Реферат на тему:
Измерение — совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений — мер, измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).
Характеристикой точности измерения является его погрешность или неопределённость. Примеры измерений:
В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов.
Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.
Статические и динамические.
Категории: Метрология, Измерение.
Текст доступен по лицензии Creative Commons Attribution-ShareAlike.wreferat.baza-referat.ru
КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО - СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ
Факультет инженерных систем и экологии
Кафедра теплогазоснабжения и вентиляции
Реферат по дисциплине:
«Метрология, стандартизация и сертификация»
на тему:
Виды измерений
Выполнил: ст. гр. 9ТГ51з
шифр: № 11-05-201
Ахметова Г.И.
Принял:
Хабибуллин Ю.Х.
________________
Казань- 2014г.
Содержание
Введение…………………………………………………………….….. ……3
Области измерений………………………………………………….……..…4
Виды измерений………………………………………………………..……..6
Средства измерений ………………………………………………….….....13
Заключение……………………………………………………….…….……24
Список использованной литературы……...……………………………….25
Введение
Измерения являются одним из важнейших путей развития научно-технического прогресса, познания природы и общества человеком. В практической деятельности мы постоянно имеем дело с измерениями, они имеют первостепенное значение во всех сферах производства и потребления, оценки качества товаров, внедрения новых технологий и управления ими.
Наука, изучающая измерения, называется метрологией. Слово «метрология» образовано из двух греческих слов: «метрон» — мера и «логос» — учение. Дословный перевод слова «метрология» — учение о мерах. Долгое время метрология оставалась в основном описательной (эмпирической) наукой о различных мерах и соотношениях между ними. Метрология как наука об измерениях наиболее интенсивно стала развиваться в XX в. благодаря открытиям в области математических и физических наук. Сегодня можно считать, что уровень развития современного государства, включая его торговлю, промышленность, медицину, науку, оборону, строительство, экологию и услуги, в значительной мере определяется состоянием и динамичным развитием метрологического обеспечения.
Основное понятие метрологии — измерение. Измерение — это нахождение значения величины опытным путем с помощью специальных технических средств или, другими словами, совокупность операций, выполняемых для определения количественного значения величины.
Значимость измерений выражается в трех аспектах: философском, научном и техническом.
Философский аспект заключается в том, что измерения являются основным средством объективного познания окружающего мира, важнейшим универсальным методом познания физических явлений и процессов. Научный аспект измерений состоит в том, что с помощью измерений осуществляется связь теории и практики, без них невозможны проверка научных гипотез и развитие науки. Технический аспект измерений — это получение количественной информации об объекте управления и контроля, без которой невозможно обеспечение условий проведения технологического процесса, качества продукции и эффективного управления процессом.
Области измерений
Область измерений — совокупность измерений величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой. Вид измерений — часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.
Принято различать следующие области и виды измерений:
Измерение геометрических величин: длин, отклонений формы поверхностей, параметров сложных поверхностей, углов.
Измерение механических величин: массы, плотности, силы, количества движения, мощности, энергии, вязкости, напряжений.
Измерение параметров потока, расхода, уровня, объема веществ.
Измерение давления: избыточного давления; абсолютного давления, переменного давления, вакуума.
Физико-химические измерения.
Теплофизические и температурные измерения: температуры, теплофизических величин.
Измерения времени и частоты.
Измерения электрических и магнитных величин: силы электрического тока, электрического заряда, электрического напряжения, потока электрического смещения, электрической емкости, магнитодвижущей силы, магнитной индукции, магнитного потока, индуктивности, электрического сопротивления, электрической проводимости, магнитной проводимости, активной мощности, энергии.
Радиотехнические измерения.
Измерения акустических величин: периода, частоты периодического процесса, длины волны, звукового давления, скорости звука, звуковой мощности, времени реверберации.
Оптические и оптико-физические измерения.
Измерения ионизирующих излучений: поглощенной дозы ионизирующего излучения; активности радионуклидов; эквивалентной дозы ионизирующего излучения.
Объектом измерения являются система, процесс, явление и т.д., которые характеризуются одной или несколькими измеряемыми величинами. Примером объекта измерений может быть технологический химический процесс, во время которого измеряют температуру, давление, энергию, расход веществ и материалов и другие параметры.
Измерение - процесс нахождения значения физической величины опытным путем с помощью средств измерения.
Результатом процесса является значение физической величины Q = qU ,
где q - числовое значение физической величины в принятых единицах; U - единица физической величины. Значение физической величины Q, найденное при измерении, называют действительным.
Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.
Метод измерений - совокупность приемов использования принципов и средств измерений.
Средствами измерений (СИ) являются используемые технические средства, имеющие нормированные метрологические свойства.
Виды измерений
Существует различные виды измерений. Классификацию видов измерения проводят, исходя из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.
Рис.1 Виды измерений
По характеру зависимости измеряемой величины от времени измерения выделяют статические и динамические измерения[1] .
Статические - это измерения, при которых измеряемая величина остается постоянной во времени. Такими измерениями являются, например, измерения размеров изделия, величины постоянного давления, температуры и др.
Динамические - это измерения, в процессе которых измеряемая величина изменяется во времени, например, измерение давления и температуры при сжатии газа в цилиндре двигателя.
По способу получения результатов, определяемому видом уравнения измерений, выделяют прямые, косвенные, совокупные и совместные измерения.
Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q - искомое значение измеряемой величины, а X - значение, непосредственно получаемое из опытных данных. Примерами таких измерений являются: измерение длины линейкой или рулеткой, измерение диаметра штангенциркулем или микрометром, измерение угла угломером, измерение температуры термометром и т.п.
Рис. 2 Пример прямого измерения длины.
Косвенные - это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями. Таким образом, значение измеряемой величины вычисляют по формуле Q = F(x1, x2 ... xN), где Q - искомое значение измеряемой величины; F - известная функциональная зависимость, x1, x2, … , xN - значения величин, полученные прямыми измерениями. Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения, измерение среднего диаметра резьбы методом трёх проволочек и т.д. Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить прямым измерением. Встречаются случаи, когда величину можно измерить только косвенным путём, например размеры астрономического или внутриатомного порядка.
Совокупные - это такие измерения, при которых значения измеряемых величин определяют по результатам повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Значение искомой величины определяют решением системы уравнений, составляемых по результатам нескольких прямых измерений. Примером совокупных измерений является определение массы отдельных гирь набора, т.е. проведение калибровки по известной массе одной из них и по результатам прямых измерений и сравнения масс различных сочетаний гирь. Рассмотрим пример совокупных измерений, который заключается в проведении калибровки разновеса, состоящего из гирь массой 1, 2, 2*, 5, 10 и 20 кг. Ряд гирь (кроме 2*) представляет собой образцовые массы разного размера. Звездочкой отмечена гиря, имеющая значение, отличное от точного значения 2 кг. Калибровка состоит в определении массы каждой гири по одной образцовой гире, например по гире массой 1 кг. Меняя комбинацию гирь, проведем измерения. Составим уравнения, где цифрами обозначим массу отдельных гирь, например 1обр обозначает массу образцовой гири в 1 кг, тогда: 1 = 1обр + a; 1 + 1обр = 2 + b; 2* = 2 + c; 1 + 2 + 2* = 5 + d и т.д. Дополнительные грузы, которые необходимо прибавлять к массе гири указанной в правой части уравнения или отнимать от неё для уравновешивания весов, обозначены a, b, c, d . Решив эту систему уравнений, можно определить значение массы каждой гири.
Совместные - это измерения, производимые одновременно двух или нескольких разноименных величин для нахождения функциональной зависимости между ними. Примерами совместных измерений являются определение длины стержня в зависимости от его температуры или зависимости электрического сопротивления проводника от давления и температуры.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.
По условиям, определяющим точность результата, измерения делятся на три класса.
1. Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.
2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.
Рис.3 Средства измерений
3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.
В зависимости от способа выражения результатов измерений различают абсолютные и относительные измерения[1] .
Абсолютными называют измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант. Примерами абсолютных измерений являются: определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.
Относительными называют измерения, при которых искомую величину сравнивают с одноименной величиной, играющей роль единицы или принятой за исходную. Примерами относительных измерений являются: измерение диаметра обечайки по числу оборотов мерного ролика, измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 куб.м воздуха к количеству водяных паров, которое насыщает 1 куб.м воздуха при данной температуре.
В зависимости от способа определения значений искомых величин различают два основных метода измерений метод непосредственной оценки и метод сравнения с мерой.
Метод непосредственной оценки - метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия. Примерами таких измерений являются: измерение длины с помощью линейки, размеров деталей микрометром, угломером, давления манометром и т. д.
Метод сравнения с мерой - метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения диаметра калибра оптиметр устанавливают на нуль по блоку концевых мер длины, а результат измерения получают по показанию стрелки оптиметра, являющегося отклонением от нуля. Таким образом, измеряемая величина сравнивается с размером блока концевых мер. Существуют несколько разновидностей метода сравнения:
а) метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, позволяющий установить соотношение между этими величинами, например измерение сопротивления по мостовой схеме с включением в диагональ моста показывающего прибора;
б) дифференциальный метод, при котором измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на нуль по блоку концевых мер длины;
в) нулевой метод - также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Этим методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием;
г) при методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов. Например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал.
В зависимости от способа получения измерительной информации, измерения могут быть контактными и бесконтактными.
В зависимости от типа, применяемых измерительных средств, различают инструментальный, экспертный, эвристический и органолептический методы измерений.
Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.
Экспертный метод оценки основан на использовании суждений группы специалистов.
Эвристические методы оценки основаны на интуиции.
Органолептические методы оценки основаны на использовании органов чувств человека. Оценка состояния объекта может проводиться поэлементными и комплексными измерениями. Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности. Например, эксцентриситета, овальности, огранки цилиндрического вала. Комплексный метод характеризуется измерением суммарного показателя качества, на который оказывают влияние отдельные его составляющие. Например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; контроль положения профиля по предельным контурам и т. п.
Средства измерений.
К средствам измерительной техники, непосредственно участвующим в получении и преобразовании измерительной информации относятся средства измерений.
Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени. Основным признаком в данном определении являются нормированные метрологические характеристики, что подразумевает и возможность воспроизведения единицы физической величины с требуемой точностью, и ее сохранение на протяжении всего периода метрологической пригодности средства измерений.
В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений, как меры, измерительные преобразователи, измерительные приборы, индикаторы, измерительные установки, измерительные системы, измерительно-вычислительные комплексы.
Простейшим средством измерений является мера. Главная отличительная особенность меры – отсутствие каких-либо преобразований измерительной информации самим средством измерений. Мера физической величины (мера величины; мера) – средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью.
Меры, предназначенные для воспроизведения физической величины заданного размера, называют однозначными, а воспроизводящие физические величины ряда размеров – многозначными. В качестве примеров однозначных мер можно назвать гирю (мера массы), угольник (мера прямого угла), плоскопараллельную концевую меру длины. К многозначным мерам следует отнести измерительную линейку, транспортир, измерительный сосуд, а также ступенчатый шаблон, угловую концевую меру с несколькими рабочими углами. Меры могут комплектоваться в наборы или конструктивно объединяться в так называемые «магазины».
Набор мер – комплект мер разного размера одной и той же физической величины, предназначенных для применения на практике как в отдельности, так и в различных сочетаниях (например, наборы концевых мер длины, угловых концевых мер, наборы разновесов). Магазин мер – набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях (например, магазин электрических сопротивлений).
При оценивании величин по условным (неметрическим) шкалам, имеющим реперные точки, в качестве «меры» нередко выступают вещества или материалы с приписанными им условными значениями величин. Так, для шкалы твердости Мооса мерами являются минералы различной твердости. Приписанные им значения твердости образуют ряд реперных точек условной шкалы.
Измерительный преобразователь – техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. Примеры измерительных преобразователей – термопара, пружина динамометра, микрометрическая пара винт-гайка.
Отличительной особенностью измерительного преобразователя является выдача им измерительной информации в форме, не поддающейся непосредственному восприятию оператором. По характеру входного и выходного сигналов различают аналоговые, цифро-аналоговые, аналого-цифровые преобразователи. По месту, занимаемому в измерительной цепи, различают преобразователи первичные и промежуточные. Преобразователи с пропорциональным преобразованием сигнала измерительной информации называют масштабными.
Первичный измерительный преобразователь (первичный преобразователь) – измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина, т. е. первый преобразователь в измерительной цепи измерительного прибора (установки, системы). В одном средстве измерений может быть несколько первичных преобразователей, например, ряд термопар измерительной установки, предназначенной для контроля температуры в разных точках холодильной емкости.
Датчик – конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы (он “дает” информацию). Датчики метеорологического зонда или стационарной метеостанции передают измерительную информацию о температуре, давлении, влажности и других параметрах атмосферы, причем они могут находиться на значительном расстоянии от принимающего его сигналы средства измерений. Термин “датчик” в ГОСТ 16263 был помечен как нерекомендуемый, поскольку он отражает только одну из функций первичного измерительного преобразователя– “выдачу информации”.
Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Измерительный прибор предназначен для получения измерительной информации от измеряемой физической величины, ее преобразования и выдачи в форме, поддающейся непосредственному восприятию оператором. Прибор включает в себя один или несколько измерительных преобразователей и присоединенное к ним устройство отображения измерительной информации типа шкала-указатель, указатель-диаграммная бумага, числовое табло. В зависимости от системы представления информации различают показывающие или регистрирующие приборы, причем регистрирующие могут быть записывающими либо печатающими, а в зависимости от формы выходного сигнала различают приборы е аналоговым либо с дискретным выходом (“дискретные” приборы часто называют “цифровыми”). Следует обратить внимание, что вид устройства отображения измерительной информации не определяет форму выходного сигнала: система шкала-указатель электронно-механических часов принадлежат “дискретным” приборам, а изменение выходного сигнала бытового счетчика электроэнергии на правом барабане цифрового табло имеет непрерывный характер.
Принято различать также приборы прямого действия и приборы сравнения. Под прибором сравнения, по-видимому, подразумевается компаратор. Компаратор – средство сравнения, предназначенное для сличения мер однородных величин. Примерами являются рычажные весы, компаратор для сличения нормальных элементов.
Средство сравнения – техническое средство или специально создаваемая среда, посредством которых возможно выполнять сравнения друг с другом мер однородных величин или показания измерительных приборов [2].
Примеры
1 Рычажные весы, на одну чашку которых устанавливается эталонная гиря, а на другую поверяемая, — есть средство для их сравнения.
2 Градуировочная жидкость для сравнения показаний эталонного и рабочего ареометров служит необходимой средой для градуирования рабочих ареометров.
3 Температурное поле, создаваемое термостатом для сравнения показаний термометров, является необходимой средой.
4 Давление среды, создаваемое компрессором, может быть измерено поверяемым и эталонным манометрами одновременно. На основании показаний эталонного прибора градуируется поверяемый прибор.
Если «средство сравнения» предназначено для реализации процедуры сравнения значений физических величин, то не следует путать его с такими объектами сравнения, как градуировочная жидкость, давление среды и другие.
Индикатор – техническое средство или вещество, предназначенное для установления наличия какой-либо физической величины или превышения уровня ее порогового значения. Индикатор близости к нулю сигнала называют нулевым или нуль-индикатором. При химических реакциях в качестве индикатора применяют лакмусовую бумагу и какие-либо вещества. В области измерений ионизирующих излучений индикатор часто дает световой и (или) звуковой сигнал о превышении уровнем радиации его порогового значения.
Фактически индикаторы – это особый вид средств измерений, которые предназначены для установления наличия какой-либо физической величины или определения ее порогового значения (индикатор фазового провода электропроводки, индикатор контакта измерительного наконечника прибора линейных измерений с поверхностью детали, лакмусовая бумага, "индикатор пожара в помещении", индикаторы охранной сигнализации). В некоторых случаях в качестве индикаторов могут использоваться измерительные приборы (омметр при проверке обрыва в электрической цепи, часы-будильник, предельный электроконтактный измерительный преобразователь с визуальной или звуковой сигнализацией, называемый иногда "реле геометрических размеров").
Основные и вспомогательные средства измерений и дополнительные устройства могут быть объединены в измерительные установки или измерительные системы.
Основное средство измерений – средство измерений той физической величины, значение которой необходимо получить в соответствии с измерительной задачей.
Вспомогательное средство измерений – средство измерений той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности. Примером вспомогательного средства измерений является термометр для измерения температуры газа в процессе измерений объемного расхода этого газа.
Измерительная установка – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте. В примечаниях сказано, что существуют эталонные и поверочные установки, а некоторые большие измерительные установки называют измерительными машинами. В качестве примеров приведены установка для измерений удельного сопротивления электротехнических материалов и установка для испытаний магнитных материалов.
Измерительная система – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т.п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях[3].
В качестве примеров можно привести измерительную систему теплоэлектростанции, позволяющую получать измерительную информацию о ряде физических величин в разных энергоблоках, которая может содержать сотни измерительных каналов; радионавигационная система для определения местоположения различных объектов, состоящая из ряда измерительно-вычислительных комплексов, разнесенных в пространстве на значительное расстояние друг от друга.
Измерительно-вычислительный комплекс – функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.
Измерительная цепь – совокупность элементов средств измерений, образующих непрерывный путь прохождения измерительного сигнала одной физической величины от входа до выхода. Измерительную цепь измерительной системы называют измерительным каналом.
Очевидно, что и простые и более сложные средства измерений могут включать типовые элементы, к которым можно отнести чувствительный элемент, измерительный механизм, показывающее устройство, регистрирующее устройство, цифровое табло измерительного прибора.
Чувствительный элемент средства измерений (чувствительный элемент) – часть измерительного преобразователя в измерительной цепи, воспринимающая входной измерительный сигнал.
Измерительный механизм средства измерений (измерительный механизм) – совокупность элементов средства измерений, которые обеспечивают необходимое перемещение указателя (стрелки, светового пятна и т. д.).
Определение не вполне соответствует термину, а приведенный далее пример «измерительный механизм милливольтметра состоит из постоянного магнита и подвижной рамки» скорее относится к промежуточному измерительному преобразователю прибора.
Показывающее устройство средства измерений (показывающее устройство) – совокупность элементов средства измерений, которые обеспечивают визуальное восприятие значений измеряемой величины или связанных с ней величин. Очевидно, показывающие устройства приборов чаще всего выполнены в виде системы шкала-указатель или числового табло.
Шкала средства измерений (шкала) – часть показывающего устройства средства измерений, представляющая собой упорядоченный ряд отметок вместе со связанной с ними нумерацией. Отметки на шкалах могут быть нанесены равномерно (равномерная шкала) или неравномерно (неравномерная шкала).
Отметка шкалы (отметка) – знак на шкале средства измерений (черточка, зубец, точка и др.), соответствующий некоторому значению физической величины. Отметку шкалы средства измерений, у которой проставлено число, называют числовая отметка шкалы, а промежуток между двумя соседними отметками шкалы средства измерений называется делением шкалы.
Различают начальное значение шкалы (наименьшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений) и конечное значение шкалы (наибольшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений). Так для медицинского термометра начальным значением шкалы является 34,3 °С, а конечным значением шкалы является 42 °С.
Указатель средства измерений (указатель) – часть показывающего устройства, положение которой относительно отметок шкалы определяет показания средства измерений. Указателем может быть стрелка, штрих, кромка детали, перемещающейся относительно шкалы, световое пятно с маркой, край столбика жидкости и т.д. Изменение показаний в системе шкала-указатель, может осуществляться за счет перемещения любого из элементов относительно другого [3].
Показывающее устройство «цифрового» измерительного прибора называется табло цифрового измерительного прибора (табло прибора; табло).
Кроме демонстрирующих в метрологии используют также и регистрирующие приборы. Регистрирующее устройство средства измерений (регистрирующее устройство) – совокупность элементов средства измерений, которые регистрируют значение измеряемой или связанной с ней величины. В качестве регистрирующего устройства могут использоваться самописцы, печатающие устройства (символьные, в частности цифропечатающие; матричные, формирующие изображение из точек), устройства с фоторегистрацией или магнитной регистрацией данных и другие.
Сложное средство измерений можно представить в виде схемы, взяв за основу его измерительную цепь, которая включает первичный и промежуточные измерительные преобразователи и устройство отображения измерительной информации.
В состав первичного измерительного преобразователя обязательно включается чувствительный элемент. Любое средство измерений обязательно имеет устройство выдачи (отображения) измерительной информации. У приборов с визуальными выходом это чаще всего отсчетные устройства типа шкала-указатель или цифровое табло. Прибор может быть снабжен несколькими шкалами (индикатор часового типа, измерительные головки ИГМ) или одной шкалой с несколькими указателями (часы с циферблатом и центральными стрелками). В приборах и индикаторах применяют и другие устройства визуальной индикации (нуль-указатели, табло светофорного типа), а также акустические устройства (звонок, зуммер таймера) и тактильные устройства (вибратор наручного будильника для слабо слышащих). В качестве устройств выдачи информации могут использоваться также любые регистрирующие самопишущие или печатающие устройства.
Структурную схему измерительного прибора строят, как правило, на базе кинематической, электрической, оптической или иной схемы.
Выделение измерительных преобразователей по кинематической схеме осуществляют на основе логического анализа выполняемых ими функций и конструктивной завершенности (автономности). Возможно укрупненное и более мелкое дробление элементов функциональной кинематической схемы на измерительные преобразователи, например: чашка с собственным шарнирным подвесом– шарнирная тяга – равноплечий рычаг... Или обратное: равноплечий рычаг с чашками и шарнирами (первичный измерительный преобразователь) – устройство отображения измерительной информации (стрелка на рычаге – указатель и шкала с единственным делением). Шкала устройства отображения измерительной информации может иметь множество делений или только одно нулевое деление– вырожденная шкала, характерная для приборов типа нуль-компаратора, которые предназначены для измерения нулевым методом.
В зависимости от степени участия оператора в процессе, различают автоматические автоматизированные и неавтоматизированные средства измерений.
Автоматическое средство измерений – средство измерений, производящее без непосредственного участия человека измерения и все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала. Автоматическое средство измерений, встроенное в технологическую линию, нередко называют "измерительный автомат" или "контрольный автомат". Применяют также понятие "измерительные роботы".
Автоматизированное средство измерений – средство измерений, производящее в автоматическом режиме одну или часть измерительных операций. Например, барограф осуществляет автоматическое измерение и регистрацию давления, а счетчик электроэнергии измеряет и регистрирует данные о потреблении энергии с автоматическим накоплением результатов).
Средства измерений подразделяются на виды и типы, причем вид средств измерений может включать несколько их типов. Амперметры являются видами средств измерений силы электрического тока, а вольтметры– напряжения электрического тока.
Вид средства измерений – совокупность средств измерений, предназначенных для измерений данной физической величины.
Тип средства измерений – совокупность средств измерений одного и того же назначения, основанных на одном и том же принципе действия, имеющих одинаковую конструкцию и изготовленных по одной и той же технической документации. Средства измерений одного типа могут иметь различные модификации (например, индикаторы часового типа ИЧ отличаются по диапазонам показаний).
Кроме того, средства измерений принято различать по принципам действия, то есть по физическим принципам, используемым для преобразования измеряемой величины или сигнала измерительной информации. Например, измерительный микроскоп относится к оптико-механическим приборам, индуктивный или резистивный преобразователь– к электрическим средствам измерений и т.д. Сложные приборы с длинной измерительной цепью обычно характеризуют одним (или двумя) наиболее важными принципами преобразования (лазерный интерферометр, фотоэлектрический угломер).
Средства измерений узаконивают уполномоченные органы, например, путем утверждения типа средства измерений. Узаконенное средство измерений – средство измерений, признанное годным и допущенное для применения уполномоченным на то органом. Одним из методов официального утверждения является стандартизация средств измерений. Средства измерений подвергают испытаниям и в случае положительных результатов стандартизуют и вносят в Госреестр [3]. Стандартизованное средство измерений – средство измерений, изготовленное и применяемое в соответствии с требованиями государственного или отраслевого стандарта. Одним из видов стандартизованных средств измерений является стандартный образец (СО) – образец вещества (материала) с установленными в результате метрологической аттестации значениями одной или более величин, характеризующими свойство или состав этого вещества (материала). Различают стандартные образцы свойств и стандартные образцы состава. Стандартные образцы свойств веществ и материалов являются однозначными мерами и могут применяться в качестве рабочих эталонов, с присвоением разряда в соответствии с местом в государственной поверочной схеме. Примеры стандартных образцов свойства: СО относительной диэлектрической проницаемости, СО высокочистой бензойной кислоты. Стандартные образцы состава могут иметь аттестованные значения одной или более величин, характеризующими свойство или состав этого вещества, например СО состава углеродистой стали.
Не все средства измерений стандартизуют. Разработанные для единичного производства средства измерений могут быть узаконены без их стандартизации. Нестандартизованное средство измерений (НСИ) – средство измерений, стандартизация требований к которому признана нецелесообразной.
По метрологическому назначению различают эталонные и рабочие средства измерений. Рабочее средство измерений – средство измерений, предназначенное для измерений, не связанных с передачей размера единицы другим средствам измерений. Эталонные средства измерений называют также средствами поверки. Средства поверки – эталоны, поверочные установки и другие средства измерений, применяемые при поверке в соответствии с установленными правилами.
Возможности использования средств измерений, а также их точностные свойства определяются их метрологическими характеристиками
Метрологическая характеристика средства измерений (метрологическая характеристика; MX) – характеристика одного из свойств средства измерений, влияющая на результат измерений и на его погрешность. Различают нормируемыме метрологические характеристики, устанавливаемые нормативными документами на средства измерений, и действительные характеристики, определяемые экспериментально. Метрологические характеристики весьма разнообразны, они существенно различаются по значимости и информативности и существенно зависят от типа средств измерений.
Для средств измерений, осуществляющих измерительное преобразование измеряемой физической величины, широко применяют интегральную метрологическую характеристику, которая отражает действительную функцию преобразования (так называемая градуировочная характеристика).Градуировочная характеристика средства измерения (градуировочная характеристика) – зависимость между значениями величин на входе и выходе средства измерений, полученная экспериментально. Градуировочная характеристика может быть выражена в виде формулы, графика или таблицы. Выраженную в виде формулы или графика, номинальную характеристику называют функцией преобразования средства измерений. В некоторых метрологических источниках номинальную и экспериментальную функции преобразования называют статическими характеристиками измерительных преобразователей и приборов, противопоставляя их полным динамическим характеристикам.
Градуировочные характеристики можно рассматривать как экспериментальные модели функции преобразования измерительного прибора [3].
Наряду с интегральными метрологическими характеристиками для средств измерений предусмотрены возможности назначения и контроля множества различных частных характеристик. Часть из них представляет интерес для пользователя, другие принципиально важны только для разработчиков средств измерений. К последним можно отнести такие как:
Под градуировкой понимают определение градуировочной характеристики средства измерений (встречается нерекомендуемый термин "тарировка СИ"). Определение градуировочной характеристики нестандартизованного СИ и оформление ее на шкале прибора соответствует понятию градуировки как метрологического мероприятия, поскольку в этом случае используют полученные в ходе исследований конкретные реализации зависимостей между величинами на входе и на выходе средства измерений.
Градуировкой в узком смысле называют также нанесение отметок на шкалу прибора, например осуществляемую типографским методом, что соответствует воспроизведению на приборе номинальной функции преобразования СИ. Такое понятие градуировки отражает технологическую сторону нанесения отметок шкалы прибора.
Набор частных МХ измерительного преобразователя может включать такие номинальные характеристики, как диапазон и пределы преобразования, чувствительность СИ, вид выходного кода и число разрядов выходного кода, цена единицы наименьшего разряда кода, номинальная ступень квантования. Остальные МХ выбирают из той же номенклатуры, что и для измерительных приборов.
Заключение
Измерение – один из важнейших путей познания природы человека. Они играют значительную роль в современном обществе. Наука, техника и промышленность не могут существовать без измерений. Каждую сек в мире производится 1 млрд. измерительных операции результаты которых используются для обеспечения технического уровня и необходимого качества продукта, безопасности работы транспорта и т.д. Практически нет ни одной сферы деятельности где бы не использовались результаты измерений. Диапазоны измеряемых величин постоянно растут. Например длина измеряется 10-10-10-17 метра, температура 0,5–106 К, сопротивление 10-26-1016 Ом, сила тока 10-16-104 А. С ростом диапазона измеряемых величин возрастает и сложность измерения. Измерения по сути своей перестают быть одноактивным действием, превращают сложную процедуру подготовки эксперимента, интерпретации измеренной информации. В этом случае следует говорить об измерительных технологиях понимающихся как последовательность действий направленных на получение измерительной информации. Другой фактор, подтверждающий фактор измерений – их значимость. Основой любой формы управления, анализа, планирования, контроля и регулирования является достоверная исходная информация, которая может быть получена путём измерения физических величин, параметров и показателей. Только высокая и гарантированная точность результатов измерений может обеспечить правильность применяемых решений.
Рассмотрев содержание метрологии в целом как раздела науки, посвященной обеспечению единства измерений, становится очевидным, что мы имеем дело в основном с понятиями физики, поскольку под единицами величины всегда подразумевались величины физические. Тем не менее, обращаясь к известному афоризму Д.И. Менделеева, вынесенного эпиграфом к данной работе, можно сказать, что любая наука должна включать в себя измерительные процедуры. В самом деле, многие современные области науки обратились к измерению физических величин. Без измерений физических величин немыслима современная химия, биология, медицина, экология и целый ряд других наук, в развитии которых необходимо «размышлять о природе вещей», т. е. привлекать понятия и категории физики и, следовательно, метрологии.
Список литературы.
1. Лифиц И.М. Стандартизация, метрология и подтверждение соответствия: учебник. 9-е изд., перераб и доп. - М.:Издательство Юрайт,2010.-315 с.
2. Чижикова Т.М. Стандартизация, сертификация, метрология: Учебное пособие. – М.: Колос, 2002. – 156 с.
3. .Крылова Г.Д. Основы стандартизации, сертификации, метрологии: Учебник для вузов. 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2001. – 711с.
add.coolreferat.com
works.tarefer.ru
(Назад) (Cкачать работу)
Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!
10
МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ АВТОМОБИЛЬНОГО И ТРАКТОРНОГО МАШИНОСТРОЕНИЯРЕФЕРАТ ПО МЕТРОЛОГИИ
НА ТЕМУ
“Методы измерений”
Выполнил:
Студент группы 3-ЭФМ-6
Кузеченков Б.В.
МОСКВА-1995. 1.Виды методов измерений Конкретные методы измерений определяются видом измеряемых величин, их размерами, требуемой точностью результата, быстротой процесса измерения, условиями, при которых проводятся измерения, и рядом других признаков.
Каждую физическую величину можно измерить несколькими методами, которые могут отличаться друг от друга особенностями как технического, так и методического характера. В отношении технических особенностей можно сказать, что существует множество методов измерения, и по мре развития науки и техники, число их все увеличивается. С методической стороны все методы измерений поддаются систематизации и обобщению по общим характерным признакам. Рассмотрение и изучение этих признаков помогает не только правильному выбору метода и его сопоставлению с другими, но и существенно облегчает разработку новых методов измерения.
Для прямых измерений можно выделить несколько основных методов: метод непосредственной оценки, дифференциальный метод, нулевой метод и метод совпадений.
При косвенных измерентиях широко применяется преобразование измеряемой величины в процессе измерений. 2.Преобразование измеряемой величины в процессе измерений Если мы проанализируем известные нам процессы измерений, то обнаружим, что в подавляющем большинстве случаев мы получаем числовое значение измеряемой величины, только после того, как тем или иным способом видоизменим ее. Рассмотрим в качестве примера измерение массы тела, которую мы измеряем с помощью обыкновенных равноплечих весов. Под действием земного притяжения создаются силы. Масса тела вместе с этими силами давит на одну чашку, а масса гирь - на другую. Подбирая гири, мы добиваемся равновесия, т.е. равенство этих сил. Это дает нам право сказать, что масса взвешиваемого тела равна массе гирь, принимая, что сила земного притяжения на расстоянии между чашками остается одной и той же. Как видим, для измерения массы нам пришлось преобразовать массы тела и гирь в силы, а для срванения сил между собой преобразовать их действие в механическое перемещение рычагов весов.
Другой пример - измерение давления газа при помощи трубчатого манометра. Металлическая трубка манометра, изогнутая по дуге, одним концом соединяется с резервуаром, в котором необходимо измерить давление газа. Другой конец трубки запаян. Под действием давления газа трубка разгибается и тем больше, чем больше давление. Свободный конец трубки перемещается в пространстве. Так осуществляется первая ступень преобразования. Перемещениеконца трубки при помощи системы рычагов и зубчаток преобразуется во вращение оси (вторая ступень преобразования). На оси находится стрелка, конец которой перемещется по дуге над шкалой с делениями. Эта третья ступень преобразования, позволяющая получить числовое значение измеряемого давления.
Приведенные примеры показывают, что даже простые измерения проводятся путем преобразования измеряемой величины.
Необходимо отметить, что преобразования измеряемых величин всегда таят в себе опасность внесения погрешностей. Например, при взвешивании, описанном выше, мы не учли закона Архимеда, в соответствии с которым вес тела, находящегося в какой - либо среде, уменьшается на вес вытесненного телом объема среды, если плотность материала гирь отличается от плотности вещества взвешиваемого тела. Другими словами, объем вытесненного воздуха различен, при взвешивании влияние этого явления может исказить результат. Правда это влияние оказывается очень небольшим и учитывать его приходится только при точных взвешиваниях, в частности, при взвешивании драгоценных металлов.
Основным выводом из сказанного является то, что в подавляющем большинстве случаев измерения связаны с преобразованием измеряемой величины. 3.Метод непосредственной оценки Метод непосредственной оценки дает значение измеряемой величины непосредственно без каких - либо дополнительных действий со стороны лица, проводящего измерение, и без вычислений, кроме умноженияего показаний на постоянную измерительного прибора или цену деления.
Быстрота процесса измерения методом непосредственной оценки делает его часто незаменимым для практического использования, хотя точность измерения бывает обычно ограниченной.
Наиболее многочисленной группой средств измерений, служащих для измерений методом непосредственной оценки, являются показывающие приборы и вот числе так называемые стрелочные приборы. Показывающие измерительные приборы нередко в течение длительного времени непосредственно контактируют с измеряемой величиной. Указатель их непрерывно следует за изменением этой величины, что имеет большое значение при осуществлении технологических процессов, наблюдении за явлениями природы и т.п.
К показывающим измерительным приборам непосредственной оценки относятся манометры, динамометры, барометры, амперметры, вольтметры, ваттметры, фазометры, расходомеры, тягомеры, напоромеры, жидкостные термометры и многие другие.
Измерение при помощи интегрирующего измерительного прибора - счетчика также является методом непосредственной оценки.
В ряде случаев средство измерений приводится в контакт с измеряемой величиной только в тот момент, когда возникает необходимость узнать значение этой величины. К такой разновидности метода непосредственной оценки относятся, например, взвешивание грузов на циферблатных весах, измерение длины при помощи линейки с делениями или рулетки, измерение электрических величин при помощи переносных приборов и т.п.4.Разностный или дифференциальный метод Этот метод характеризуется измерением разности между измеряемой величиной и величиной, значение которой неизвестно. Разностный метод позволяет получит результаты с высокой точностью даже при применении относительно грубых средств для измерения разности. Однако осуществление метода возможно только при условии воспроизведения с большой точностью известной величины, значение которой близко к значению измеряемой. Это во многих случаях оказывается легче, чем изготовить средство измерений высокой точности.
Проиллюстрируем сказанное на примере измерения длины как наиболее наглядном. На рис.1 рядом с телом, длину x которого следует измерить, помещена мера длины. Размер l меры известен с достаточной
точностью.Измерив небольшую разность между
длинами этих двух предметов a, мы сможем узнатьа
длину x=l+a. Предположим, что погрешность изме-
рения размера a не превышает , тогда результатx
измерения можно будет изобразить выражениемlРис.1
a или a(1/a), где /a - относительная погрешность измерения а.
Определим относительную погрешность измерения величины x x=l+a=(l+a)(1/(l+a)), где /l+a- относительная погрешность измерения x.
Так как l значительно больше a, то относительная погрешность измерения x значительно меньше относительной погрешности измерения a /(l+a)
referat.co