в других частях солнечной туманности.

Несколько лет назад считалось, что обилие железа по отношению к кремнию на Солнце значительно меньше, чем в метеоритах или планетах земного типа. Это послужило для Юри отправным моментом при построении теории происхождения Луны, согласно которой Луна образовалась из конденсированной фракции солнечного вещества и поэтому характеризуется относительно низким содержанием железа и невысокой средней плотностью. Согласно этой теории, Луна представляет собой всего лишь одно из многих небесных тел солнечной системы, возникших в результате первичной конденсации. Предполагается, что в результате столкновения большинства этих тел друг с другом происходило фракционирование силикатов и железа и сосредоточение железа в выживающих планетах. Луна не была затронута этим процессом и была захвачена Землей как первичный небесный объект. Однако в последнее время было установлено, что в оценке сил осцилляторов линий железа, используемых для определения обилия железа на Солнце, была допущена ошибка и что отношение обилий железа и кремния на Солнце в общем соответствует обилию этих элементов в метеоритах и планетах земного типа.

Проведенные недавно анализы образцов лунного вещества показали, что верхние слои Луны обогащены алюминием, кальцием и титаном. То, что окислы и силикаты этих металлов являются в первую очередь теми основными жаропрочными материалами, которые могли конденсироваться из газа при высокой температуре, позволило Гасту предположить, что, когда Луна оформилась как небесное тело, ее внешние слои образовались из таких конденсатов с очень высокой температурой. Эта точка зрения была развита недавно Андерсоном, высказавшим мысль о том, что вся Луна в целом явилась продуктом полного химического фракционирования таких высокотемпературных конденсатов. Если эта точка зрения верна, то образование Луны должно было произойти в области первичной солнечной туманности с гораздо более высокой температурой, чем та, в которой образовалась основная часть Земли. В связи с этим Камерон предположил, что такая гипотеза позволяет считать местом образования Луны пространство в пределах орбиты Меркурия, где вследствие возмущений первоначальной лунной орбиты под влиянием Меркурия лунная орбита приняла форму сильно вытянутого эллипса. С этой орбиты Луна была захвачена Землей, что одновременно послужило и причиной необычайно большого эксцентриситета орбиты Меркурия.

Ученые, посвятившие себя изучению Земли, собрали огромное количество сведений, относящихся к физической и химической истории ее развития. Однако их выводы еще порой содержат противоречия принципиального характера, намного снижающие достоверность нашего знания раннего периода эволюции Земли. Возраст древнейших пород, определенный по распаду радиоактивных элементов, содержащихся в Земле, составляет всего лишь около 4*109 лет. С другой стороны, большое количество данных указывает на то, что возраст солнечной системы составляет 4,6 *109 лет. Первые несколько сотен миллионов лет эволюции Земли продолжают оставаться для ученых, занимающихся прямыми геологическими исследованиями, загадкой.

Один из основных спорных моментов — была ли Земля во время ее образования очень холодной или очень горячей. В самые первые годы нашего столетия геологи склонны были считать, что Земля на ранних стадиях своего существования находилась в полностью расплавленном состоянии, и, несомненно, что утверждению этой точки зрения способствовали дуалистические теории образования солнечной системы, согласно которым Земля представлялась как тело, сконденсировавшееся в горячем состоянии из оторвавшегося от Солнца волокна горячих газов. Однако около двух десятилетий назад против этой господствовавшей точки зрения выступил Юри, указавший, что некоторые летучие элементы, присутствующие в больших количествах в Земле, не могли бы входить в состав Земли, если бы она образовалась путем конденсации из такого очень горячего газового волокна. На основании этого Юри сделал вывод о том, что Земля образовалась из остывшего сконденсировавшегося вещества, температура которого не превышала нескольких сотен градусов Цельсия. При этом вполне допустимо, что сливавшиеся с Землей небольшие сконденсировавшиеся тела были довольно холодными, так как сам процесс аккумуляции может привести к образованию очень горячего тела, однако удерживать весьма летучие вещества такое тело становится способным только после того, как оно приобретает довольно значительную массу.

Первоначальная внутренняя температура Земли в сильной степени зависела от времени, необходимого для аккумуляции Земли. Если представить тело, которое растет непрерывно за счет аккумуляции сравнительно небольших частиц на гораздо большем по размерам ядре, то в момент, когда эти частицы приходят в контакт с поверхностью увеличивающегося в размерах тела, происходит высвобождение энергии гравитационного потенциала. Основная доля высвобождаемой энергии гравитационного потенциала излучается поверхностью в окружающее пространство. Однако чем выше скорость аккумуляции, тем выше должна быть температура поверхности, из которой происходит излучение в пространство основной доли энергии. Эта температура излучающей поверхности становится мерилом внутренней температуры Земли. Если образование Земли происходит по шкале времени, характерной для газовой диссипации первичной солнечной туманности, т. е. в течение времени порядка 103 лет, то внутренние температуры Земли должны быть порядка 5000—10000° К. При таких высоких температурах большая часть твердых веществ может существовать только в газообразном виде, образуя горячую протяженную атмосферу Земли. Такая гипотеза может служить основой для теорий атмосферной конденсации происхождения Луны. Однако вскоре эта горячая атмосфера должна потерять большую часть своего тепла за счет излучения в пространство, и, вероятно, через несколько тысяч лет должна была произойти ее конденсация в расплавленную каменистую массу.

В тесной связи с неопределенностями тепловой истории Земли находится проблема происхождения атмосферы и океанов Земли. В 1951 г. Руби собрал большое число данных геологических исследований, свидетельствующих в пользу мнения о том, что океаны были образованы за счет выделения газов из внутренней части Земли. Руби сделал вывод, что такой процесс выделения газов был очень длительным, выделение воды все еще происходит и в настоящее время. Однако мнение о том, что выделение первичной воды из недр Земли все еще продолжается, не нашло подтверждения, а исследования воды, поступающей в настоящее время из недр, показывают, что это в основном вода, рециркулировавшая с поверхности в недра Земли.

В то же время Браун указывал, что распространенность кислорода и азота в земной атмосфере на несколько порядков больше распространенности редких газов. Это позволяет считать, что атмосфера образовалась в основном некоторым другим путем за счет выделения газов изнутри Земли, поскольку в Землю небольшими остывшими телами, участвовавшими в процессе аккумуляции, могли быть привнесены в больших количествах только химически связанные элементы. Таким образом, имеющиеся в нашем распоряжении в настоящее время данные указывают на то, что как океаны, так и атмосфера Земли образовались в основном за счет выделения газов из недр Земли.

Обилие на Земле редких газов не сходно с их распространенностью на Солнце, а носит скорее сильно фракционированный характер, свойственный распространенности редких газов, абсорбированных метеоритами. Таким образом, видимо, даже редкие газы, присутствующие в земной атмосфере в небольших количествах, были занесены на Землю телами небольшого размера.

Эти соображения имеют важное значение для проблем, связанных с изучением происхождения жизни на Земле. Имеющиеся в распоряжении ученых данные указывают на то, что первичная атмосфера, образовавшаяся на Земле после ее конденсации из солнечной туманности, была, по-видимому, сметена очень сильным солнечным ветром на стадии звезды Т Тельца. А уже после этого произошло выделение из недр Земли теперешней атмосферы и океанов. Многие биохимические исследования, связанные с изучением происхождения жизни на Земле, допускают, что по своему составу первичная атмосфера Земли должна быть близка к составу Солнца и составляющими ее газами должны были являться водород, аммиак, метан и водяные пары. Однако вторичная атмосфера содержит значительно меньше водорода. Выделение азота частично могло происходить в форме аммиака, углерода — в виде метана или других газовых органических соединений, а выделение основной массы, по-видимому, происходило в виде двуокиси углерода. Поэтому при биохимическом изучении ранней стадии развития жизни на Земле лучше исходить из предположения, что по составу атмосфера состоит в основном из водяных паров и двуокиси углерода, а также из небольшого количества избыточного водорода в виде аммиака и метана.

Таким образом, происхождение жизни на Земле представляется нам как естественная последовательность длинной цепи физических и химических процессов, связанных с эволюцией Вселенной, многие стороны которой остаются для нас не разгаданными. Под влиянием этой кажущейся неизбежной последовательности процессов сложилось мнение о том, что планетные системы имеют очень широкое распространение в нашей Галактике и во всей Вселенной, что в значительной части этих планетных систем существуют планеты, пригодные для жизни, что общие геохимические условия этих планет сходны с геохимическими условиями на Земле и что развитие жизни и, возможно, разумных существ является весьма распространенным явлением.

 

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

privetstudent.com

Система Земля-Луна. Астрономия

Система Земля-Луна

Система Земля-Луна

Естественным спутником Земли будет Луна — несветящееся тело, кᴏᴛᴏᴩое демонстрирует солнечный свет.

Изучение Луны началось в 1959 г., когда советский аппарат «Луна-2» впервые сел на Луну, а с аппарата «Луна-3» впервые были сделаны из космоса снимки обратной стороны Луны.

В 1966 г. аппарат «Луна-9» совершил посадку на Луну и установил прочную структуру грунта.

Первыми, кто побывал на Луне, стали американцы Нейл Армстронг и Эдвин Олдрин. Это произошло 21 июля 1969 г. Советские ученые для дальнейшего изучения Луны предпочли использовать автоматические аппараты — луноходы.

Общие характеристики Луны

Средняя удаленность от Земли, км

384 399

Перигей

Апогей

Среднее расстояние между центрами Земли и Луны, км

384 467

Наклон орбиты к плоскости ее орбиты

5°08'43,4"

Средняя орбитальная скорость

Средний радиус Луны, км

1737,10

Масса, кг

7,3476 * 1022

Экваториальный радиус, км

1738,14

Стоит сказать - полярный радиус, км

1735,97

Средняя плотность, г/см3

3,351

Наклон к экватору, град.

18,28-28,58

Масса Луны составляет 1/81 массы Земли. Стоит сказать - положение Луны на орбите ϲᴏᴏᴛʙᴇᴛϲᴛʙует той или иной фазе (рис. 1).

Рисунок № 1. Фазы Луны

Фазы Луны — различные положения относительно Солнца — новолуние, первая четверть, полнолуние и последняя четверть. В полнолуние виден освещенный диск Луны, так как Солнце и Луна находятся на противоположных сторонах от Земли. В новолуние Луна находится на стороне Солнца, по϶ᴛᴏму сторона Луны, обращенная к Земле, не освещается.

К Земле Луна обращена всегда одной стороной.

Линию, кᴏᴛᴏᴩая отделяет освещенную часть Луны от неосвещенной, называют терминатором.

В первой четверти Луна видна на угловом расстоянии 90" от Солнца, и солнечные лучи освещают исключительно правую половину обращенной к нам Луны. В остальных фазах Луна видна нам в виде серпа. По϶ᴛᴏму, ɥᴛᴏбы отличить растущую Луну от старой, надо помнить: старая Луна напоминает букву «С», а если Луна растущая, то можно мысленно перед Луной провести вертикальную линию и получится буква «Р».

Из-за близости Луны к Земле и ее большой массы они образуют систему «Земля-Луна». Луна и Земля вращаются вокруг ϲʙᴏих осей в одну сторону. Плоскость орбиты Луны наклонена к плоскости орбиты Земли под углом 5°9'.

Места пересечения орбит Земли и Луны называют узлами лунной орбиты.

Сидерический (от лат. сидерис — звезда) месяц — ϶ᴛᴏ период вращения Земли вокруг ϲʙᴏей оси и одинакового положения Луны на небесной сфере по отношению к звездам. Стоит заметить, что он составляет 27,3 земных суток.

Синодическим (от греч. синод — соединение) месяцем называют период полной смены лунных фаз, т. е. период возвращения Луны в первоначальное положение относительно Луны и Солнца (например, от новолуния до новолуния). Стоит заметить, что он составляет в среднем 29,5 земных суток. Синодический месяц на двое суток длиннее сидерического, так как Земля и Луна вращаются вокруг ϲʙᴏих осей в одну сторону.

Сила тяжести на Луне в 6 раз меньше силы тяжести на Земле.

Рельеф спутника Земли хорошо изучен. Видимые темные участки на поверхности Луны названы «морями» — ϶ᴛᴏ обширные безводные низменные равнины (самая крупная — «Оксан Бурь»), а светлые участки — «материками» — ϶ᴛᴏ гористые, возвышенные участки. Стоит отметить, что основные же планетарные структуры лунной поверхности — кольцевые кратеры диаметром до 20-30 км и многокольцевые цирки диаметром от 200 до 1000 км.

Происхождение у кольцевых структур различное: метеоритное, вулканическое и ударно-взрывное. Кроме ϶ᴛᴏго, на поверхности Луны имеются трещины, сдвиги, купола и системы разломов.

Исследования космических аппаратов «Луна-16», «Луна-20», «Луна-24» показали, что поверхностные обломочные породы Луны сходны с земными магматическими породами — базальтами.

Значение Луны в жизни Земли

Хотя масса Луны в 27 млн раз меньше массы Солнца, она в 374 раза ближе к Земле и оказывает на нес сильное влияние, вызывая поднятия воды (приливы) в одних местах и отливы в других. Это происходит каждые 12 ч 25 мин, так как Луна делает полный оборот вокруг Земли за 24 ч 50 мин.

Из-за гравитационного воздействия Луны и Солнца на Землю возникают приливы и отливы (рис. 2).

Рисунок № 2. Схема возникновения приливов и отливов на Земле

В наибольшей степени отчетливы и важны по ϲʙᴏим следствиям прилив- но-отливные явления в волной оболочке. Стоит заметить, что они представляют собой периодические подъемы и опускания уровня океанов и морей, вызываемые силами притяжения Луны и Солнца (в 2,2 раза меньше лунной).

В атмосфере приливно-отливные явления пробудут в полусуточных изменениях атмосферного давления, а в земной коре — в деформации твердого вещества Земли.

На Земле наблюдаются 2 прилива в ближайшей и удаленной от Луны точке и 2 отлива в точках, находящихся на угловом расстоянии 90° от линии Луна — Земля. Выделяют сигизийные приливы, кᴏᴛᴏᴩые возникают в новолуние и полнолуние и квадратурные — в первой и последней четверти.

В открытом океане приливно-отливные явления невелики. Колебания уровня воды достигает 0,5-1 м. Во внутренних морях (Черное, Балтийское и др.) они почти не ощущаются. При этом в зависимости от географической широты и очертаний береговой линии материков (особенно в узких заливах) вода во время приливов может подниматься до 18 м (залив Фанди в Атлантическом океане у берегов Северной Америки), 13 м на западном побережье Охотского моря. При ϶ᴛᴏм образуются приливно-отливные течения.

Основное значение приливных волн состоит по сути в том, что, перемешаясь с востока на запад вслед за видимым движением Луны, они тормозят осевое вращение Земли и удлиняют сутки, изменяют фигуру Земли с помощью уменьшения полярного сжатия, вызывают пульсацию оболочек Земли, вертикальные смещения земной поверхности, полусуточные изменения атмосферного давления, изменяют условия органической жизни в прибрежных частях Мирового океана и, наконец, влияют на хозяйственную деятельность приморских стран. В целый ряд портов морские суда могут заходить только во время прилива.

Через определенный промежуток времени на Земле повторяются солнечные и лунные затмения. Увидеть их можно, когда Солнце, Земля и Луна находятся на одной линии.

Затмение — астрономическая ситуация, при кᴏᴛᴏᴩой одно небесное тело заслоняет свет от другого небесного тела.

Солнечное затмение происходит, когда Луна попадает между наблюдателем и Солнцем и загораживает его. Поскольку Луна перед затмением обращена к нам неосвещенной стороной, перед затмением всегда бывает новолуние, т. е. Луна не видна. Создается впечатление, что Солнце закрывается черным диском; наблюдающий с Земли видит ϶ᴛᴏ явление как солнечное затмение (рис. 3).

Рисунок № 3. Солнечное затмение (относительные размеры тел и расстояния между ними условны)

Лунное затмение наступает, когда Луна, находясь на одной прямой с Солнцем и Землей, попадает в конусообразную тень, отбрасываемую Землей. Диаметр пятна тени Земли равен минимальному расстоянию Луны от Земли — 363 000 км, что составляет около 2,5 диаметра Луны, по϶ᴛᴏму Луна может быть затенена целиком (см. рис. 3).

Лунные ритмы — ϶ᴛᴏ повторяющиеся изменения интенсивности и характера биологических процессов. Существуют лунно-месячные (29,4 сут) и лунно-суточные (24,8 ч) ритмы. Многие животные, растения размножаются в определенную фазу лунного цикла. Лунные ритмы ϲʙᴏйственны многим морским животным и растениям прибрежной зоны. Так, у людей замечено изменение самочувствия в зависимости от фаз лунного цикла.

xn--80aatn3b3a4e.xn--p1ai

3 Система земля-луна

В процессе формирования Солнечной системы на орбите Земли образовалась двойная планета Земля-Луна. Луна хоть и является спутником, но относительно так велика и находится так близко к Земле (384440 км), что фактически образует с ней систему двух планет. Поперечник Луны составляет 1/4 земного (3474 км), объем в 49 раз меньше объема Земли средняя плотность - 3,35 г/см3, сила тяжести в шесть раз меньше, чем на Земле.

Полный оборот Луна вокруг Земли делает за 27,3 суток (звездный или сидери ческий месяц). Скорость движения Луны по орбите составляет около 1 км/сек. Луна светит отраженным светом и освещенная Солнцем меняет свой вид, проходя последовательно фазы в зависимости от расположения относительно Солнца и Земли. Полная смена фаз происходит за 29,5 суток (синодический месяц). Колебания температуры вследствие отсутствия атмосферы и медленного осевого вращения на поверхности Луны очень велики: 120- 4070 К.

Период обращения Луны вокруг Земли в точности равен времени одного оборота ее вокруг оси, поэтому Луна постоянно обращена к Земле одной стороной.

Поверхность Луны в основном гористая, покрыта кольцевыми горами-кратерами, хребтами и другими формами рельефа, происхождение которых связано как с действием внутренних сил (вулканической деятельностью), так и с внешним воздействием (ударами метеоритов).

На Луне нет воды, а названия морей (Ясности, Спокойствия), океанов (Бурь), заливов относится к обширным низинам, залитым некогда базальтовой лавой.

Запущенная в СССР 4 октября 1959 года АМС (Автоматическая межпланетная станция) “Луна-3” совершила облет Луны, сфотографировала большую часть скрытой от нас стороны лунной поверхности, и передала на Землю первые снимки. Оказалось, что обратная сторона беднее “морями” и напоминает гористые области видимой стороны Луны.

Поверхность Луны сложена реголитом - грунтом, состоящим из разнозернистого обломочно-пылевого материала, сформированного в результате дробления, перемешивания и спекания лунных пород.

В недрах Луны выделяют кору, мантию, ядро. В мантии находятся очаги лунотрясений.

21 июня 1969 года американский пилотируемый корабль “Аполлон-II” доставил на Луну космонавтов. Первые люди, ступившие на лунную поверхность - Нейл Армстронг и Эдвин Олдрин, которые пробыли на Луне 21ч. 36 мин. Всего было уже 5 высадок космонавтов. Советские луноходы (“Луна” - 16,18,20,21) обследовали лунную поверхность, доставили на Землю лунный грунт.

  1. ФИГУРА И РАЗМЕРЫ ЗЕМЛИ

Для понимания особенностей географической оболочки важно иметь правильное представление о фигуре и размерах Земли. Этот вопрос интересовал ученых с древнейших времен. В VII в. до н.э. уже было известно (ученикам Пифагора), что Земля имеет форму шара.

Форма планеты в виде правильного шара соответствовала бы равновесию, установившемуся под действием силы тяжести, при условии, если бы Земля не вращалась вокруг своей оси и имела бы однородный вещественный состав. Но в результате вращения Земли возникла центробежная сила, под влиянием которой появилось сжатие в направлении оси вращения. Земля приняла форму сфероида или эллипсоида вращения. Сжатие Земли было обнаружено по разности скорости качания маятника на разных широтах и теоретически обосновано законом всемирного тяготения И. Ньютона.

На основании многочисленных геодезических измерений были предложены разные значения параметров земного эллипсоида. В СССР, или на территории СНГ, для расчетов системы координат и обработки геодезических измерений 1946 г. принят эллипсоид Красовского, названный в честь советского ученого. Он имеет следующие параметры: экваториальный радиус - 6 378 км, полярный радиус - 6 356км, полярное сжатие 1:298,3, длина экватора - 40075 км, длина меридиана – 40 008 км, площадь поверхности земного шара – 510 млн.км2, площадь поверхности Мирового океана 361 млн. км2, площадь суши - 149 млн.км2.

Из-за неравномерности распределения массы и неоднородности вещественного состава Земли ее фигура отклоняется от правильной формы сфероида. На это отклонение влияет также действие гравитационного поля Галактики. Истинная геометрическая фигура Земли была названа геоидом. Геоид определяется как фигура, поверхность которой совпадает с уровенной поверхностью Мирового океана. В каждой точке геоида направление силы тяжести перпендикулярно его поверхности. Поднятия геоида над эллипсоидом Красовского не превышают 136 м, опускания - 162 м. Поднятия геоида расположены преимущественно над океаническими впадинами, опускания приурочены к материкам. Это связано с неоднородностью строения земной коры. Более тяжелая океаническая базальтовая кора отклоняет силу тяжести в сторону океанов от более легкой материковой гранитной коры. Таким образом, поднятия и опускания геоида до известной степени зеркальны по отношению к действительному рельефу Земли.

На основании изучения движения искусственных спутников Земли была установлена полярная асимметрия земного эллипсоида. Оказалось, что Земля имеет сердцевидную форму, причем северный полюс ее приподнят, по сравнению с южным, примерно на 30 м. Такую форму Земли предложено называть кардиоидам. Причину полярной асимметрии следует искать в действии гравитационного поля Галактики.

Максимальная высота физической поверхности относительно поверхности океана - 8848 м (гора Джомолунгма), максимальная глубина 11022 м (Марианская впадина).

Сфероидальность Земли является главной причиной географической зональности. Уточнение фигуры Земли позволило объяснить причины нарушения географической зональности в северном и южном полушариях. Вероятно, неоднородное строение земной коры привело к неравномерному распределению материков и океанов. Указанная полярная асимметрия явилась причиной большей океаничности южного полушария (здесь площадь океана составляет 81, суши - 19%), по сравнению с северным (площадь океана – 61, суши – 39%).

Другой пример полярной асимметрии - особенности расположения географических зон: наличие зон тундры и тайги, распространенных в северном полушарии, но отсутствие их в южном. Третий пример- асимметрия приполярных областей: в полярной области южного полушария расположен материк Антарктида, покрытый мощным ледником, в то время как в области северного полюса находится океан.

Размеры Земли определяют параметры географической оболочки, пространственное соотношение суши и океана.

studfiles.net

Система Земля - Луна - О'Пять пО физике!

Двойные планеты

 

Соседом Земли в космосе является Луна. Это единственный естественный спутник планеты. Луна очень большая по сравнению с родительской планетой, примерно в четверть её размера. Это подталкивает некоторых астрономов к тому, чтобы рассматривать систему Земля-Луна в качестве двойной планеты. Однако так как общий центр масс, вокруг которого вращаются оба тела, находится ниже поверхности Земли, система Земля-Луна официально обозначается как система планет-спутников. Согласно ведущим теориям, Луна появилась, когда маленькая планета размером с Марс столкнулась с Землей около 4,5 миллиардов лет назад. Железные ядра двух планет объединились, дав Земле металлическое ядро большее, чем у других планет земной группы. Большая часть земной коры и мантии этих двух планет была выброшена в космос, где образовала кольцо материи. Это кольцо материи в итоге сформировало Луну.

Система Плутон-Харон также считается двойной системой.

Масса Луны составляет 1/81 массы Земли. Стоит сказать - положение Луны на орбите ϲᴏᴏᴛʙᴇᴛϲᴛʙует той или иной фазе

Фазы Луны — различные положения относительно Солнца — новолуние, первая четверть, полнолуние и последняя четверть.

В полнолуние виден освещенный диск Луны, так как Солнце и Луна находятся на противоположных сторонах от Земли. В новолуние Луна находится на стороне Солнца, по϶ᴛᴏму сторона Луны, обращенная к Земле, не освещается.                     Обратная сторона Луны

К Земле Луна обращена всегда одной стороной.

Линию, кᴏᴛᴏᴩая отделяет освещенную часть Луны от неосвещенной, называют терминатором.

В первой четверти Луна видна на угловом расстоянии 90" от Солнца, и солнечные лучи освещают исключительно правую половину обращенной к нам Луны. В остальных фазах Луна видна нам в виде серпа. По϶ᴛᴏму, ɥᴛᴏбы отличить растущую Луну от старой, надо помнить: старая Луна напоминает букву «С», а если Луна растущая, то можно мысленно перед Луной провести вертикальную линию и получится буква «Р».

Из-за близости Луны к Земле и ее большой массы они образуют систему «Земля-Луна». Луна и Земля вращаются вокруг ϲʙᴏих осей в одну сторону. Плоскость орбиты Луны наклонена к плоскости орбиты Земли под углом 5°9'.

Места пересечения орбит Земли и Луны называют узлами лунной орбиты.

Сидерический (от лат. сидерис — звезда) месяц — ϶ᴛᴏ период вращения Земли вокруг ϲʙᴏей оси и одинакового положения Луны на небесной сфере по отношению к звездам. Стоит заметить, что он составляет 27,3 земных суток.

Синодическим (от греч. синод — соединение) месяцем называют период полной смены лунных фаз, т. е. период возвращения Луны в первоначальное положение относительно Луны и Солнца (например, от новолуния до новолуния). Стоит заметить, что он составляет в среднем 29,5 земных суток. Синодический месяц на двое суток длиннее сидерического, так как Земля и Луна вращаются вокруг ϲʙᴏих осей в одну сторону.

Сила тяжести на Луне в 6 раз меньше силы тяжести на Земле.

Рельеф спутника Земли хорошо изучен. Видимые темные участки на поверхности Луны названы «морями» — ϶ᴛᴏ обширные безводные низменные равнины (самая крупная — «Оксан Бурь»), а светлые участки — «материками» — ϶ᴛᴏ гористые, возвышенные участки. Стоит отметить, что основные же планетарные структуры лунной поверхности — кольцевые кратеры диаметром до 20-30 км и многокольцевые цирки диаметром от 200 до 1000 км.

Происхождение у кольцевых структур различное: метеоритное, вулканическое и ударно-взрывное. Кроме ϶ᴛᴏго, на поверхности Луны имеются трещины, сдвиги, купола и системы разломов.

Исследования космических аппаратов «Луна-16», «Луна-20», «Луна-24» показали, что поверхностные обломочные породы Луны сходны с земными магматическими породами — базальтами.

Значение Луны в жизни Земли

Хотя масса Луны в 27 млн раз меньше массы Солнца, она в 374 раза ближе к Земле и оказывает нанес сильное влияние, вызывая поднятия воды (приливы) в одних местах и отливы в других. Это происходит каждые 12 ч 25 мин, так как Луна делает полный оборот вокруг Земли за 24 ч 50 мин.

Из-за гравитационного воздействия Луны и Солнца на Землю возникают приливы и отливы

В наибольшей степени отчетливы и важны по ϲʙᴏим следствиям прилив- но-отливные явления в волной оболочке. Стоит заметить, что они представляют собой периодические подъемы и опускания уровня океанов и морей, вызываемые силами притяжения Луны и Солнца (в 2,2 раза меньше лунной). В атмосфере приливно-отливные явления пробудут в полусуточных изменениях атмосферного давления, а в земной коре — в деформации твердого вещества Земли.

На Земле наблюдаются 2 прилива в ближайшей и удаленной от Луны точке и 2 отлива в точках, находящихся на угловом расстоянии 90° от линии Луна — Земля. Выделяют сигизийные приливы, кᴏᴛᴏᴩые возникают в новолуние и полнолуние и квадратурные — в первой и последней четверти.

В открытом океане приливно-отливные явления невелики. Колебания уровня воды достигает 0,5-1 м. Во внутренних морях (Черное, Балтийское и др.) они почти не ощущаются. При этом в зависимости от географической широты и очертаний береговой линии материков (особенно в узких заливах) вода во время приливов может подниматься до 18 м (залив Фанди в Атлантическом океане у берегов Северной Америки), 13 м на западном побережье Охотского моря. При ϶ᴛᴏм образуются приливно-отливные течения.

Основное значение приливных волн состоит по сути в том, что, перемещаясь с востока на запад вслед за видимым движением Луны, они тормозят осевое вращение Земли и удлиняют сутки, изменяют фигуру Земли с помощью уменьшения полярного сжатия, вызывают пульсацию оболочек Земли, вертикальные смещения земной поверхности, полусуточные изменения атмосферного давления, изменяют условия органической жизни в прибрежных частях Мирового океана и, наконец, влияют на хозяйственную деятельность приморских стран. В целый ряд портов морские суда могут заходить только во время прилива.

Через определенный промежуток времени на Земле повторяются солнечные и лунные затмения. Увидеть их можно, когда Солнце, Земля и Луна находятся на одной линии.

Затмение — астрономическая ситуация, при кᴏᴛᴏᴩой одно небесное тело заслоняет свет от другого небесного тела.

Солнечное затмение происходит, когда Луна попадает между наблюдателем и Солнцем и загораживает его. Поскольку Луна перед затмением обращена к нам неосвещенной стороной, перед затмением всегда бывает новолуние, т. е. Луна не видна. Создается впечатление, что Солнце закрывается черным диском; наблюдающий с Земли видит ϶ᴛᴏ явление как солнечное затмения.

Лунное затмение наступает, когда Луна, находясь на одной прямой с Солнцем и Землей, попадает в конусообразную тень, отбрасываемую Землей. Диаметр пятна тени Земли равен минимальному расстоянию Луны от Земли — 363 000 км, что составляет около 2,5 диаметра Луны, по϶ᴛᴏму Луна может быть затенена целиком.

Лунные ритмы — ϶ᴛᴏ повторяющиеся изменения интенсивности и характера биологических процессов. Существуют лунно-месячные (29,4 сут) и лунно-суточные (24,8 ч) ритмы. Многие животные, растения размножаются в определенную фазу лунного цикла. Лунные ритмы ϲʙᴏйственны многим морским животным и растениям прибрежной зоны. Так, у людей замечено изменение самочувствия в зависимости от фаз лунного цикла.

 

sites.google.com

Реферат - Урок 1/12    Тема: Система Земля-Луна

Урок 1/12

подробно   презентация

Тема: Система Земля-Луна.

Ход урока:

Новый материал

Деление планет на группы:

Земная группа.

Общее

Планеты- гиганты.

Общее

1.Меркурий

2.Венера

3.Земля (двойная)

4.Марс

небольшие размеры и масса

большая ρср.

медленное осевое вращение

мало (нет) спутников

твердая поверхность

1.Юпитер

2.Сатурн

3.Уран

4.Нептун

большие размеры и масса

малая ρср (сравнима с Н2О)

быстрое осевое вращение

большое число спутников

кольца

мощные Н-Не атмосфере.

Размер и масса планеты указывают на действующую силу тяжести и способность планеты удерживать атмосферу (при Vмолекпарабол (для Земли =11,2 км/с)).

Плотность атмосферы и ее химический состав определяют степень поглощения в ней излучений идущих от Солнца и из космоса.

Вращение вокруг оси - это смена дня и ночи (сутки), выравнивание температуры.

Температура на поверхности зависит от удаленности от Солнца и наличия атмосферы.

    2. Космическая эра.

     Наблюдение за телами Солнечной системы кроме оптических, последние 40 лет осуществляется различными КА. У истоков начала космической эры стоит Россия.

(приложение: Важнейшие даты в освоении космического пространства – конец учебника).

4 октября 1957г  запущен первый ИСЗ (“Спутник-1”, СССР).

12 апреля 1961г  первый полет человека в космос (Ю.А.Гагарин, СССР, КК “Восток”).

     Сейчас космические просторы бороздят сотни КА различного назначения в основном таких государств как: Россия, США (эти две страны доминирующие в освоении космического пространства). А также Китай, Япония и другие государства. Пилотируемые полеты осуществляются в России, США и в Китае.

 

    ^ 3. Основные движения Земли.

Движение вокруг Солнца по эллиптической (е=0.0167) со скоростью 29,8км/с ( ≈30км/с ). Обнаружено Дж. Брадлеем в 1728г - аберрация света, т.е звезды описывают эллипсы в течение года с полуосью примерно 20,5".

Вращение вокруг оси. Смена времени суток. Ось все время // сама себе и наклонена к плоскости под углом 66°34' - как следствие смена времен года.

Движение в пространстве совместно с СС в направлении звезды υ Бернулеса со скоростью 20 км/с.

Движение в пространстве совместно с СС вокруг центра Галактики со скоростью 250 км/с в направлении созвездия Лебедя.

^ 4. Форма Земли.     К началу нашего летоисчисления считали, что Земля – шар. К 1684г И. Ньютон доказал, что Земля сжатый эллипсоид (по полюсам).    Геодезические измерения (первые Эратосфеном) в 240г до НЭ в Египте), затем в начале 11 века в Арабском халифате Аль-Бируни, позже, особенно грандиозные в России В.Я.Струве в 1816-1855гг от Северного Ледовитого океана до Дуная и другие измерения доказали что Земля эллипсоид.    Позже выяснено, что форма Земли имеет более сложную фигуру - геоид (грушевидная форма).

Длина меридиана в 1°

около экватора = 110,6 км

вблизи полюсов = 111,7 км

Сегодня экваториальный радиус 6378,140 км полярный радиус 6356,755 км. Средний радиус считают 6371 км, а экваториальный 6378 км.

Сжатие можно определить по формуле е= (a-b)/a, где а – большая полуось эллипса; b – малая полуось.

Сжатие Земли составляет 1:298,257

Вычислив размер Земли, можно определить ее массу и среднюю плотность, считая приближенно Землю шаром.

из F=m.g=G (M.m)/R2 находим М=(g.R2)/G≈5,9736.1024кг

þср=М/V=5,515кг/м3

  5. Луна - спутник Земли.

Единственный естественный спутник Земли – Луна, удаленный в среднем от Земли на 384400км (±21000 км). Из-за большого размера (четверть Земли) систему Земля-Луна называют двойной планетой и центр масс находится на расстоянии 4671км от центра Земли (именно он движутся вокруг Солнца по эллиптической орбите).

  Луна светит отраженным светом и вид фазы (освещенной части Луны) зависит от взаимного расположения Солнца, Земли и Луны. Фаза - отношение площади освещенной части видимого диска Луны ко всей его площади (= отношению толщины освещенной части диска к ее диаметру).

   р - Луна растет после новолуния, наблюдается вечером

  с  - Луна старая (убывающая после полнолуния),  наблюдается утром.

                ^ Кстати: найдите ошибку художника на этом рисунке.

     Полный цикл смены фаз (синодический месяц) составляет примерно 29,5 суток .

     Полный оборот вокруг Земли (сидерический месяц) Луна совершает примерно за 27,3 суток.

  Участвуя в суточном движении небесной сферы, Луна быстро перемещается по небу: 360о:27,32≈13о/сут  по направлению с запада на восток (каждые сутки кульминация запаздывает на 24:27,32≈50 мин)

    6. Затмения

Последовательность фаз кольцеобразного солнечного затмения 24 декабря 1973г (с восхода Солнца, период 1,5 ч.)

     Явление, при котором свет от небесного тела временно затемняется другим телом. 

  Орбита Луны вокруг Земли наклонена к плоскости орбиты Земли вокруг Солнца на 5,1°. Поэтому время от времени эти три тела оказываются в соединении. Тогда происходит затмение Солнца или Луны. В течение месяца, благоприятного для затмений может произойти одно солнечное, или два солнечных и лунное затмение. Следующее необходимое для затмений расположение лунной орбиты произойдет только через пол года (177-178 суток).

Виды солнечного затмения: 

1. частное- закрывает часть солнечного диска, 

2. кольцевое- закрывает полностью Солнце - диаметр Луны меньше солнечного, 

3. полное (центральное)- закрывает полностью Солнце - диаметр Луны больше солнечного. 

   Солнечное затмение происходит в новолуние, максимальная длительность 7 мин 40сек. Максимальная ширина тени при этом, прочерчиваемая по поверхности Земли 264 км (полутени около 6000км).

^ Виды лунного затмения:

1. частное - тень Земли закрывает часть Луны.

2. полное - тень Земли закрывает полностью Луну.

    Лунное затмение происходив в полнолунии и максимальная его продолжительность  1 час 44 мин.

        ^ Затмения повторяются (египетское - сарос), что связано с поворотом плоскости  лунной орбиты. Малый сарос составляет 6585,32 сут (≈18 лет 10,3 дней). За это время происходит 70-71 затмение (42-43 солнечных и 28 лунных) и в следующем саросе затмения повторяются в этом же порядке. В любой серии сароса  каждое затмение происходит приблизительно на 8 часов позже и почти на 120° долготы западнее предыдущего затмения.  Сарос известен с времен Фалеса Милетского (624-547), хотя египтяне и китайцы знали о нем еще раньше. Большой сарос составляет 19756 сут (54г 34 сут) - повторение почти одинаковых затмений, который меняется в течение 1000 лет другой серией. 

^ II. Закрепление материала

Решается самостоятельно задача: Под каким углом с Земли на краю лунного диска можно увидеть гору высотой 6 км?

Решается самостоятельно задача: На краю лунного диска с Земли видна гора под углом 0,02'. Найти высоту горы, если угловой диаметр Луны 30', а линейный 3468 км.

стр 60. Пример 6

Индивидуальные карточки по теме "Затмения. Фазы Луны" (Н.Н. Гомулиной).

 

Итог:

1) Почему систему Земля-Луна называют двойной планетой?

2) Что такое сидерический и синодический период обращения Луны и чему он равен?

3) День начала космической эры.

4) Когда бывают лунные и солнечные затмения, их причина? Что такое сарос?

5) Наиболее продолжительным (примерно 7 мин.) полное затмение бывает, когда Земля находится вблизи афелия своей орбиты, а Луна – вблизи перигея. Почему?

6) Почему затмения не наблюдаются каждый месяц?

7) Как происходит смена фаз Земли на небе Луны?

8) Каков минимально возможный промежуток времени между солнечным и лунным затмением?

9) Сдать контрольную работу, кроссворд, практическую и опросчик (что задавалось).

10) Оценки.

Домашнее задание: §12; вопросы и задания стр. 60. Используя ШАК выяснить, какие затмения произойдут в данном учебном году и каковы условия их видимости (соответствующие сведения содержатся в ШАК).

Можно предложить для увлекающихся астрономией сделать сообщения (доклад) на тему "Затмения": - Солнечные затмения (или одно конкретное) - Лунные затмения (или одно конкретное) - Влияние затмений на судьбы людей (из истории) - Затмения этого года и т.д.

www.ronl.ru

Реферат - Гравитационное взаимодействие системы Земля – Луна

В. В. Орлёнок, доктор геолого-минералогических наук

Рассмотрим еще одно интересное явление, возникающее под действием взаимного притяжения планеты и обращающегося вокруг нее спутника. Внешним проявлением на Земле этого явления являются приливы и отливы в океане, в ходе которых уровень воды дважды в сутки поднимается и опускается до своих максимальных отметок. Это объясняется притяжением Луны между двумя последовательными одноименными кульминациями ее на меридиане данного места и обусловлено тем, что Земля вращается вокруг своей оси быстрей, чем Луна совершает свой полный оборот вокруг Земли. Поэтому интервал времени между двумя смежными циклами приливных явлений составляет 24 часа 50 мин.

Поясним это на примере (рис. 23). Представим Луну в виде материальной точки, расположенной на расстоянии r от центра Земли. Радиус планеты положим равным единице, т. е. R = 1, и рассмотрим, какое притяжение испытывают точки на поверхности Земли (А) на том же меридиане на противоположной стороне (В) и в центре – в точке (О). Пусть эти точки имеют единичную массу. Положив массу Луны m, для каждой точки в соответствии с законом тяготения можно написать выражения:

; ; . (IV.35)

Найдем разность ускорений силы тяжести материальных точек А и О:

.

Поскольку расстояние r и 2r много больше единицы, то последними можно пренебречь. В итоге получим:

. (IV.36)

Выражение (IV.36) характеризует приливообразующую силу внутри и на поверхности Земли, которая, как видим, обратно пропорциональна кубу расстояний между планетой и ее спутником.

Теперь вновь обратимся к рис. 23. Под действием силы dg точка А удаляется от точки О в направлении к Луне, образуя своеобразный горб на поверхности планеты – прилив. Но точка О в свою очередь также притягивается Луной на большую амплитуду, чем точка В, расположенная на обратной стороне Земли. Поэтому и на обратной стороне на поверхности планеты образуется приливное вздутие. Одновременно с двумя областями прилива, в точках квадратур, т. е. районах, отстоящих на 90° по меридиану от точек прилива, будет наблюдаться отлив. В ходе вращения Земли приливные волны дважды в сутки обходят ее поверхность. Высота прилива в океане не превышает 1 – 2 м. Однако, когда приливная волна подходит к шельфовому мелководью, она возрастает до нескольких метров. Волны прилива наблюдаются и в твердой коре и достигают 51 см при сложении поля тяготения Луны и Солнца. Приливное трение, возникающее при движении жидкой и в меньшей степени твердой волн, приводит к торможению осевого вращения Земли и ее спутника. По этой причине Луна уже давно прекратила свое вращение вокруг оси и постоянно обращена к планете одной стороной. Уменьшение скорости вращения Земли составляет 2 с за каждые 100 тыс. лет. За последние 450 млн. лет она уменьшилась с 21 часа 53 минут до 24 часов в настоящее время.

Поскольку масса Земли в 81 раз больше массы Луны, то величина приливного ускорения на поверхности спутника будет примерно в 20 раз больше, чем на Земле, и теоретическая высота твердого прилива может достигать нескольких метров.

В связи с этим возникает интересный вопрос о предельно допустимом расстоянии, на которое могут сблизиться спутник и планета в ходе своей эволюции. Для этого приравняем приливной потенциал Земли к ускорению свободного падения на поверхности Луны:

.

После преобразований получим:

= 1738»9400 км. (IV.37)

Здесь m, r0 – масса и радиус спутника; М – масса планеты; r – расстояние между планетой и спутником. Полученное выражение называется пределом Роша. Спутник, попавший внутрь предела Роша вследствие многокилометровой приливной волны, будет неизбежно разрушен и превращен в каменное кольцо вокруг планеты. Не менее катастрофичными станут последствия такого сближения и для планеты. Гигантский приливный горб высотой многие сотни метров, прокатившись многократно по мере сближения спутника по поверхности, перемелет в пыль горы и равнины, реки и моря планеты, а приливное трение раскалит поверхность разрушившихся пород. Резко затормозится скорость вращения планеты, что вызовет изменение ее фигуры и сопутствующие этому процессу землетрясения. Поверхность планеты претерпит катастрофические разрушения. В свете сказанного гипотеза об образовании Тихого океана путем отрыва Луны представляется просто наивной. При входе в зону Роша она была бы превращена в пыль, сквозь которую мы до сих пор не могли бы видеть солнечного света, не говоря уже о том, что в геологической истории Земли подобной катастрофы не запечатлено.

Приливы

Луна, находясь в поле тяготения Земли (и обе планеты – в поле солнечного притяжения), оказывает воздействие на массу самой Земли. Вследствие больших размеров и массы Земли относительно ее спутника (rл/rз = 0,27; mл/mз = 1,2×10-2) различные точки Земли под влиянием поля тяготения Луны будут испытывать неодинаковые возмущения по отношению к центру массы. Величина этих возмущений зависит от положения тел. В зените (z = 0) или в надире (z = 180°) притяжение максимальное: 0,166 см/с2 для Луны и 0,061 см/с2 – для Солнца; при положении тел в горизонте (z = 90°) притяжение тел минимальное: ‑0,083 см/с2 для Луны и -0,003 см/с2 для Солнца; нулевые значения достигаются при z = 54°44? и z = 125°16?.. Величина статического прилива составляет для Луны от 35,6 до -17,8 см, для Солнца – от 16,4 до ‑8,2 см. Следовательно, размах амплитуды лунных приливов равен 53,4 см, солнечных – 24,6 см; суммарное влияние составляет 78 см (Мельхиор, 1975). Полученные значения теоретической высоты статического прилива верны для жидкой модели Земли. В абсолютно твердой земле никаких деформаций поверхности не происходило бы. Данные непосредственных наблюдений показывают, что высота реального прилива составляет 65 %, или около 51 см от теоретического. Иными словами, земной шар отличается от жидкой модели и от абсолютно твердого тела. Это хорошо согласуется с предыдущими выводами относительно вязкости и жесткости.

В массовом отношении полученный гравитационный эффект равен Dg/g » 0,2/106, т.е. масса в 1 т (106 г) изменяется в результате лунно-солнечного притяжения на 0,2 г. На первый взгляд это незначительная величина, однако если сравнить ее с массой всей Земли, перисферы или гидросферы, наиболее подверженных приливным возмущениям, то получаются внушительные цифры: изменение массы Земли составит 11,948×1020 г (Мз = 5,974×1027 г), перисферы – 1018 г (Мп = 9×1025 г), гидросферы – 3,3×1017 г (Мг = 1,64×1024 г). Если учесть, что эти гигантские массы смещаются в теле Земли регулярно, периодически, на протяжении многих миллионов лет, то становится более понятной роль гравитационного взаимодействия Земли, Луны и Солнца в эволюции протовещества планеты. Представление величины приливного потенциала

(IV.38)

в сферической системе координат позволяет разложить его на три лапласовы составляющие, которые получили название зональных, секториальных и тессеральных волн (рис. 24).

Распределение секториальных волн прилива происходит в широтном направлении. Узловые линии, или фронт волны, имеют меридиональное простирание – от полюса до полюса. Максимальная амплитуда прилива достигается на экваторе в полосе шириной от 10° с.ш. до 10° ю.ш. с постепенным уменьшением к полюсам, где функция W принимает нулевое значение (рис. 25). Положительное значение W, соответствующее области прилива, функция принимает в зените и надире, отрицательное, соответствующее отливу, – в квадратурах. Доминирующая секториальная волна обозначается индексом M2. Она имеет полусуточный период (12 ч 25 мин). Этот прилив вызывает внутреннее трение за счет волн, обрушивающихся на протяженную линию побережий Тихого, Атлантического и Индийского океанов, и ответственен за некоторую часть векового замедления скорости вращения Земли. Одновременно с волной M2 появляются еще две лунные волны – N2 и L2 с периодами, близкими к периоду доминирующей волны.

K1, O1, Р1 – тессеральные суточные приливные волны; M2, S2, N2 – секториальные полусуточные волны

Тессеральный прилив имеет более сложный фронт: узловые линии располагаются по меридиану и экватору. При этом максимум волны

достигается на широтах 45° с.ш. и 45° ю.ш. На экваторе и полюсах функция W = 0. Тессеральному приливу соответствуют главная фаза М1 и две близкие по периоду волны К1 и О1. Их период равен звездным суткам. Несимметричность тессерального прилива относительно экватора и различная амплитуда его в северном и южном полушариях обусловливают прецессию и нутацию земной оси за счет изменения главного момента инерции Земли.

Зональный прилив (см. рис. 24) зависит только от широты. Его фронтом являются 35° с.ш. и 35°16? ю.ш. Максимальная амплитуда достигается на полюсах. Поскольку склонение Луны изменяется с периодом 27,321 средних звездных суток, период зонального прилива составляет 14 суток. Зональный прилив определяет сжатие Земли. Перераспределение масс на полюсах и экваторе (прилив на полюсах ведет к образованию отлива на экваторе) приводит к изменению экваториального и полярного моментов инерции, что вызывает изменение главного момента инерции и периодические колебания скорости вращения Земли (Мельхиор, 1975).

В результате вращения узлов лунной орбиты с периодом Т0 = = 18,613 года образуется дополнительная волна прилива, амплитуда которой сравнима с амплитудой месячного прилива. Сложение ее с главной волной зонального прилива приводит к настолько сильному перераспределению масс в теле Земли и перисфере, что это находит выражение в периодичности землетрясений и вулканизма Тихоокеанского подвижного пояса. В частности, прогноз 19-летних циклов составляет до 94 % для сильных землетрясений с магнитудой М ³ 7 и глубиной очагов 0 – 600 км, а также для мощного вулканизма.

Кроме перечисленных волн имеются аналогичные им солнечные приливные волны несколько меньшей амплитуды, которые, складываясь с лунными, усиливают их.

Гармонический анализ только месячной серии приливных наблюдений позволяет выделить еще целый ряд волн. В частности, по разложению Дудсона получается 115 секториальных полусуточных, 158 тессеральных суточных, 99 зональных долгопериодных и 14 секториальных третьесуточных волн. Взаимодействие всех этих фаз приводит к сложнейшим взаимным перемещениям возмущающих масс вещества в теле Земли и на поверхности. При этом наибольшей амплитуды перемещения достигнут, очевидно, в разуплотненных зонах астеносферы и внешнего ядра. Это должно способствовать ускорению термогравитационной дифференциации и самих химических реакций. В периоды сизигий в результате сложений лунно-солнечного потенциала тяготения процессы станут резко усиливаться. Перемещение вещества будет происходить из зоны квадратур. Таким образом, земное вещество в разуплотненных зонах благодаря приливному взаимодействию на протяжении всей истории Земли находилось в постоянном и сложном движении.

Как следует из выражения для приливного потенциала (IV.38), где величина определяет амплитуду, а – фазу, амплитуда возмущений уменьшается по мере удаления от поверхности Земли к ее центру, так как в числителе стоит квадрат земного радиуса, а в знаменателе – куб расстояния от спутника. Следовательно, приливное взаимодействие наибольшей амплитуды достигает в верхах перисферы Земли, а также в астеносфере и «жидком» ядре. Это и находит свое выражение в корреляции вулканизма и землетрясений с периодами лунно-суточных приливов.

Эволюция системы Земля – Луна

Уменьшение скорости вращения Земли на 2 с за 105 лет устанавливается астрономическими измерениями. Это замедление не является флуктуирующим или случайным. Анализ эфемеридного времени, в частности, по солнечным затмениям шумерских, вавилонских, египетских и других наблюдений, выполненных более 2000 лет назад и имевших внутреннюю согласованность, дает ту же величину – 2 с за 105 лет (Мельхиор, 1975). Палеонтологические наблюдения ископаемых кораллов палеозойского возраста обнаруживают заметные различия в количестве суточных поясков по сравнению с современными кораллами. Один такой поясок соответствует световому дню, в течение которого он наращивается. По количеству поясков удается установить продолжительность года в различные геологические эпохи. Эти результаты приведены в табл. IV.1

Таблица IV.1

Изменение продолжительности года и суток в фанерозое

(по П. Мельхиору, 1975)

Период Время, млн. лет Продолжительность
года, сут суток, ч
Настоящее время 365,26 24,00
Меловой 72 370,33 23,67
Пермский 270 384,10 22,82
Каменноугольный 298 387,50 22,62
Девонский 380 398,75 21,98
Силурийский 440 407,10 21,53

Из табл. IV.1 видно, что, начиная с силура, т.е. за 440 млн. лет, продолжительность суток увеличилась на 2,47 ч и возрастание происходило линейно со средней скоростью, составляющей 1,9 с за 105 лет.

Таким образом, три независимых источника дают один порядок закономерного и прогрессивного уменьшения скорости вращения Земли вокруг своей оси. Линейный характер этого процесса на протяжении фанерозоя свидетельствует об его устойчивости и отсутствии каких-либо катаклизмов. Вследствие уменьшения скорости вращения Земли происходит обмен моментами количества движения с Луной. В результате уменьшалась скорость вращения Луны вокруг своей оси и одновременно возрастало расстояние между Землей и Луной. В итоге этой эволюции в будущем можно ожидать прекращения вращения Земли вокруг своей оси и система Земля – Луна, достигнув минимума энергии, будет вращаться вокруг центра масс подобно гантели: планеты будут всегда обращены друг к другу одной стороной. В ходе приливного торможения при достижении равенства моментов орбитального удаления Луны и скорости вращения Земли спутник может начать обратное вращение вокруг своей оси. Например, из 13 спутников Юпитера 9 вращаются в прямом направлении, а 4 – в обратном. Систему, видимо, близкую к гантели, имеют Меркурий и Солнце, ибо, находясь ближе всех планет к светилу, Меркурий испытывает наиболее мощное гравитационное торможение вращения со стороны солнечных приливов.

Если в первом приближении предположить, что скорость приливного замедления вращения Земли сохранялась на протяжении всей ее геологической истории, то, экстраполируя ее на время 4,5×109 лет, получим скорость вращения протопланеты, равную 1,77 ч. Современная скорость вращения Луны вокруг своей оси в 27 раз меньше скорости вращения Земли. Следовательно, можно предположить, что Луна в первый раз остановила свое вращение 4,5×109/27 = 1,66 ×108 лет назад. Ввиду малого момента инерции спутника относительно момента инерции Земли спутник после остановки должен был начать обратное вращение под влиянием поля тяготения Земли, продолжая при этом удаляться от нее.

Поскольку не вся энергия гравитационного взаимодействия расходуется на торможение (часть ее рассеивается на тепло), полученная цифра может быть несколько иной. Тем не менее период 170 млн. лет совпадает с циклами тектонической активности фанерозоя.

По расчетам П. Мельхиора (1975), замедление угловой скорости вращения Земли составляет около +4,8×10-22 с-2, а замедление скорости удаления спутника, согласно третьему закону Кеплера, – 3,6 см/год. Энергия современных приливов равна 8,1×1019 Дж/год. Среднее современное расстояние спутника от Земли равно 3,844×1010 см. Если удаление шло также равномерно, как и замедление вращения, что, очевидно, взаимосвязано, то при скорости 3,6 см/год за 4,5×109 лет имеем расстояние, равное 1,62×1010 см. Следовательно, сразу после образования планет спутник находился на расстоянии в 2,4 раза меньше современного. Однако этот расчет сделан без учета эволюции Мирового океана, дающего наибольший вклад в процесс замедления скорости вращения (приливное торможение).

Приливные силы разрушают спутник на расстоянии ближе 2,34 радиуса, т.е. 14908,14 км от Земли. Это так называемый предел Роша. Герстенкорн предположил, что 1400 – 1600 млн. лет назад Луна была захвачена Землей и находилась на расстоянии немного большем предела Роша (Ботт, 1974). Однако в докембрийской геологии это событие не нашло отражения, ибо оно соответствовало бы образованию катастрофических приливов как в теле Земли, так и ее спутника. Значит, есть основания предположить, что современная скорость приливного торможения не всегда была таковой, а на протяжении длительного времени имела много меньшее значение. Но, согласно полученным нами (Орлёнок, 1980, 1982) данным, крупные и глубокие океанские бассейны появились на Земле лишь в конце палеогена, т.е. 25 – 30 млн. лет назад. Существовавшие же на протяжении большей части докайнозойской истории небольшие мелководные бассейны типа современных шельфовых морей исключали возможность получения сильного приливного торможения.

С учетом сказанного оценим ближайшее расстояние, которое занимала Луна в прошлом по отношению к Земле. За 30 млн. лет Луна удалилась на расстояние 3,6 см/год´30×106 лет = 108×106 см, т.е. на 1080 км. В докайнозойскую эпоху вследствие слабого приливного торможения скорость удаления ее была по меньшей мере на порядок ниже современной 0,36 см/год´4,5×109 лет = 1,62×109 см, т.е. удаление составило 16200 км. Следовательно, Луна и Земля в момент своего образования находились всего на 17 – 20 тыс. км ближе, чем сейчас, что не могло существенно повлиять на величину тогдашних твердых и жидких приливов.

Таким образом, наибольшее приливное торможение Земля испытала в конце первой крупной фазы океанизации, т.е. в конце палеогена – начале неогена. Но при большей скорости вращения земной шар должен был иметь сжатие с полюсов и, следовательно, большее вздутие по экватору. Из наблюдений эволюции спутника Земли было установлено, что планета имеет избыток экваториального вздутия, равный 70 м. Этот избыток не соответствует современной скорости вращения. Он возник в доокеанскую эпоху (25 – 30 млн. лет назад) при большей, чем современная, скорости вращения планеты. Очевидно, Земля не находится в состоянии гидростатического равновесия. Подобное запаздывание в приобретении ею гидростатического равновесия при постепенном приливном уменьшении скорости вращения позволяет оценить вязкость нижней мантии в 1025 Па×с (Ботт, 1974), а это исключает возможность существования конвекции в мантии и оболочке Земли, что подтверждается к тому же и их существенной вертикальной и горизонтальной неоднородностью. Следовательно, конвекционный механизм плитовой тектоники построен на широких допущениях и предположениях, в природе реально неизвестных.

Рассмотрим теперь эффект быстрого вращения протопланеты. Согласно выводам Пуанкаре, существует некоторый предел между угловой скоростью вращения планеты и ее массой, при переходе которого центробежные силы вращения превзойдут силы внутреннего притяжения и планета рассыплется. Это условие имеет вид:

, (IV.39)

где rm – средняя плотность планеты.

Приведем оценку для Земли. Так как

,

то, подставляя это значение в неравенство (IV.39) и предположив , получим:

.

После подстановки численных значений a, g, r0, rm находим:

. (IV.40)

Таким образом, в неравенство (IV.40) входит только средняя плотность планеты, т.е. размеры не играют роли. Для современной Земли Т = = 24 ч, rm = 5,52 г/см3, следовательно, Т = 24>1,15 и условие Пуанкаре выполняется полностью и с большим запасом. Это значит, что современная Земля представляет собой консолидированное тело. Однако для периода вращения протопланеты имеем

.

Одинаковый порядок сил тяготения и центробежной силы ранней Земли указывает на весьма слабое сцепление масс протовещества, даже с поправкой на меньшую первоначальную среднюю плотность (rm = 3,34 г/см3). В этих условиях выполнение предположения Герстенкорна привело бы к краху планеты и спутника: сильный прилив вытянул бы протовещество, что могло привести к их слиянию. Если бы Луна обладала такой же скоростью первоначального вращения, как и Земля, то неравенство Пуанкаре имело бы в этом случае вид: Т = = 1,77>1,15. Величины тоже предельные.

В итоге мы должны признать, что они позволяют оценить характер и направленность эволюции системы Земля – Луна. Все имеющиеся данные указывают на то, что первоначальная скорость вращения протопланет была больше современной, а их гравитационное взаимодействие заметно сильнее вследствие более близкого расположения их на орбите.

В этих условиях становятся понятными причины быстрого разогрева планет, образование термореакционных зон внутри Земли и раннее образование коры на Луне. Приливные перемещения частиц протовещества планет способствовали быстрому выделению огромных количеств тепла и разогреву планет. Судя по тому количеству тепла, которое дают оставшиеся долгоживущие уран, торий, калий и другие элементы, нет основания ожидать, что этот разогрев мог иметь место только за счет распада короткоживущих изотопов (Орлёнок, 1980).

www.ronl.ru

Доклад - Гравитационное взаимодействие системы Земля – Луна

В. В. Орлёнок, доктор геолого-минералогических наук

Рассмотрим еще одно интересное явление, возникающее под действием взаимного притяжения планеты и обращающегося вокруг нее спутника. Внешним проявлением на Земле этого явления являются приливы и отливы в океане, в ходе которых уровень воды дважды в сутки поднимается и опускается до своих максимальных отметок. Это объясняется притяжением Луны между двумя последовательными одноименными кульминациями ее на меридиане данного места и обусловлено тем, что Земля вращается вокруг своей оси быстрей, чем Луна совершает свой полный оборот вокруг Земли. Поэтому интервал времени между двумя смежными циклами приливных явлений составляет 24 часа 50 мин.

Поясним это на примере (рис. 23). Представим Луну в виде материальной точки, расположенной на расстоянии r от центра Земли. Радиус планеты положим равным единице, т. е. R = 1, и рассмотрим, какое притяжение испытывают точки на поверхности Земли (А) на том же меридиане на противоположной стороне (В) и в центре – в точке (О). Пусть эти точки имеют единичную массу. Положив массу Луны m, для каждой точки в соответствии с законом тяготения можно написать выражения:

; ; . (IV.35)

Найдем разность ускорений силы тяжести материальных точек А и О:

.

Поскольку расстояние r и 2r много больше единицы, то последними можно пренебречь. В итоге получим:

. (IV.36)

Выражение (IV.36) характеризует приливообразующую силу внутри и на поверхности Земли, которая, как видим, обратно пропорциональна кубу расстояний между планетой и ее спутником.

Теперь вновь обратимся к рис. 23. Под действием силы dg точка А удаляется от точки О в направлении к Луне, образуя своеобразный горб на поверхности планеты – прилив. Но точка О в свою очередь также притягивается Луной на большую амплитуду, чем точка В, расположенная на обратной стороне Земли. Поэтому и на обратной стороне на поверхности планеты образуется приливное вздутие. Одновременно с двумя областями прилива, в точках квадратур, т. е. районах, отстоящих на 90° по меридиану от точек прилива, будет наблюдаться отлив. В ходе вращения Земли приливные волны дважды в сутки обходят ее поверхность. Высота прилива в океане не превышает 1 – 2 м. Однако, когда приливная волна подходит к шельфовому мелководью, она возрастает до нескольких метров. Волны прилива наблюдаются и в твердой коре и достигают 51 см при сложении поля тяготения Луны и Солнца. Приливное трение, возникающее при движении жидкой и в меньшей степени твердой волн, приводит к торможению осевого вращения Земли и ее спутника. По этой причине Луна уже давно прекратила свое вращение вокруг оси и постоянно обращена к планете одной стороной. Уменьшение скорости вращения Земли составляет 2 с за каждые 100 тыс. лет. За последние 450 млн. лет она уменьшилась с 21 часа 53 минут до 24 часов в настоящее время.

Поскольку масса Земли в 81 раз больше массы Луны, то величина приливного ускорения на поверхности спутника будет примерно в 20 раз больше, чем на Земле, и теоретическая высота твердого прилива может достигать нескольких метров.

В связи с этим возникает интересный вопрос о предельно допустимом расстоянии, на которое могут сблизиться спутник и планета в ходе своей эволюции. Для этого приравняем приливной потенциал Земли к ускорению свободного падения на поверхности Луны:

.

После преобразований получим:

= 1738»9400 км. (IV.37)

Здесь m, r0 – масса и радиус спутника; М – масса планеты; r – расстояние между планетой и спутником. Полученное выражение называется пределом Роша. Спутник, попавший внутрь предела Роша вследствие многокилометровой приливной волны, будет неизбежно разрушен и превращен в каменное кольцо вокруг планеты. Не менее катастрофичными станут последствия такого сближения и для планеты. Гигантский приливный горб высотой многие сотни метров, прокатившись многократно по мере сближения спутника по поверхности, перемелет в пыль горы и равнины, реки и моря планеты, а приливное трение раскалит поверхность разрушившихся пород. Резко затормозится скорость вращения планеты, что вызовет изменение ее фигуры и сопутствующие этому процессу землетрясения. Поверхность планеты претерпит катастрофические разрушения. В свете сказанного гипотеза об образовании Тихого океана путем отрыва Луны представляется просто наивной. При входе в зону Роша она была бы превращена в пыль, сквозь которую мы до сих пор не могли бы видеть солнечного света, не говоря уже о том, что в геологической истории Земли подобной катастрофы не запечатлено.

Приливы

Луна, находясь в поле тяготения Земли (и обе планеты – в поле солнечного притяжения), оказывает воздействие на массу самой Земли. Вследствие больших размеров и массы Земли относительно ее спутника (rл/rз = 0,27; mл/mз = 1,2×10-2) различные точки Земли под влиянием поля тяготения Луны будут испытывать неодинаковые возмущения по отношению к центру массы. Величина этих возмущений зависит от положения тел. В зените (z = 0) или в надире (z = 180°) притяжение максимальное: 0,166 см/с2 для Луны и 0,061 см/с2 – для Солнца; при положении тел в горизонте (z = 90°) притяжение тел минимальное: ‑0,083 см/с2 для Луны и -0,003 см/с2 для Солнца; нулевые значения достигаются при z = 54°44? и z = 125°16?.. Величина статического прилива составляет для Луны от 35,6 до -17,8 см, для Солнца – от 16,4 до ‑8,2 см. Следовательно, размах амплитуды лунных приливов равен 53,4 см, солнечных – 24,6 см; суммарное влияние составляет 78 см (Мельхиор, 1975). Полученные значения теоретической высоты статического прилива верны для жидкой модели Земли. В абсолютно твердой земле никаких деформаций поверхности не происходило бы. Данные непосредственных наблюдений показывают, что высота реального прилива составляет 65 %, или около 51 см от теоретического. Иными словами, земной шар отличается от жидкой модели и от абсолютно твердого тела. Это хорошо согласуется с предыдущими выводами относительно вязкости и жесткости.

В массовом отношении полученный гравитационный эффект равен Dg/g » 0,2/106, т.е. масса в 1 т (106 г) изменяется в результате лунно-солнечного притяжения на 0,2 г. На первый взгляд это незначительная величина, однако если сравнить ее с массой всей Земли, перисферы или гидросферы, наиболее подверженных приливным возмущениям, то получаются внушительные цифры: изменение массы Земли составит 11,948×1020 г (Мз = 5,974×1027 г), перисферы – 1018 г (Мп = 9×1025 г), гидросферы – 3,3×1017 г (Мг = 1,64×1024 г). Если учесть, что эти гигантские массы смещаются в теле Земли регулярно, периодически, на протяжении многих миллионов лет, то становится более понятной роль гравитационного взаимодействия Земли, Луны и Солнца в эволюции протовещества планеты. Представление величины приливного потенциала

(IV.38)

в сферической системе координат позволяет разложить его на три лапласовы составляющие, которые получили название зональных, секториальных и тессеральных волн (рис. 24).

Распределение секториальных волн прилива происходит в широтном направлении. Узловые линии, или фронт волны, имеют меридиональное простирание – от полюса до полюса. Максимальная амплитуда прилива достигается на экваторе в полосе шириной от 10° с.ш. до 10° ю.ш. с постепенным уменьшением к полюсам, где функция W принимает нулевое значение (рис. 25). Положительное значение W, соответствующее области прилива, функция принимает в зените и надире, отрицательное, соответствующее отливу, – в квадратурах. Доминирующая секториальная волна обозначается индексом M2. Она имеет полусуточный период (12 ч 25 мин). Этот прилив вызывает внутреннее трение за счет волн, обрушивающихся на протяженную линию побережий Тихого, Атлантического и Индийского океанов, и ответственен за некоторую часть векового замедления скорости вращения Земли. Одновременно с волной M2 появляются еще две лунные волны – N2 и L2 с периодами, близкими к периоду доминирующей волны.

K1, O1, Р1 – тессеральные суточные приливные волны; M2, S2, N2 – секториальные полусуточные волны

Тессеральный прилив имеет более сложный фронт: узловые линии располагаются по меридиану и экватору. При этом максимум волны

достигается на широтах 45° с.ш. и 45° ю.ш. На экваторе и полюсах функция W = 0. Тессеральному приливу соответствуют главная фаза М1 и две близкие по периоду волны К1 и О1. Их период равен звездным суткам. Несимметричность тессерального прилива относительно экватора и различная амплитуда его в северном и южном полушариях обусловливают прецессию и нутацию земной оси за счет изменения главного момента инерции Земли.

Зональный прилив (см. рис. 24) зависит только от широты. Его фронтом являются 35° с.ш. и 35°16? ю.ш. Максимальная амплитуда достигается на полюсах. Поскольку склонение Луны изменяется с периодом 27,321 средних звездных суток, период зонального прилива составляет 14 суток. Зональный прилив определяет сжатие Земли. Перераспределение масс на полюсах и экваторе (прилив на полюсах ведет к образованию отлива на экваторе) приводит к изменению экваториального и полярного моментов инерции, что вызывает изменение главного момента инерции и периодические колебания скорости вращения Земли (Мельхиор, 1975).

В результате вращения узлов лунной орбиты с периодом Т0 = = 18,613 года образуется дополнительная волна прилива, амплитуда которой сравнима с амплитудой месячного прилива. Сложение ее с главной волной зонального прилива приводит к настолько сильному перераспределению масс в теле Земли и перисфере, что это находит выражение в периодичности землетрясений и вулканизма Тихоокеанского подвижного пояса. В частности, прогноз 19-летних циклов составляет до 94 % для сильных землетрясений с магнитудой М ³ 7 и глубиной очагов 0 – 600 км, а также для мощного вулканизма.

Кроме перечисленных волн имеются аналогичные им солнечные приливные волны несколько меньшей амплитуды, которые, складываясь с лунными, усиливают их.

Гармонический анализ только месячной серии приливных наблюдений позволяет выделить еще целый ряд волн. В частности, по разложению Дудсона получается 115 секториальных полусуточных, 158 тессеральных суточных, 99 зональных долгопериодных и 14 секториальных третьесуточных волн. Взаимодействие всех этих фаз приводит к сложнейшим взаимным перемещениям возмущающих масс вещества в теле Земли и на поверхности. При этом наибольшей амплитуды перемещения достигнут, очевидно, в разуплотненных зонах астеносферы и внешнего ядра. Это должно способствовать ускорению термогравитационной дифференциации и самих химических реакций. В периоды сизигий в результате сложений лунно-солнечного потенциала тяготения процессы станут резко усиливаться. Перемещение вещества будет происходить из зоны квадратур. Таким образом, земное вещество в разуплотненных зонах благодаря приливному взаимодействию на протяжении всей истории Земли находилось в постоянном и сложном движении.

Как следует из выражения для приливного потенциала (IV.38), где величина определяет амплитуду, а – фазу, амплитуда возмущений уменьшается по мере удаления от поверхности Земли к ее центру, так как в числителе стоит квадрат земного радиуса, а в знаменателе – куб расстояния от спутника. Следовательно, приливное взаимодействие наибольшей амплитуды достигает в верхах перисферы Земли, а также в астеносфере и «жидком» ядре. Это и находит свое выражение в корреляции вулканизма и землетрясений с периодами лунно-суточных приливов.

Эволюция системы Земля – Луна

Уменьшение скорости вращения Земли на 2 с за 105 лет устанавливается астрономическими измерениями. Это замедление не является флуктуирующим или случайным. Анализ эфемеридного времени, в частности, по солнечным затмениям шумерских, вавилонских, египетских и других наблюдений, выполненных более 2000 лет назад и имевших внутреннюю согласованность, дает ту же величину – 2 с за 105 лет (Мельхиор, 1975). Палеонтологические наблюдения ископаемых кораллов палеозойского возраста обнаруживают заметные различия в количестве суточных поясков по сравнению с современными кораллами. Один такой поясок соответствует световому дню, в течение которого он наращивается. По количеству поясков удается установить продолжительность года в различные геологические эпохи. Эти результаты приведены в табл. IV.1

Таблица IV.1

Изменение продолжительности года и суток в фанерозое

(по П. Мельхиору, 1975)

Период Время, млн. лет Продолжительность
года, сут суток, ч
Настоящее время 365,26 24,00
Меловой 72 370,33 23,67
Пермский 270 384,10 22,82
Каменноугольный 298 387,50 22,62
Девонский 380 398,75 21,98
Силурийский 440 407,10 21,53

Из табл. IV.1 видно, что, начиная с силура, т.е. за 440 млн. лет, продолжительность суток увеличилась на 2,47 ч и возрастание происходило линейно со средней скоростью, составляющей 1,9 с за 105 лет.

Таким образом, три независимых источника дают один порядок закономерного и прогрессивного уменьшения скорости вращения Земли вокруг своей оси. Линейный характер этого процесса на протяжении фанерозоя свидетельствует об его устойчивости и отсутствии каких-либо катаклизмов. Вследствие уменьшения скорости вращения Земли происходит обмен моментами количества движения с Луной. В результате уменьшалась скорость вращения Луны вокруг своей оси и одновременно возрастало расстояние между Землей и Луной. В итоге этой эволюции в будущем можно ожидать прекращения вращения Земли вокруг своей оси и система Земля – Луна, достигнув минимума энергии, будет вращаться вокруг центра масс подобно гантели: планеты будут всегда обращены друг к другу одной стороной. В ходе приливного торможения при достижении равенства моментов орбитального удаления Луны и скорости вращения Земли спутник может начать обратное вращение вокруг своей оси. Например, из 13 спутников Юпитера 9 вращаются в прямом направлении, а 4 – в обратном. Систему, видимо, близкую к гантели, имеют Меркурий и Солнце, ибо, находясь ближе всех планет к светилу, Меркурий испытывает наиболее мощное гравитационное торможение вращения со стороны солнечных приливов.

Если в первом приближении предположить, что скорость приливного замедления вращения Земли сохранялась на протяжении всей ее геологической истории, то, экстраполируя ее на время 4,5×109 лет, получим скорость вращения протопланеты, равную 1,77 ч. Современная скорость вращения Луны вокруг своей оси в 27 раз меньше скорости вращения Земли. Следовательно, можно предположить, что Луна в первый раз остановила свое вращение 4,5×109/27 = 1,66 ×108 лет назад. Ввиду малого момента инерции спутника относительно момента инерции Земли спутник после остановки должен был начать обратное вращение под влиянием поля тяготения Земли, продолжая при этом удаляться от нее.

Поскольку не вся энергия гравитационного взаимодействия расходуется на торможение (часть ее рассеивается на тепло), полученная цифра может быть несколько иной. Тем не менее период 170 млн. лет совпадает с циклами тектонической активности фанерозоя.

По расчетам П. Мельхиора (1975), замедление угловой скорости вращения Земли составляет около +4,8×10-22 с-2, а замедление скорости удаления спутника, согласно третьему закону Кеплера, – 3,6 см/год. Энергия современных приливов равна 8,1×1019 Дж/год. Среднее современное расстояние спутника от Земли равно 3,844×1010 см. Если удаление шло также равномерно, как и замедление вращения, что, очевидно, взаимосвязано, то при скорости 3,6 см/год за 4,5×109 лет имеем расстояние, равное 1,62×1010 см. Следовательно, сразу после образования планет спутник находился на расстоянии в 2,4 раза меньше современного. Однако этот расчет сделан без учета эволюции Мирового океана, дающего наибольший вклад в процесс замедления скорости вращения (приливное торможение).

Приливные силы разрушают спутник на расстоянии ближе 2,34 радиуса, т.е. 14908,14 км от Земли. Это так называемый предел Роша. Герстенкорн предположил, что 1400 – 1600 млн. лет назад Луна была захвачена Землей и находилась на расстоянии немного большем предела Роша (Ботт, 1974). Однако в докембрийской геологии это событие не нашло отражения, ибо оно соответствовало бы образованию катастрофических приливов как в теле Земли, так и ее спутника. Значит, есть основания предположить, что современная скорость приливного торможения не всегда была таковой, а на протяжении длительного времени имела много меньшее значение. Но, согласно полученным нами (Орлёнок, 1980, 1982) данным, крупные и глубокие океанские бассейны появились на Земле лишь в конце палеогена, т.е. 25 – 30 млн. лет назад. Существовавшие же на протяжении большей части докайнозойской истории небольшие мелководные бассейны типа современных шельфовых морей исключали возможность получения сильного приливного торможения.

С учетом сказанного оценим ближайшее расстояние, которое занимала Луна в прошлом по отношению к Земле. За 30 млн. лет Луна удалилась на расстояние 3,6 см/год´30×106 лет = 108×106 см, т.е. на 1080 км. В докайнозойскую эпоху вследствие слабого приливного торможения скорость удаления ее была по меньшей мере на порядок ниже современной 0,36 см/год´4,5×109 лет = 1,62×109 см, т.е. удаление составило 16200 км. Следовательно, Луна и Земля в момент своего образования находились всего на 17 – 20 тыс. км ближе, чем сейчас, что не могло существенно повлиять на величину тогдашних твердых и жидких приливов.

Таким образом, наибольшее приливное торможение Земля испытала в конце первой крупной фазы океанизации, т.е. в конце палеогена – начале неогена. Но при большей скорости вращения земной шар должен был иметь сжатие с полюсов и, следовательно, большее вздутие по экватору. Из наблюдений эволюции спутника Земли было установлено, что планета имеет избыток экваториального вздутия, равный 70 м. Этот избыток не соответствует современной скорости вращения. Он возник в доокеанскую эпоху (25 – 30 млн. лет назад) при большей, чем современная, скорости вращения планеты. Очевидно, Земля не находится в состоянии гидростатического равновесия. Подобное запаздывание в приобретении ею гидростатического равновесия при постепенном приливном уменьшении скорости вращения позволяет оценить вязкость нижней мантии в 1025 Па×с (Ботт, 1974), а это исключает возможность существования конвекции в мантии и оболочке Земли, что подтверждается к тому же и их существенной вертикальной и горизонтальной неоднородностью. Следовательно, конвекционный механизм плитовой тектоники построен на широких допущениях и предположениях, в природе реально неизвестных.

Рассмотрим теперь эффект быстрого вращения протопланеты. Согласно выводам Пуанкаре, существует некоторый предел между угловой скоростью вращения планеты и ее массой, при переходе которого центробежные силы вращения превзойдут силы внутреннего притяжения и планета рассыплется. Это условие имеет вид:

, (IV.39)

где rm – средняя плотность планеты.

Приведем оценку для Земли. Так как

,

то, подставляя это значение в неравенство (IV.39) и предположив , получим:

.

После подстановки численных значений a, g, r0, rm находим:

. (IV.40)

Таким образом, в неравенство (IV.40) входит только средняя плотность планеты, т.е. размеры не играют роли. Для современной Земли Т = = 24 ч, rm = 5,52 г/см3, следовательно, Т = 24>1,15 и условие Пуанкаре выполняется полностью и с большим запасом. Это значит, что современная Земля представляет собой консолидированное тело. Однако для периода вращения протопланеты имеем

.

Одинаковый порядок сил тяготения и центробежной силы ранней Земли указывает на весьма слабое сцепление масс протовещества, даже с поправкой на меньшую первоначальную среднюю плотность (rm = 3,34 г/см3). В этих условиях выполнение предположения Герстенкорна привело бы к краху планеты и спутника: сильный прилив вытянул бы протовещество, что могло привести к их слиянию. Если бы Луна обладала такой же скоростью первоначального вращения, как и Земля, то неравенство Пуанкаре имело бы в этом случае вид: Т = = 1,77>1,15. Величины тоже предельные.

В итоге мы должны признать, что они позволяют оценить характер и направленность эволюции системы Земля – Луна. Все имеющиеся данные указывают на то, что первоначальная скорость вращения протопланет была больше современной, а их гравитационное взаимодействие заметно сильнее вследствие более близкого расположения их на орбите.

В этих условиях становятся понятными причины быстрого разогрева планет, образование термореакционных зон внутри Земли и раннее образование коры на Луне. Приливные перемещения частиц протовещества планет способствовали быстрому выделению огромных количеств тепла и разогреву планет. Судя по тому количеству тепла, которое дают оставшиеся долгоживущие уран, торий, калий и другие элементы, нет основания ожидать, что этот разогрев мог иметь место только за счет распада короткоживущих изотопов (Орлёнок, 1980).

www.ronl.ru


Смотрите также