Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Теория химического строения органических соединений Электронная природа химических связей Предпосылки. Реферат развитие теории химической связи


Развитие теории химической связи

 

центральная проблема современной химии – учение о химической связи. Знание природы взаимодействия атомов в веществе позволяет понять причины многообразия химических соединений строения и механизм их образования.

Одновременно с развитием теории строения атомов развивалась и теория химической связи. В 1800 году Бертолле выдвинул гравитационную теорию, согласно которой химические силы возникают за счет взаимодействия масс, т.е. в результате гравитационного взаимодействия. И хотя эти силы нельзя отрицать, они не являются причиной химического взаимодействия, роль их ничтожно мала по сравнению с другими силами, приводящими к химическому взаимодействию.

В 1812 году шведским ученым Берцелиусом была предложена электрохимическая теория химической связи, согласно которой все атомы обладают положительным и отрицательным полюсами, причем у одних атомов преобладает положительный полюс, а у других – отрицательный. Атомы, у которых преобладают противоположные полюсы, притягиваются друг к другу. К электроположительным были отнесены атомы металлов, электроотрицательными являлись атомы неметаллов. Однако электрохимическая теория противоречила ряду фактов. Так, например, оставалось необъяснимым образование молекул, состоящих из одинаковых атомов (Н2, О2, Cl2 и др.), которые обладали одноименными зарядами. По этой причине теория Берцелиуса перестала пользоваться признанием. Большой вклад в науку химической связи внес выдающий русский химик А.М. Бутлеров. В 1861 году он выдвинул теорию химического строения молекул. Основные положения этой теории сводятся к тому, что все атомы в молекуле соединены друг с другом в определенной последовательности, что валентность атомов стремится к насыщению и определяется числом химических связей, что свойства веществ зависят не только от их качественного и количественного состава, но и от их химического строения. Бутлеров предложил метод изображения молекул – структурные формулы - и показал, что атомы в молекуле могут влиять друг на друга. Теория А.М. Бутлерова получила дальнейшее подтверждение и развитие и является одним из фундаментальных законов современной химии. Однако в его теории не была вскрыта природа химической связи.

С открытием электрона и созданием в дальнейшем планетарной модели строения атома, а также теории, разработанной Нильсом Бором, возникают новые теории химической связи. Первое электронное представление о химической связи появилось в 1916 году, которое было предложено американским физико - химиком Льюисом. Он высказал предположение о том, что химическая связь имеет электрическую природу и возникает путем образования электронной пары, одновременно принадлежащей двум атомам. Эту связь назвали ковалентной.

В том же 1916 году немецкий ученый Коссель предположил, что при взаимодействии двух атомов один из них отдает, а другой принимает электроны, при этом первый атом превращается в положительно заряженный, а второй - в отрицательно заряженный ионы. Химическая связь осуществляется за счет электростатического притяжения ионов. На основе идей Косселя сформировались представления об ионной связи.

В соответствии с современными представлениями о строении атома можно говорить лишь о вероятности нахождения электронов в поле атомных ядер. Данному пространственному положению атомных ядер отвечает определенное распределение электронной плотности. Выяснить, как распределяется электронная плотность по сути дела и означает описать химическую связь в веществе, но для этого, как известно, необходимо точное решение уравнения Шредингера, что пока осуществимо только для иона водорода (Н2+), состоящего из двух протонов и одного электрона, а также для водородоподобных частиц (He2+, Li2+). Для систем с двумя и большим числом электронов приходится применять приближенные решения.

Точность приближенных расчетов оценивается мерой их совпадения с экспериментально полученными сведениями о строении вещества и его свойствах.

 

Ковалентная связь.

Похожие статьи:

poznayka.org

О развитии теории химической связи

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]     Исследование природы химической связи и строения молекул развивалось параллельно с изучением строения атома. К началу двадцатых годов были разработаны основы электронной теории химической связи (Льюис, Коссель, Борн). Квантово-механическая теория ковалентной связи развита Гейтлером и Лондоном (1927). Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. [c.19]

    Количественная теория химической связи развивается в настоящее время на основе выводов и методов квантовой механики. Теория ковалентной связи, предложенная Гейтлером и Лондоном (1927) первоначально для описания молекулы Нг, при дальнейшем развитии получила распространение и на другие случаи ковалентной связи. Она описывает ковалентную связь, рассматривая состояние электронов данной электронной пары с помощью уравнений волновой функции Шредингера. Такое рассмотрение получило название метода валентных схем (ВС) или метода локализованных электронных пар. Можно показать, что при образовании связи с помощью -электронов необходимо, чтобы электро- [c.66]

    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]

    Хотя теория валентных связей внесла свой вклад в развитие теории химической связи в комплексных соединениях, в настоящее время эта теория используется редко. Перечислим основные недостатки этой теории  [c.524]

    Растворы солей проводят электрический ток, и это их свойство сыграло чрезвычайно важную роль на первой стадии развития теорий химической связи. Электропроводность металлов обусловлена перемешением в них электронов ионы металла при протекании через него электрического тока остаются на своих местах. Кристаллические соли вообще не проводят электрический ток, но если расплавить соль, положительные и отрицательные ионы при наличии электрического напряжения могут в жидкости направленно мигрировать в противоположные стороны. Подвижность ионов соли оказывается еще большей, если соль растворена в воде и, следовательно, если ее ионы гидратированы. [c.40]

    Большим стимулом развития теории химической связи послужило открытие электронного строения атома. Оно утвердило представление об электрической природе сил химического сродства. Заполненная восьмиэлектронная внешняя оболочка атома стала критерием его химической инертности, а мерой химической активности — стремление к образованию внешнего электронного слоя, имитирующего оболочку атома благородного газа, о могло осуществиться присоединением или отдачей части валентных электронов атома с превращением его в отрицательно или положительно заряженный ион. Последующее электростатическое притяжение разноименных ионов обусловливало ионную, или электровалентную, связь между ними (ионная теория Косселя, 1916). [c.87]

    Однако в процессе развития теории химической связи было выяснено, что даже в типично ионных соединениях, например в галидах щелочных металлов, не происходит полного перехода электронов от одних атомов к другим. [c.116]

    Новый, современный этап развития теории химической связи начался с появлением квантовой механики и уравнения Шредингера. [c.199]

    Дальнейшее развитие теории химической связи относится к разработке метода молекулярных орбиталей, который возник в конце 20-х гг. и получил отражение вначале в исследованиях Ф. Хунда (1896) — гейдельбергского физика и Дж. Э. Леннард-Джонса (1894) — английского химика. Ф. Хунд представлял химическую связь как сумму функций двух электронов, принадлежащих различным атомам, вступающим в соединение. Ф. Хун-ду принадлежит также известная классификация типов химических связей. Вначале он предполагал существование нескольких типов связей, обозначавшихся им греческими буквами с индексами. В 30-х гг. он пришел к выводу о существовании двух основных типов химических связей — простой, или а-связи (обычно обозначаемой черточкой), и так называемой л-связи. а-Связь [c.229]

    Уместно вспомнить об одном обстоятельстве из истории развития теории химической связи и межмолекулярного взаимодействия. После первых расчетов энергии связи в молекулах с разными атомами (металл — металлоид) стало ясно, что эта величина мало чувствительна к принятой модели. Расчеты гетерополярных молекул с учетом или без учета поляризации, по модели твердых шаров или по любой модели, учитывающей отталкивание, почти всегда приводили к близким к эксперименту значениям энергии связи. Попытки вычислить энергию, например, водородной связи, основанные на разных моделях как электростатических, так и ковалентных, почти всегда давали вполне удовлетворительный результат. То же относится и к расчетам теплот адсорбции. Правильный порядок величины обеспечивается тем, что из эксперимента берутся две или три константы, а правильный характер всей потенциальной кривой постулирован заранее. Сама по себе полуэмпирическая потенциальная кривая, будь то кривая Леннард-Джонса или кривая, в которой коэффициент при берется по Лондону или каким-либо иным теоретическим способом, ничего не может сказать о природе сил адсорбции, так же как и кривая Морзе для двухатомной молекулы ничего не говорит о природе связи атомов в ней. [c.83]

    Краткие замечания о развитии теории химической связи [c.11]

    Прогресс химических теорий сольватации сопряжен с развитием теории химической связи, К сольватационным расчетам последовательно применялись методы теории кристаллического поля, метод валентных связей и, наконец, метод МО [5], Обобщенное рассмотрение различных систем и построение общей теории на этом пути сталкивается с индивидуальностью каждой системы в химическом отношении. [c.52]

    Изложенное, как нам представляется, дает основание думать, что изучение электродиффузии может способствовать развитию теории химической связи в металлических сплавах. [c.74]

    Чтобы оправдать такое описание с точки зрения квантовой механики, вводят понятие о ионном и ковалентном вкладах в энергию связи при составлении приближенного выражения для волновой функции. Если ковалентный вклад мал, то мы говорим, что связь носит ионный характер и электростатическая модель применима. К сожалению, термины ионный характер и ковалентный характер используются в различном смысле. Это произошло, в частности, потому, что быстрое развитие теории химической связи за последние два десятилетия привело к изменению содержания этих терминов. Определение Полинга, данное в его монографии ([1585], стр. 48), отражает представления большинства исследователей в 1940 г. Он полагал, что между двумя атомами X и У ковалентная связь образуется в том случае, если энергия диссоциации молекулы X — V равна среднему из энергий диссоциации молекул X — X и V — V. Если энергия диссоциации молекулы X — У превосходит это среднее значение, избыток приписывается добавочному ионному характеру связи . Этот критерий давал основание для введения шкалы электроотрицательности Полинга, причем ионный характер связывался с разделением зарядов при образовании связи, приводящим к появлению постоянного дипольного момента. Это экспериментальное определение ионного характера, поскольку оно связано с измеряемой величиной энергии диссоциации. [c.196]

    Большое значение для решения ряда проблем теории химического строения имеет развитие и углубление понятия валентности, развитие теории химической связи, позволяющей в большей мере, чем это имеет место в настоящее время, объяснять и предсказывать химические факты. [c.79]

    Я думаю, что Кекуле был бы удовлетворен и несколько удивлен тем, по какому пути шло развитие теории химической связи за прошедшие сто лет. Чего можем мы ожидать от будущего столетия Я полагаю, что имеются большие возможности для дальнейшего прогресса — не только на пути уточнения наших современных представлений, но также благодаря открытию новых основных принципов, предвидеть которые пока еще нельзя. [c.15]

    Из сказанного выше следует, что подлинное развитие теории химической связи стало возможным лишь после появления квантовой механики. Квантовая теория химической связи является, в сущности, разделом прикладной квантовой механики и вместе с теорией атома и твердого тела образует так называемую физику низких энергий (в отличие от физики высоких энергий, включающей теорию ядра и элементарных частиц). [c.7]

    Следующим важным этапом в развитии теории химической связи было учение Бутлерова о структуре молекул, указывающее на порядок соединения атомов. Позже на основе этой концепции Вант-Гофф развил теорию направленной валентности. Эта теория привела к пространственным моделям молекул. [c.75]

    Вследствие внедрения в современную аналитическую химию неорганических веществ большого числа органических реагентов и в результате современного развития теории химической связи и механизма химических реакций курс аналитической химии еще больше укрепляет свое положение в качестве дисциплины промежуточной— уже не только в отношении курса физической химии, но и курса органической химии. Однако и здесь необходима созидательная работа по оформлению этой связи [c.7]

    О развитии теории химической связи [c.308]

    Начало развития теории химической связи. Метод валентных связей. Рассмотрим вкратце, как формировался расчет молекулы Нг по методу ВС. [c.716]

    Важные даты в развитии теории химической связи  [c.89]

    Соединения лантанидов находят применение в разнообразных областях наукоемких технологий (в частности, при создании высокоэффективных источников света, компонентов лазерных сред, катализаторов и т.д.). Этим обусловлен повышенный интерес в настоящее время к исследованию свойств этих соединений. Изучение свойств соединений лантанидов, специфические особенности которых связаны с наличием /-электронов, имеет также важное фундаментальное значение для дальнейшего развития теории химической связи. [c.21]

    Разрабатывая теорию химического строения, Бутлеров не ста зил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосыл кой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты элеК тронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. американский физико-химик Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. немецкий ученый В. Коссель предположил, что при взаимодействии двух атомов один нз них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй — в отрицательно заряженный ион взаиМ ное электростатическое притяжеиие образовавшихся ионов и приводит к образованию устойчивого соединения. Дальнейшее развитие идей Косселя привело к созданию современных представлений [c.119]

    В 1916 г. В. Коссель выдвинул предположение, что при образовании химической связи происходит передача электронов от одного атома к другому в результате образуются заряженные частицы, которые притягиваются друг к другу. Это представление правильно отразило природу ионной (гетерополярной, электровалентной) связи, характерной для большинства неорганических соединений. Однако было ясно, что в таких молекулах, как водород Нз, хлор С1г, метан СН4, и в более сложных органических соединениях природа связи должна быть иной. Основы для понимания этого типа связи были заложены в работах Г. Льюиса и И. Ленгмюра (1913— 1920 гг.), указавших на особую роль октета электронов как устойчивой электронной оболочки и на возможность создания октета не только путем передачи, но и путем обобщения электро1Юв. От этих работ ведет свое начало представление о существовании особого типа связи (ковалентной, гомеополярной), осуществляемой парой электронов. Так валентная черточка классической теории строения получила физическое истолкование. И все же перед учеными продолжали стоять вопросы почему именно электронная пара необходима для создания ковалентной связи, почему устойчив именно октет электронов, в каком состоянии находятся связующие электроны Поиски ответа на эти вопросы с помощью зародившейся в середине 20-х годов квантовой механики явились одним из направлений дальнейшего развития теории химической связи. Для судьбы электронных представлений в органической химии важнейшее значение имело и развитие в другом направлении объяснение с новых позиций богатого экспериментального материала органической химии предсказание новых, еще неизвестных экспериментальных фактов. [c.38]

    С точки зрения развития теории химических связей в гиперполимерах представляют интерес квантовомеханические расчеты и рентгеноспектральные исследования плотности электронных состояний в алмазе. Они существенны для определения энергетических характеристик зонной структуры алмаза. В частности, согласно рентгеновским данным [371], валентная зона в алмазе имеет ширину 21—23 эВ, запрещенная зона — 5—7, зона проводимости — 10—12 эВ, Дно валентной зоны расположено на уровне L-слоя свободного атома (табл. 13). Последнее можно объяснить изменением заселенности сферическн-симметричных s-состояний при сближении атомов углерода и образовании а-связей. В электронной структуре это приводит к возрастанию плотности сферически-несимметричных электронных состояний и перераспределению электронов между s- и /7-оболочками, Указанные изменения способствуют образованию хр -гибридизации (см, главу III), существующей в узлах трехмерных ковалентных сеток (ТКС) алмаза. При этом 5 0 -гибридизация возникает, как правило, не сразу, а через промежуточную электронную конфигурацию, которая реализуется на поверхности алмазной грани. [c.51]

    В рамках метода рассеянных волн рассчитаны электронные структуры соединений лантаноидов и актиноидов (В. А. Губанов). В настоящее время аналогичные расчеты ведутся во многих научных центрах страны в тесной связи с использованием и развитием физических методов исследования (высокотемпературная масс-снектрометрия и электронография, УФ- и ИК-спектроскония, магнетохимия, рентгеновская спектроскопия и т. д.). Эти расчеты внесли важный вклад в развитие теории химической связи неорганических соединений, электронного механизма транс-н цнсвлияния в комплексах, в понимание особенностей структурно-нежестких молекул с распределенпым характером связи и т. д. [c.58]

    Примером углубленного развития теории химической связи явилось изучение строения аниона [Re2 l8] . Одинарная, двойная и тройная связи часто использовались для объяснения строения органических и неорганических молекул, но четверная связь не встречалась. Некоторые свойства аниона [Не2С18] , такие, как диамагнетизм, короткое расстояние Ке—Ке и заслоненная конформация, подтвердили 1аличие квадрупольной (четверной) связи в этой частице (рис. 1.2). Этот ион — лишь один пример из широкой области химии кластеров, содержащих связи металл—металл. [c.17]

    В историческом плане развития теории химической связи теория кристаллического поля в применении к неорганическим комплексам, по существу, может рассматриваться как естественное развитие доквантовых электростатических представлений. Идея электро- [c.34]

    Макс Борн (1882—1970) —выдающийся немещсий физик, один из создателей квантовой механики. Работал в университетах Германии, Англии и США. Лауреат Нобелевской премии (1954 г.). Работы Борна оказали большое влияние на развитие теории химической связи и теории кристаллических решеток (цикл Габера — Борна). Активный борец за мир. [c.84]

    Пониманию факторов, управляющих аналитическими свойствами реагентов, в последние годы существенно способствовало-развитие теории химической связи. В частности, помогло сочетание двух подходов, которые на первый взгляд представляются совершенно различными. С одной стороны, полагали, что для ответа на вопрос, может ли осуществиться данная химическая комбинация или нет, очень важны размеры, формы и направления орбиталей. Очевидно, противоположным этому было предположение, что атомы в молекулах удерживаются ненаправленными к неспецифичными электростатическими силами. Объединение этих двух подходов дало теорию поля лигандов, рассматриваемук> в гл. 2. [c.21]

    Создание и развитие теорий образования комплексных соединений, естественно, тесно связано с созданием и развитием теорий химической связи. В настоящей главе рассмотрим теории образования комплексных соединений, развитые на основе созданных в 1916 г. теорий ионной и ковалентной химических связей. Дальнейшее развитие этих теорий на квантовомеханической основе будет изложено в главе VIII. [c.33]

    И. И. Черняев очень внимательно следил за развитием теории химической связи и новыми гипотезами в теоретической физике. Поэтому уже осенью 1925 г. он предложил сразу два новых варианта объяснения гипотезы трапсвлияпия. [c.127]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Ра нработаи-ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45), — все же он сыграл большую роль в разработке квантово-механической теории химическон связи и не потерял своего значения до настоящего времени. [c.121]

    Важность этого представления для теории химической связи трудно переоценить. Не случайно поэтому, немецкие ученые В. Гайтлер и Ф. ЛондОн свою известную статью 1927 г. Взаимодействие нейтральных атомов и гомеополярная связь с точки зрения квантовой механики , с которой берет начало современная квантовая химия, начали словами Взаимодействие между нейтральными атомами до сих пор представляло большие трудности для теоретического рассмотрения. Развитие квантовой механики дало для разработки этой проблемы совершенно новую точку зрения прежде всего в новой модели распределение заряда полностью отлично от модели Бора, что уже влечет за собой совершенно новое соотношение сил (Кгаиезр1е1) между нейтральными атомами . [c.142]

chem21.info

Краткая история развития представлений о химической связи

Какова природа сил, связывающих атомы в молекуле? Ответ на этот вопрос искали с момента появления атомистической ги­потезы строения вещества. Вначале считали, что атомы механи­чески соединяются между собой с помощью крючков и петель. Затем возникла идея, что связь между атомами осуществляется силами всемирного тяготения. В начале девятнадцатого века в трудах Г. Деви и Йёнса Берцелиуса была разработана электрохи­мическая теория, суть которой сводилась к тому, что химически взаимодействующие частицы при контакте приобретают проти­воположные электрические заряды, которые обусловливают связь. Однако эта теория не смогла объяснить существование мо­лекул, образованных одинаковыми атомами (Н2, F2 и т. д.).

Дальнейшее развитие теории химической связи стало воз­можным после открытия электрона. Первым высказал элек­тронную концепцию Дж. Томсон в 1907 году. Он предположил наличие в атомах определенную устойчивость электронных конфигураций, которые могут реализоваться при потере или присоединении к ним электронов.

Эрнестом Розерфордом и Нильсом Бором была создана теория химической связи, осуществляемая путем перераспределения электронов между атомами. Основы этой теории были представлены в работах Вальтера Косселя, Джильберта Льюиса, Ирвина Ленгмюра.

Коссель предложил (1915 г.) статическую электронную теорию строения атомов и молекул, суть которой в следующем:

1. Атомы благородных газов обладают особенно устойчивой двух- или восьмиэлектронной внешней оболочкой.

2. Атомы других элементов во внешней оболочке имеют число электронов меньше двух или восьми. Их электронные оболочки менее устойчивы.

3. Образование молекул происходит вследствие передачи определенного числа электронов от атома одного элемента (ме­талла) к атому другого элемента (неметалла).

В результате такого перераспределения электронов каж­дый атом должен иметь внешнюю оболочку, аналогичную ус­тойчивой электронной оболочке благородного газа. При этом атом металла приобретает положительный, а атом неметал­ла — отрицательный заряд. Соединение между ними обуслов­ливается в соответствии с законом Кулона силами элект­ростатического притяжения. Такая химическая связь назы­вается ИОННОЙ.

Эта теория не могла объяснить природу связи между одина­ковыми атомами. Кроме того, последующие исследования по­казали, что практически никогда электроны не переходят пол­ностью от одного атома к другому.

Примерно в то же время (1916 г.) Льюис предпринял попыт­ку объяснить механизм образования химической связи между любыми (в том числе и одинаковыми) атомами. Затем теория Льюиса была развита Ленгмюром.

Теория Льюиса-Ленгмюра также исходит из особой стабиль­ности двух- или восьмиэлектронных внешних оболочек атомов и стремления атомов, участвующих в образовании молекулы, иметь такие оболочки. Химическая связь в данном случае осу­ществляется посредством образования общей электронной пары, в которую каждый атом дает по одному электрону из своей внешней оболочки. Такую химическую связь Ленгмюр назвал КОВАЛЕНТНОЙ, т. е. совместно действующей. Молекула Фтора, например, по этой теории образуется при обобществлении по одному электрону от каждого атома. В этом случае образуется одна общая электронная пара, связывающая атомы по схеме:

. . . .

: f : f :

. . . .

В схеме символ F условно обозначает ядро атома, окруженное электронами, кроме внешних; они на схеме показаны точками.

Теории Льюиса-Ленгмюра и Косселя были значительным вкладом в развитие электронных представлений о химической связи. Однако опыт показал, что устойчивой может быть не только двух- или восьмиэлектронная внешняя оболочка, но и оболочки, содержащие 6, 10, 12 и 16 электронов, как например, в соединениях СО, А1С13, РС15, SF6, OsF8. Из сказанного видна искусственность представления об особой устойчивости только двух- или восьмиэлектронной конфигурации. Рассмотренные теории носили качественный характер и не устанавливали ме­ханизма образования химической связи, не позволяли рассчи­тывать ее количественные характеристики.



infopedia.su

Теории возникновения химической связи в истории

К XIX веку человечество знало уже достаточно, чтобы обработать и проанализировать результаты различных исследований о сути природы химической связи. Таким образом, XIX век стал ключевым для развития теории строения химической связи. Различными учеными были предложены несколько концепций, которые бы объясняли природу связи в рамках имеющихся тогда научных объяснений и исследований.

 Одной из первых была выдвинута концепция электрохимического дуализма, выработанная Берцелиусом (шведский химик, ему принадлежат таблицы относительных атомных масс около 50 элементов, разработки в области органической химии, открыл церий, торий и селен). В основе теории лежал уже известный в то время закон Кулона, согласно которому модуль силы взаимодействия двух точечных зарядов прямо пропорционален произведению величин этих зарядов и обратно пропорционален квадрату расстояния между ними. Согласно концепции, все элементы располагаются в ряд в порядке уменьшения их электроотрицательных свойств, причем ряд начинается с кислорода, а не фтора, который к тому времени еще не был выделен в свободном состоянии; завершается ряд щелочными металлами. Наиболее электроотрицательные элементы обладают избыточным минусовым зарядом, а сам атом – полярный. Таким образом, атомы переориентируются в пространстве друг друга противоположными полюсами, при этом заряд частично нейтрализуется. Нейтрализация заряда приводит к выделению избыточной энергии – химическая связь образована. Теория дала начало научного подхода к объяснению явления химической связи, но не была достаточно логично обоснованной, потому что не могла объяснить возникновение сил, которые бы заставили атомы объединяться.

 Следующая теория разрабатывалась группой талантливых органиков в середине XIX века (Кекуле, Бутлеров, Куллер) и получила название «концепция валентности». Основу теории положил Кекуле, объяснив понятие кратной связи на примере бензола. Со временем теория расширилась и на неорганические соединения вследствие открытия периодического закона Д. И. Менделеева. Заключительным этапом концепции была теория химического строения Бутлерова (все физические и химические свойства соединений зависят не только от качественного и количественного состава, но и от пространственной структуры соединения).

Следующая теория – ионная концепция - появилась уже в начале XX века и принадлежала Косселю. Связана она с открытием электрона Томсона, что способствовало формированию представлений о природе межатомных сил. Было принято считать, что атом – электронейтральная частица, а образование связи между несколькими атомами проходит в два этапа: - отделение электрона от атома и его переход на другой атом: образование двух заряженных частиц – аниона и катиона; - объединение двух противоположно заряженных частиц в нейтральную молекулу. Число отданных/принятых электронов принято считать валентностью.

 Концепция электронных пар, разработанная Льюисом, начиналась с объяснения ковалентной связи. Черту в структурных формулах соответствует одной электронной паре, которая является общей для двух атомов, потому как находится в оболочке обоих из них. В рамках концепции были классифицированы виды химической связи, а главным достижением ее было понимание, что не все электроны участвуют в образовании связи, то есть, было понимание всей сложности и многоступенчатости строения электронных уровней.

Последней и использующейся до сих пор была орбитальная теория химической связи, тесно связанная с квантовой химией. Согласно теории, связь образуется в результате электростатических взаимодействий электронных плотностей атомов, а также электростатических взаимодействий электронной плотности одного атома с ядром другого.

 Нельзя сказать, что какая-либо из теорий возникновения химической связи была явно ошибочной и ненужной: все они были результатом долгой работы и гениальнейших умозаключений. Эволюция поздних теорий обусловлена как различными открытиями в физике и химии, так и научно-техническим прогрессом. То есть, последние концепции представляют собой результат работы огромного количества талантливых ученых.

Возможно, спустя сотни лет откроется новая правда о химических структурах, и наши теории также канут в лету, но сейчас орбитальная концепция принимается за истинную и используется для различных квантово-химических расчетах.

ufoleaks.su

Теория химической связи — реферат

К ван-дер-ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия, а также водородные связи, определяют формирование пространственной структуры биологических макромолекул.

Ван-дер-ваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами.9

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.10

Металлическая связь — химическая связь между атомами в металлическом кристалле, возникающая за счёт обобществления их валентных электронов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 В данной работе были рассмотрены типы химических связей, а также электронная теория химической связи. Нам удалось объяснить, что химические вещества (молекулы) состоят из атомов, которые соединены друг с другом химическими связями, почему энергия, необходимая для разрыва связи, больше, чем разность между электронной энергией атомов и молекул (качественная оценка энтропийного фактора).

 Мы выяснили, что электронная  теория химической связи была  предложена и развита  Льюисом  Г.Н в 1912—1916 годах и базировалась  на представлении о парной  связи между атомами, образованной  дублетом электронов, рассмотрели  некоторые примеры. 

В ходе рассмотрения типов химической связей, таких как: ковалентная, ионная, ван-дер-ваальсовы силы, водородная, металлическая, были сформированы представления о данных видах связей.

Так, ковалентная связь - химическая связь, образованная перекрытием  пары валентных электронных облаков;

 Ионная связь — очень прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара переходит преимущественно к атому с большей электроотрицательностью;

Ван-дер-Ваальсовы силы — силы межмолекулярного (и межатомного) взаимодействия с энергией 10 — 20 кДж/моль;

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом;

Металлическая связь — химическая связь между атомами в металлическом кристалле, возникающая за счёт обобществления их валентных электронов.

Таким образом, в ходе написания работы сформировалось чёткое представление о химических связях, об электронной теории химической связи, что является достижением поставленных целей при написании работы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Библиографический список

  1. Ганкин В.Ю., Ганкин Ю.В «Как образуется химическая связь и протекают химические реакции» издательство "Граница", Москва, в 2007 г.
  2. Новая иллюстрированная энциклопедия ('Ку-Ма'). — илл. — М.: Большая Российская энциклопедия, 2002. — Т. 10. — 255 с.
  3. Химический энциклопедический словарь / гл. редактор И. Л. Кнунянц. — М.: Советская энциклопедия, 1983. — С. 701. — 792 с.
  4. Шусторович Е. М. Химическая связь. Сущность и проблемы. — М.: "Наука", 1973. — С. 66. — 232 с.
  5. Л.Паулинг. Природа химической связи. — М.-Л.: Издательство химической литературы, 1947. — С. 16. — 440 с.
  6. Гиллеспи Р. Геометрия молекул. — М: "Мир", 1975. — С. 49. — 278 с.
  7. Полинг.Л., Полинг П. Химия. — «Мир», 1978. — С. 129. — 684 с.
  8. Бараш Ю. С. Силы Ван-дер-Ваальса. — М.: Наука, 1988. — 344 с.

1 Ганкин В.Ю., Ганкин Ю.В «Как образуется химическая связь и протекают химические реакции» издательство "Граница", Москва, в 2007 г.

2 Новая иллюстрированная энциклопедия ('Ку-Ма'). — илл. — М.: Большая Российская энциклопедия, 2002. — Т. 10. — 255 с.

3 Химический энциклопедический словарь / гл. редактор И. Л. Кнунянц. — М.: Советская энциклопедия, 1983. — С. 701. — 792 с

4 Шусторович Е. М. Химическая связь. Сущность и проблемы. — М.: "Наука", 1973. — С. 66. — 232 с.

5 Л.Паулинг. Природа химической связи. — М.-Л.: Издательство химической литературы, 1947. — С. 16. — 440.

6 Гиллеспи Р. Геометрия молекул. — М: "Мир", 1975. — С. 49. — 278 с.

7 Л.Паулинг. Природа химической связи. — М.-Л.: Издательство химической литературы, 1947. — С. 16. — 440 с

8 Полинг.Л., Полинг П. Химия. — «Мир», 1978. — С. 129. — 684 с.

9 Бараш Ю. С. Силы Ван-дер-Ваальса. — М.: Наука, 1988. — 344 с.

10 Определение по IUPAC

 

 

student.zoomru.ru

Курсовая работа - Теория химического строения органических соединений Электронная природа химических связей Предпосылки

БАШКИРСКИЙ ЭКОНОМИКО-ЮРИДИЧЕСКИЙ ТЕХНИКУМ

Курсовая работа

ПО ДИСЦИПЛИНЕ «ОРГАНИЧЕСКАЯ ХИМИЯ»

НА ТЕМУ: «ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ

ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ЭЛЕКТРОННАЯ ПРИРОДА ХИМИЧЕСКИХ СВЯЗЕЙ, ПРЕДПОСЫЛКИ ТЕОРИИ СТРОЕНИЯ. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ. ИЗОМЕРИЯ»

Выполнил студент:

Очного отделения

Юридического факультета

Группы О-05-19

Диргамов Р.Р.

Проверила преподаватель:

Исламгулова. И.М.

с. Иванаево-2008 год

СОДЕРЖАНИЕ

1. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ЭЛЕКТРОННАЯ ПРИРОДА ХИМИЧЕСКИХ СВЯЗЕЙ, ПРЕДПОСЫЛКИ ТЕОРИИ СТРОЕНИЯ……………………..………..…СТР. 7

2. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ…………………………....…СТР. 9

3. ЗАКЛЮЧЕНИЕ……………………………………………………..…… СТР. 13

4. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……………..…..…СТР. 14

ВВЕДЕНИЕ

Предмет органической химии. Изучая неорганическую химию, мы знакомились с веществами самого разнообразного состава и при этом ни разу не встречали, чтобы какой—нибудь один химический элемент непременно присутствовал во всех веществах. Органические вещества в своем составе наряду с другими элементами всегда содержат углерод. Изучение соединений углерода — их строения, химических превращений и составляет предмет органической химии.

Вещества органические и неорганический. Наряду с углеродом в состав органических веществ чаще всего входят водород, кислород и азот, сравнительно реже — сера, фосфор, галогены и другие элементы. Известно несколько миллионов органических соединений, неорганических же веществ значительно меньше.

Из всех химических элементов только углерод образует такое большое число соединений.

С органическими веществами мы встречаемся на каждом шагу. Они содержатся во всех растительных и животных организмах, входят в состав нашей пищи (хлеба, мяса, овощей и т. п.), служат материалом для изготовления одежды, образуют различные виды топлива, используются нами в качестве лекарств, красителей, средств защиты урожая и т. д.

Почти все органические вещества горючи и сравнительно легко разлагаются при нагревании. По образованию оксида углерода (IУ) при горении или по обугливанию вещества при нагревании легко установить принадлежность его к органическим соединениям.

Резкой грани между органическими и неорганическими веществами не существует. Оксиды углерода, угольная кислота, ее соли я некоторые другие вещества по наличию в них углерода должны считаться органическими, но по свойствам они близки к неорганическим соединениям подобного типа и изучаются обычно в неорганической химии. Из курса биологии вам известно, что из неорганических веществ образуются органические, которые могут превращаться в неорганические. Все вещества природы взаимосвязанью, между ними существует единство.

Возникновение органической химии как науки. С органическими веществами человек знаком с давних времен. Наши далекие предки применяли природные красители для окраски тканей, использовали в качестве продуктов питания растительные масла, животные жиры, тростниковый сахар, получали уксус брожением спиртовых жидкостей и т. д.

Но наука о соединениях углерода возникла лишь в первой половине ХIХ в. до этого времени в химии делили вещества по их происхождению на три группы — минеральные, растительные и животные — и изучали их раздельно.

С развитием методов химического анализа было установлено, что вещества растительного и животного происхождения содержат углерод. Шведский химик Я. Берцелиус (1807 г.) предложил называть вещества, получаемые из организмов, органическими, а науку, изучающую их, — органической химией.

Однако Я. Берцелиус и другие химики того времени считали, что органические вещества принципиально отличаются от неорганических: они не могут быть получены лабораторным способом, как неорганические вещества, а создаются только организмами под влиянием особой «жизненной силы. Это учение о «жизненной силе», иначе называемое виталистическим, было глубоко ошибочным, идеалистическим, так как заставляло верить в наличие каких-то нематериальных, сверхъестественных сил.

Своим утверждением о невозможности создать органические вещества из неорганических виталистическое учение тормозило развитие науки. Но оно, конечно, не могло остановить поступательного процесса познания природы.

В 1828г. ученик Я. Верцелиуса — немецкий ученый Ф. Вёлер из неорганических веществ синтезирует органическое вещество — мочевину. В 1845г. немецкий химик А. Кольбе искусственным путем получает уксусную кислоту. В 1854 г. французский химик М. Вертло синтезирует жиры. Русский ученый А.М. Вутлеров в 1861г. впервые синтезом получает сахаристое вещество.

Синтезы веществ, ранее вырабатывавшихся только живыми организмами, начали быстро следовать один за другим. Идеалистическое учение о «жизненной силе потерпело полное поражение.

В настоящее время синтезированные многие органические вещества, не только имеющиеся в природе, но и не встречающиеся в ней, например: многочисленные пластмассы, различные виды каучуков, всевозможные красители, взрывчатые вещества, лекарственные препараты.

Синтетически полученных веществ сейчас известно даже больше, чем найденных в природе, и число их быстро растет. Начинают осуществляться синтезы самых сложных органических веществ — белков.

Смысл термина «органические вещества» давно стал шире его первоначального значения. Теперь это название охватывает не только вещества, входящие в состав организмов, но и синтетически получаемые, не имеющие отношения к организмам. Однако, как исторически сложившееся, это название оставлено для обозначения всей многочисленной группы веществ, содержащих углерод.

Название науки «органическая химия», утратив первоначальный смысл, приобрело в связи с этим более широкое толкование. Можно сказать, что такое название получило и новое подтверждение, так как ведущей познавательной задачей современной органической химии является глубокое изучение процессов, происходящих в клетках организмов на молекулярном уровне, выяснение тех тонких механизмов, которые составляют материальную основу явлений жизни.

Изучение химии органических веществ, таким образом, расширяет наши знания о природе. Раскрывая взаимосвязь веществ, прослеживая процесс усложнения их от наиболее простых — неорганических — до самых сложных, составляющих организмы, эта наука раскрывает нам картину развития природы, позволяет глубже понять процессы, происходящие в природе, и закономерности, лежащие в их основе.

Достижения органической химии широко используются в современном производстве. Осуществляя в широких масштабах процессы переработки природных веществ и разнообразные органические, промышленность органической химии создает многочисленные вещества и для других отраслей промышленные кости, с/х. культуры, быта.

Все эти стороны органической химии раскроются перед вами в проессе дальнейшего изучения науки.

Глава 1. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ЭЛЕКТРОННАЯ ПРИРОДА ХИМИЧЕСКИХ СВЯЗЕЙ

§ 1. ПРЕДПОСЫЛКИ ТЕОРИИ СТРОЕНИЯ

Подобно тому, как в неорганической химии при изучении элементов и их соединений мы постоянно руководствовались периодическим законом и периодической системой химических элементов д. И. Менделеева, в органической химии при изучении веществ мы будем Опираться на теорию химического строения.

Теория химического строения в своей основе была создана в 60-х годах прошлого столетия.

В первой половине ХIХ в. 0сновная задача органической химии состояла в изучении состава и свойств природных соединений, в разработке способов Рационального использования их для практических нужд. В связи с развитием промышленности, торговли, ростом городов к органической химии стали предъявляться большие требовании Текстильная промышленность нуждалась в разнообра3 красителях; для развития пищевой промышленности более совершенные методы переработки сельскохозяйственных продуктов; нужно было решить проблему освещения растущих городов на основе использования природных материалов; удовлетворить потребность населения в лекарственных веществах и т. д.

Однако дальнейшее органической химии стало замедляться из-за отставания в ней теоретических представлений. Открывавшиеся в процессе исследования веществ новые явления требовали систематизации и объяснения их с единой точки зрения, между тем теории того времени оказывались для этого недостаточными, Органическая химия должна была создавать новые вещества, но теоретические знания не могли указать Пути их целенаправленного синтеза.

Необходимость новых теоретических воззрений в органической химии станет более Понятной, если мы обсудим некоторые известные нам фактор из данной области.

При изучении курса неорганической химии вы узнали, что углерод образует с водородом большое число соединений, так называемых углеводородов. В состав горючего природного газа, например, наряду с простейшим углеводородом метаном СН4, входят этан С2Н6, пропан С3Н8, бутан С4Н10 и др.; при термическом разложении каменного угля образуются бензол, толуол С7Н3 и т. д.; много различных углеводородов содержится в нефти. Возникают вопросы: почему два элемента могут образовывать так много соединений и, вообще, почему органических веществ значительно больше, чем неорганических?

Присмотримся теперь к составу углеводородов, например тех, что содержатся в природном газе. Углерод нам известен как элемент четырехвалентный, но здесь он как будто только в метане СН4 сохраняет эту валентность. Если следовать нашим представлениям, углерод должен быть трехвалентным, а в пропане С3Н8 иметь даже дробную валентность. Какова же валентность углерода в органических соединениях?

Обратимся к другим фактам. Из курса биологии известна глюкоза, ее молекулярная формула. Оказывается, что такая же формула у фруктозы (сахаристого вещества, содержащегося в меде, фруктах). При изучении неорганической химии мы не встречали случаев, чтобы разные вещества имели один и тот же молекулярный состав. В органической химии такие факты стали накапливаться еще с начала ХIХ столетия. Вещества, имеющие один и тот же состав, но разные свойства, 51. Верцелиус назвал изомерами. Причина изомерии также требовала научного обоснования сложившееся в органической химии положение образно выразил ф. в письме к я. Берцелиусу (1835): Химия может сейчас кого угодно свести с ума, она представляется мне дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть..

--PAGE_BREAK--

Мы отметили лишь несколько проблем, требовавших теоретического объяснения. Перед учеными того времени стояли и другие сложные вопросы.

2. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ

Основы новой теории сформулировован 1861г. профессор Казанского университета Александр Бутлеров.

В химии к тому времени уже значительное распространение получили идеи атомистики. Понят атома и молекулы получили на международном съезде Химиков в 1860г. свое точное определение. Но ученые еще не придавали значения тому, как строятся молекулы из атомное, и считали, что позвать это строение химическими методами невозможно. Были и такие ученые, которые вообще не реального существования атомов и молекул.

А.М. Бутлеров не только считал атомы и молекулы реально существующими частицами веществ, но и пришел к выводу, что атомы в молекулах не находится в беспорядке, а соединены друг с другом в определенной последовательности которую можно установить химическими методами и отразить в формуле.

Основную идею своей теории А.М. Бутлеров выразил в следующих словах: е Химическая натура сосной частицы определяется натурой элементарных составных частей, количеством их и химическим строением». В более привычной для нас формулировке это означает, что химические свойства молекулы определяются свойствами составляющих ее атомов, их числом и химическим строением молекулы,

Химическое строение, по А.М. Бутлерову — это последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния друг Руга. Соединения атомов в молекулы, указывал А.М. Бутлеров происходит в соответствии с их атомностью (валентностью).

На примерах из неорганической химии можно видеть, что атомы, соединяясь в Молекулу, оказывают влияние друг на друга. Так, водород и кислород, образовав воду, настолько изменились в результате взаимного влияния, что первый уже Не Роит, а второй не поддерживает горения; вода не Обещает свойствами ни водорода, ни кислорода.

Основывается на приведенных выше высказываниях А. М. Бутлерова, сущность теории химического строения можно выразить в следующих положениях:

• 1. Атомы в молекулах располагаются не беспорядочно, они соединены друг с другом в определенной последовательности согласно их валентности.

• 2. Свойства веществ зависят не только от того, атомы каких элементов и в каком количестве входят в состав молекул, но и от последовательности соединения атомов в молекулах, от порядка их взаимного влияния друг на друга.

Рассмотрим на примере известных нам углеводородов первое из этих положений. В какой последовательности соединены атомы в молекуле простейшего углеводорода метана? Мы уже знаем, что каждый атом водорода в нем соединен с атомом углерода. Легко понять, что иначе и быть не может. Если, например, предположить, что какие-нибудь два атома водорода связаны друг с другом непосредственно, то, исчерпав при этом свою валентность, они уже не смогут соединяться с другими атомами. Обозначая валентность элементов условно черточками, мы так изображаем порядок связи атомов в молекуле метана:

/>

/>

В молекулах пропана С3Н3 и бутана С4Н10 атомы соединены в таком порядке:

/>

Зная строение углеводородов, мы теперь можем ответить на некоторые из тех вопросов, которые волновали в свое время ученых.

В чем причина многообразия соединений углерода? Как видим, она заключается в том, что атомы углерода обладают свойством соединяться друг с другом в цепи.

Нарушается ли валентность элементов в рассмотренных соединениях? Нет, углерод всюду остается четырехвалентным.

• Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Следует иметь в виду, что подобные формулы отображают только последовательность соединения атомов, но не показывают, как атомы расположены в пространстве. Поэтому, как бы мы ни изобразили структурную формулу пропана: это будет одна и та же молекула, так как порядок, последовательность соединения атомов не изменяется.

Структурные формулы веществ часто изображают в сокращенном виде, например: СН3—СН2—Сн3. В сокращенных структурных формулах черточки обозначают связь атомов углерода между собой, но не показывают связи между атомами углерода и водорода.

Заключение

Разработав теорию и подтвердив правильность ее синтезом новых соединений, А.М. Вутлеров не считал теорию абсолютной и неизменной. Он утверждено, что она должна развиваться, и предвидел, что это развитие пойдет путем разрешения противоречий между знаниями и возникающими новыми фактами.

Первое из них было, а самим А.М. Вутлеровым. Он считал, что наука в будущей сможет устанавливать не только порядок соединения атомов в молекуле, но и их пространственное расположение. Учение о пространственном строении молекул, называемое стереохимией (греч.— пространственный), вошло в науку в 80-х годах прошлого столетия. Оно позволило объяснять и предсказывать новые факты, не вмещавшиеся в рамки прежних представлений.

Второе направление связано с применением в органической химии учения об электронном строении атомов, развитого в физике ХХ в. Это учение позволило понять природу химической связи атомов, выяснить сущность их взаимного влияния, объяснить причину проявления веществом тех или иных химических свойств.

Литература

1. Цветков Леонид Александрович. Органическая химия. Учебник для учащихся 10-11 классов общеобразовательных учебных заведений.

2.: Химия Учебник.- 2-е изд. Испр. И доп.-М.для учащихся 10-11 классов общеобразовательных учебных заведений:, 2000.

www.ronl.ru

Реферат - Теория химического строения органических соединений Электронная природа химических связей Предпосылки

БАШКИРСКИЙ ЭКОНОМИКО-ЮРИДИЧЕСКИЙ ТЕХНИКУМ

Курсовая работа

ПО ДИСЦИПЛИНЕ «ОРГАНИЧЕСКАЯ ХИМИЯ»

НА ТЕМУ: «ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ

ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ЭЛЕКТРОННАЯ ПРИРОДА ХИМИЧЕСКИХ СВЯЗЕЙ, ПРЕДПОСЫЛКИ ТЕОРИИ СТРОЕНИЯ. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ. ИЗОМЕРИЯ»

Выполнил студент:

Очного отделения

Юридического факультета

Группы О-05-19

Диргамов Р.Р.

Проверила преподаватель:

Исламгулова. И.М.

с. Иванаево-2008 год

СОДЕРЖАНИЕ

1. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ЭЛЕКТРОННАЯ ПРИРОДА ХИМИЧЕСКИХ СВЯЗЕЙ, ПРЕДПОСЫЛКИ ТЕОРИИ СТРОЕНИЯ……………………..………..…СТР. 7

2. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ…………………………....…СТР. 9

3. ЗАКЛЮЧЕНИЕ……………………………………………………..…… СТР. 13

4. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……………..…..…СТР. 14

ВВЕДЕНИЕ

Предмет органической химии. Изучая неорганическую химию, мы знакомились с веществами самого разнообразного состава и при этом ни разу не встречали, чтобы какой—нибудь один химический элемент непременно присутствовал во всех веществах. Органические вещества в своем составе наряду с другими элементами всегда содержат углерод. Изучение соединений углерода — их строения, химических превращений и составляет предмет органической химии.

Вещества органические и неорганический. Наряду с углеродом в состав органических веществ чаще всего входят водород, кислород и азот, сравнительно реже — сера, фосфор, галогены и другие элементы. Известно несколько миллионов органических соединений, неорганических же веществ значительно меньше.

Из всех химических элементов только углерод образует такое большое число соединений.

С органическими веществами мы встречаемся на каждом шагу. Они содержатся во всех растительных и животных организмах, входят в состав нашей пищи (хлеба, мяса, овощей и т. п.), служат материалом для изготовления одежды, образуют различные виды топлива, используются нами в качестве лекарств, красителей, средств защиты урожая и т. д.

Почти все органические вещества горючи и сравнительно легко разлагаются при нагревании. По образованию оксида углерода (IУ) при горении или по обугливанию вещества при нагревании легко установить принадлежность его к органическим соединениям.

Резкой грани между органическими и неорганическими веществами не существует. Оксиды углерода, угольная кислота, ее соли я некоторые другие вещества по наличию в них углерода должны считаться органическими, но по свойствам они близки к неорганическим соединениям подобного типа и изучаются обычно в неорганической химии. Из курса биологии вам известно, что из неорганических веществ образуются органические, которые могут превращаться в неорганические. Все вещества природы взаимосвязанью, между ними существует единство.

Возникновение органической химии как науки. С органическими веществами человек знаком с давних времен. Наши далекие предки применяли природные красители для окраски тканей, использовали в качестве продуктов питания растительные масла, животные жиры, тростниковый сахар, получали уксус брожением спиртовых жидкостей и т. д.

Но наука о соединениях углерода возникла лишь в первой половине ХIХ в. до этого времени в химии делили вещества по их происхождению на три группы — минеральные, растительные и животные — и изучали их раздельно.

С развитием методов химического анализа было установлено, что вещества растительного и животного происхождения содержат углерод. Шведский химик Я. Берцелиус (1807 г.) предложил называть вещества, получаемые из организмов, органическими, а науку, изучающую их, — органической химией.

Однако Я. Берцелиус и другие химики того времени считали, что органические вещества принципиально отличаются от неорганических: они не могут быть получены лабораторным способом, как неорганические вещества, а создаются только организмами под влиянием особой «жизненной силы. Это учение о «жизненной силе», иначе называемое виталистическим, было глубоко ошибочным, идеалистическим, так как заставляло верить в наличие каких-то нематериальных, сверхъестественных сил.

Своим утверждением о невозможности создать органические вещества из неорганических виталистическое учение тормозило развитие науки. Но оно, конечно, не могло остановить поступательного процесса познания природы.

В 1828г. ученик Я. Верцелиуса — немецкий ученый Ф. Вёлер из неорганических веществ синтезирует органическое вещество — мочевину. В 1845г. немецкий химик А. Кольбе искусственным путем получает уксусную кислоту. В 1854 г. французский химик М. Вертло синтезирует жиры. Русский ученый А.М. Вутлеров в 1861г. впервые синтезом получает сахаристое вещество.

Синтезы веществ, ранее вырабатывавшихся только живыми организмами, начали быстро следовать один за другим. Идеалистическое учение о «жизненной силе потерпело полное поражение.

В настоящее время синтезированные многие органические вещества, не только имеющиеся в природе, но и не встречающиеся в ней, например: многочисленные пластмассы, различные виды каучуков, всевозможные красители, взрывчатые вещества, лекарственные препараты.

Синтетически полученных веществ сейчас известно даже больше, чем найденных в природе, и число их быстро растет. Начинают осуществляться синтезы самых сложных органических веществ — белков.

Смысл термина «органические вещества» давно стал шире его первоначального значения. Теперь это название охватывает не только вещества, входящие в состав организмов, но и синтетически получаемые, не имеющие отношения к организмам. Однако, как исторически сложившееся, это название оставлено для обозначения всей многочисленной группы веществ, содержащих углерод.

Название науки «органическая химия», утратив первоначальный смысл, приобрело в связи с этим более широкое толкование. Можно сказать, что такое название получило и новое подтверждение, так как ведущей познавательной задачей современной органической химии является глубокое изучение процессов, происходящих в клетках организмов на молекулярном уровне, выяснение тех тонких механизмов, которые составляют материальную основу явлений жизни.

Изучение химии органических веществ, таким образом, расширяет наши знания о природе. Раскрывая взаимосвязь веществ, прослеживая процесс усложнения их от наиболее простых — неорганических — до самых сложных, составляющих организмы, эта наука раскрывает нам картину развития природы, позволяет глубже понять процессы, происходящие в природе, и закономерности, лежащие в их основе.

Достижения органической химии широко используются в современном производстве. Осуществляя в широких масштабах процессы переработки природных веществ и разнообразные органические, промышленность органической химии создает многочисленные вещества и для других отраслей промышленные кости, с/х. культуры, быта.

Все эти стороны органической химии раскроются перед вами в проессе дальнейшего изучения науки.

Глава 1. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. ЭЛЕКТРОННАЯ ПРИРОДА ХИМИЧЕСКИХ СВЯЗЕЙ

§ 1. ПРЕДПОСЫЛКИ ТЕОРИИ СТРОЕНИЯ

Подобно тому, как в неорганической химии при изучении элементов и их соединений мы постоянно руководствовались периодическим законом и периодической системой химических элементов д. И. Менделеева, в органической химии при изучении веществ мы будем Опираться на теорию химического строения.

Теория химического строения в своей основе была создана в 60-х годах прошлого столетия.

В первой половине ХIХ в. 0сновная задача органической химии состояла в изучении состава и свойств природных соединений, в разработке способов Рационального использования их для практических нужд. В связи с развитием промышленности, торговли, ростом городов к органической химии стали предъявляться большие требовании Текстильная промышленность нуждалась в разнообра3 красителях; для развития пищевой промышленности более совершенные методы переработки сельскохозяйственных продуктов; нужно было решить проблему освещения растущих городов на основе использования природных материалов; удовлетворить потребность населения в лекарственных веществах и т. д.

Однако дальнейшее органической химии стало замедляться из-за отставания в ней теоретических представлений. Открывавшиеся в процессе исследования веществ новые явления требовали систематизации и объяснения их с единой точки зрения, между тем теории того времени оказывались для этого недостаточными, Органическая химия должна была создавать новые вещества, но теоретические знания не могли указать Пути их целенаправленного синтеза.

Необходимость новых теоретических воззрений в органической химии станет более Понятной, если мы обсудим некоторые известные нам фактор из данной области.

При изучении курса неорганической химии вы узнали, что углерод образует с водородом большое число соединений, так называемых углеводородов. В состав горючего природного газа, например, наряду с простейшим углеводородом метаном СН4, входят этан С2Н6, пропан С3Н8, бутан С4Н10 и др.; при термическом разложении каменного угля образуются бензол, толуол С7Н3 и т. д.; много различных углеводородов содержится в нефти. Возникают вопросы: почему два элемента могут образовывать так много соединений и, вообще, почему органических веществ значительно больше, чем неорганических?

Присмотримся теперь к составу углеводородов, например тех, что содержатся в природном газе. Углерод нам известен как элемент четырехвалентный, но здесь он как будто только в метане СН4 сохраняет эту валентность. Если следовать нашим представлениям, углерод должен быть трехвалентным, а в пропане С3Н8 иметь даже дробную валентность. Какова же валентность углерода в органических соединениях?

Обратимся к другим фактам. Из курса биологии известна глюкоза, ее молекулярная формула. Оказывается, что такая же формула у фруктозы (сахаристого вещества, содержащегося в меде, фруктах). При изучении неорганической химии мы не встречали случаев, чтобы разные вещества имели один и тот же молекулярный состав. В органической химии такие факты стали накапливаться еще с начала ХIХ столетия. Вещества, имеющие один и тот же состав, но разные свойства, 51. Верцелиус назвал изомерами. Причина изомерии также требовала научного обоснования сложившееся в органической химии положение образно выразил ф. в письме к я. Берцелиусу (1835): Химия может сейчас кого угодно свести с ума, она представляется мне дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть..

--PAGE_BREAK--

Мы отметили лишь несколько проблем, требовавших теоретического объяснения. Перед учеными того времени стояли и другие сложные вопросы.

2. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ

Основы новой теории сформулировован 1861г. профессор Казанского университета Александр Бутлеров.

В химии к тому времени уже значительное распространение получили идеи атомистики. Понят атома и молекулы получили на международном съезде Химиков в 1860г. свое точное определение. Но ученые еще не придавали значения тому, как строятся молекулы из атомное, и считали, что позвать это строение химическими методами невозможно. Были и такие ученые, которые вообще не реального существования атомов и молекул.

А.М. Бутлеров не только считал атомы и молекулы реально существующими частицами веществ, но и пришел к выводу, что атомы в молекулах не находится в беспорядке, а соединены друг с другом в определенной последовательности которую можно установить химическими методами и отразить в формуле.

Основную идею своей теории А.М. Бутлеров выразил в следующих словах: е Химическая натура сосной частицы определяется натурой элементарных составных частей, количеством их и химическим строением». В более привычной для нас формулировке это означает, что химические свойства молекулы определяются свойствами составляющих ее атомов, их числом и химическим строением молекулы,

Химическое строение, по А.М. Бутлерову — это последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния друг Руга. Соединения атомов в молекулы, указывал А.М. Бутлеров происходит в соответствии с их атомностью (валентностью).

На примерах из неорганической химии можно видеть, что атомы, соединяясь в Молекулу, оказывают влияние друг на друга. Так, водород и кислород, образовав воду, настолько изменились в результате взаимного влияния, что первый уже Не Роит, а второй не поддерживает горения; вода не Обещает свойствами ни водорода, ни кислорода.

Основывается на приведенных выше высказываниях А. М. Бутлерова, сущность теории химического строения можно выразить в следующих положениях:

• 1. Атомы в молекулах располагаются не беспорядочно, они соединены друг с другом в определенной последовательности согласно их валентности.

• 2. Свойства веществ зависят не только от того, атомы каких элементов и в каком количестве входят в состав молекул, но и от последовательности соединения атомов в молекулах, от порядка их взаимного влияния друг на друга.

Рассмотрим на примере известных нам углеводородов первое из этих положений. В какой последовательности соединены атомы в молекуле простейшего углеводорода метана? Мы уже знаем, что каждый атом водорода в нем соединен с атомом углерода. Легко понять, что иначе и быть не может. Если, например, предположить, что какие-нибудь два атома водорода связаны друг с другом непосредственно, то, исчерпав при этом свою валентность, они уже не смогут соединяться с другими атомами. Обозначая валентность элементов условно черточками, мы так изображаем порядок связи атомов в молекуле метана:

/>

/>

В молекулах пропана С3Н3 и бутана С4Н10 атомы соединены в таком порядке:

/>

Зная строение углеводородов, мы теперь можем ответить на некоторые из тех вопросов, которые волновали в свое время ученых.

В чем причина многообразия соединений углерода? Как видим, она заключается в том, что атомы углерода обладают свойством соединяться друг с другом в цепи.

Нарушается ли валентность элементов в рассмотренных соединениях? Нет, углерод всюду остается четырехвалентным.

• Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Следует иметь в виду, что подобные формулы отображают только последовательность соединения атомов, но не показывают, как атомы расположены в пространстве. Поэтому, как бы мы ни изобразили структурную формулу пропана: это будет одна и та же молекула, так как порядок, последовательность соединения атомов не изменяется.

Структурные формулы веществ часто изображают в сокращенном виде, например: СН3—СН2—Сн3. В сокращенных структурных формулах черточки обозначают связь атомов углерода между собой, но не показывают связи между атомами углерода и водорода.

Заключение

Разработав теорию и подтвердив правильность ее синтезом новых соединений, А.М. Вутлеров не считал теорию абсолютной и неизменной. Он утверждено, что она должна развиваться, и предвидел, что это развитие пойдет путем разрешения противоречий между знаниями и возникающими новыми фактами.

Первое из них было, а самим А.М. Вутлеровым. Он считал, что наука в будущей сможет устанавливать не только порядок соединения атомов в молекуле, но и их пространственное расположение. Учение о пространственном строении молекул, называемое стереохимией (греч.— пространственный), вошло в науку в 80-х годах прошлого столетия. Оно позволило объяснять и предсказывать новые факты, не вмещавшиеся в рамки прежних представлений.

Второе направление связано с применением в органической химии учения об электронном строении атомов, развитого в физике ХХ в. Это учение позволило понять природу химической связи атомов, выяснить сущность их взаимного влияния, объяснить причину проявления веществом тех или иных химических свойств.

Литература

1. Цветков Леонид Александрович. Органическая химия. Учебник для учащихся 10-11 классов общеобразовательных учебных заведений.

2.: Химия Учебник.- 2-е изд. Испр. И доп.-М.для учащихся 10-11 классов общеобразовательных учебных заведений:, 2000.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.