Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Читать реферат по экологии: "Озоновые дыры 3". Реферат по экологии озоновые дыры


Доклад - Озоновые дыры - Экология

Содержание

Введение

1. Озоновые дыры и причины их возникновения

1.1 Источники разрушения озонового слоя

1.2 Озоновая дыра над Антарктикой

2. Основные мероприятия по защите озонового слоя

3. Правило оптимальной компонентной дополнительности

4. Закон Н.Ф. Реймерса о разрушении иерархии экосистем

Заключение

Список использованной литературы

Введение

Современная кислородная атмосфера Земли – уникальное явление среди планет Солнечной системы, и эта её особенность связана с наличием на нашей планете жизни.

Проблема экологии для людей сейчас, несомненно, самая главная. На реальность экологической катастрофы указывает разрушение озонного слоя Земли. Озон — трехатомная форма кислорода, образуется в верхних слоях атмосферы под действием жесткого (коротковолнового) ультрафиолетового излучения Солнца.

Сегодня озон беспокоит всех, даже тех, кто раньше не подозревал о существовании озонного слоя в атмосфере, а считал только, что запах озона является признаком свежего воздуха. (Недаром озон в переводе с греческого означает ''запах''.) Этот интерес понятен – речь идёт о будущем всей биосферы Земли, в том числе и самого человека. В настоящее время назрела необходимость принять определённые обязательные для всех решения, которые позволили бы сохранить озонный слой. Но чтобы эти решения были правильны, нужна полная информация о тех факторах, которые изменяют количество озона в атмосфере Земли, а также о свойствах озона, о том, как именно он реагирует на эти факторы.

1. Озоновые дыры и причины их возникновения

Озоновый слой — это широкий атмосферный пояс, простирающийся на высоте от 10 до 50 км над поверхностью Земли. Химически озон — это молекула, состоящая из трех атомов кислорода (молекула кислорода содержит два атома). Концентрация озона в атмосфере очень мала, и небольшие изменения количества озона приводят к серьезным изменениям интенсивности ультрафиолета, достигающего земной поверхности. В отличии от обычного кислорода озон неустойчив, он легко переходит в двухатомную, устойчивую форму кислорода. Озон – гораздо более сильный окислитель, чем кислород, и это делает его способным убивать бактерии, подавлять рост и развитие растений. Впрочем, из-за его низкой в обычных условиях концентрации в приземных слоях воздуха эти его особенности практически не влияют на состояние живых систем.

Гораздо важнее его другое свойство, делающее этот газ совершенно необходимым для всей жизни на суше. Это свойство – способность озона поглощать жесткое (коротковолновое) ультрафиолетовое (УФ) излучение Солнца. Кванты жесткого УФ обладают энергией, достаточной для разрыва некоторых химических связей, поэтому его относят к ионизирующим излучениям. Как и другие излучения этого рода, рентгеновское и гамма-излучение, оно вызывает многочисленные нарушения в клетках живых организмов. Озон образуется под воздействием высокоэнергетичной солнечной радиации, стимулирующей реакцию между О2 и свободными атомами кислорода. Под воздействием умеренной радиации он распадается, абсорбируя энергию этой радиации. Таким образом, этот цикличный процесс «съедает» опасный ультрафиолет.

Молекулы озона, как и кислорода, электрически нейтральные, т.е. не несут электрического заряда. Поэтому само по себе магнитное поле Земли не влияет на распределение озона в атмосфере. Верхний слой атмосферы – ионосфера, практически совпадает с озоновым слоем.

В полярных зонах, где силовые линии магнитного поля Земли замыкаются на ее поверхности, искажения ионосферы весьма значительны. Количество ионов, в том числе и ионизированного кислорода, в верхних слоях атмосферы полярных зон снижено. Но главная причина малого содержания озона в области полюсов – малая интенсивность солнечного облучения, падающего даже во время полярного дня под малыми углами к горизонту, а во время полярной ночи отсутствуют вовсе. Площадь полярных «дыр» в озоновом слое – надежный показатель изменений общего содержания озона в атмосфере.

Содержание озона в атмосфере колеблется вследствие многих естественных причин. Периодические колебания связаны с циклами солнечной активности; многие компоненты вулканических газов способны разрушать озон, поэтому повышение вулканической активности ведет к снижению его концентрации. Благодаря высоким, сверураганным скоростям воздушных потоков в стратосфере разрушающие озон вещества разносятся на большие площади. Переносятся не только разрушители озона, но и он сам, поэтому нарушения концентрации озона быстро разносятся на большие площади, а локальные небольшие «дыры» в озоновом щите, вызванные, например, запуском ракеты, сравнительно быстро затягиваются. Только в полярных областях воздух малоподвижен, вследствие чего исчезновение там озона не компенсируется его заносом из других широт, и полярные «озонные дыры», особенно на Южном полюсе, весьма устойчивы.

1.1 Источники разрушения озонового слоя

Среди разрушители озонного слоя можно выделить:

1) Фреоны.

Озон разрушается под воздействием соединений хлора, известных как фреоны, которые, также разрушаясь под воздействием солнечной радиации, освобождают хлор, «отрывающий» от молекул озона «третий» атом. Хлор в соединения не образовывает, но служит катализатором «разрыва». Таким образом, один атом хлора способен «погубить» много озона. Считается, что соединения хлора способны оставаться в атмосфере от 50 до 1500 лет (в зависимости от состава вещества) Земли. Наблюдения за озоновым слоем планеты проводились антарктическими экспедициями с середины 50-х.

Озоновая дыра над Антарктидой, увеличивающаяся по весне и уменьшающаяся к осени, была обнаружена в 1985 году. Открытие метеорологов вызвало цепь последствий экономического характера. Дело в том, что в существовании «дыры» была обвинена химическая промышленность, производящая вещества, содержащие фреоны, способствующие разрушению озона (от дезодорантов до холодильных установок).

В вопросе о том насколько человек повинен в образовании «озоновых дыр» — единого мнения нет.

С одной стороны – да, безусловно повинен. Производство соединений, приводящих к разрушению озона, следует свести к минимуму, а лучше и вообще прекратить. То есть отказаться от целого сектора промышленности, с оборотом в многие миллиарды долларов. А если не отказаться — то перевести ее на «безопасные» рельсы, что тоже стоит денег.

Точка зрения скептиков: человеческое влияние на атмосферные процессы, при всей его разрушительности в локальном плане, в планетарном масштабе — ничтожно. Антифреоновая кампания «зеленых» имеет вполне прозрачную экономическую и политическую подоплеку: с ее помощью крупные американские корпорации (Дюпон, например), душат своих зарубежных конкурентов, навязывая соглашения по «охране окружающей среды» на государственном уровне и насильно вводя новый технологический виток, который более слабые в экономическом отношении государства выдержать не в состоянии.

2) Высотные самолёты.

Разрушению озонного слоя способствуют не только фреоны, выделяющиеся в атмосферу и попадающие в стратосферу. К разрушению озонного слоя причастны и окислы азота, которые образуются при ядерных взрывах. Но окислы азота образуются и в камерах сгорания турбореактивных двигателей высотных самолётов. Окислы азота образуются из азота и кислорода, которые там находятся. Скорость образования окислов азота тем больше, чем выше температура, т. е. чем больше мощность двигателя.

Важна не только мощность двигателя самолёта, но и высота, на которой он летает и выпускает разрушающие озон окислы азота. Чем выше образуется окись или закись азота, тем он губительнее для озона.

Общее количество окиси азота, которое выбрасывается в атмосферу в год, оценивается в 1 млрд. т. Примерно треть этого количества выбрасывается самолётами выше среднего уровня тропопаузы (11 км). Что касается самолётов, то наиболее вредными являются выбросы военных самолётов, количество которых исчисляется десятками тысяч. Они летают преимущественно на высотах озонного слоя.

3) Минеральные удобрения.

Озон в стратосфере может уменьшаться и за счет того, что в стратосферу попадает закись азота N2 O, которая образуется при денитрификации связанного почвенными бактериями азота. Такую же денитрификацию связанного азота производят и микроорганизмы в верхнем слое океанов и морей. Процесс денитрификации напрямую связан с количеством связанного азота в почве. Таким образом, можно быть уверенным в том, что с ростом количества вносимых в почву минеральных удобрений будет в такой же мере увеличиваться и количество образованной закиси азота N2 O. Далее, из закиси азота образуются окислы азота, которые и приводят к разрушению стратосферного озона.

4) Ядерные взрывы.

При ядерных взрывах выделяется очень много энергии в виде тепла. Температура, равная 60000К устанавливается уже через несколько секунд после ядерного взрыва. Это энергия огненного шара. В сильно нагретой атмосфере происходят такие преобразования химических веществ, какие при нормальных или не происходят, или протекают очень медленно. Что касается озона, его исчезновения, то наиболее опасными для него являются образующиеся при этих преобразованиях окислы азота. Так, за период с 1952 по 1971 г. в результате ядерных взрывов в атмосфере образовалось около 3 млн т. окислов азота. Дальнейшая судьба их такова: они в результате перемешивания атмосферы попадают на разные высоты, в том числе и в атмосферу. Там они вступают в химические реакции с участием озона, приводя к его разрушению.

5) Сжигание топлива.

Закись азота обнаруживается и в дымовых газах электростанций. Собственно, о том, что окись и двуокись азота присутствуют в продуктах сгорания, было известно давно. Но эти высшие окислы не влияют на озон. Они, конечно, загрязняют атмосферу, способствуют образованию в ней смога, но довольно быстро удаляются из тропосферы. Закись же азота, как уже говорилось, опасна для озона. При низких температурах она образуется в таких реакциях:

N2 + O + M = N2 O + M,

2Nh4 + 2O2 =N2 O = 3h3 .

Масштаб этого явления очень значителен. Таким путём в атмосфере ежегодно образуется примерно 3 млн т. закиси азота! Эта цифра говорит о том, что этот источник разрушения озона существенный.

1.2 Озоновая дыра над Антарктикой

О значительном уменьшении общего содержания озона над Антарктикой впервые было сообщено в 1985 г. Британской антарктической службой на основании анализа данных озонометрической станции Хэлли-Бей (76 гр. ю. ш.). Уменьшение озона наблюдалось этой службой и на Аргентинских островах (65 гр. ю. ш.).

С 28 августа по 29 сентября 1987 г. было выполнено 13 полётов самолёта-лаборатории над Антарктикой. Эксперимент позволил зарегистрировать зарождение озонной дыры. Были получены её размеры. Исследования показали, что наибольшее уменьшение количества озона имело место на высотах 14 — 19 км. Здесь же приборы зарегистрировали наибольшее количество аэрозолей (аэрозольные слои). Оказалось, что, чем больше имеется аэрозолей на данной высоте, тем меньше там озона. Самолёт — лаборатория зарегистрировал уменьшение озона, равное 50%. Ниже 14 км. изменений озона было несущественным.

Уже к началу октября 1985 г. озонная дыра (минимум количества озона) охватывает уровни с давлением от 100 до 25 гПа, а в декабре диапазон высот, на которых она наблюдается, расширяется.

Во многих экспериментах измерялось не только количество озона и других малых составляющих атмосферы, но и температуры. Была установлена самая тесная связь между количеством озона в стратосфере и температурой воздуха там же. Оказалось, что характер изменения количества озона тесно связан с тепловым режимом стратосферы над Антарктидой.

Образование и развитие озонной дыры в Антарктиде наблюдали английские учёные и в 1987 г. Весной общее содержание озона уменьшилось на 25%.

Американские исследователи проводили измерения в Антарктике зимой и ранней весной 1987 г. озона и других малых составляющих атмосферы (HCl, HF, NO, NO2, HNO3, ClONO2, N2 O, Ch5 ) c помощью специального спектрометра. Данные этих измерений позволили очертить область вокруг Южного полюса, в которой количество озона уменьшено. Оказалось, что эта область совпадает практически в точности с крайним полярным стратосферным вихрем. При переходе через край вихря резко менялось количество не только озона, но и других малых составляющих, оказывающих влияние на разрушение озона. В пределах озонной дыры (или, другими словами, полярного стратосферного вихря) концентрация HCl, NO2 и азотной кислоты была значительно меньше, чем за пределами вихря. Это имеет место потому, что хлорины в продолжении холодной полярной ночи разрушают озон в соответствующих реакциях, выступая в них как катализаторы. Именно в каталитическом цикле с участием хлора происходит основное уменьшение концентрации озона (по крайней мере 80% этого уменьшения).

Эти реакции протекают на поверхности частиц, составляющих полярные стратосферные облака. Значит, чем больше площадь этой поверхности, т. е. чем больше частиц стратосферных облаков, а значит, и самих облаков, тем быстрее в конце концов распадается озон, а значит, тем эффективнее образуется озонная дыра.

2. Основные мероприятия по защите озонового слоя

Поскольку наиболее активный разрушитель озонового щита Земли – хлор, основные меры, разрабатываемые для сдерживания истощения озона, сводятся к снижению выбросов в атмосферу хлора и хлорсодержащих соединений, прежде всего фреонов. Одна из главных технологических задач, решения которой ищут во всех промышленно развитых странах, — замена фреонов на другие хладагенты, не содержащие хлора и вместе с тем не уступающие фреонам по основным физическим свойствам и химической инертности.

Другая задача, уже практически решенная в ракетоносителе «Энергия», заключается в переводе ракетной техники и высотной реактивной авиации на экологически безопасные виды топлива и двигатели.

Снижение выбросов оксидов азота наземными промышленными, энергетическими и транспортными системами имеет значение не только для снижения кислотности осадков и решения проблемы «кислых дождей». Окислы азота не полностью вымываются осадками, часть их достигает высот, на которых существует озоновый слой, и вносит свою лепту в его истощение.

Хотя окислы азота, по сравнению с хлором, в 10 тысяч раз менее активны как разрушители озона, их выброс в атмосферу многократно превышает выброс хлора. Это повышает важность разработки двигателей, энергетических установок, котлов, новых видов топлива и способов его сжигания, которые сводили бы к минимуму образование и выброс в атмосферу окислов азота.

Первая международная конвенция по мерам предохранения озонового слоя была заключена в Вене в 1985 году. Через несколько месяцев после нее была обнаружена «озоновая дыра» в Южном полушарии. После этого в Монреале был подписан протокол, обязывающий страны-участницы избавляться от своих вредных фреонов. В 1990, 1992 и 1997 гг. список разрушительных веществ пополнялся. В случае его соблюдения всеми странами (а Китай, например, и Индия конвенцию не подписали, рассудив, что она им «не по карману») прогнозисты обещали восстановление озонового слоя к 2150 году. Главными производителями вредных для озона соединений (90% от общемирового объема) называются развивающиеся страны (которые, по сути, являются потребителями устаревшей продукции «цивилизованных» стран) и страны бывшего СССР.

В то же время заявлено, что выброс фреонов в атмосферу, в 1986 году, достигавший 1.1 миллиона тонн, к 1996 г. снизился до 160 тысяч тонн. Без Монреальской конвенции к 2010 году мы имели бы 8 миллионов тонн годовых выбросов.

3. Правило оптимальной компонентной дополнительности

Правило оптимальной компонентной дополнительности гласит, что никакая экосистема не может самостоятельно существовать при искусственно созданном избытке или недостатке одного из экологических компонентов.

«Нормой» экологического компонента следует считать ту, которая обеспечивает экологическое равновесие определенного типа, позволяющее функционировать именно той экосистеме, которая эволюционно сложилась и соответствует балансу в природной надсистеме и всей иерархии природных систем на данной единице пространства (в конкретном биотопе).

4. Закон Н.Ф. Реймерса о разрушении иерархии экосистем

Закон Н.Ф. Реймерса о разрушении иерархии экосистем гласит, что разрушение более трех уровней в экосистемной иерархии абсолютно необратимо и катастрофично.

Иерархические уровни геохор (биохор) – это расположение в порядке от высшего к низшему. Различают пять основных уровней угеохор и биохор:

— гигахоры – главнейшие элементы биосферы и географической оболочки: океаны и материки, биоклиматические пояса и биогеографические царстваразмером более 106 км2 ;

— мегахоры – единицы природно-хозяйственного и биогеографического (фитогеографического) районирования размером 103 -105 км2 ;

— макрохоры – территория конкретных ландшафтов, размером 10-10-2 км2 ;

— микрохоры и мезохоры – морфологические единицы ландшафта, размером 10-1 -10-2 км2 и входящие в их состав биогеоценозы.

Каждая подсистема следует за своей системой, вернее, развитие надсистемы определяет многие ограничения в развитии входящих в нее подсистем. Такой процесс «подталкивания», направления развития характерен для всего системного мира как в сверхдлинных отрезках эволюционного времени, так и в сравнительно коротких сроках индивидуального развития. Всюду есть взаимоотношения в иерархии систем — эволюция эволюций и развитие развитей. Если развитие относительно детерминировано воздействием иерархии надсистем, а отчасти и подсистем в прошлом (подсистемы, изменяясь, не могут не влиять на целое, пример тому мутации), то характер процессов не изменится и в будущем, во всяком случае ближайшем (в масштабе характерного времени систем). И хотя принцип «развитие есть движение движений во всей иерархии значимых систем» не позволяет создать одной безальтернативной модели, все же можно прогнозировать вероятный ход событий.

Н.Ф. Реймерс (1994) отмечает, что закон неравномерности развития систем, или, лучше, закон разновременности развития (изменения) подсистем в больших системах может быть сформулирован в таком виде: системы одного уровня иерархии (как правило, подсистемы системы более высокого уровня организации) развиваются не строго синхронно — в то время, когда одни из них достигли более высокого уровня развития, другие ещё остаются в менее развитом состоянии.

Заключение

Все глобальные экологические проблемы взаимосвязаны, и ни одна из них не должна рассматриваться в изоляции от других.

Казалось бы, количество озона в атмосфере очень велико – около 3 миллиардов тонн. Это, однако, ничтожная доля от всей атмосферы. Если бы весь озон атмосферы находился в приземном слое воздуха, то при «нормальных условиях» (давления 1 атмосфера и температура 25 градусов Цельсия) толщина озонового экрана, защищающего Землю от жесткого УФ-излучения Солнца, составляла бы всего около 3мм. Вместе с тем эффективность озонового слоя очень велика. В частности, специалистами рассчитано, что снижение содержания озона на 1% ведет к такому повышению интенсивности УФ-облучения поверхности, в результате которого количество смертей от рака кожи возрастет на 6-7 тысяч человек в год.

Необходимо срочно принимать меры к охране озонового слоя: разрабатывать безвредные хладагенты, способные заменить фреоны в промышленности и быту, экологически безопасные двигатели самолетов и космических ракетных систем, разрабатывать технологии, уменьшающие выбросы окислов азота в промышленности и на транспорте. Существующие международные соглашения по озону, Венская международная конвенция по охране озонового слоя и Монреальский протокол, обязывающий подписавшие его государства вести работу в конкретных направлениях, пока недостаточно эффективны. Еще недостаточно осознана людьми опасность, еще мало талантливых исследователей и инженеров работают в этой области. А время не ждет.

Список использованной литературы

1. Акимова Т.А., Хаскин В.В. Экология. – М.: ЮНИТИ, 1998. – 455 с.

2. Дедю И.И. Экологический эниклопедический словарь. – Кишинев: Мир, 1990. – 568 с.

3. Князева Е.Н., Курдюмов С.П. законы эволюции и самоорганизации слоднх систем. – М.: Наука, 1994. – 250 с.

4. Кормилицин З.И. Основы экологии. – М.: «Интерстиль», 1997. – 364 с.

5. Общая экология: взаимодействие общества и природы. – СПб.: Химия, 1997.- 352 с.

6. Сверлова Л.И., Воронина Н.В. Загрязнение природной среды и экологическая потология человека. – Хабаровск.: ХГАЭП, 1995. – 106-108 с.

7. Розанов С.И. Общая экология. – СПб.: Издтельство «Лань», 2001. – 288 с.

www.ronl.ru

Реферат - Озоновые дыры. Экологические проблемы человечества

Введение

“Можно, пожалуй, сказать, что назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания ”.

Ж.Б.Ламарк.

С возникновением человеческой цивилизации появился новый фактор, влияющий на судьбу живой природы. Он достиг огромной силы в текущем столетии и особенно в последнее время. 5 млрд. наших современников оказывают на природу такое же по маштабам воздействие, какое могли оказать люди каменного века, если бы их численность составила 50 млрд. человек, а количество высвобождаемой энергии, получаемой землёй от солнца.

С тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширялся объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества.

Расход невозобновимого сырья повышается, всё больше пахотных земель выбывает из экономики, так как на них строятся города и заводы. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее существенных процессов, любой из которых не улучшает состояние воздушного пространства нашей планеты.

Прогрессирует и накопление углекислого газа в атмосфере. Дальнейшее развитие этого процесса будет усиливать нежелательную тенденцию в сторону повышения среднегодовой температуры на планете.

В результате перед обществом возникла дилемма: либо бездумно катиться к своей неизбежной гибели в надвигающейся экологической катастрофе, либо сознательно превратить созданные гением человека могучие силы науки и техники из орудия, ранее обращенного против природы и самого человека, в орудие их защиты и процветания, в орудие рационального природопользования.

Над миром нависла реальная угроза глобального экологического кризиса, понимаемая всем населением планеты, а реальная надежда на его предотвращение состоит в непрерывном экологическом образовании и просвещении людей.

Всемирная организация здравоохранения определила, что здоровье человека на 20% зависит от его наследственности, на 20% от состояния окружающей среды, на 50% от образа жизни и на 10% от медицины. В ряде регионов России к 2005 году предполагается следующая динамика факторов, влияющих на здоровье человека: роль экологии возрастет до 40%, действие генетического фактора увеличится до 30%, до 25% уменьшится возможность поддержания здоровья за счёт образа жизни и до 5% снизится роль медицины.

Характеризуя современное состояние экологии, как критическое, можно выделить главные причины, которые ведут к экологической катастрофе: загрязнение, отравление среды обитания, обеднение атмосферы кислородом, озоновые дыры.

Целью настоящей работы явилось обобщение литературных данных о причинах и последствиях разрушения озонового слоя, а также способах решения проблемы образования “озоновых дыр”.

1. Озон и его роль в природе

Химические и биологические особенности озона.

Озон является аллотропной модификацией кислорода. Его молекула диамогнитна (в отличие от парамагнитной О2 ), имеет угловую форму О

О О

¶ связь в молекулу является делокализованной трехцентровой, предполагается также донорно-акцепторный механизм образования химических связей в озоне:

О О

О О О О

Характер химических связей в озоне обусловливает его неустойчивость (через определенное время озон самопроизвольно переходит в кислород: 2О3 —>3О2)

и высокую окислительную способность (озон способен на ряд реакций в которые молекулярный кислород не вступает). Окислительное действие озона на органические вещества связанно с образованием радикалов: RH+ О3 RО2 +OH

Эти радикалы инициируют радикально цепные реакции с биоорганическими молекулами (липидами, белками, нуклеиновыми кислотами), что приводит к гибели клеток. Применение озона для стерилизации питьевой воды основано на его способности убивать микробы. Озон не безразличен и для высших организмов. Длительное пребывание в атмосфере, содержащей озон (например, в кабинетах физиотерапии и кварцевого облучения) может вызвать тяжелые нарушения нервной системы. Поэтому, озон в больших дозах является токсичным газом. Предельно допустимая концентрация его в воздухе рабочей зоны – 0,0001 мг/литр. Загрязнение озоном воздушной среды происходит при озонировании воды, вследствие его низкой растворимости.

1.2. Условия образования и защитная роль озонового слоя.

Известно, что основная часть природного озона сосредоточена в стратосфере на высоте от 15 до 50 км над поверхностью Земли. Озоновый слой начинается на высотах около 8 км над полюсами (или 17 км над Экватором) и простирается вверх до высот приблизительно равных 50-ти км. Однако плотность озона очень низкая, и если сжать его до плотности, которую имеет воздух у поверхности земли, то толщина озонового слоя не превысит 3,5 мм. Озон образуется, когда солнечное ультрафиолетовое излучение бомбардирует молекулы кислорода (О2 —> О3 ).

Больше всего озона в пятикилометровом слое на высоте от 20 до 25 км, который называют озоновым. Концентрация озона в этом слое невелика, однако общее его количество в стратосфере достигает очень внушительной цифры – более 3 млрд тонн.

Образование озона из обычного двухатомного кислорода требует довольно большой энергии – почти 150 кДж на каждый моль. Такая насыщенность озона энергией делает его взрывоопасным. Как же образуется это вещество? Основная реакция – взаимодействие обычного двухатомного кислорода с атомарным:

О2 + О О3 .

Атомарный кислород – еще более насыщенное энергией вещество – образуется при электрических разрядах в кислороде и воздухе, а в стратосфере появляется под

действием постоянного и довольно мощного ультрафиолетового излучения Солнца:

Образование озона происходит непрерывно одновременно с его расходованием:

O2+h O+O; O+O3 2O2; O3+h O2+O;

поэтому усредненная концентрация озона в течение длительного времени оставалась постоянной. Процесс образования и разложение озона называют циклом Чемпена. Результатом процессов в цикле является переход солнечной энергии в теплоту. Озоновый цикл ответственен за повышение температуры на высоте 15 км.

Защитная роль озонового слоя. Озон поглощает часть ультрафиолетового излучения Солнца: причем широкая полоса его поглощения (длина волны 200–300 нм) включает и губительное для всего живого на Земле излучение.

Химические процессы в тропосфере.

В химических превращениях различных загрязняющих веществ в тропосфере ключевое место занимает OH – радикал к образованию которого ведут несколько процессов. Основной вклад дают фотохимические реакции с участие озона: O3+h O2+O

O+h3O OH+OH

В образовании озона в тропосфере участвуют оксиды озона:

NO2+ h (L<400нм) NO+O

O+O2 O3

О влиянии фотохимических реакций на содержание озона в тропосфере свидетельствует 50% уменьшение концентрации озона при солнечном затмении: O3+NO NO2+O2 O3+NO2 NO3+O2

В образовании ОН радикалов на высоте 30 км. участвуют пары воды: Н2О+h H+OH

h3O+O 2OH

Определённый вклад в образование ОН-групп в тропосфере могут давать реакции фоторазложения HNO2, HNO3, h3O2

HNO2+h (L<400нм) NO+OH

HNO3+h (L<330нм) NO2+OH

h3O2+h (L<330нм) 2OH

В тропосферных процессах гидроксильный радикал играет ключевую роль в окислении углеводородов:

RH+OH HOH+R

R+O2 RO2

RO2+HOH ROOH+OH

Наиболее типичным и основным по массе органических загрязнителем атмосферы является Ch5.Окисление Ch5 под действием ОН протекает сопряженно с окисление NO. Соответствующий радикально-цепной механизм включает общую для всех тропосферных процессов стадию инициирования ОН и цикл экзотермических реакций продолжение цепи, характерных для реакции окисления органических соединений:

ОН+СН4 Н2О +СН3

СН3+О2 СН3О2

СН3О2+NО СН3О+NО2

СН3О+О2 СН2О+НО2

В результате реакция окисления СН4 в присутствии NО как катализатора и при воздействии солнечного света с длиной волны 300-400нм запишется в виде

СН4+4О2 СН2О+Н2О+2О3

т.е. окисление метана (и других органических веществ) приводит к образованию тропосферного озона. Скорость этого процесса тем больше, чем выше концентрация NО. Расчеты показывают, что антропогенный выброс NО удваивает приземную концентрацию О3, а рост утечки СН4 многократно опережающий по темпам роста другие виды загрязнений тропосферы приводит к ещё большему увеличению концентрации О3 по сравнению с переносом О3 из стратосферы.

Рост приземной концентрации озона представляет опасность для зеленой растительности и животного мира.

Образующийся при окислении метана формальдегид окисляется далее радикалами ОН с образованием СО. Этот канал вторичного загрязнения атмосферы моноксидом углерода сравним с поступление СО от неполного сгорания ископаемого топлива.

ОН+СН2О Н2О+НСО

НСО+О2 НО2+СО

1.4. Причины образования “ озоновой дыры ”.

Летом и весной концентрация озона повышается; над полярными областями она всегда выше, чем над экваториальными. Кроме того, она меняется по 11-летнему циклу, совпадающему с циклом солнечной активности. Все это было уже хорошо известно, когда в 1980-х гг. наблюдения показали, что над Антарктикой год от года происходит медленное, но устойчивое снижение концентрации стратосферного озона. Это явление получило название «озоновая дыра» (хотя никакой дырки в собственном значении этого слова, конечно, не было) и стало внимательно исследоваться.

Позднее, в 1990-е гг., такое же уменьшение стало происходить и над Арктикой. Феномен Антарктической “озоновой дыры” пока не понятен: то ли “дыра” возникла в результате антропогенного загрязнения атмосферы, то ли это естественный геоастрофизический процесс.

Сначала предполагали, что на озон влияют частицы, выбрасываемые при атомных взрывах; пытались объяснить изменение концентрации озона полетами ракет и высотных самолетов. В конце концов было четко установлено, что причина нежелательного явления – реакции с озоном некоторых веществ, производимых химическими заводами. Это в первую очередь хлорированные углеводороды и особенно фреоны – хлорфторуглероды, или углеводороды, в которых все или большая часть атомов водорода, заменены атомами фтора и хлора.

Хлорфторуглероды широко применяются в современных бытовых и промышленных холодильниках (в России их поэтому называют «хладонами»), в аэрозольных баллончиках, как средства химической чистки, а некоторые производные – для тушения пожаров на транспорте. Используются они и как пенообразователи, а также для синтеза полимеров. Мировое производство этих веществ достигло почти 1,5 млн т.

Будучи легколетучими и довольно устойчивыми к химическим воздействиям, хлорфторуглероды после использования попадают в атмосферу и могут находиться в ней до 75 лет, достигая высоты озонового слоя. Здесь под действием солнечного света они разлагаются, выделяя атомарный хлор, который и служит главным «нарушителем порядка» в озоновом слое. CF2Cl2 CF2Cl+Cl

Последующие реакции CF2Cl с О2 и h приводят к отщеплению второго атома хлора.

Хлор «съедает» и озон, и атомарный кислород за счет протекания довольно быстрых реакций:

О3 + Сl = О2 + ClO

СlO + O = Cl + O2

Причем последняя реакция приводит к регенерации активного хлора. Хлор, таким образом, даже не расходуется, разрушая озоновый слой.

Предполагается, что из-за разрушительного действия хлора и аналогично действующего брома к концу 1990-х гг. концентрация озона в стратосфере снизилась на 10%.

Озоноразрушающий потенциал некоторых веществ

Разрушающий потенциал (усл.ед)

Продолжительность жизни (лет)

CFCl 1

1.0

75

CFCl 2

1.0

111

CFCl 3

0.8

90

CCl 4

1.0

185

C2FCl 5

0.6

380

HCFCl 2

0.05

20

Метилхлороформ

0.10

6.5

Четырехлористый углерод

1.06

50

Венская конвенция. В 1985 году британские ученые обнародовали данные, согласно которым в предшествующие восемь лет были обнаружены увеличивающиеся каждую весну озоновые дыры над Северным и Южным полюсами.

Ученые предложили три теории, объяснявшие причины этого феномена:

разрушение озонового слоя окисями азота — соединениями, образующимися естественным образом на солнечном свету;

О3+NО NО2+О2

воздушные потоки из нижних слоев атмосферы при движении вверх расталкивают озон

разрушение озона соединениями хлора.

В 1987 г. был принят Монреальский протокол, по которому определили перечень наиболее опасных хлорфторуглеродов, и страны-производители хлорфторуглеродов обязались снизить их выпуск. В июне 1990 г. в Лондоне в Монреальский протокол внесли уточнения: к 1995 г. снизить производство фреонов вдвое, а к 2000 г. прекратить его совсем.

Сегодня уже разработаны и выпускаются экологически безопасные фреоны и их заменители, но озоновый слой продолжает находиться в критическом состоянии:

Установлено, что на содержание озона оказывают влияние азотсодержащие загрязнители воздушной среды.

2NО+О2 2NО2

О2+NО2 NО3+О2

NО3+NО2 N2О5

N2О5+Н2О 2НNО3

Происхождение NО, ОН и Сl в стратосфере возможно, как в результате естественных процессов, так и в результате антропогенных загрязнений. Так, NО образуется в двигателях внутреннего сгорания. Соответственно запуск ракет и сверх звуковых самололетов приводит к разрушению озонового слоя. В любом двигателе внутреннего сгорания развиваются настоль высокие температуры, что из атмосферного кислорода и азота образуется NО: N2+О2 2NО

Источником NО в стратосфере служит также газ N2О, который устойчив в тропосфере, а в стратосфере распадается под действием

жесткого УФ-излучения

N2О+h (230нм) N2+О

N2O+O 2NO

Разрушение N2О в стратосфере осуществляется и по реакциям

N2О+h (250нм) N2+О

N2O+O N2+O2

Источники загрязнения атмосферы. Антропогенный фактор.

Широкое использование ископаемых богатств сопровождается выделением в атмосферу больших масс различных химических соединений. Большинство антропогенных источников сконцентрировано в городах, занимающих лишь небольшую часть территории нашей планеты. В результате движения воздушных масс с подветренной стороны больших городов образуется многокилометровый шлейф загрязнений.

В развитых странах действует законодательство, направленное на защиту воздушного бассейна. В результате значительно уменьшилась общая загрязненность воздуха, однако выбросы, источником которого является автомобильный транспорт возрастают. В США на его долю приходится 63% выбросов углеводородов. Можно предполагать, что вклад транспорта в загрязнение воздуха будет увеличиваться с рос-том численности автомобилей.

Вторым по мощности источником антропогенных органических загрязнителей служит промышленное производство. Базовыми продуктами основного органического синтеза являются этилен (на его основе вырабатывают почти половину всех органических веществ), пропилен, бутадиен, бензол, толуол, ксилолы и метанол. Вместе с немногими производными (этилбензол, стирол, фенол, винилхлорид, акрилонитрил, фталевый ангидрид и терефталевая кислота) они являются объектами крупнотоннажного производства. Эти полупродукты используются в дальнейшем для выработки широкой номенклатуры других органических соединений (свыше 40 тыс. наименований).

В выбросах предприятий химической и нефтехимической промышленности присутствует широкий ассортимент загрязнителей: компоненты исходного сырья, промежуточные, побочные и целевые продукты синтеза. Так, в газовых выбросах заводов синтетических моющих средств содержатся алканы, а также карбонильные соединения, эфиры, карбоновые кислоты. Заводы синтетического каучука загрязняют воздух исходными мономерами и растворителями. Предприятия лесохимической промышленности выделяют альдегиды, кетоны, спирты и карбоновые кислоты, множество терпенов (терпены-углеводороды, продукты жизнедеятельности растений молекулы которых построены из изопреновых звеньев). Целлюлозно – бумажные комбинаты выбрасывают большие количества дурнопахнущих газообразных веществ (одорантов), таких, как метил- и диметилсульфиды, диметилдисульфиды, а также формальдегид, спирты и фенолы.

Велики потери используемых в промышленности растворителей. На их долю в индустриально развитых странах приходится 20-25% общей эмиссии углеводородов. В США в конце 70-х годов в атмосферу выбрасывалось ежегодно 26,7 млн. т. углеводородов, из них примерно 5,2 млн. т. от промышленных предприятий. В атмосферу поступает много летучих галогенуглеводородов (метиленхлорида, хлороформа, четыреххлористого углерода, дихлорэтана, три- и тетрахлорэтилена, винилхлорида ).

В качестве летучих компонентов (пропелентов) в аэрозольных упаковках широко применяются фторхлоруглеводороды (фреоны). Для этих целей использовалось около 85% фреонов и только 15% в холодильных установках и установках искусственного климата. Специфика использования фреонов такова, что 95% их количества попадает в атмосферу через 1-2 года после производства. Считают, что почти всё произведённое количество фтортрихлор- и дифтордихлорметана (5,27млн. т. и 7.75 млн. т. соответственно в 1981 году) рано или поздно должно поступить в стратосферу и включиться в каталитический цикл разрушения озона.

Заметным источником органических загрязнителей атмосферы становится коммунальное хозяйство городов (жилые и общественные здания, предприятия тепло- и водоснабжения, химчистки, свалки). Хотя вклад этого источника в суммарную антропогенную эмиссию невелика, отсюда поступают основные количества опасных долгоживущих загрязнителей (например, диоксидов), поэтому они участвуют в формировании глобального фона некоторых органических экотоксикантов.

В выбросах вентиляционных систем жилых домов идентифицировано более 40 токсичных и дурнопахнущих веществ: меркаптанов и сульфидов, аминов, спиртов, предельных и диеновых углеводородов, альдегидов и некоторых гетероциклических соединений. При сжигании в горелке кухонной плиты 1м.куб. природного газа образуется до 150 мг формальдегида, а в сумме в продуктах горения газа обнаружено 22 различных компонентов.

Источников одорантов служат сооружения по очистке сточных вод и свалки твердых отходов. На городских свалках накапливаются огромные количества бытовых отходов и мусора с высоким содержанием органических веществ.

Геологические источники загрязнений

При составлении глобального баланса органической составляющей атмосферы вклад геологических источников обычно не учитывался. Между тем процессы дегазации мантии Земли сопровождаются выделением широкого спектра органических соединений. Так, в пробах газов вулканов о-ва Кунашир и Камчатки идентифицировано около 100 органических соединений с длиной цепи до 12 углеродных атомов. Источников богатых углеводородами газов являются грязевые вулканы, чаще всего встречающиеся в нефтеносных областях.

Земная кора содержит различные газы в свободном состоянии, сорбированные разными породами и растворённые в воде. Часть этих газов по глубинным разломам и трещинам достигают поверхности Земли и диффундирует в атмосферу. О существовании углеводородного дыхания земной коры говорит повышенное по сравнению с глобальным фоновым содержанием метана в приземном слое воздуха над нефтегазоносными бассейнами.

Можно предположить, что дегазация недр планеты происходит по всей ее поверхности, но наиболее интенсивно по бесчисленным разломам коры. В связи с этим большой интерес представляет изучение спонтанных газов гидротермальных источников в районах сейсмической активности. В результате таких исследований в пробах газов было идентифицировано более 60 неорганических и органических соединений. Последние представлены углеводородами, легколетучими карбонильными соединениями и спиртами, галогенуглеводородами.

Впервые получены данные о присутствии в геологических выделениях летучих галогенуглеводородов представляют наибольший интерес. Они показывают, что концентрации CFCL3 в вулканических газах в 2,5-15 раз больше их содержания в морском воздухе. Для хлороформа и CCl4 эта разница достигла 1,5-2 порядка величины. К сожалению, пока ещё отсутствует надежные данные об этих масштабах геологической эмиссии галогеноуглеводородов, равно как и других ЛОС, включая метан.

Проведенные исследования показали, что в газах вулканов Никарагуа содержится заметные количества HF. Анализ проб воздуха, отобранных из кратера вулкана Масайя, также показали наличие в них фреонов наряду с другими органическими соединениями. Присутствуют галогенуглеводороды и в газах гидротермальных источниках. Эти данные потребовали доказательств того, что обнаруженные фторуглеводороды не имеют антропогенного происхождения. И такие доказательства были получены. Фреоны были обнаружены в пузырьках воздуха антарктического льда возрастом 2000 лет. Специалистами НАСА было предпринято уникальное исследование воздуха из герметично запаянного свинцового гроба, обнаруженного в штате Мериленд и достоверно датированного 17 веком. В нем также были обнаружены фреоны. Ещё одно подтверждение существования природного источника фреонов было “поднято ” c морского дна. CFCL3 обнаружен в воде, извлеченной в 1982 году с глубины более 4000 метров в экваториальной части Атлантического океана, у дна Алеутской впадины и на глубине 4500 метров у берегов Антарктиды.

Южнополярный район, весной 1998 г. озонная дыра достигла рекордной площади — примерно 26 млн км2, что приблизительно втрое превышает территорию Австралии. В середине августа началось резкое истощение озоносферы, максимум которого наступил 21 сентября. По данным, полученным с зондов, почти полное разрушение озона отмечалось на высотах 14—22 км. Исследуя это явление совместно с австралийскими коллегами, одна из его первооткрывателей С.Соломон установила, что химические реакции, разрушающие озон, происходят на поверхности ледяных кристаллов и любых иных частиц, попавших в высокие стратосферные слои над полярными районами. Так, до сих пор способствуют образованию озонных дыр твердые частицы, попавшие в стратосферу еще в 1991 г. при извержении вулкана Пинатубо на Филиппинских о-вах. Эти частицы вулканического происхождения придают хлору, поступающему в атмосферу с аэрозолями хлорфторуглеводородов, большую эффективность в процессах разрушения ими озоносферы.

Химические реакции с участием сульфатных частиц, извергнутых вулканом, значительно ускоряют истощение озона над Южным полушарием Земли: согласно наблюдениям, реакции ускорялись почти на 3%, и только теперь данный эффект начал исчезать. По мнению исследовательницы, антарктическая озонная дыра и круглогодичное общее истощение земной озоносферы будут продолжаться, пока концентрация хлорфторуглеводородов и галогенов в атмосфере не снизится до уровня 70-х годов. И это может случиться лишь в середине следующего столетия.

Химическое загрязнение атмосферы.

Лишь за последние сто лет развитие развитие промышленности «одарило» нас такими производственными процессами, последствия которых вначале человек еще не мог себе представить. Возникли города-миллионеры, рост которых остановить нельзя. Все это результат великих изобретений и завоеваний человека. В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений — теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, кото- рые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промыш- ленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохими- ческих, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170% ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями пирогенного происхождения являются :

Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе в другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксилов азота, поступающих в атмосферу, составляет 20 млн.т. в год.

Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 11 т. передельного чугуна выделяется кроме 12,7 кг. сернистого газа и 14,5 кг. Пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.

Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн.т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта. Сернистый ангидрид. Выделяется в процессе сгорания сера- содержащего топлива или переработки сернистых руд (до 170 1млн.т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65% процентов от общемирового выброса.

Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 11 км. От таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

Пути решения проблем.

Чтобы начать глобальное восстановление нужно уменьшить доступ в атмосферу всех веществ, которые очень быстро уничтожают озон и долго там хранятся.

Также мы — все люди должны это понимать и помочь природе включить процесс восстановления озонового слоя, нужны новые посадки лесов, хватит вырубать лес для других стран, которые почему-то не хотят вырубать свой, а делают на нашем лесе деньги.

Для восстановления озонового слоя его нужно подпитывать. Сначала с этой целью предполагалось создать несколько наземных озоновых фабрик и на грузовых самолетах «забрасывать» озон в верхние слои атмосферы. Однако этот проект (вероятно, он был первым проектом «лечения» планеты) не осуществлен.

Иной путь предлагает российский консорциум «Интерозон»: производить озон непосредственно в атмосфере. Уже в ближайшее время совместно с немецкой фирмой «Даза» планируется поднять на высоту 15 км аэростаты с инфракрасными лазерами, с помощью которых получать озон из двухатомного кислорода.

Если этот эксперимент окажется удачным, в дальнейшем предполагается использовать опыт российской орбитальной станции «Мир» и создать на высоте 400 км несколько космических платформ с источниками энергии и лазерами. Лучи лазеров будут направлены в центральную часть озонового слоя и станут постоянно подпитывать его. Источником энергии могут быть солнечные батареи. Космонавты на этих платформах потребуются лишь для периодических осмотров и ремонта.

У этого проекта был предшественник – американская СОИ (стратегическая оборонная инициатива) с планом использования мощных лазеров для «звездных войн».

Осуществится ли грандиозный мирный проект, покажет время. Но и физическая химия, и космонавтика уже готовы к тому, чтобы начать восстанавливать комфортное для жизни химическое равновесие на нашей планете.

Принимая во внимание чрезвычайность ситуации, необходимо:

расширить комплекс теоретических и экспериментальных исследований по

проблеме сохранения озонового слоя;

провести первую Международную научную конференцию по проблемам сохранения озонового слоя активными способами;

— создать Международный фонд сохранения озонового слоя активными способами; — провести Международный телемост на тему сохранения озонового слоя с участием ведущих ученых, политических, религиозных и общественных деятелей; — организовать Международный комитет для выработки стратегии выживания человечества в экстремальных условиях.

Министерство здравоохранения РФ

Владивостокский государственный медицинский университет

Лицей.

Конкурсная работа на тему:

“Озоновые дыры. Экологические проблемы человечества.”

Исполнитель: Руководитель:

Солёнов В.И. Тюрина Е.Ф.

11а класс

Владивосток

2002г.

Список использованной литературы:

1. Зеленин К.Н. Органические вещества атмосферы. СОРОСОВСКИЙ

ОБРАЗОВАТЕЛЬНЫЙ ЖУРНАЛ 1998г. №4

2. Григорьев А.А. Города и окружающая среда. Космические исследования.

М.: Мысль 1982г.

3. Страны и народы: Земля и человечество. Глобальные проблемы. Фролов И.Т.

М.: Мысль 1985г

4. Лавров С.Б. Глобальная проблема современности. Санкт-Петербург 1995г.

5. Никитин Д.П. Окружающая среда и человек.

6. Глинка Н.Л Общая химия. Издательство химия. 1990г.

Тезисы.

С возникновением человеческой цивилизации появился новый фактор, влияющий на судьбу живой природы. Он достиг огромной силы в текущем столетии и особенно в последнее время. 5 млрд. наших современников оказывают на природу такое же по маштабам воздействие, какое могли оказать люди каменного века, если бы их численность составила 50 млрд. человек.

Над миром нависла реальная угроза глобального экологического кризиса.

В ряде регионов России к 2005 году предполагается следующая динамика факторов, влияющих на здоровье человека: роль экологии возрастет до 40%, действие генетического фактора увеличится до 30%, до 25% уменьшится возможность поддержания здоровья за счёт образа жизни и до 5% снизится роль медицины.

Целью настоящей работы явилось обобщение литературных данных о причинах и последствиях разрушения озонового слоя, а также способах решения проблемы образования “озоновых дыр”.

Озон является аллотропной модификацией кислорода. Его молекула диамогнитна (в отличие от парамагнитной О2 ), имеет угловую форму.

Характер химических связей в озоне обусловливает его неустойчивость (через определенное время озон самопроизвольно переходит в кислород: 2О3 —>3О2)

Окислительное действие озона на органические вещества связанно с образованием радикалов: RH+ О3 RО2 +OH

Эти радикалы инициируют радикально цепные реакции с биоорганическими молекулами (липидами, белками, нуклеиновыми кислотами), что приводит к гибели клеток.

Озон не безразличен и для высших организмов. Длительное пребывание в атмосфере, содержащей озон (например, в кабинетах физиотерапии и кварцевого облучения) может вызвать тяжелые нарушения нервной системы. Поэтому, озон в больших дозах является токсичным газом. Предельно допустимая концентрация его в воздухе рабочей зоны – 0,0001 мг/литр.

Известно, что основная часть природного озона сосредоточена в стратосфере на высоте от 15 до 50 км над поверхностью Земли. Озоновый слой начинается на высотах около 8 км над полюсами (или 17 км над Экватором) и простирается вверх до высот приблизительно равных 50-ти км.

Озон образуется, когда солнечное ультрафиолетовое излучение бомбардирует молекулы кислорода (О2 —> О3 ).

Больше всего озона в пятикилометровом слое на высоте от 20 до 25 км, который называют озоновым.

Озон поглощает часть ультрафиолетового излучения Солнца: причем широкая полоса его поглощения (длина волны 200–300 нм) включает и губительное для всего живого на Земле излучение.

Летом и весной концентрация озона повышается; над полярными областями она всегда выше, чем над экваториальными. Кроме того, она меняется по 11-летнему циклу, совпадающему с циклом солнечной активности.

устойчивое снижение концентрации стратосферного озона. Это явление получило название «озоновая дыра» (хотя никакой дырки в собственном значении этого слова, конечно, не было).

Хлор «съедает» и озон, и атомарный кислород за счет протекания довольно быстрых реакций.

Большинство антропогенных источников сконцентрировано в городах.

Вторым по мощности источником антропогенных органических загрязнителей служит промышленное производство и автомобильный транспорт.

В выбросах предприятий химической и нефтехимической промышленности присутствует широкий ассортимент загрязнителей.

Специфика использования фреонов такова, что 95% их количества попадает в атмосферу через 1-2 года после производства. Считают, что почти всё произведённое количество фтортрихлор- и дифтордихлорметана рано или поздно должно поступить в стратосферу и включиться в каталитический цикл разрушения озона.

В выбросах вентиляционных систем жилых домов идентифицировано более 40 токсичных и дурнопахнущих веществ.

Принимая во внимание чрезвычайность ситуации, необходимо:

расширить комплекс теоретических и экспериментальных исследований по

проблеме сохранения озонового слоя;

провести первую Международную научную конференцию по проблемам сохранения озонового слоя активными способами;

— создать Международный фонд сохранения озонового слоя активными способами; — провести Международный телемост на тему сохранения озонового слоя с участием ведущих ученых, политических, религиозных и общественных деятелей; — организовать Международный комитет для выработки стратегии выживания человечества в экстремальных условиях.

www.ronl.ru

Читать реферат по экологии: "Озоновые дыры 3"

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Оглавление

Озоновые дыры 2Введение 2Химические и биологические особенности озона 2История изучения озона 4Причины образования “озоновой дыры” 4Источники загрязнения атмосферы. Антропогенные факторы 5Геологические источники загрязнений 6Заблуждения об озоновых «дырах» 6Пути решения проблем 8Список литературы 9

Озоновые дыры Введение

“Можно, пожалуй, сказать, что назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания”.

Ж.Б.Ламарк.

С тех пор как сформировалось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, оно стало многообразнее и грозит стать глобальной опасностью для человечества. Над миром нависла реальная угроза глобального экологического кризиса, понимаемая всем населением планеты. Реальная надежда на его предотвращение состоит в непрерывном экологическом образовании и просвещении людей.

Можно выделить главные причины, ведущие к экологической катастрофе:

    загрязнение; отравление среды обитания; обеднение атмосферы кислородом;формирование озоновых «дыр».

В данном сообщении обобщены некоторые литературные данные о причинах и последствиях разрушения озонового слоя, а также способах решения проблемы образования “озоновых дыр”.

Химические и биологические особенности озона

Озон является аллотропной модификацией кислорода. Характер химических связей в озоне обусловливает его неустойчивость (через определенное время озон самопроизвольно переходит в кислород: 2О3 → 3О2) и высокую окислительную способность. Окислительное действие озона на органические вещества связанно с образованием радикалов: RH + О3→ RО2 .+ OH.

Эти радикалы инициируют радикально цепные реакции с биоорганическими молекулами (липидами, белками, нуклеиновыми кислотами), что приводит к гибели клеток. Применение озона для стерилизации питьевой воды основано на его способности убивать микробы. Озон не безразличен и для высших организмов. Длительное пребывание в среде, содержащей озон (например, в кабинетах физиотерапии и кварцевого облучения) может вызвать тяжелые нарушения нервной системы. Поэтому озон в больших дозах является токсичным газом. Предельно допустимая концентрация его в воздухе рабочей зоны – 0,1 мг/м3.

Озона, которым так замечательно пахнет во время грозы, в атмосфере совсем немного  3-4 ppm (промилле)  (3-4)*10-4%. Однако для флоры и фауны планеты его присутствие необычайно важно. Ведь зародившаяся в океанских пучинах жизнь и смогла-то "выползти" на сушу только после того, как 600–800 млн. лет назад сформировался озоновый щит. Поглощая биологически активное солнечное ультрафиолетовое излучение, он обеспечил его безопасный уровень на поверхности планеты. Жизнь на Земле немыслима без озонового слоя, предохраняющего все живое от вредного ультрафиолетового излучения Солнца. Исчезновение озоносферы привело бы к непредсказуемым последствиям – вспышке рака кожи, уничтожению планктона в океане, мутациям растительного и животного мира. Поэтому так важно понять причины возникновения озоновой "дыры" над Антарктикой и уменьшения содержания озона в Северном полушарии.

Озон образуется в верхней стратосфере (40-50 км) при фотохимических реакциях с участием кислорода, азота, водорода и хлора. Атмосферный озон сосредоточен в двух областях – стратосфере (до 90 %) и тропосфере. Что касается распределенного на высоте от 0 до 10 км слоя тропосферного озона, то его-то как раз благодаря неконтролируемым промышленным выбросам становится все больше. В нижней стратосфере (10-25 км), где озона больше всего, главную роль в сезонных и более длительных изменениях его концентрации играют процессы переноса воздушных масс.

Толщина озонового слоя над Европой сокращается стремительными темпами, что не может не волновать умы ученых. За прошлый год толщина озонового «покрытия» сократилась на 30%, а скорость ухудшения естественной защитной оболочки достигла самой высокой отметки за последние 50 лет. Установлено, что химические реакции, разрушающие озон, происходят на поверхности ледяных кристаллов и любых иных частиц, попавших в высокие стратосферные слои над полярными районами. Какую опасность это представляет для человека?

Тонкий озоновый слой (2-3 мм при распределении вокруг Земного шара) не в силах препятствовать проникновению коротковолновых ультрафиолетовых лучей, которые вызывают рак кожи и опасны для растений. Поэтому сегодня из-за высокой активности солнца загорать стало менее полезно. Вообще-то центры экологии должны давать рекомендации населению, как действовать в зависимости от активности солнца, но в нашей стране такого центра нет.

С уменьшением озонового слоя связаны климатические изменения. Понятно, что изменения будут происходить не только на той территории, над которой «растянулась» озоновая дыра. Цепная реакция повлечет за собой изменения во многих глубинных процессах нашей планеты. Это не значит, что везде начнется стремительное глобальное потепление, как нас пугают в фильмах ужасов. Все-таки это слишком сложный и длительный процесс. Но могут возникнуть другие катаклизмы, к примеру, увеличится число тайфунов, смерчей, ураганов.

Установлено, что «дыры» в озоновом слое возникают над Арктикой и Антарктидой. Это объясняется тем, что на полюсах образуются кислотные облака разрушающие озоновый слой. Получается, что озоновые дыры возникают не от активности солнца, как принято считать, а от повседневно деятельности всех жителей планеты, в том числе и нас с вами. Потом «кислотные бреши» смещаются, причем чаще всего в Сибирь.

С использованием новой математической модели удалось связать воедино данные наземных, спутниковых и авиационных наблюдений с уровнями вероятных будущих выбросов в атмосферу озонразрушающих соединений, временем их переноса в Антарктику и погодой в южных широтах. При помощи модели был получен прогноз, согласно которому озоновый слой над Антарктикой восстановится в 2068 году, а не в 2050 году, как считалось.

Известно, что в настоящее время уровень озона в стратосфере над территориями, удаленными от полюсов, ниже нормы примерно на 6%. В тоже время, в весенний период содержание озона над Антарктикой может снижаться на 70% относительно среднегодовой величины. Новая модель позволяет более точно прогнозировать уровни содержания озонразрушающих газов над Антарктикой и их временную динамику, определяющую величину озоновой «дыры».

Использование веществ, разрушающих озон, ограничено Монреальским протоколом. Считалось, что это приведет к быстрому «затягиванию» озоновой дыры. Однако новые исследования показали, что в действительности темпы ее уменьшения станут заметными только с 2018 года.

История изучения озона

Первые наблюдения за озоном относятся к 1840 г., но бурное развитие проблема озона получила в 20-е годы прошлого столетия, когда в Англии и Швейцарии появились специальные наземные станции.

Дополнительный путь для изучения связей переноса озона и стратификации атмосферы открыли самолетные зондирования озона атмосферы и выпуски озонных зондов. Новая эпоха отмечена появлением искусственных спутников Земли, наблюдающих атмосферный озон и дающих обширный объем информации.

В 1986 году был подписан Монреальский протокол по ограничению производства и потребления озоноразрушающих веществ, разрушающих озоновый слой. На сегодняшний день к Монреальскому протоколу присоединились 189 стран. Установлены сроки прекращения производства и других озоноразрушающих веществ. По модельным прогнозам при соблюдении Протокола уровень хлора в атмосфере снизится к 2050 г. до уровня 1980 г., что может привести к исчезновению антарктической «озоновой дыры».

Причины образования “озоновой дыры”

Летом и весной концентрация озона повышается. Над полярными областями она всегда выше, чем над экваториальными. Кроме того, она меняется по 11-летнему циклу, совпадающему с циклом солнечной активности. Все это было уже хорошо известно, когда в 1980-х гг. наблюдения показали, что над Антарктикой год от года происходит медленное, но устойчивое снижение концентрации стратосферного озона. Это явление получило название «озоновая дыра» (хотя

referat.co

Озоновые дыры - Реферат | Litsoch.ru

Содержание

Введение

1. Озоновые дыры и причины их возникновения

1.1 Источники разрушения озонового слоя

1.2 Озоновая дыра над Антарктикой

2. Основные мероприятия по защите озонового слоя

3. Правило оптимальной компонентной дополнительности

4. Закон Н.Ф. Реймерса о разрушении иерархии экосистем

Заключение

Список использованной литературы

Введение

Современная кислородная атмосфера Земли – уникальное явление среди планет Солнечной системы, и эта её особенность связана с наличием на нашей планете жизни.

Проблема экологии для людей сейчас, несомненно, самая главная. На реальность экологической катастрофы указывает разрушение озонного слоя Земли. Озон - трехатомная форма кислорода, образуется в верхних слоях атмосферы под действием жесткого (коротковолнового) ультрафиолетового излучения Солнца.

Сегодня озон беспокоит всех, даже тех, кто раньше не подозревал о существовании озонного слоя в атмосфере, а считал только, что запах озона является признаком свежего воздуха. (Недаром озон в переводе с греческого означает ''запах''.) Этот интерес понятен – речь идёт о будущем всей биосферы Земли, в том числе и самого человека. В настоящее время назрела необходимость принять определённые обязательные для всех решения, которые позволили бы сохранить озонный слой. Но чтобы эти решения были правильны, нужна полная информация о тех факторах, которые изменяют количество озона в атмосфере Земли, а также о свойствах озона, о том, как именно он реагирует на эти факторы.

1. Озоновые дыры и причины их возникновения

Озоновый слой - это широкий атмосферный пояс, простирающийся на высоте от 10 до 50 км над поверхностью Земли. Химически озон - это молекула, состоящая из трех атомов кислорода (молекула кислорода содержит два атома). Концентрация озона в атмосфере очень мала, и небольшие изменения количества озона приводят к серьезным изменениям интенсивности ультрафиолета, достигающего земной поверхности. В отличии от обычного кислорода озон неустойчив, он легко переходит в двухатомную, устойчивую форму кислорода. Озон – гораздо более сильный окислитель, чем кислород, и это делает его способным убивать бактерии, подавлять рост и развитие растений. Впрочем, из-за его низкой в обычных условиях концентрации в приземных слоях воздуха эти его особенности практически не влияют на состояние живых систем.

Гораздо важнее его другое свойство, делающее этот газ совершенно необходимым для всей жизни на суше. Это свойство – способность озона поглощать жесткое (коротковолновое) ультрафиолетовое (УФ) излучение Солнца. Кванты жесткого УФ обладают энергией, достаточной для разрыва некоторых химических связей, поэтому его относят к ионизирующим излучениям. Как и другие излучения этого рода, рентгеновское и гамма-излучение, оно вызывает многочисленные нарушения в клетках живых организмов. Озон образуется под воздействием высокоэнергетичной солнечной радиации, стимулирующей реакцию между О2 и свободными атомами кислорода. Под воздействием умеренной радиации он распадается, абсорбируя энергию этой радиации. Таким образом, этот цикличный процесс "съедает" опасный ультрафиолет.

Молекулы озона, как и кислорода, электрически нейтральные, т.е. не несут электрического заряда. Поэтому само по себе магнитное поле Земли не влияет на распределение озона в атмосфере. Верхний слой атмосферы – ионосфера, практически совпадает с озоновым слоем.

В полярных зонах, где силовые линии магнитного поля Земли замыкаются на ее поверхности, искажения ионосферы весьма значительны. Количество ионов, в том числе и ионизированного кислорода, в верхних слоях атмосферы полярных зон снижено. Но главная причина малого содержания озона в области полюсов – малая интенсивность солнечного облучения, падающего даже во время полярного дня под малыми углами к горизонту, а во время полярной ночи отсутствуют вовсе. Площадь полярных «дыр» в озоновом слое – надежный показатель изменений общего содержания озона в атмосфере.

Содержание озона в атмосфере колеблется вследствие многих естественных причин. Периодические колебания связаны с циклами солнечной активности; многие компоненты вулканических газов способны разрушать озон, поэтому повышение вулканической активности ведет к снижению его концентрации. Благодаря высоким, сверураганным скоростям воздушных потоков в стратосфере разрушающие озон вещества разносятся на большие площади. Переносятся не только разрушители озона, но и он сам, поэтому нарушения концентрации озона быстро разносятся на большие площади, а локальные небольшие «дыры» в озоновом щите, вызванные, например, запуском ракеты, сравнительно быстро затягиваются. Только в полярных областях воздух малоподвижен, вследствие чего исчезновение там озона не компенсируется его заносом из других широт, и полярные «озонные дыры», особенно на Южном полюсе, весьма устойчивы.

1.1 Источники разрушения озонового слоя

Среди разрушители озонного слоя можно выделить:

1) Фреоны.

Озон разрушается под воздействием соединений хлора, известных как фреоны, которые, также разрушаясь под воздействием солнечной радиации, освобождают хлор, «отрывающий» от молекул озона «третий» атом. Хлор в соединения не образовывает, но служит катализатором «разрыва». Таким образом, один атом хлора способен «погубить» много озона. Считается, что соединения хлора способны оставаться в атмосфере от 50 до 1500 лет (в зависимости от состава вещества) Земли. Наблюдения за озоновым слоем планеты проводились антарктическими экспедициями с середины 50-х.

Озоновая дыра над Антарктидой, увеличивающаяся по весне и уменьшающаяся к осени, была обнаружена в 1985 году. Открытие метеорологов вызвало цепь последствий экономического характера. Дело в том, что в существовании «дыры» была обвинена химическая промышленность, производящая вещества, содержащие фреоны, способствующие разрушению озона (от дезодорантов до холодильных установок).

В вопросе о том насколько человек повинен в образовании «озоновых дыр» - единого мнения нет.

С одной стороны – да, безусловно повинен. Производство соединений, приводящих к разрушению озона, следует свести к минимуму, а лучше и вообще прекратить. То есть отказаться от целого сектора промышленности, с оборотом в многие миллиарды долларов. А если не отказаться - то перевести ее на «безопасные» рельсы, что тоже стоит денег.

Точка зрения скептиков: человеческое влияние на атмосферные процессы, при всей его разрушительности в локальном плане, в планетарном масштабе - ничтожно. Антифреоновая кампания «зеленых» имеет вполне прозрачную экономическую и политическую подоплеку: с ее помощью крупные американские корпорации (Дюпон, например), душат своих зарубежных конкурентов, навязывая соглашения по "охране окружающей среды" на государственном уровне и насильно вводя новый технологический виток, который более слабые в экономическом отношении государства выдержать не в состоянии.

2) Высотные самолёты.

Разрушению озонного слоя способствуют не только фреоны, выделяющиеся в атмосферу и попадающие в стратосферу. К разрушению озонного слоя причастны и окислы азота, которые образуются при ядерных взрывах. Но окислы азота образуются и в камерах сгорания турбореактивных двигателей высотных самолётов. Окислы азота образуются из азота и кислорода, которые там находятся. Скорость образования окислов азота тем больше, чем выше температура, т. е. чем больше мощность двигателя.

Важна не только мощность двигателя самолёта, но и высота, на которой он летает и выпускает разрушающие озон окислы азота. Чем выше образуется окись или закись азота, тем он губительнее для озона.

Общее количество окиси азота, которое выбрасывается в атмосферу в год, оценивается в 1 млрд. т. Примерно треть этого количества выбрасывается самолётами выше среднего уровня тропопаузы (11 км). Что касается самолётов, то наиболее вредными являются выбросы военных самолётов, количество которых исчисляется десятками тысяч. Они летают преимущественно на высотах озонного слоя.

3) Минеральные удобрения.

Озон в стратосфере может уменьшаться и за счет того, что в стратосферу попадает закись азота N2 O, которая образуется при денитрификации связанного почвенными бактериями азота. Такую же денитрификацию связанного азота производят и микроорганизмы в верхнем слое океанов и морей. Процесс денитрификации напрямую связан с количеством связанного азота в почве. Таким образом, можно быть уверенным в том, что с ростом количества вносимых в почву минеральных удобрений будет в такой же мере увеличиваться и количество образованной закиси азота N2 O. Далее, из закиси азота образуются окислы азота, которые и приводят к разрушению стратосферного озона.

4) Ядерные взрывы.

При ядерных взрывах выделяется очень много энергии в виде тепла. Температура, равная 60000 К устанавливается уже через несколько секунд после ядерного взрыва. Это энергия огненного шара. В сильно нагретой атмосфере происходят такие преобразования химических веществ, какие при нормальных или не происходят, или протекают очень медленно. Что касается озона, его исчезновения, то наиболее опасными для него являются образующиеся при этих преобразованиях окислы азота. Так, за период с 1952 по 1971 г. в результате ядерных взрывов в атмосфере образовалось около 3 млн т. окислов азота. Дальнейшая судьба их такова: они в результате перемешивания атмосферы попадают на разные высоты, в том числе и в атмосферу. Там они вступают в химические реакции с участием озона, приводя к его разрушению.

5) Сжигание топлива.

Закись азота обнаруживается и в дымовых газах электростанций. Собственно, о том, что окись и двуокись азота присутствуют в продуктах сгорания, было известно давно. Но эти высшие окислы не влияют на озон. Они, конечно, загрязняют атмосферу, способствуют образованию в ней смога, но довольно быстро удаляются из тропосферы. Закись же азота, как уже говорилось, опасна для озона. При низких температурах она образуется в таких реакциях:

N2 + O + M = N2 O + M,

2Nh4 + 2O2 =N2 O = 3h3 .

Масштаб этого явления очень значителен. Таким путём в атмосфере ежегодно образуется примерно 3 млн т. закиси азота! Эта цифра говорит о том, что этот источник разрушения озона существенный.

1.2 Озоновая дыра над Антарктикой

О значительном уменьшении общего содержания озона над Антарктикой впервые было сообщено в 1985

г. Британской антарктической службой на основании анализа данных озонометрической станции Хэлли-Бей (76 гр. ю. ш.). Уменьшение озона наблюдалось этой службой и на Аргентинских островах (65 гр. ю. ш.).

С 28 августа по 29 сентября 1987 г. было выполнено 13 полётов самолёта-лаборатории над Антарктикой. Эксперимент позволил зарегистрировать зарождение озонной дыры. Были получены её размеры. Исследования показали, что наибольшее уменьшение количества озона имело место на высотах 14 - 19 км. Здесь же приборы зарегистрировали наибольшее количество аэрозолей (аэрозольные слои). Оказалось, что, чем больше имеется аэрозолей на данной высоте, тем меньше там озона. Самолёт - лаборатория зарегистрировал уменьшение озона, равное 50%. Ниже 14 км. изменений озона было несущественным.

Уже к началу октября 1985 г. озонная дыра (минимум количества озона) охватывает уровни с давлением от 100 до 25 гПа, а в декабре диапазон высот, на которых она наблюдается, расширяется.

Во многих экспериментах измерялось не только количество озона и других малых составляющих атмосферы, но и температуры. Была установлена самая тесная связь между количеством озона в стратосфере и температурой воздуха там же. Оказалось, что характер изменения количества озона тесно связан с тепловым режимом стратосферы над Антарктидой.

Образование и развитие озонной дыры в Антарктиде наблюдали английские учёные и в 1987 г. Весной общее содержание озона уменьшилось на 25%.

Американские исследователи проводили измерения в Антарктике зимой и ранней весной 1987 г. озона и других малых составляющих атмосферы (HCl , HF, NO, NO2 , HNO3 , ClONO2 , N2 O, Ch5 ) c помощью специального спектрометра. Данные этих измерений позволили очертить область вокруг Южного полюса, в которой количество озона уменьшено. Оказалось, что эта область совпадает практически в точности с крайним полярным стратосферным вихрем. При переходе через край вихря резко менялось количество не только озона, но и других малых составляющих, оказывающих влияние на разрушение озона. В пределах озонной дыры (или, другими словами, полярного стратосферного вихря) концентрация HCl , NO2 и азотной кислоты была значительно меньше, чем за пределами вихря. Это имеет место потому, что хлорины в продолжении холодной полярной ночи разрушают озон в соответствующих реакциях, выступая в них как катализаторы. Именно в каталитическом цикле с участием хлора происходит основное уменьшение концентрации озона (по крайней мере 80% этого уменьшения).

Эти реакции протекают на поверхности частиц, составляющих полярные стратосферные облака. Значит, чем больше площадь этой поверхности, т. е. чем больше частиц стратосферных облаков, а значит, и самих облаков, тем быстрее в конце концов распадается озон, а значит, тем эффективнее образуется озонная дыра.

2. Основные мероприятия по защите озонового слоя

Поскольку наиболее активный разрушитель озонового щита Земли – хлор, основные меры, разрабатываемые для сдерживания истощения озона, сводятся к снижению выбросов в атмосферу хлора и хлорсодержащих соединений, прежде всего фреонов. Одна из главных технологических задач, решения которой ищут во всех промышленно развитых странах, - замена фреонов на другие хладагенты, не содержащие хлора и вместе с тем не уступающие фреонам по основным физическим свойствам и химической инертности.

Другая задача, уже практически решенная в ракетоносителе «Энергия», заключается в переводе ракетной техники и высотной реактивной авиации на экологически безопасные виды топлива и двигатели.

Снижение выбросов оксидов азота наземными промышленными, энергетическими и транспортными системами имеет значение не только для снижения кислотности осадков и решения проблемы «кислых дождей». Окислы азота не полностью вымываются осадками, часть их достигает высот, на которых существует озоновый слой, и вносит свою лепту в его истощение.

Хотя окислы азота, по сравнению с хлором, в 10 тысяч раз менее активны как разрушители озона, их выброс в атмосферу многократно превышает выброс хлора. Это повышает важность разработки двигателей, энергетических установок, котлов, новых видов топлива и способов его сжигания, которые сводили бы к минимуму образование и выброс в атмосферу окислов азота.

Первая международная конвенция по мерам предохранения озонового слоя была заключена в Вене в 1985 году. Через несколько месяцев после нее была обнаружена "озоновая дыра" в Южном полушарии. После этого в Монреале был подписан протокол, обязывающий страны-участницы избавляться от своих вредных фреонов. В 1990, 1992 и 1997 гг. список разрушительных веществ пополнялся. В случае его соблюдения всеми странами (а Китай, например, и Индия конвенцию не подписали, рассудив, что она им «не по карману») прогнозисты обещали восстановление озонового слоя к 2150 году. Главными производителями вредных для озона соединений (90% от общемирового объема) называются развивающиеся страны (которые, по сути, являются потребителями устаревшей продукции "цивилизованных" стран) и страны бывшего СССР.

В то же время заявлено, что выброс фреонов в атмосферу, в 1986 году, достигавший 1.1 миллиона тонн, к 1996 г. снизился до 160 тысяч тонн. Без Монреальской конвенции к 2010 году мы имели бы 8 миллионов тонн годовых выбросов.

3. Правило оптимальной компонентной дополнительности

Правило оптимальной компонентной дополнительности гласит, что никакая экосистема не может самостоятельно существовать при искусственно созданном избытке или недостатке одного из экологических компонентов.

"Нормой" экологического компонента следует считать ту, которая обеспечивает экологическое равновесие определенного типа, позволяющее функционировать именно той экосистеме, которая эволюционно сложилась и соответствует балансу в природной надсистеме и всей иерархии природных систем на данной единице пространства (в конкретном биотопе).

4. Закон Н.Ф. Реймерса о разрушении иерархии экосистем

Закон Н.Ф. Реймерса о разрушении иерархии экосистем гласит, что разрушение более трех уровней в экосистемной иерархии абсолютно необратимо и катастрофично.

Иерархические уровни геохор (биохор) – это расположение в порядке от высшего к низшему. Различают пять основных уровней угеохор и биохор:

- гигахоры – главнейшие элементы биосферы и географической оболочки: океаны и материки, биоклиматические пояса и биогеографические царстваразмером более 106 км2 ;

- мегахоры – единицы природно-хозяйственного и биогеографического (фитогеографического) районирования размером 103 -105 км2 ;

- макрохоры – территория конкретных ландшафтов, размером 10-10-2 км2 ;

- микрохоры и мезохоры – морфологические единицы ландшафта, размером 10-1 -10-2 км2 и входящие в их состав биогеоценозы.

Каждая подсистема следует за своей системой, вернее, развитие надсистемы определяет многие ограничения в развитии входящих в нее подсистем. Такой процесс "подталкивания", направления развития характерен для всего системного мира как в сверхдлинных отрезках эволюционного времени, так и в сравнительно коротких сроках индивидуального развития. Всюду есть взаимоотношения в иерархии систем - эволюция эволюций и развитие развитей. Если развитие относительно детерминировано воздействием иерархии надсистем, а отчасти и подсистем в прошлом (подсистемы, изменяясь, не могут не влиять на целое, пример тому мутации), то характер процессов не изменится и в будущем, во всяком случае ближайшем (в масштабе характерного времени систем). И хотя принцип "развитие есть движение движений во всей иерархии значимых систем" не позволяет создать одной безальтернативной модели, все же можно прогнозировать вероятный ход событий.

Н.Ф. Реймерс (1994) отмечает, что закон неравномерности развития систем, или, лучше, закон разновременности развития (изменения) подсистем в больших системах может быть сформулирован в таком виде: системы одного уровня иерархии (как правило, подсистемы системы более высокого уровня организации) развиваются не строго синхронно - в то время, когда одни из них достигли более высокого уровня развития, другие ещё остаются в менее развитом состоянии.

Заключение

Все глобальные экологические проблемы взаимосвязаны, и ни одна из них не должна рассматриваться в изоляции от других.

Казалось бы, количество озона в атмосфере очень велико – около 3 миллиардов тонн. Это, однако, ничтожная доля от всей атмосферы. Если бы весь озон атмосферы находился в приземном слое воздуха, то при «нормальных условиях» (давления 1 атмосфера и температура 25 градусов Цельсия) толщина озонового экрана, защищающего Землю от жесткого УФ-излучения Солнца, составляла бы всего около 3мм. Вместе с тем эффективность озонового слоя очень велика. В частности, специалистами рассчитано, что снижение содержания озона на 1% ведет к такому повышению интенсивности УФ-облучения поверхности, в результате которого количество смертей от рака кожи возрастет на 6-7 тысяч человек в год.

Необходимо срочно принимать меры к охране озонового слоя: разрабатывать безвредные хладагенты, способные заменить фреоны в промышленности и быту, экологически безопасные двигатели самолетов и космических ракетных систем, разрабатывать технологии, уменьшающие выбросы окислов азота в промышленности и на транспорте. Существующие международные соглашения по озону, Венская международная конвенция по охране озонового слоя и Монреальский протокол, обязывающий подписавшие его государства вести работу в конкретных направлениях, пока недостаточно эффективны. Еще недостаточно осознана людьми опасность, еще мало талантливых исследователей и инженеров работают в этой области. А время не ждет.

Список использованной литературы

1. Акимова Т.А., Хаскин В.В. Экология. – М.: ЮНИТИ, 1998. – 455 с.

2. Дедю И.И. Экологический эниклопедический словарь. – Кишинев: Мир, 1990. – 568 с.

3. Князева Е.Н., Курдюмов С.П. законы эволюции и самоорганизации слоднх систем. – М.: Наука, 1994. – 250 с.

4. Кормилицин З.И. Основы экологии. – М.: «Интерстиль», 1997. – 364 с.

5. Общая экология: взаимодействие общества и природы. – СПб.: Химия, 1997.- 352 с.

6. Сверлова Л.И., Воронина Н.В. Загрязнение природной среды и экологическая потология человека. – Хабаровск.: ХГАЭП, 1995. – 106-108 с.

7. Розанов С.И. Общая экология. – СПб.: Издтельство «Лань», 2001. – 288 с.

www.litsoch.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.