Курсовая работа: Гуманитарная роль математики в процессе подготовки учителя. Реферат математика в гуманитарных науках


Гуманитарная роль математики в процессе подготовки учителя

В. В. Афанасьев, Е. И. Смирнов

Ученик французской начальной школы на вопрос, “сколько будет 2+3”, ответил: “3+2, так как сложение коммутативно”. Он не знал, чему равна эта сумма, и даже не понимал, о чем его спрашивают.

В.И.Арнольд

О преподавании математики

Изменения в структуре высшего педагогического образования России, появление средних школ разного профиля: лицеев, гимназий, колледжей и т.п., демократизация общественной жизни имеют в своей основе коренной поворот к гуманистическим позициям функционирования современного образования. Способность и готовность учителя XXI века дать личности возможность получения образования необходимого уровня и глубины на любом отрезке ее жизнедеятельности становится теперь одной из основных тенденций развития современного образования. Современный этап развития среднего образования выдвигает повышенные требования к профессиональной (особенно предметной) подготовке учителя, вооруженного новейшими методиками и технологиями обучения, творчески мыслящего созидателя учебного процесса.

Одной из ведущих задач педагогического процесса подготовки учителя математики средней (полной) школы является преобразование личности студента в учителя-профессионала, способного решать все многообразие задач, связанных с обучением и воспитанием школьников. Улучшение профессиональной подготовки учителя математики требует не только новых, более эффективных путей организации учебно-воспитательного процесса в педвузе, но и пересмотра структуры и содержания математической подготовки студентов, поднятия ее на технологический уровень преподавания и учения.

В немалой степени эта тенденция коснулась преемственности содержания математического образования в среднем и высшем звене, равно как и авторского подхода к развитию теорий, концепций и методов обучения математике. Индивидуализация обучения, дифференцированный подход, использование новейших исследований в психологии, физиологии человека, педагогике для совершенствования процесса обучения, поиск оптимальных условий для усвоения сложного математического содержания требуют от учителя математики не только высокой компетентности в предметной области, но и достаточной подготовленности к самообразованию, к проявлению творческой активности на основе профессиональной идентичности личности учителя и требований профессии.

В современных условиях интенсивного применения математических методов в естествознании, технике и смежных науках, которые непременно находят свое отражение в изменяющихся программах школьного и вузовского математического образования, важной является также проблема более активного включения психофизиологических механизмов целостного восприятия информации личностью обучаемого, развития его математических способностей, мышления и культуры.

Потребности общества в математическом образовании граждан сильно изменились за последние десятилетия. Теория игр и искусственный интеллект, стохастика и теория информации становятся все более доступными для изучения массового исследователя ввиду логики развития самих наук, которые становятся все более значимыми в практическом приложении, но фактически еще не представленными в математическом образовании школьника.

С другой стороны, именно эти новые знания дают мощный мотивационный заряд изучения математических дисциплин и, как следствие, повышение интереса к профессии учителя математики, поскольку математическое образование наиболее приспособлено к развитию качеств мышления, развитию теоретического мышления (сравнение, эвристика, аналогия, интуиция, анализ, синтез и т.п.). Математическое мышление отличают доминирование логической схемы рассуждений, лаконизм, четкая распределенность хода рассуждений, умение выделить главное, способность к обобщению, анализу, синтезу. Не случайно известный математик и педагог А.Я. Хинчин считал, что высокий уровень математического мышления является необходимым элементом общей культуры человека [3].

Математика, являясь дисциплиной естественно-научного цикла, представляет своим предметом методологию и язык других дисциплин, связи между идеализированными объектами, далеко не однозначно отражающими реальную действительность. В этом смысле место математики – особое даже среди дисциплин естественно-научного цикла.

Математика не только способствует появлению нового знания о природе, обществе и человеке, но и находит в родственных науках реальные стимулы для своего развития. Так, развитие теории локально выпуклых пространств в функциональном анализе стимулировалось физическими проблемами квантовой электродинамики и задачами нахождения обобщенных решений уравнений математической физики, теория неограниченных операторов в банаховом пространстве – проблемами квантовой механики, тензорный анализ – проблемами механики упругих сред, теория функций многих комплексных переменных – проблемами квантовой теории поля и т.п.

С другой стороны, в самой математике в последние десятилетия возникли разделы, имеющие относительно самостоятельный предмет и специфические методы исследования: искусственный интеллект и теории массового обслуживания, теория случайных процессов и функциональный анализ, теория игр и математическое программирование, алгебраическая геометрия и теоретико-множественная топология и другие.

Поэтому последствия все более усиливающейся тенденции к фундаментализации математического знания связаны именно с интенсивным применением математических методов в других науках (в том числе гуманитарных), часть из которых непосредственно влияет на жизнедеятельность и социализацию личности в современном мире.

Математический аппарат предназначен, в том числе, и для описания целостных систем, функционирующих в реальном мире; он описывает их структуру и динамику, статику и интегральные характеристики. Глубокие взаимосвязи, выражающиеся в математической модели целого, описываются функциональным анализом и теорией автоматов, алгеброй и теорией случайных процессов, статистическими и вероятностными методами. В то же время математические понятия, теоремы, алгоритмы, доказательства и т.п., будучи математическими объектами педагогического процесса обучения математике, должны приобретать свойства и характеристики целостности как основы сохранения, обработки и переноса информации новому поколению.

В последние десятилетия математика как педагогическая задача испытывает беспрецедентное давление со стороны общественности как по поводу содержания обучения, так и относительно методов ее преподавания. Дело в том, что глубина ее формализации даже в естественных приложениях и следование внутренним закономерностям строения здания математики входят в противоречие как с онтогенезом развития и социализации отдельного индивидуума, так и с потребностями общества по обеспечению своей жизнедеятельности. Поэтому обучение математике и содержание математического образования как в средней, так и в высшей школе должны пересматриваться в направлении большей визуализации, наглядного моделирования и раскрытия социального статуса математики.

Важным обстоятельством при этом является то, что основным средством, способствующим появлению новообразований, является моделирование как высшая форма знаково-символической деятельности, ведущая к появлению нового знания о природе и технологических процессах в производстве, о законах общественного развития и закономерностях мышления, восприятии и памяти человека.

В последние годы усиливается также роль математики как средства гуманизации и социализации образования личности в современном обществе, как необходимого атрибута образовательной парадигмы личности XXI века.

Более того, математика как образовательный предмет все больше рассматривается как гуманитарная (общекультурная), а не естественно-научная дисциплина. Продуктивность мышления и восприятия, развитие предметной речи, логическая полноценность аргументации, развитие умственных способностей могут быть реальным результатом математического образования при условии его разумной организации.

Таким образом, социально-культурная роль математики представляется в следующем виде (рис. 1).

Рис. 1. Личность и математика

В последние десятилетия весь мир с упоением окунулся в море информационных технологий в образовании: мультимедиа, дистанционное обучение, телекоммуникации, графические калькуляторы и т.п. На представительном международном форуме по проблемам математического образования в Греции (Самос, 1998) большинство докладов, сообщений и “круглых столов” в той или иной мере трактовали вопросы внедрения информационных технологий в учебный процесс. Сотни университетов в мире (например, American Distance Education Consortium, в состав которого входят 55 университетов) ведут информационный обмен образовательными программами через Internet, осуществляя подготовку специалистов на основе дистанционного обучения (remote education): по последним данным таких студентов уже сотни тысяч. Но в данной связи необходимо четко расставить акценты относительно возможности профессиональной подготовки учителя: информационные технологии как средство обучения – да, информационные технологии как структурообразующий фактор педагогической системы – да, дистанционное обучение как парадигма в подготовке учителя, альтернативная личности преподавателя, – нет (по крайней мере, на данном этапе развития средств коммуникации и информационного обмена).

В обоснование последнего положения приведем, например, следующие аргументы:

“неуправляемое становление приемов мыслительной деятельности”. Именно этот фактор привел к неудовлетворительным результатам реализации идей программированного обучения (Э. Торндайк, Б. Скиннер, Н. Краудер и др.) в 60–70-х годах XX века. В основе неудач лежал необоснованный перенос принципов научения животных на процесс обучения человека со своими специфическими особенностями. Н.Ф. Талызина видит причины неудач скиннеровского подхода в выборе неадекватной психологической теории, обосновывая использование деятельностной теории учения с получением качественно новых результатов, доказывающих возможность управления становлением рациональных приемов мышления у человека. Однако в данном случае речь уже пойдет о принципах программирования процесса обучения с реальным взаимодействием учителя и ученика [4];

“отсутствие реального (а не интерактивного) взаимодействия учителя с учениками, между учениками”, несущее в себе возможности активизации направленных и взаимообуславливающих полифункциональных факторов адекватного восприятия новой информации: перцептивных, мнемических, эмоциональных, волевых и т.п.;

“нарушение целостности интериоризации” визуально-логического ряда перцептивных образов новой информации ввиду искусственного ограничения поля восприятия и динамики обращения с репертуаром кратковременной и долговременной памяти.

Все вышесказанное относится к вопросу эффективности дистанционной и очной форм обучения и притом в области профессионально-предметного блока подготовки учителя математики; естественно, что увеличение временных периодов для дистанционных форм обучения, равно как и создание специфических дидактических методов и усовершенствование средств коммуникации способны компенсировать отмеченные недостатки.

В то же время, рассматривая математику как педагогическую задачу, приходится сталкиваться с проблемами адекватного представления, различения, становления, устойчивости восприятия и воспроизведения математического знания и выявления специфических особенностей феномена математического мышления во всех трех ипостасях математики (рис. 1), тем более, что в последние десятилетия возникла принципиально новая ситуация, благоприятствующая реальным шагам возрастания интереса к математике, в том числе как педагогической задаче и эффективному средству развития интеллекта школьников и студентов. Этому способствовали, на наш взгляд, следующие факторы:

глубокая озабоченность учеников, родителей, педагогов содержанием математического образования и его влиянием на развитие личности;

демократизация и гуманизация образовательных процессов в школе и вузе, выдвижение на первый план проблем личностного развития школьников, особенно в период формирования онтогенетических новообразований в мышлении;

расширение информационных средств обеспечения учебного процесса: дисплейные классы, Internet, сервисные программные продукты, мультимедиа, дистанционное обучение и т.д.;

интенсивное развитие методологических основ обеспечения педагогических процессов: психология и физиология человека, искусственный интеллект, инженерная психология и психология индивидуальной и совместной деятельности, теория управления и теория образовательных систем и т.д.

Как рассказать школьнику, что большая теорема Ферма (над которой триста лет бились лучшие умы человечества) доказана А.Вайлсом в 1995 году, а трисекция угла и квадратура круга невозможны с помощью циркуля и линейки? Как наиболее эффективно развить мыслительные операции ученика (логику, анализ, синтез, обобщение, конкретизации, аналогии и т.п.) в процессе обучения математике, которая объективно должна являться самым мощным развивающим средством (и что не наблюдается в настоящее время)? Как должна быть отражена в обучении математике ее роль в жизнедеятельности общества и в развитии других наук, в том числе в обосновании космических полетов и безопасности воздушных перевозок? Как показать, что физика – мощный поддерживающий компонент жизнедеятельности и мировоззрения, который без знания и использования математики есть просто наблюдение и эксперимент, а психология без использования статистических методов обработки и анализа экспериментальных данных и моделирования психических процессов есть тенденция к внешней феноменологии и эмпиризму без вскрытия внутренних, сущностных механизмов психических процессов?

Все эти вопросы – только часть необходимого и далеко не разрешенного состояния отдельных проблем школьной математики как в российских, так и в зарубежных образовательных системах.

Анализ образовательных систем школьной математики позволяет выделить в качестве ведущих следующие противоречия:

между целостностью математики как системы научных знаний и ее представлением в школьных учебных планах и программах отдельными дисциплинами: алгеброй, геометрией, началами анализа, стохастикой и другими;

между значимостью и ролью математики в жизни общества, развитии науки и техники и отражением этой функции математики в процессе формирования мотивационной и эмоционально-волевой сферы учения;

между сущностью формируемых в процессе обучения математике знаний, умений, навыков, математических методов и процедур и их реальным формализованным проявлением в педагогическом процессе;

между объективным и интенсивным развитием психических процессов в переходном возрасте (1216 лет) и методами (средствами, технологиями) внешнего воздействия на личность ученика в образовательном пространстве.

Разнообразие педагогических систем и теорий обучения математике создает широкую палитру мирового опыта, ставящего сложные насущные проблемы осмысления и универсализации передовых методических идей и концепций. Взаимопроникновение методологий и эффективный мониторинг образовательных систем в настоящее время еще не соответствуют потребностям в адекватном отражении существа и целостности математических знаний.

Однако некоторые выводы о состоянии математических достижений школьников в разных странах мира можно сделать. Например, в школах Шотландии весь цикл учебных предметов разбивается на 2000 модулей трех типов: общих, специальных, интегративных. Тем не менее исследования, проведенные авторами в рамках Кассель-проекта под руководством профессора Д. Берджеса (Англия) по проблеме математических достижений школьников в различных странах мира (в том числе и в России), дали следующие результаты на репрезентативных выборках и идентичных тестах с интервалом в 1 год (одни и те же школьники):

Таблица 1

Средний прирост показателей по трем тестам: число, алгебра, геометрия

(из расчета 50 баллов за каждый тест)

Страна

Число

Алгебра

Геометрия

 

Возраст

13+

14+

Прирост

13+

14+

Прирост

13+

14+

Прирост

13+

14+

Прирост

Россия

26,5

31,2

4,7

19,5

29,7

10,2

17

24,5

7,5

63

85,4

22,4

Польша

24

29,2

5,2

16,6

24,9

8,3

13,6

22,4

8,8

54,2

76,5

22,3

Сингапур

33,4

34,6

1,2

23,9

30,7

6,8

18,1

26,9

8,8

75,4

92,2

16,8

Англия

17,6

20,2

2,6

11,3

14,4

3,1

15,4

19,9

4,5

44,3

54,5

16,2

Германия

23,5

26,9

3,4

12,5

17,6

5,1

11,3

17,3

6

47,3

61,8

14,5

Шотландия

18,2

22,1

3,9

8,8

12,7

3,9

14

18,6

4,6

41

53,4

12,4

В обследовании было задействовано 6 школ г. Ярославля с репрезентативной выборкой из 425 школьников 6–8 классов. Им был предложен тест потенциала и дважды (с разницей в один год) три математических теста (число, алгебра, геометрия) достижений, по содержанию покрывающих объем учебного материала 5–8 классов основной школы.

Результаты показывают существенный прогресс российских школьников, несмотря на преимущественное использование традиционных методов обучения. Из таблицы видно, что российские школьники опережают сверстников всех европейских стран как по абсолютным показателям, так и по динамике прироста математической подготовленности даже при условии, что средний возраст наших школьников был несколько ниже, чем европейских. В этих результатах на самом деле нет ничего удивительного: хорошо известны наши традиции в определении объема и насыщенности математической информации для образовательной области “математика”, равно как и хороший уровень профессиональных умений наших педагогов.

Однако в ласкающих глаз цифрах наших успехов есть несколько тревожных тенденций, скрытых от взора даже внимательного и знающего аналитика. Во-первых, конечно же, назрела необходимость в переструктуризации содержания обучения математике (и других образовательных областей!), начиная с 1 по 11 (или 12) классы. До 5 класса математика должна максимально способствовать социализации и развитию личности, создавая необходимый знаниевый фундамент для основной школы. В основной школе математика должна быть универсальной и единой, показывая свою роль и место в жизни общества и использовании в других науках. При этом особое внимание должно уделяться формированию у школьников средствами математики вычислительной и алгоритмической культуры, функционального и модельного мышления. Старшая школа, сохраняя образовательное ядро, должна быть профильной, способной дать углубленную подготовку в различных направлениях: гуманитарном, инженерном, математическом, экономическом и др.

При этом будет, видимо, сокращен общий объем математических знаний и осуществлена их переструктуризация в начальной и основной школах при сохранении и усилении развивающего эффекта. Это может быть достигнуто только за счет использования в практике школы современных теорий и технологий обучения и повышения качества подготовки учителей математики в высших учебных заведениях.

Во-вторых, реальная перегрузка наших школьников возникает не столько во время учебного процесса (который в какой-то мере может контролироваться), а, как правило, во внеучебное время (выполнение домашних заданий, дополнительное образование и т.п.). Иной школьник затрачивает больше времени на домашнее задание, чем на работу в классе. Конечно же, это дает в конце концов образовательный эффект, но за счет личного времени школьника, которое он мог бы использовать для укрепления здоровья, расширения коммуникативных возможностей, повышения культуры.

Данные также свидетельствуют о том, что необходим интенсивный обмен передовым опытом функционирования различных образовательных систем в XXI веке с целью выявления эффективных методов, форм и технологий обучения математике, определения оптимального содержания обучения и формирования математической культуры полноценных членов мирового сообщества.

В то же время в последней четверти XX века наши ученые и педагоги озабочены некоторым падением уровня математического образования в педвузах России. Усугубилась ситуация, о которой знаменитый немецкий математик Ф. Клейн еще в 1924 году писал как о “двойном разрыве” между школьной и вузовской математикой, указывая на необходимость преподавания элементарной математики с точки зрения высшей. И дело не только в реальном уменьшении учебных часов на математику или объективно сложившейся ситуации, когда педвузы обучают основную массу средних по интеллектуальным способностям студентов (средние и низкие значения IQ, что нисколько не умаляет возможности подготовки в будущем хороших, творчески мыслящих учителей математики), а в качестве и действенности усвоения студентами математического содержания, формировании опыта творческой деятельности в сочетании с выработкой ценностных ориентаций, в том, что фундаментальность содержания математического образования еще слабо увязывается с будущей профессиональной деятельностью студентов педвузов.

В связи с этим улучшение профессиональной подготовки учителя математики требует не только новых, более эффективных путей организации учебно-воспитательного процесса в педвузе, но и пересмотра структуры и содержания математической подготовки студентов в направлении оптимизации ее фундаментального и гуманитарного компонентов, поднятия теоретического обоснования дидактических процессов на технологический уровень.

Таким образом, реализуемое в настоящее время математическое образование в педагогических вузах требует серьезных качественных изменений, которые могут определить этап в его развитии в условиях современной России, вступающей в XXI век.

Список литературы

Новиков С.П. Уроки истории. Вопросы истории естествознания и техники. 1997. №1.

Талызина Н.Ф. Педагогическая психология. М.: Академия, 1998. 288 с.

Хинчин А.Я. Педагогические статьи. М., 1963. 204 c.

Шадриков В.Д. Психология деятельности и способности человека: Учебное пособие. М.: Логос, 1996. 320 c.

Для подготовки данной работы были использованы материалы с сайта http://www.yspu.yar.ru

Дата добавления: 27.10.2005

www.km.ru

Курсовая работа - Математика и информатика в проведении гуманитарных исследований

Введение

Математика представляет собой основу фундаментальных исследований в естественных и гуманитарных науках. В силу этого значение её в общей системе человеческих знаний постоянно возрастает. Математические идеи и методы проникают в управление весьма сложными и большими системами разной природы: полетами космических кораблей, отраслями промышленности, работой обширных транспортных систем и других видов деятельности. В математике возникают новые теории в ответ на запросы практики и внутреннего развития самой математики. Приложения различных областей математики стали неотъемлемой частью науки, в том числе: физики, химии, геологии, биологии, медицины, лингвистики, экономики, социологии и др.

Математика играет важную роль в естественно-научных, инженерно-технических и гуманитарных исследованиях. Она стала для многих отраслей знаний не только орудием количественного расчета, но также методом точного исследования и средством предельно четкой формулировки понятий и проблем. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного специалиста-гуманитария.

Кроме того, в современном обществе работу специалиста любого профиля невозможно представить без применения средств вычислительной техники. Использование информационных технологий позволяет повысить эффективность принятия многих решений за счет своевременного получения необходимой информации. Информатика играет роль связующего звена между естественными и гуманитарными науками [Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater.–2002, № 8, стр. 3 – 9].

Данная работа призвана раскрыть роль математики и информатики в проведении гуманитарных исследований, описать средства проведения исследований, которые предоставляют специалисту-гуманитарию эти две науки.

1. Математика в гуманитарных исследованиях

Математика — наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами науки и техники запас количественных отношений и пространственных форм, изучаемых математикой, непрерывно расширяется, так что приведенное определение необходимо понимать в самом общем смысле.

Истины, добываемые математическим естествознанием, инвариантны относительно времени и места протекающих явлений. Гуманитарное же знание, напротив, сосредоточено на конкретно-исторических особенностях эпохи, в которой довелось жить как выдающимся, так и простым рядовым гражданам той или иной страны. Пусть первые, благодаря своим талантам, способны «творить» историю, в то время как на долю других нередко выпадает лишь роль ее «строительного материала», но и в том и в другом случае исследователь равнодушен к закономерностям естественных наук, вскрывающих общие природные предпосылки исторического процесса и потому никак не выражающих его специфические особенности в конкретных условиях места и времени. Математическое естествознание и гуманитарные науки как бы дополняют друг друга, но о плодотворном взаимодействии между ними не может быть и речи в силу кардинального различия предмета и методов данных областей знания.

Можно ли что-нибудь противопоставить этим доводам, во многом опирающимся на реальную практику современной науки? Если рассматривать сегодняшнее состояние математического естествознания и гуманитарных наук как совершенно адекватное исследуемым в них предметным областям, приведенные аргументы поколебать не удастся. Для обоснования самой возможности существования какой-либо альтернативы в вопросе о взаимоотношении математического и гуманитарного образования необходима точка зрения, позволяющая критически взглянуть на каждую из указанных областей человеческого знания, поставив под сомнение непреложность взглядов современной науки на собственные основания.

В истории науки общим местом является констатация уникального характера древнегреческой математики, разительно отличающейся доказательным характером своих построений от рецептурно-вычислительной математики восточных цивилизаций. Поскольку современная математика справедливо считает себя правопреемницей математики Древней Эллады, то математические знания Индии, Китая и других стран Востока автоматически начинают выглядеть как ущербные, не «дотягивающие» до уровня подлинной науки. Между тем имеются все основания рассматривать древнегреческую математику как уникальный феномен не только с исторической, но и с чисто теоретической точки зрения. Можно показать, что идеализация современной математики отражает не «вневременную природу математического знания», а лишь исторически сложившиеся стандарты этой науки, которые в качестве таковых в ней не осознаются. Но в таком случае отмеченная выше разделительная грань между математикой и гуманитарным знанием начинает стираться, и математика становится похожей на «нематематические» дисциплины. Похожей в том смысле, что, как и другие дисциплины, она занимается не поиском неких «божественных истин», бесконечно далеких от приземленных потребностей простых смертных, а ответом на вопросы, вырастающие из запросов общественной жизни. И если математика и отличается, скажем, от истории или психологии, то, главным образом, относительной простотой предмета своего исследования. Поэтому она оказывается в первую очередь школой научного мышления, приобретение навыков которого является необходимым условием успехов и в сфере гуманитарного знания.

Рассмотрим, каким же образом можно применить математические знания при проведении исследований в различных гуманитарных исследованиях?

Как известно предметом любого исследования является объект, а любой объект есть некая совокупность количественных характеристик, описывающих его поведение. Предметом гуманитарных исследований являются довольно сложные объекты, такие как социальные, экономические и прочие процессы и явления, обладающих множеством свойств.

В процессе числового представления свойства сопоставляются, упорядочиваются, подчиняются отношениям порядка. Число выступает не как самоцель, а как инструмент упорядочивания, сопоставления. Числовым представлением объектов гуманитарных исследований занимается математическая теория измерений. Для каждой гуманитарной науки способы количественного измерения свойств исследуемого объекта – свои. Так, например, в социологии это могут быть: анкетирование, интервьюирование, наблюдение.

Наиболее удобным методом исследования сложных объектов может служить, в частности, математическое моделирование. Что и происходит на практике [Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука, 1982, стр. 234].

Вообще говоря, этап математизации гуманитарной науки начинается тогда, когда ей не хватает того естественного языка, с которого началось ее становление, когда возможности этого языка для прогресса науки оказались исчерпанными. Сейчас стало ясно, что принципиально не математических дисциплин вообще не существует. Другое дело, степень математизации и этап эволюции научной дисциплины, на котором математизация становится необходимой. Одним из серьезных направлений по использованию математики для гуманитарных исследований является моделирование различных процессов. Можно указать лишь несколько наиболее типичных видов математических моделей, используемых гуманитарных исследованиях:

Вероятностные распределения. Логарифмически нормальное распределение используется, например, для моделирования распределения доходов населения, распределение Пуассона — для моделирования среднего времени ожидания обслуживания и т. д.

Статистические исследования зависимостей — класс моделей, широко распространенный в гуманитарных исследованиях.

Аппарат марковских цепей используется для анализа и прогноза численности тех или иных социальных групп, тенденций их изменения и т. п. (в демографии, криминологии, эпидемиологии, исследованиях социальной мобильности).

Моделирование предпочтений описывается на языке теоретико-множественных отношений или целевых функций.

Модели целенаправленного поведения представляют собой непосредственное использование целевых функций и предпочтений для анализа, прогнозирования и планирования процессов в сфере потребления, трудового поведения и др.

Имитационные модели представляют собой класс моделей, реализованных в виде алгоритмов и программ для ЭВМ, отражающих относительно сложные зависимости, не поддающиеся аналитическому анализу. Этот способ моделирования широко применяется для исследования проблем развития городов, регионов, экологических и других сложных систем [Математические модели в экологии и генетике. М., 1994. с. 195.].

Так, например, большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система. Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность — наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований — в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы. Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования. Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Но арсенал применяемых в гуманитарных науках математических средств весьма обширен и многообразен — различные методы математической статистики, теория игр, теория информации, аппарат теории устойчивости, теория марковских цепей, линейное программирование, факторный анализ, корреляционный анализ, теория графов, матричная алгебра и многое другое [Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, стр. 68.].

Таким образом, математика прочно вошла в процесс гуманитарных исследований, и любая гуманитарная наука может подобрать набор конкретных математических методов для проведения исследований в своей области.

2. Информатика в гуманитарных исследованиях

Мы все живем в эпоху, когда компьютерные технологии проникли абсолютно во все отрасли человеческой деятельности. Не исключением является и экономика.

При нынешних темпах развития производства непрерывно идет процесс взаимодействия всех его составляющих частей.

Использование математических методов и современных компьютерных технологий в гуманитарных исследованиях не только ускоряет расчеты, но и в десятки, в сотни раз уменьшает время, нужное для этого. При наличии специализированных программ можно проводить так называемое моделирование, пришедшее на замену дорогостоящим поискам ответов и путей решения проблем с помощью проб и ошибок [Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, стр. 65].

В основном применяют модели двух видов. Модели, описывающие какое-либо состояние моделируемого положения, называют статическими. Если моделируются последовательности таких состояний и связи между ними, нужны модели динамические, учитывающие фактор времени и разнообразные по уровню сложности моделируемого явления.

И те и другие модели достаточно наглядны: показывают различные системы в их развитии, позволяют проанализировать, где, каким образом, с какими затратами можно что-то исправить, что-либо дополнить.

В хозяйственной практике, в планово-экономической работе, в теории экономики возникает множество разнообразных задач, которые решают на экономико-математических моделях, если надо достигнуть углубленного понимания реальных хозяйственных процессов. С помощью этих методов можно разрабатывать планы развития производства, давать практические рекомендации по улучшению пропорций экономики и ее отраслей, рационализировать использование материальных и трудовых ресурсов. А это огромная по своим масштабам система экономических показателей, характеризующих основные соотношения, пропорции и темпы развития производства.

В такой системе требуется отыскать сотни миллионов взаимосвязанных неизвестных. Например, у нас выпускается десятки миллионов разных наименований изделий, на разных предприятиях, по разным технологиям, в разных регионах страны. Также, надо учитывать и износ оборудования на производстве, и ограниченность ресурсов, и темпы научно-технического прогресса, и многое, многое другое. По громоздкости расчетов задача трудно вообразимая даже при современном уровне развития ЭВМ и компьютерных технологий [Иванов В. Н., Стогний А. А. Банк социальных данных. // Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, стр. 168].

Вот почему предметом глубокого изучения в гуманитарных исследованиях становится информация. Вовремя полученная и точно обработанная она способствует успеху в работе над решением различных проблем. Поэтому информационно-поисковые и информационно-справочные системы ориентируются и на удовлетворение нужд гуманитарных наук. Применение в гуманитарных исследованиях информационно-справочных сетей позволяет вести мониторинг за различными факторами, обязательную обратную связь между объектом управления и результатами исследования, их корректировку.

Нельзя не отметить, что существенной частью управления хозяйством являются информационные технологии. Без них невозможно ни экономическое планирование производства, ни распределение ресурсов, ни выявление с определенной степенью точности пропорций и связей в экономике, ни осуществление руководства, управления и контроля на предприятии, в отрасли, в регионе, в целом в экономике.

В последнее время для решения гуманитарных задач большое внимание уделяют применению автоматизированных систем управления и автоматических систем обработки данных. Использование таких систем помогает находить оптимальные варианты, позволяющие разрешить различные вопросы, требующие в процессе поиска ответов не только скорости и больших объемов вычислений, но и гибкости, динамизма, неординарных подходов.

Существует множество программных продуктов, позволяющих решать те или иные задачи гуманитарных исследований от бухгалтерской деятельности в экономике, до различных социологических, археологических и других задач.

О проблемах и перспективах применения математики и информатики в проведении гуманитарных исследований рассказывает следующий раздел реферата.

3. Проблемы и перспективы применения математики и информатики в гуманитарных исследованиях

Уже длительное время главным тормозом практического применения математического моделирования в гуманитарных исследованиях является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы наблюдений и использования результатов этих наблюдений разрабатываются статистикой. Поэтому стоит отметить только специфические проблемы наблюдений, связанные с моделированием процессов [Социально-экономическая статистика. // Под ред. Г. Л.Громыко. — М.: Изд-во МГУ, 1989, стр. 380].

Как известно многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в гуманитарных исследованиях должно опираться на массовые наблюдения.

Другая проблема порождается динамичностью исследуемых процессов, изменчивостью их параметров и структурных отношений. Вследствие этого процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей требуется корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений исследуемых процессов и явлений опирается на измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает взаимодействие «первичных» и «вторичных» измерителей. Любая модель опирается на определенную систему измерителей (продукции, ресурсов, элементов и т. д.). В то же время одним из важных результатов моделирования является получение новых (вторичных) измерителей — экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения «интересов» моделирования в гуманитарных исследованиях в настоящее время наиболее актуальными проблемами совершенствования измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Можно выделить, по крайней мере, четыре аспекта применения математических методов в решении практических проблем.

Совершенствование системы информации. Математические методы позволяют упорядочить систему информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение математических моделей указывают пути совершенствования информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.

Интенсификация и повышение точности расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Углубление количественного анализа проблем. Благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа; изучение многих факторов, оказывающих влияние на процессы, количественная оценка последствий изменения условий развития экономических объектов и т. п.

Решение принципиально новых задач. Посредством математического моделирования удается решать такие задачи, которые иными средствами решить практически невозможно, например: нахождение оптимального варианта народнохозяйственного плана, имитация народнохозяйственных мероприятий, автоматизация контроля за функционированием сложных экономических объектов.

Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий [Бронштейн М. П. Социальные проблемы информатики. — М., 1990, стр. 32].

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются прежде всего средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

Заключение

В настоящее время математика и информатика играют очень важную роль в проведении гуманитарных исследований.

Математика со своей стороны предлагает исследователю ряд математических методов, позволяющих не только получить числовые характеристики исследуемого объекта, но и промоделировать его поведение под влиянием различных факторов, что имеет огромное значение.

Информатика предоставляет инструментарий, позволяющий исследователю многократно ускорить процесс проведения исследований. Применение специализированного программного обеспечения позволяет повысить точность и сократить трудоемкость, позволяет проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Таким образом, взаимодействие математики и информатики в проведении гуманитарных исследований позволяет качественно повысить уровень исследований, получить наиболее приближенные к реальности результаты и затратить минимальное количество времени как на проведение исследований, так и на обработку полученных результатов.

Список литературы

Бронштейн М. П. Социальные проблемы информатики. — М., 1990, 230 с.

Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, 398 с.

Иванов В. Н., Стогний А. А. Банк социальных данных. Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, 280 с.

Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater, 2002, № 8.

Математические модели в экологии и генетике. — М., 1994, 420 с.

Социально-экономическая статистика. // Под ред. Г. Л. Громыко. — М.: Изд-во МГУ, 1989, 350 с.

Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, 160 с.

Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука. 1982, 259 с.

www.ronl.ru

Курсовая работа - Гуманитарная роль математики в процессе подготовки учителя

В. В. Афанасьев, Е. И. Смирнов

Ученик французской начальной школы на вопрос, “сколько будет 2+3”, ответил: “3+2, так как сложение коммутативно”. Он не знал, чему равна эта сумма, и даже не понимал, о чем его спрашивают.

В.И.Арнольд

О преподавании математики

Изменения в структуре высшего педагогического образования России, появление средних школ разного профиля: лицеев, гимназий, колледжей и т.п., демократизация общественной жизни имеют в своей основе коренной поворот к гуманистическим позициям функционирования современного образования. Способность и готовность учителя XXI века дать личности возможность получения образования необходимого уровня и глубины на любом отрезке ее жизнедеятельности становится теперь одной из основных тенденций развития современного образования. Современный этап развития среднего образования выдвигает повышенные требования к профессиональной (особенно предметной) подготовке учителя, вооруженного новейшими методиками и технологиями обучения, творчески мыслящего созидателя учебного процесса.

Одной из ведущих задач педагогического процесса подготовки учителя математики средней (полной) школы является преобразование личности студента в учителя-профессионала, способного решать все многообразие задач, связанных с обучением и воспитанием школьников. Улучшение профессиональной подготовки учителя математики требует не только новых, более эффективных путей организации учебно-воспитательного процесса в педвузе, но и пересмотра структуры и содержания математической подготовки студентов, поднятия ее на технологический уровень преподавания и учения.

В немалой степени эта тенденция коснулась преемственности содержания математического образования в среднем и высшем звене, равно как и авторского подхода к развитию теорий, концепций и методов обучения математике. Индивидуализация обучения, дифференцированный подход, использование новейших исследований в психологии, физиологии человека, педагогике для совершенствования процесса обучения, поиск оптимальных условий для усвоения сложного математического содержания требуют от учителя математики не только высокой компетентности в предметной области, но и достаточной подготовленности к самообразованию, к проявлению творческой активности на основе профессиональной идентичности личности учителя и требований профессии.

В современных условиях интенсивного применения математических методов в естествознании, технике и смежных науках, которые непременно находят свое отражение в изменяющихся программах школьного и вузовского математического образования, важной является также проблема более активного включения психофизиологических механизмов целостного восприятия информации личностью обучаемого, развития его математических способностей, мышления и культуры.

Потребности общества в математическом образовании граждан сильно изменились за последние десятилетия. Теория игр и искусственный интеллект, стохастика и теория информации становятся все более доступными для изучения массового исследователя ввиду логики развития самих наук, которые становятся все более значимыми в практическом приложении, но фактически еще не представленными в математическом образовании школьника.

С другой стороны, именно эти новые знания дают мощный мотивационный заряд изучения математических дисциплин и, как следствие, повышение интереса к профессии учителя математики, поскольку математическое образование наиболее приспособлено к развитию качеств мышления, развитию теоретического мышления (сравнение, эвристика, аналогия, интуиция, анализ, синтез и т.п.). Математическое мышление отличают доминирование логической схемы рассуждений, лаконизм, четкая распределенность хода рассуждений, умение выделить главное, способность к обобщению, анализу, синтезу. Не случайно известный математик и педагог А.Я. Хинчин считал, что высокий уровень математического мышления является необходимым элементом общей культуры человека [3].

Математика, являясь дисциплиной естественно-научного цикла, представляет своим предметом методологию и язык других дисциплин, связи между идеализированными объектами, далеко не однозначно отражающими реальную действительность. В этом смысле место математики – особое даже среди дисциплин естественно-научного цикла.

Математика не только способствует появлению нового знания о природе, обществе и человеке, но и находит в родственных науках реальные стимулы для своего развития. Так, развитие теории локально выпуклых пространств в функциональном анализе стимулировалось физическими проблемами квантовой электродинамики и задачами нахождения обобщенных решений уравнений математической физики, теория неограниченных операторов в банаховом пространстве – проблемами квантовой механики, тензорный анализ – проблемами механики упругих сред, теория функций многих комплексных переменных – проблемами квантовой теории поля и т.п.

С другой стороны, в самой математике в последние десятилетия возникли разделы, имеющие относительно самостоятельный предмет и специфические методы исследования: искусственный интеллект и теории массового обслуживания, теория случайных процессов и функциональный анализ, теория игр и математическое программирование, алгебраическая геометрия и теоретико-множественная топология и другие.

Поэтому последствия все более усиливающейся тенденции к фундаментализации математического знания связаны именно с интенсивным применением математических методов в других науках (в том числе гуманитарных), часть из которых непосредственно влияет на жизнедеятельность и социализацию личности в современном мире.

Математический аппарат предназначен, в том числе, и для описания целостных систем, функционирующих в реальном мире; он описывает их структуру и динамику, статику и интегральные характеристики. Глубокие взаимосвязи, выражающиеся в математической модели целого, описываются функциональным анализом и теорией автоматов, алгеброй и теорией случайных процессов, статистическими и вероятностными методами. В то же время математические понятия, теоремы, алгоритмы, доказательства и т.п., будучи математическими объектами педагогического процесса обучения математике, должны приобретать свойства и характеристики целостности как основы сохранения, обработки и переноса информации новому поколению.

В последние десятилетия математика как педагогическая задача испытывает беспрецедентное давление со стороны общественности как по поводу содержания обучения, так и относительно методов ее преподавания. Дело в том, что глубина ее формализации даже в естественных приложениях и следование внутренним закономерностям строения здания математики входят в противоречие как с онтогенезом развития и социализации отдельного индивидуума, так и с потребностями общества по обеспечению своей жизнедеятельности. Поэтому обучение математике и содержание математического образования как в средней, так и в высшей школе должны пересматриваться в направлении большей визуализации, наглядного моделирования и раскрытия социального статуса математики.

Важным обстоятельством при этом является то, что основным средством, способствующим появлению новообразований, является моделирование как высшая форма знаково-символической деятельности, ведущая к появлению нового знания о природе и технологических процессах в производстве, о законах общественного развития и закономерностях мышления, восприятии и памяти человека.

В последние годы усиливается также роль математики как средства гуманизации и социализации образования личности в современном обществе, как необходимого атрибута образовательной парадигмы личности XXI века.

Более того, математика как образовательный предмет все больше рассматривается как гуманитарная (общекультурная), а не естественно-научная дисциплина. Продуктивность мышления и восприятия, развитие предметной речи, логическая полноценность аргументации, развитие умственных способностей могут быть реальным результатом математического образования при условии его разумной организации.

Таким образом, социально-культурная роль математики представляется в следующем виде (рис. 1).

Рис. 1. Личность и математика

В последние десятилетия весь мир с упоением окунулся в море информационных технологий в образовании: мультимедиа, дистанционное обучение, телекоммуникации, графические калькуляторы и т.п. На представительном международном форуме по проблемам математического образования в Греции (Самос, 1998) большинство докладов, сообщений и “круглых столов” в той или иной мере трактовали вопросы внедрения информационных технологий в учебный процесс. Сотни университетов в мире (например, American Distance Education Consortium, в состав которого входят 55 университетов) ведут информационный обмен образовательными программами через Internet, осуществляя подготовку специалистов на основе дистанционного обучения (remote education): по последним данным таких студентов уже сотни тысяч. Но в данной связи необходимо четко расставить акценты относительно возможности профессиональной подготовки учителя: информационные технологии как средство обучения – да, информационные технологии как структурообразующий фактор педагогической системы – да, дистанционное обучение как парадигма в подготовке учителя, альтернативная личности преподавателя, – нет (по крайней мере, на данном этапе развития средств коммуникации и информационного обмена).

В обоснование последнего положения приведем, например, следующие аргументы:

“неуправляемое становление приемов мыслительной деятельности”. Именно этот фактор привел к неудовлетворительным результатам реализации идей программированного обучения (Э. Торндайк, Б. Скиннер, Н. Краудер и др.) в 60–70-х годах XX века. В основе неудач лежал необоснованный перенос принципов научения животных на процесс обучения человека со своими специфическими особенностями. Н.Ф. Талызина видит причины неудач скиннеровского подхода в выборе неадекватной психологической теории, обосновывая использование деятельностной теории учения с получением качественно новых результатов, доказывающих возможность управления становлением рациональных приемов мышления у человека. Однако в данном случае речь уже пойдет о принципах программирования процесса обучения с реальным взаимодействием учителя и ученика [4];

“отсутствие реального (а не интерактивного) взаимодействия учителя с учениками, между учениками”, несущее в себе возможности активизации направленных и взаимообуславливающих полифункциональных факторов адекватного восприятия новой информации: перцептивных, мнемических, эмоциональных, волевых и т.п.;

“нарушение целостности интериоризации” визуально-логического ряда перцептивных образов новой информации ввиду искусственного ограничения поля восприятия и динамики обращения с репертуаром кратковременной и долговременной памяти.

Все вышесказанное относится к вопросу эффективности дистанционной и очной форм обучения и притом в области профессионально-предметного блока подготовки учителя математики; естественно, что увеличение временных периодов для дистанционных форм обучения, равно как и создание специфических дидактических методов и усовершенствование средств коммуникации способны компенсировать отмеченные недостатки.

В то же время, рассматривая математику как педагогическую задачу, приходится сталкиваться с проблемами адекватного представления, различения, становления, устойчивости восприятия и воспроизведения математического знания и выявления специфических особенностей феномена математического мышления во всех трех ипостасях математики (рис. 1), тем более, что в последние десятилетия возникла принципиально новая ситуация, благоприятствующая реальным шагам возрастания интереса к математике, в том числе как педагогической задаче и эффективному средству развития интеллекта школьников и студентов. Этому способствовали, на наш взгляд, следующие факторы:

глубокая озабоченность учеников, родителей, педагогов содержанием математического образования и его влиянием на развитие личности;

демократизация и гуманизация образовательных процессов в школе и вузе, выдвижение на первый план проблем личностного развития школьников, особенно в период формирования онтогенетических новообразований в мышлении;

расширение информационных средств обеспечения учебного процесса: дисплейные классы, Internet, сервисные программные продукты, мультимедиа, дистанционное обучение и т.д.;

интенсивное развитие методологических основ обеспечения педагогических процессов: психология и физиология человека, искусственный интеллект, инженерная психология и психология индивидуальной и совместной деятельности, теория управления и теория образовательных систем и т.д.

Как рассказать школьнику, что большая теорема Ферма (над которой триста лет бились лучшие умы человечества) доказана А.Вайлсом в 1995 году, а трисекция угла и квадратура круга невозможны с помощью циркуля и линейки? Как наиболее эффективно развить мыслительные операции ученика (логику, анализ, синтез, обобщение, конкретизации, аналогии и т.п.) в процессе обучения математике, которая объективно должна являться самым мощным развивающим средством (и что не наблюдается в настоящее время)? Как должна быть отражена в обучении математике ее роль в жизнедеятельности общества и в развитии других наук, в том числе в обосновании космических полетов и безопасности воздушных перевозок? Как показать, что физика – мощный поддерживающий компонент жизнедеятельности и мировоззрения, который без знания и использования математики есть просто наблюдение и эксперимент, а психология без использования статистических методов обработки и анализа экспериментальных данных и моделирования психических процессов есть тенденция к внешней феноменологии и эмпиризму без вскрытия внутренних, сущностных механизмов психических процессов?

Все эти вопросы – только часть необходимого и далеко не разрешенного состояния отдельных проблем школьной математики как в российских, так и в зарубежных образовательных системах.

Анализ образовательных систем школьной математики позволяет выделить в качестве ведущих следующие противоречия:

между целостностью математики как системы научных знаний и ее представлением в школьных учебных планах и программах отдельными дисциплинами: алгеброй, геометрией, началами анализа, стохастикой и другими;

между значимостью и ролью математики в жизни общества, развитии науки и техники и отражением этой функции математики в процессе формирования мотивационной и эмоционально-волевой сферы учения;

между сущностью формируемых в процессе обучения математике знаний, умений, навыков, математических методов и процедур и их реальным формализованным проявлением в педагогическом процессе;

между объективным и интенсивным развитием психических процессов в переходном возрасте (1216 лет) и методами (средствами, технологиями) внешнего воздействия на личность ученика в образовательном пространстве.

Разнообразие педагогических систем и теорий обучения математике создает широкую палитру мирового опыта, ставящего сложные насущные проблемы осмысления и универсализации передовых методических идей и концепций. Взаимопроникновение методологий и эффективный мониторинг образовательных систем в настоящее время еще не соответствуют потребностям в адекватном отражении существа и целостности математических знаний.

Однако некоторые выводы о состоянии математических достижений школьников в разных странах мира можно сделать. Например, в школах Шотландии весь цикл учебных предметов разбивается на 2000 модулей трех типов: общих, специальных, интегративных. Тем не менее исследования, проведенные авторами в рамках Кассель-проекта под руководством профессора Д. Берджеса (Англия) по проблеме математических достижений школьников в различных странах мира (в том числе и в России), дали следующие результаты на репрезентативных выборках и идентичных тестах с интервалом в 1 год (одни и те же школьники):

Таблица 1

Средний прирост показателей по трем тестам: число, алгебра, геометрия

(из расчета 50 баллов за каждый тест)

Страна Число Алгебра Геометрия
Возраст 13+ 14+ Прирост 13+ 14+ Прирост 13+ 14+ Прирост 13+ 14+ Прирост
Россия 26,5 31,2 4,7 19,5 29,7 10,2 17 24,5 7,5 63 85,4 22,4
Польша 24 29,2 5,2 16,6 24,9 8,3 13,6 22,4 8,8 54,2 76,5 22,3
Сингапур 33,4 34,6 1,2 23,9 30,7 6,8 18,1 26,9 8,8 75,4 92,2 16,8
Англия 17,6 20,2 2,6 11,3 14,4 3,1 15,4 19,9 4,5 44,3 54,5 16,2
Германия 23,5 26,9 3,4 12,5 17,6 5,1 11,3 17,3 6 47,3 61,8 14,5
Шотландия 18,2 22,1 3,9 8,8 12,7 3,9 14 18,6 4,6 41 53,4 12,4

В обследовании было задействовано 6 школ г. Ярославля с репрезентативной выборкой из 425 школьников 6–8 классов. Им был предложен тест потенциала и дважды (с разницей в один год) три математических теста (число, алгебра, геометрия) достижений, по содержанию покрывающих объем учебного материала 5–8 классов основной школы.

Результаты показывают существенный прогресс российских школьников, несмотря на преимущественное использование традиционных методов обучения. Из таблицы видно, что российские школьники опережают сверстников всех европейских стран как по абсолютным показателям, так и по динамике прироста математической подготовленности даже при условии, что средний возраст наших школьников был несколько ниже, чем европейских. В этих результатах на самом деле нет ничего удивительного: хорошо известны наши традиции в определении объема и насыщенности математической информации для образовательной области “математика”, равно как и хороший уровень профессиональных умений наших педагогов.

Однако в ласкающих глаз цифрах наших успехов есть несколько тревожных тенденций, скрытых от взора даже внимательного и знающего аналитика. Во-первых, конечно же, назрела необходимость в переструктуризации содержания обучения математике (и других образовательных областей!), начиная с 1 по 11 (или 12) классы. До 5 класса математика должна максимально способствовать социализации и развитию личности, создавая необходимый знаниевый фундамент для основной школы. В основной школе математика должна быть универсальной и единой, показывая свою роль и место в жизни общества и использовании в других науках. При этом особое внимание должно уделяться формированию у школьников средствами математики вычислительной и алгоритмической культуры, функционального и модельного мышления. Старшая школа, сохраняя образовательное ядро, должна быть профильной, способной дать углубленную подготовку в различных направлениях: гуманитарном, инженерном, математическом, экономическом и др.

При этом будет, видимо, сокращен общий объем математических знаний и осуществлена их переструктуризация в начальной и основной школах при сохранении и усилении развивающего эффекта. Это может быть достигнуто только за счет использования в практике школы современных теорий и технологий обучения и повышения качества подготовки учителей математики в высших учебных заведениях.

Во-вторых, реальная перегрузка наших школьников возникает не столько во время учебного процесса (который в какой-то мере может контролироваться), а, как правило, во внеучебное время (выполнение домашних заданий, дополнительное образование и т.п.). Иной школьник затрачивает больше времени на домашнее задание, чем на работу в классе. Конечно же, это дает в конце концов образовательный эффект, но за счет личного времени школьника, которое он мог бы использовать для укрепления здоровья, расширения коммуникативных возможностей, повышения культуры.

Данные также свидетельствуют о том, что необходим интенсивный обмен передовым опытом функционирования различных образовательных систем в XXI веке с целью выявления эффективных методов, форм и технологий обучения математике, определения оптимального содержания обучения и формирования математической культуры полноценных членов мирового сообщества.

В то же время в последней четверти XX века наши ученые и педагоги озабочены некоторым падением уровня математического образования в педвузах России. Усугубилась ситуация, о которой знаменитый немецкий математик Ф. Клейн еще в 1924 году писал как о “двойном разрыве” между школьной и вузовской математикой, указывая на необходимость преподавания элементарной математики с точки зрения высшей. И дело не только в реальном уменьшении учебных часов на математику или объективно сложившейся ситуации, когда педвузы обучают основную массу средних по интеллектуальным способностям студентов (средние и низкие значения IQ, что нисколько не умаляет возможности подготовки в будущем хороших, творчески мыслящих учителей математики), а в качестве и действенности усвоения студентами математического содержания, формировании опыта творческой деятельности в сочетании с выработкой ценностных ориентаций, в том, что фундаментальность содержания математического образования еще слабо увязывается с будущей профессиональной деятельностью студентов педвузов.

В связи с этим улучшение профессиональной подготовки учителя математики требует не только новых, более эффективных путей организации учебно-воспитательного процесса в педвузе, но и пересмотра структуры и содержания математической подготовки студентов в направлении оптимизации ее фундаментального и гуманитарного компонентов, поднятия теоретического обоснования дидактических процессов на технологический уровень.

Таким образом, реализуемое в настоящее время математическое образование в педагогических вузах требует серьезных качественных изменений, которые могут определить этап в его развитии в условиях современной России, вступающей в XXI век.

Список литературы

Новиков С.П. Уроки истории. Вопросы истории естествознания и техники. 1997. №1.

Талызина Н.Ф. Педагогическая психология. М.: Академия, 1998. 288 с.

Хинчин А.Я. Педагогические статьи. М., 1963. 204 c.

Шадриков В.Д. Психология деятельности и способности человека: Учебное пособие. М.: Логос, 1996. 320 c.

www.ronl.ru

Математика и информатика в проведении гуманитарных исследований

Математика и информатика в проведении гуманитарных исследований

Введение

Математика представляет собой основу фундаментальных исследований в естественных и гуманитарных науках. В силу этого значение её в общей системе человеческих знаний постоянно возрастает. Математические идеи и методы проникают в управление весьма сложными и большими системами разной природы: полетами космических кораблей, отраслями промышленности, работой обширных транспортных систем и других видов деятельности. В математике возникают новые теории в ответ на запросы практики и внутреннего развития самой математики. Приложения различных областей математики стали неотъемлемой частью науки, в том числе: физики, химии, геологии, биологии, медицины, лингвистики, экономики, социологии и др.

Математика играет важную роль в естественно-научных, инженерно-технических и гуманитарных исследованиях. Она стала для многих отраслей знаний не только орудием количественного расчета, но также методом точного исследования и средством предельно четкой формулировки понятий и проблем. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного специалиста-гуманитария.

Кроме того, в современном обществе работу специалиста любого профиля невозможно представить без применения средств вычислительной техники. Использование информационных технологий позволяет повысить эффективность принятия многих решений за счет своевременного получения необходимой информации. Информатика играет роль связующего звена между естественными и гуманитарными науками [Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater.–2002, № 8, стр. 3 – 9].

Данная работа призвана раскрыть роль математики и информатики в проведении гуманитарных исследований, описать средства проведения исследований, которые предоставляют специалисту-гуманитарию эти две науки.

1. Математика в гуманитарных исследованиях

Математика — наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами науки и техники запас количественных отношений и пространственных форм, изучаемых математикой, непрерывно расширяется, так что приведенное определение необходимо понимать в самом общем смысле.

Истины, добываемые математическим естествознанием, инвариантны относительно времени и места протекающих явлений. Гуманитарное же знание, напротив, сосредоточено на конкретно-исторических особенностях эпохи, в которой довелось жить как выдающимся, так и простым рядовым гражданам той или иной страны. Пусть первые, благодаря своим талантам, способны «творить» историю, в то время как на долю других нередко выпадает лишь роль ее «строительного материала», но и в том и в другом случае исследователь равнодушен к закономерностям естественных наук, вскрывающих общие природные предпосылки исторического процесса и потому никак не выражающих его специфические особенности в конкретных условиях места и времени. Математическое естествознание и гуманитарные науки как бы дополняют друг друга, но о плодотворном взаимодействии между ними не может быть и речи в силу кардинального различия предмета и методов данных областей знания.

Можно ли что-нибудь противопоставить этим доводам, во многом опирающимся на реальную практику современной науки? Если рассматривать сегодняшнее состояние математического естествознания и гуманитарных наук как совершенно адекватное исследуемым в них предметным областям, приведенные аргументы поколебать не удастся. Для обоснования самой возможности существования какой-либо альтернативы в вопросе о взаимоотношении математического и гуманитарного образования необходима точка зрения, позволяющая критически взглянуть на каждую из указанных областей человеческого знания, поставив под сомнение непреложность взглядов современной науки на собственные основания.

В истории науки общим местом является констатация уникального характера древнегреческой математики, разительно отличающейся доказательным характером своих построений от рецептурно-вычислительной математики восточных цивилизаций. Поскольку современная математика справедливо считает себя правопреемницей математики Древней Эллады, то математические знания Индии, Китая и других стран Востока автоматически начинают выглядеть как ущербные, не «дотягивающие» до уровня подлинной науки. Между тем имеются все основания рассматривать древнегреческую математику как уникальный феномен не только с исторической, но и с чисто теоретической точки зрения. Можно показать, что идеализация современной математики отражает не «вневременную природу математического знания», а лишь исторически сложившиеся стандарты этой науки, которые в качестве таковых в ней не осознаются. Но в таком случае отмеченная выше разделительная грань между математикой и гуманитарным знанием начинает стираться, и математика становится похожей на «нематематические» дисциплины. Похожей в том смысле, что, как и другие дисциплины, она занимается не поиском неких «божественных истин», бесконечно далеких от приземленных потребностей простых смертных, а ответом на вопросы, вырастающие из запросов общественной жизни. И если математика и отличается, скажем, от истории или психологии, то, главным образом, относительной простотой предмета своего исследования. Поэтому она оказывается в первую очередь школой научного мышления, приобретение навыков которого является необходимым условием успехов и в сфере гуманитарного знания.

Рассмотрим, каким же образом можно применить математические знания при проведении исследований в различных гуманитарных исследованиях?

Как известно предметом любого исследования является объект, а любой объект есть некая совокупность количественных характеристик, описывающих его поведение. Предметом гуманитарных исследований являются довольно сложные объекты, такие как социальные, экономические и прочие процессы и явления, обладающих множеством свойств.

В процессе числового представления свойства сопоставляются, упорядочиваются, подчиняются отношениям порядка. Число выступает не как самоцель, а как инструмент упорядочивания, сопоставления. Числовым представлением объектов гуманитарных исследований занимается математическая теория измерений. Для каждой гуманитарной науки способы количественного измерения свойств исследуемого объекта – свои. Так, например, в социологии это могут быть: анкетирование, интервьюирование, наблюдение.

Наиболее удобным методом исследования сложных объектов может служить, в частности, математическое моделирование. Что и происходит на практике [Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука, 1982, стр. 234].

Вообще говоря, этап математизации гуманитарной науки начинается тогда, когда ей не хватает того естественного языка, с которого началось ее становление, когда возможности этого языка для прогресса науки оказались исчерпанными. Сейчас стало ясно, что принципиально не математических дисциплин вообще не существует. Другое дело, степень математизации и этап эволюции научной дисциплины, на котором математизация становится необходимой. Одним из серьезных направлений по использованию математики для гуманитарных исследований является моделирование различных процессов. Можно указать лишь несколько наиболее типичных видов математических моделей, используемых гуманитарных исследованиях:

Вероятностные распределения. Логарифмически нормальное распределение используется, например, для моделирования распределения доходов населения, распределение Пуассона — для моделирования среднего времени ожидания обслуживания и т. д.

Статистические исследования зависимостей — класс моделей, широко распространенный в гуманитарных исследованиях.

Аппарат марковских цепей используется для анализа и прогноза численности тех или иных социальных групп, тенденций их изменения и т. п. (в демографии, криминологии, эпидемиологии, исследованиях социальной мобильности).

Моделирование предпочтений описывается на языке теоретико-множественных отношений или целевых функций.

Модели целенаправленного поведения представляют собой непосредственное использование целевых функций и предпочтений для анализа, прогнозирования и планирования процессов в сфере потребления, трудового поведения и др.

Имитационные модели представляют собой класс моделей, реализованных в виде алгоритмов и программ для ЭВМ, отражающих относительно сложные зависимости, не поддающиеся аналитическому анализу. Этот способ моделирования широко применяется для исследования проблем развития городов, регионов, экологических и других сложных систем [Математические модели в экологии и генетике. М., 1994. с. 195.].

Так, например, большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система. Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность — наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований — в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы. Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования. Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Но арсенал применяемых в гуманитарных науках математических средств весьма обширен и многообразен — различные методы математической статистики, теория игр, теория информации, аппарат теории устойчивости, теория марковских цепей, линейное программирование, факторный анализ, корреляционный анализ, теория графов, матричная алгебра и многое другое [Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, стр. 68.].

Таким образом, математика прочно вошла в процесс гуманитарных исследований, и любая гуманитарная наука может подобрать набор конкретных математических методов для проведения исследований в своей области.

2. Информатика в гуманитарных исследованиях

Мы все живем в эпоху, когда компьютерные технологии проникли абсолютно во все отрасли человеческой деятельности. Не исключением является и экономика.

При нынешних темпах развития производства непрерывно идет процесс взаимодействия всех его составляющих частей.

Использование математических методов и современных компьютерных технологий в гуманитарных исследованиях не только ускоряет расчеты, но и в десятки, в сотни раз уменьшает время, нужное для этого. При наличии специализированных программ можно проводить так называемое моделирование, пришедшее на замену дорогостоящим поискам ответов и путей решения проблем с помощью проб и ошибок [Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, стр. 65].

В основном применяют модели двух видов. Модели, описывающие какое-либо состояние моделируемого положения, называют статическими. Если моделируются последовательности таких состояний и связи между ними, нужны модели динамические, учитывающие фактор времени и разнообразные по уровню сложности моделируемого явления.

И те и другие модели достаточно наглядны: показывают различные системы в их развитии, позволяют проанализировать, где, каким образом, с какими затратами можно что-то исправить, что-либо дополнить.

В хозяйственной практике, в планово-экономической работе, в теории экономики возникает множество разнообразных задач, которые решают на экономико-математических моделях, если надо достигнуть углубленного понимания реальных хозяйственных процессов. С помощью этих методов можно разрабатывать планы развития производства, давать практические рекомендации по улучшению пропорций экономики и ее отраслей, рационализировать использование материальных и трудовых ресурсов. А это огромная по своим масштабам система экономических показателей, характеризующих основные соотношения, пропорции и темпы развития производства.

В такой системе требуется отыскать сотни миллионов взаимосвязанных неизвестных. Например, у нас выпускается десятки миллионов разных наименований изделий, на разных предприятиях, по разным технологиям, в разных регионах страны. Также, надо учитывать и износ оборудования на производстве, и ограниченность ресурсов, и темпы научно-технического прогресса, и многое, многое другое. По громоздкости расчетов задача трудно вообразимая даже при современном уровне развития ЭВМ и компьютерных технологий [Иванов В. Н., Стогний А. А. Банк социальных данных. // Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, стр. 168].

Вот почему предметом глубокого изучения в гуманитарных исследованиях становится информация. Вовремя полученная и точно обработанная она способствует успеху в работе над решением различных проблем. Поэтому информационно-поисковые и информационно-справочные системы ориентируются и на удовлетворение нужд гуманитарных наук. Применение в гуманитарных исследованиях информационно-справочных сетей позволяет вести мониторинг за различными факторами, обязательную обратную связь между объектом управления и результатами исследования, их корректировку.

Нельзя не отметить, что существенной частью управления хозяйством являются информационные технологии. Без них невозможно ни экономическое планирование производства, ни распределение ресурсов, ни выявление с определенной степенью точности пропорций и связей в экономике, ни осуществление руководства, управления и контроля на предприятии, в отрасли, в регионе, в целом в экономике.

В последнее время для решения гуманитарных задач большое внимание уделяют применению автоматизированных систем управления и автоматических систем обработки данных. Использование таких систем помогает находить оптимальные варианты, позволяющие разрешить различные вопросы, требующие в процессе поиска ответов не только скорости и больших объемов вычислений, но и гибкости, динамизма, неординарных подходов.

Существует множество программных продуктов, позволяющих решать те или иные задачи гуманитарных исследований от бухгалтерской деятельности в экономике, до различных социологических, археологических и других задач.

О проблемах и перспективах применения математики и информатики в проведении гуманитарных исследований рассказывает следующий раздел реферата.

3. Проблемы и перспективы применения математики и информатики в гуманитарных исследованиях

Уже длительное время главным тормозом практического применения математического моделирования в гуманитарных исследованиях является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы наблюдений и использования результатов этих наблюдений разрабатываются статистикой. Поэтому стоит отметить только специфические проблемы наблюдений, связанные с моделированием процессов [Социально-экономическая статистика. // Под ред. Г. Л.Громыко. — М.: Изд-во МГУ, 1989, стр. 380].

Как известно многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в гуманитарных исследованиях должно опираться на массовые наблюдения.

Другая проблема порождается динамичностью исследуемых процессов, изменчивостью их параметров и структурных отношений. Вследствие этого процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей требуется корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений исследуемых процессов и явлений опирается на измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает взаимодействие «первичных» и «вторичных» измерителей. Любая модель опирается на определенную систему измерителей (продукции, ресурсов, элементов и т. д.). В то же время одним из важных результатов моделирования является получение новых (вторичных) измерителей — экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения «интересов» моделирования в гуманитарных исследованиях в настоящее время наиболее актуальными проблемами совершенствования измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Можно выделить, по крайней мере, четыре аспекта применения математических методов в решении практических проблем.

Совершенствование системы информации. Математические методы позволяют упорядочить систему информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение математических моделей указывают пути совершенствования информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.

Интенсификация и повышение точности расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Углубление количественного анализа проблем. Благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа; изучение многих факторов, оказывающих влияние на процессы, количественная оценка последствий изменения условий развития экономических объектов и т. п.

Решение принципиально новых задач. Посредством математического моделирования удается решать такие задачи, которые иными средствами решить практически невозможно, например: нахождение оптимального варианта народнохозяйственного плана, имитация народнохозяйственных мероприятий, автоматизация контроля за функционированием сложных экономических объектов.

Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий [Бронштейн М. П. Социальные проблемы информатики. — М., 1990, стр. 32].

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются прежде всего средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

Заключение

В настоящее время математика и информатика играют очень важную роль в проведении гуманитарных исследований.

Математика со своей стороны предлагает исследователю ряд математических методов, позволяющих не только получить числовые характеристики исследуемого объекта, но и промоделировать его поведение под влиянием различных факторов, что имеет огромное значение.

Информатика предоставляет инструментарий, позволяющий исследователю многократно ускорить процесс проведения исследований. Применение специализированного программного обеспечения позволяет повысить точность и сократить трудоемкость, позволяет проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Таким образом, взаимодействие математики и информатики в проведении гуманитарных исследований позволяет качественно повысить уровень исследований, получить наиболее приближенные к реальности результаты и затратить минимальное количество времени как на проведение исследований, так и на обработку полученных результатов.

Список литературы

Бронштейн М. П. Социальные проблемы информатики. — М., 1990, 230 с.

Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, 398 с.

Иванов В. Н., Стогний А. А. Банк социальных данных. Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, 280 с.

Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater, 2002, № 8.

Математические модели в экологии и генетике. — М., 1994, 420 с.

Социально-экономическая статистика. // Под ред. Г. Л. Громыко. — М.: Изд-во МГУ, 1989, 350 с.

Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, 160 с.

Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука. 1982, 259 с.

Для подготовки данной работы были использованы материалы с сайта http://www.matematika-r.info/

Дата добавления: 07.06.2008

www.km.ru

Доклад - Математика и информатика в проведении гуманитарных исследований

Введение

Математика представляет собой основу фундаментальных исследований в естественных и гуманитарных науках. В силу этого значение её в общей системе человеческих знаний постоянно возрастает. Математические идеи и методы проникают в управление весьма сложными и большими системами разной природы: полетами космических кораблей, отраслями промышленности, работой обширных транспортных систем и других видов деятельности. В математике возникают новые теории в ответ на запросы практики и внутреннего развития самой математики. Приложения различных областей математики стали неотъемлемой частью науки, в том числе: физики, химии, геологии, биологии, медицины, лингвистики, экономики, социологии и др.

Математика играет важную роль в естественно-научных, инженерно-технических и гуманитарных исследованиях. Она стала для многих отраслей знаний не только орудием количественного расчета, но также методом точного исследования и средством предельно четкой формулировки понятий и проблем. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного специалиста-гуманитария.

Кроме того, в современном обществе работу специалиста любого профиля невозможно представить без применения средств вычислительной техники. Использование информационных технологий позволяет повысить эффективность принятия многих решений за счет своевременного получения необходимой информации. Информатика играет роль связующего звена между естественными и гуманитарными науками [Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater.–2002, № 8, стр. 3 – 9].

Данная работа призвана раскрыть роль математики и информатики в проведении гуманитарных исследований, описать средства проведения исследований, которые предоставляют специалисту-гуманитарию эти две науки.

1. Математика в гуманитарных исследованиях

Математика — наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами науки и техники запас количественных отношений и пространственных форм, изучаемых математикой, непрерывно расширяется, так что приведенное определение необходимо понимать в самом общем смысле.

Истины, добываемые математическим естествознанием, инвариантны относительно времени и места протекающих явлений. Гуманитарное же знание, напротив, сосредоточено на конкретно-исторических особенностях эпохи, в которой довелось жить как выдающимся, так и простым рядовым гражданам той или иной страны. Пусть первые, благодаря своим талантам, способны «творить» историю, в то время как на долю других нередко выпадает лишь роль ее «строительного материала», но и в том и в другом случае исследователь равнодушен к закономерностям естественных наук, вскрывающих общие природные предпосылки исторического процесса и потому никак не выражающих его специфические особенности в конкретных условиях места и времени. Математическое естествознание и гуманитарные науки как бы дополняют друг друга, но о плодотворном взаимодействии между ними не может быть и речи в силу кардинального различия предмета и методов данных областей знания.

Можно ли что-нибудь противопоставить этим доводам, во многом опирающимся на реальную практику современной науки? Если рассматривать сегодняшнее состояние математического естествознания и гуманитарных наук как совершенно адекватное исследуемым в них предметным областям, приведенные аргументы поколебать не удастся. Для обоснования самой возможности существования какой-либо альтернативы в вопросе о взаимоотношении математического и гуманитарного образования необходима точка зрения, позволяющая критически взглянуть на каждую из указанных областей человеческого знания, поставив под сомнение непреложность взглядов современной науки на собственные основания.

В истории науки общим местом является констатация уникального характера древнегреческой математики, разительно отличающейся доказательным характером своих построений от рецептурно-вычислительной математики восточных цивилизаций. Поскольку современная математика справедливо считает себя правопреемницей математики Древней Эллады, то математические знания Индии, Китая и других стран Востока автоматически начинают выглядеть как ущербные, не «дотягивающие» до уровня подлинной науки. Между тем имеются все основания рассматривать древнегреческую математику как уникальный феномен не только с исторической, но и с чисто теоретической точки зрения. Можно показать, что идеализация современной математики отражает не «вневременную природу математического знания», а лишь исторически сложившиеся стандарты этой науки, которые в качестве таковых в ней не осознаются. Но в таком случае отмеченная выше разделительная грань между математикой и гуманитарным знанием начинает стираться, и математика становится похожей на «нематематические» дисциплины. Похожей в том смысле, что, как и другие дисциплины, она занимается не поиском неких «божественных истин», бесконечно далеких от приземленных потребностей простых смертных, а ответом на вопросы, вырастающие из запросов общественной жизни. И если математика и отличается, скажем, от истории или психологии, то, главным образом, относительной простотой предмета своего исследования. Поэтому она оказывается в первую очередь школой научного мышления, приобретение навыков которого является необходимым условием успехов и в сфере гуманитарного знания.

Рассмотрим, каким же образом можно применить математические знания при проведении исследований в различных гуманитарных исследованиях?

Как известно предметом любого исследования является объект, а любой объект есть некая совокупность количественных характеристик, описывающих его поведение. Предметом гуманитарных исследований являются довольно сложные объекты, такие как социальные, экономические и прочие процессы и явления, обладающих множеством свойств.

В процессе числового представления свойства сопоставляются, упорядочиваются, подчиняются отношениям порядка. Число выступает не как самоцель, а как инструмент упорядочивания, сопоставления. Числовым представлением объектов гуманитарных исследований занимается математическая теория измерений. Для каждой гуманитарной науки способы количественного измерения свойств исследуемого объекта – свои. Так, например, в социологии это могут быть: анкетирование, интервьюирование, наблюдение.

Наиболее удобным методом исследования сложных объектов может служить, в частности, математическое моделирование. Что и происходит на практике [Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука, 1982, стр. 234].

Вообще говоря, этап математизации гуманитарной науки начинается тогда, когда ей не хватает того естественного языка, с которого началось ее становление, когда возможности этого языка для прогресса науки оказались исчерпанными. Сейчас стало ясно, что принципиально не математических дисциплин вообще не существует. Другое дело, степень математизации и этап эволюции научной дисциплины, на котором математизация становится необходимой. Одним из серьезных направлений по использованию математики для гуманитарных исследований является моделирование различных процессов. Можно указать лишь несколько наиболее типичных видов математических моделей, используемых гуманитарных исследованиях:

Вероятностные распределения. Логарифмически нормальное распределение используется, например, для моделирования распределения доходов населения, распределение Пуассона — для моделирования среднего времени ожидания обслуживания и т. д.

Статистические исследования зависимостей — класс моделей, широко распространенный в гуманитарных исследованиях.

Аппарат марковских цепей используется для анализа и прогноза численности тех или иных социальных групп, тенденций их изменения и т. п. (в демографии, криминологии, эпидемиологии, исследованиях социальной мобильности).

Моделирование предпочтений описывается на языке теоретико-множественных отношений или целевых функций.

Модели целенаправленного поведения представляют собой непосредственное использование целевых функций и предпочтений для анализа, прогнозирования и планирования процессов в сфере потребления, трудового поведения и др.

Имитационные модели представляют собой класс моделей, реализованных в виде алгоритмов и программ для ЭВМ, отражающих относительно сложные зависимости, не поддающиеся аналитическому анализу. Этот способ моделирования широко применяется для исследования проблем развития городов, регионов, экологических и других сложных систем [Математические модели в экологии и генетике. М., 1994. с. 195.].

Так, например, большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система. Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность — наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований — в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы. Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования. Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Но арсенал применяемых в гуманитарных науках математических средств весьма обширен и многообразен — различные методы математической статистики, теория игр, теория информации, аппарат теории устойчивости, теория марковских цепей, линейное программирование, факторный анализ, корреляционный анализ, теория графов, матричная алгебра и многое другое [Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, стр. 68.].

Таким образом, математика прочно вошла в процесс гуманитарных исследований, и любая гуманитарная наука может подобрать набор конкретных математических методов для проведения исследований в своей области.

2. Информатика в гуманитарных исследованиях

Мы все живем в эпоху, когда компьютерные технологии проникли абсолютно во все отрасли человеческой деятельности. Не исключением является и экономика.

При нынешних темпах развития производства непрерывно идет процесс взаимодействия всех его составляющих частей.

Использование математических методов и современных компьютерных технологий в гуманитарных исследованиях не только ускоряет расчеты, но и в десятки, в сотни раз уменьшает время, нужное для этого. При наличии специализированных программ можно проводить так называемое моделирование, пришедшее на замену дорогостоящим поискам ответов и путей решения проблем с помощью проб и ошибок [Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, стр. 65].

В основном применяют модели двух видов. Модели, описывающие какое-либо состояние моделируемого положения, называют статическими. Если моделируются последовательности таких состояний и связи между ними, нужны модели динамические, учитывающие фактор времени и разнообразные по уровню сложности моделируемого явления.

И те и другие модели достаточно наглядны: показывают различные системы в их развитии, позволяют проанализировать, где, каким образом, с какими затратами можно что-то исправить, что-либо дополнить.

В хозяйственной практике, в планово-экономической работе, в теории экономики возникает множество разнообразных задач, которые решают на экономико-математических моделях, если надо достигнуть углубленного понимания реальных хозяйственных процессов. С помощью этих методов можно разрабатывать планы развития производства, давать практические рекомендации по улучшению пропорций экономики и ее отраслей, рационализировать использование материальных и трудовых ресурсов. А это огромная по своим масштабам система экономических показателей, характеризующих основные соотношения, пропорции и темпы развития производства.

В такой системе требуется отыскать сотни миллионов взаимосвязанных неизвестных. Например, у нас выпускается десятки миллионов разных наименований изделий, на разных предприятиях, по разным технологиям, в разных регионах страны. Также, надо учитывать и износ оборудования на производстве, и ограниченность ресурсов, и темпы научно-технического прогресса, и многое, многое другое. По громоздкости расчетов задача трудно вообразимая даже при современном уровне развития ЭВМ и компьютерных технологий [Иванов В. Н., Стогний А. А. Банк социальных данных. // Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, стр. 168].

Вот почему предметом глубокого изучения в гуманитарных исследованиях становится информация. Вовремя полученная и точно обработанная она способствует успеху в работе над решением различных проблем. Поэтому информационно-поисковые и информационно-справочные системы ориентируются и на удовлетворение нужд гуманитарных наук. Применение в гуманитарных исследованиях информационно-справочных сетей позволяет вести мониторинг за различными факторами, обязательную обратную связь между объектом управления и результатами исследования, их корректировку.

Нельзя не отметить, что существенной частью управления хозяйством являются информационные технологии. Без них невозможно ни экономическое планирование производства, ни распределение ресурсов, ни выявление с определенной степенью точности пропорций и связей в экономике, ни осуществление руководства, управления и контроля на предприятии, в отрасли, в регионе, в целом в экономике.

В последнее время для решения гуманитарных задач большое внимание уделяют применению автоматизированных систем управления и автоматических систем обработки данных. Использование таких систем помогает находить оптимальные варианты, позволяющие разрешить различные вопросы, требующие в процессе поиска ответов не только скорости и больших объемов вычислений, но и гибкости, динамизма, неординарных подходов.

Существует множество программных продуктов, позволяющих решать те или иные задачи гуманитарных исследований от бухгалтерской деятельности в экономике, до различных социологических, археологических и других задач.

О проблемах и перспективах применения математики и информатики в проведении гуманитарных исследований рассказывает следующий раздел реферата.

3. Проблемы и перспективы применения математики и информатики в гуманитарных исследованиях

Уже длительное время главным тормозом практического применения математического моделирования в гуманитарных исследованиях является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы наблюдений и использования результатов этих наблюдений разрабатываются статистикой. Поэтому стоит отметить только специфические проблемы наблюдений, связанные с моделированием процессов [Социально-экономическая статистика. // Под ред. Г. Л.Громыко. — М.: Изд-во МГУ, 1989, стр. 380].

Как известно многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в гуманитарных исследованиях должно опираться на массовые наблюдения.

Другая проблема порождается динамичностью исследуемых процессов, изменчивостью их параметров и структурных отношений. Вследствие этого процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей требуется корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений исследуемых процессов и явлений опирается на измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает взаимодействие «первичных» и «вторичных» измерителей. Любая модель опирается на определенную систему измерителей (продукции, ресурсов, элементов и т. д.). В то же время одним из важных результатов моделирования является получение новых (вторичных) измерителей — экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения «интересов» моделирования в гуманитарных исследованиях в настоящее время наиболее актуальными проблемами совершенствования измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Можно выделить, по крайней мере, четыре аспекта применения математических методов в решении практических проблем.

Совершенствование системы информации. Математические методы позволяют упорядочить систему информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение математических моделей указывают пути совершенствования информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.

Интенсификация и повышение точности расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Углубление количественного анализа проблем. Благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа; изучение многих факторов, оказывающих влияние на процессы, количественная оценка последствий изменения условий развития экономических объектов и т. п.

Решение принципиально новых задач. Посредством математического моделирования удается решать такие задачи, которые иными средствами решить практически невозможно, например: нахождение оптимального варианта народнохозяйственного плана, имитация народнохозяйственных мероприятий, автоматизация контроля за функционированием сложных экономических объектов.

Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий [Бронштейн М. П. Социальные проблемы информатики. — М., 1990, стр. 32].

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются прежде всего средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

Заключение

В настоящее время математика и информатика играют очень важную роль в проведении гуманитарных исследований.

Математика со своей стороны предлагает исследователю ряд математических методов, позволяющих не только получить числовые характеристики исследуемого объекта, но и промоделировать его поведение под влиянием различных факторов, что имеет огромное значение.

Информатика предоставляет инструментарий, позволяющий исследователю многократно ускорить процесс проведения исследований. Применение специализированного программного обеспечения позволяет повысить точность и сократить трудоемкость, позволяет проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Таким образом, взаимодействие математики и информатики в проведении гуманитарных исследований позволяет качественно повысить уровень исследований, получить наиболее приближенные к реальности результаты и затратить минимальное количество времени как на проведение исследований, так и на обработку полученных результатов.

Список литературы

Бронштейн М. П. Социальные проблемы информатики. — М., 1990, 230 с.

Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, 398 с.

Иванов В. Н., Стогний А. А. Банк социальных данных. Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, 280 с.

Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater, 2002, № 8.

Математические модели в экологии и генетике. — М., 1994, 420 с.

Социально-экономическая статистика. // Под ред. Г. Л. Громыко. — М.: Изд-во МГУ, 1989, 350 с.

Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, 160 с.

Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука. 1982, 259 с.

www.ronl.ru

Реферат Математика и информатика в проведении гуманитарных исследований

Математика и информатика в проведении гуманитарных исследований

Введение

Математика представляет собой основу фундаментальных исследований в естественных и гуманитарных науках. В силу этого значение её в общей системе человеческих знаний постоянно возрастает. Математические идеи и методы проникают в управление весьма сложными и большими системами разной природы: полетами космических кораблей, отраслями промышленности, работой обширных транспортных систем и других видов деятельности. В математике возникают новые теории в ответ на запросы практики и внутреннего развития самой математики. Приложения различных областей математики стали неотъемлемой частью науки, в том числе: физики, химии, геологии, биологии, медицины, лингвистики, экономики, социологии и др.

Математика играет важную роль в естественно-научных, инженерно-технических и гуманитарных исследованиях. Она стала для многих отраслей знаний не только орудием количественного расчета, но также методом точного исследования и средством предельно четкой формулировки понятий и проблем. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного специалиста-гуманитария.

Кроме того, в современном обществе работу специалиста любого профиля невозможно представить без применения средств вычислительной техники. Использование информационных технологий позволяет повысить эффективность принятия многих решений за счет своевременного получения необходимой информации. Информатика играет роль связующего звена между естественными и гуманитарными науками [Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater.–2002, № 8, стр. 3 – 9].

Данная работа призвана раскрыть роль математики и информатики в проведении гуманитарных исследований, описать средства проведения исследований, которые предоставляют специалисту-гуманитарию эти две науки.

1. Математика в гуманитарных исследованиях

Математика — наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами науки и техники запас количественных отношений и пространственных форм, изучаемых математикой, непрерывно расширяется, так что приведенное определение необходимо понимать в самом общем смысле.

Истины, добываемые математическим естествознанием, инвариантны относительно времени и места протекающих явлений. Гуманитарное же знание, напротив, сосредоточено на конкретно-исторических особенностях эпохи, в которой довелось жить как выдающимся, так и простым рядовым гражданам той или иной страны. Пусть первые, благодаря своим талантам, способны «творить» историю, в то время как на долю других нередко выпадает лишь роль ее «строительного материала», но и в том и в другом случае исследователь равнодушен к закономерностям естественных наук, вскрывающих общие природные предпосылки исторического процесса и потому никак не выражающих его специфические особенности в конкретных условиях места и времени. Математическое естествознание и гуманитарные науки как бы дополняют друг друга, но о плодотворном взаимодействии между ними не может быть и речи в силу кардинального различия предмета и методов данных областей знания.

Можно ли что-нибудь противопоставить этим доводам, во многом опирающимся на реальную практику современной науки? Если рассматривать сегодняшнее состояние математического естествознания и гуманитарных наук как совершенно адекватное исследуемым в них предметным областям, приведенные аргументы поколебать не удастся. Для обоснования самой возможности существования какой-либо альтернативы в вопросе о взаимоотношении математического и гуманитарного образования необходима точка зрения, позволяющая критически взглянуть на каждую из указанных областей человеческого знания, поставив под сомнение непреложность взглядов современной науки на собственные основания.

В истории науки общим местом является констатация уникального характера древнегреческой математики, разительно отличающейся доказательным характером своих построений от рецептурно-вычислительной математики восточных цивилизаций. Поскольку современная математика справедливо считает себя правопреемницей математики Древней Эллады, то математические знания Индии, Китая и других стран Востока автоматически начинают выглядеть как ущербные, не «дотягивающие» до уровня подлинной науки. Между тем имеются все основания рассматривать древнегреческую математику как уникальный феномен не только с исторической, но и с чисто теоретической точки зрения. Можно показать, что идеализация современной математики отражает не «вневременную природу математического знания», а лишь исторически сложившиеся стандарты этой науки, которые в качестве таковых в ней не осознаются. Но в таком случае отмеченная выше разделительная грань между математикой и гуманитарным знанием начинает стираться, и математика становится похожей на «нематематические» дисциплины. Похожей в том смысле, что, как и другие дисциплины, она занимается не поиском неких «божественных истин», бесконечно далеких от приземленных потребностей простых смертных, а ответом на вопросы, вырастающие из запросов общественной жизни. И если математика и отличается, скажем, от истории или психологии, то, главным образом, относительной простотой предмета своего исследования. Поэтому она оказывается в первую очередь школой научного мышления, приобретение навыков которого является необходимым условием успехов и в сфере гуманитарного знания.

Рассмотрим, каким же образом можно применить математические знания при проведении исследований в различных гуманитарных исследованиях?

Как известно предметом любого исследования является объект, а любой объект есть некая совокупность количественных характеристик, описывающих его поведение. Предметом гуманитарных исследований являются довольно сложные объекты, такие как социальные, экономические и прочие процессы и явления, обладающих множеством свойств.

В процессе числового представления свойства сопоставляются, упорядочиваются, подчиняются отношениям порядка. Число выступает не как самоцель, а как инструмент упорядочивания, сопоставления. Числовым представлением объектов гуманитарных исследований занимается математическая теория измерений. Для каждой гуманитарной науки способы количественного измерения свойств исследуемого объекта – свои. Так, например, в социологии это могут быть: анкетирование, интервьюирование, наблюдение.

Наиболее удобным методом исследования сложных объектов может служить, в частности, математическое моделирование. Что и происходит на практике [Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука, 1982, стр. 234].

Вообще говоря, этап математизации гуманитарной науки начинается тогда, когда ей не хватает того естественного языка, с которого началось ее становление, когда возможности этого языка для прогресса науки оказались исчерпанными. Сейчас стало ясно, что принципиально не математических дисциплин вообще не существует. Другое дело, степень математизации и этап эволюции научной дисциплины, на котором математизация становится необходимой. Одним из серьезных направлений по использованию математики для гуманитарных исследований является моделирование различных процессов. Можно указать лишь несколько наиболее типичных видов математических моделей, используемых гуманитарных исследованиях:

Вероятностные распределения. Логарифмически нормальное распределение используется, например, для моделирования распределения доходов населения, распределение Пуассона — для моделирования среднего времени ожидания обслуживания и т. д.

Статистические исследования зависимостей — класс моделей, широко распространенный в гуманитарных исследованиях.

Аппарат марковских цепей используется для анализа и прогноза численности тех или иных социальных групп, тенденций их изменения и т. п. (в демографии, криминологии, эпидемиологии, исследованиях социальной мобильности).

Моделирование предпочтений описывается на языке теоретико-множественных отношений или целевых функций.

Модели целенаправленного поведения представляют собой непосредственное использование целевых функций и предпочтений для анализа, прогнозирования и планирования процессов в сфере потребления, трудового поведения и др.

Имитационные модели представляют собой класс моделей, реализованных в виде алгоритмов и программ для ЭВМ, отражающих относительно сложные зависимости, не поддающиеся аналитическому анализу. Этот способ моделирования широко применяется для исследования проблем развития городов, регионов, экологических и других сложных систем [Математические модели в экологии и генетике. М., 1994. с. 195.].

Так, например, большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система. Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность — наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований — в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы. Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования. Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Но арсенал применяемых в гуманитарных науках математических средств весьма обширен и многообразен — различные методы математической статистики, теория игр, теория информации, аппарат теории устойчивости, теория марковских цепей, линейное программирование, факторный анализ, корреляционный анализ, теория графов, матричная алгебра и многое другое [Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, стр. 68.].

Таким образом, математика прочно вошла в процесс гуманитарных исследований, и любая гуманитарная наука может подобрать набор конкретных математических методов для проведения исследований в своей области.

2. Информатика в гуманитарных исследованиях

Мы все живем в эпоху, когда компьютерные технологии проникли абсолютно во все отрасли человеческой деятельности. Не исключением является и экономика.

При нынешних темпах развития производства непрерывно идет процесс взаимодействия всех его составляющих частей.

Использование математических методов и современных компьютерных технологий в гуманитарных исследованиях не только ускоряет расчеты, но и в десятки, в сотни раз уменьшает время, нужное для этого. При наличии специализированных программ можно проводить так называемое моделирование, пришедшее на замену дорогостоящим поискам ответов и путей решения проблем с помощью проб и ошибок [Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, стр. 65].

В основном применяют модели двух видов. Модели, описывающие какое-либо состояние моделируемого положения, называют статическими. Если моделируются последовательности таких состояний и связи между ними, нужны модели динамические, учитывающие фактор времени и разнообразные по уровню сложности моделируемого явления.

И те и другие модели достаточно наглядны: показывают различные системы в их развитии, позволяют проанализировать, где, каким образом, с какими затратами можно что-то исправить, что-либо дополнить.

В хозяйственной практике, в планово-экономической работе, в теории экономики возникает множество разнообразных задач, которые решают на экономико-математических моделях, если надо достигнуть углубленного понимания реальных хозяйственных процессов. С помощью этих методов можно разрабатывать планы развития производства, давать практические рекомендации по улучшению пропорций экономики и ее отраслей, рационализировать использование материальных и трудовых ресурсов. А это огромная по своим масштабам система экономических показателей, характеризующих основные соотношения, пропорции и темпы развития производства.

В такой системе требуется отыскать сотни миллионов взаимосвязанных неизвестных. Например, у нас выпускается десятки миллионов разных наименований изделий, на разных предприятиях, по разным технологиям, в разных регионах страны. Также, надо учитывать и износ оборудования на производстве, и ограниченность ресурсов, и темпы научно-технического прогресса, и многое, многое другое. По громоздкости расчетов задача трудно вообразимая даже при современном уровне развития ЭВМ и компьютерных технологий [Иванов В. Н., Стогний А. А. Банк социальных данных. // Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, стр. 168].

Вот почему предметом глубокого изучения в гуманитарных исследованиях становится информация. Вовремя полученная и точно обработанная она способствует успеху в работе над решением различных проблем. Поэтому информационно-поисковые и информационно-справочные системы ориентируются и на удовлетворение нужд гуманитарных наук. Применение в гуманитарных исследованиях информационно-справочных сетей позволяет вести мониторинг за различными факторами, обязательную обратную связь между объектом управления и результатами исследования, их корректировку.

Нельзя не отметить, что существенной частью управления хозяйством являются информационные технологии. Без них невозможно ни экономическое планирование производства, ни распределение ресурсов, ни выявление с определенной степенью точности пропорций и связей в экономике, ни осуществление руководства, управления и контроля на предприятии, в отрасли, в регионе, в целом в экономике.

В последнее время для решения гуманитарных задач большое внимание уделяют применению автоматизированных систем управления и автоматических систем обработки данных. Использование таких систем помогает находить оптимальные варианты, позволяющие разрешить различные вопросы, требующие в процессе поиска ответов не только скорости и больших объемов вычислений, но и гибкости, динамизма, неординарных подходов.

Существует множество программных продуктов, позволяющих решать те или иные задачи гуманитарных исследований от бухгалтерской деятельности в экономике, до различных социологических, археологических и других задач.

О проблемах и перспективах применения математики и информатики в проведении гуманитарных исследований рассказывает следующий раздел реферата.

3. Проблемы и перспективы применения математики и информатики в гуманитарных исследованиях

Уже длительное время главным тормозом практического применения математического моделирования в гуманитарных исследованиях является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы наблюдений и использования результатов этих наблюдений разрабатываются статистикой. Поэтому стоит отметить только специфические проблемы наблюдений, связанные с моделированием процессов [Социально-экономическая статистика. // Под ред. Г. Л.Громыко. — М.: Изд-во МГУ, 1989, стр. 380].

Как известно многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в гуманитарных исследованиях должно опираться на массовые наблюдения.

Другая проблема порождается динамичностью исследуемых процессов, изменчивостью их параметров и структурных отношений. Вследствие этого процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей требуется корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений исследуемых процессов и явлений опирается на измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает взаимодействие «первичных» и «вторичных» измерителей. Любая модель опирается на определенную систему измерителей (продукции, ресурсов, элементов и т. д.). В то же время одним из важных результатов моделирования является получение новых (вторичных) измерителей — экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения «интересов» моделирования в гуманитарных исследованиях в настоящее время наиболее актуальными проблемами совершенствования измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Можно выделить, по крайней мере, четыре аспекта применения математических методов в решении практических проблем.

Совершенствование системы информации. Математические методы позволяют упорядочить систему информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение математических моделей указывают пути совершенствования информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.

Интенсификация и повышение точности расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Углубление количественного анализа проблем. Благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа; изучение многих факторов, оказывающих влияние на процессы, количественная оценка последствий изменения условий развития экономических объектов и т. п.

Решение принципиально новых задач. Посредством математического моделирования удается решать такие задачи, которые иными средствами решить практически невозможно, например: нахождение оптимального варианта народнохозяйственного плана, имитация народнохозяйственных мероприятий, автоматизация контроля за функционированием сложных экономических объектов.

Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий [Бронштейн М. П. Социальные проблемы информатики. — М., 1990, стр. 32].

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются прежде всего средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

Заключение

В настоящее время математика и информатика играют очень важную роль в проведении гуманитарных исследований.

Математика со своей стороны предлагает исследователю ряд математических методов, позволяющих не только получить числовые характеристики исследуемого объекта, но и промоделировать его поведение под влиянием различных факторов, что имеет огромное значение.

Информатика предоставляет инструментарий, позволяющий исследователю многократно ускорить процесс проведения исследований. Применение специализированного программного обеспечения позволяет повысить точность и сократить трудоемкость, позволяет проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Таким образом, взаимодействие математики и информатики в проведении гуманитарных исследований позволяет качественно повысить уровень исследований, получить наиболее приближенные к реальности результаты и затратить минимальное количество времени как на проведение исследований, так и на обработку полученных результатов.

Список литературы

Бронштейн М. П. Социальные проблемы информатики. — М., 1990, 230 с.

Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, 398 с.

Иванов В. Н., Стогний А. А. Банк социальных данных. Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, 280 с.

Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater, 2002, № 8.

Математические модели в экологии и генетике. — М., 1994, 420 с.

Социально-экономическая статистика. // Под ред. Г. Л. Громыко. — М.: Изд-во МГУ, 1989, 350 с.

Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, 160 с.

Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука. 1982, 259 с.

Для подготовки данной работы были использованы материалы с сайта http://www.matematika-r.info/

bukvasha.ru

Математика и информатика в проведении гуманитарных исследований - реферат

Математика и информатика в проведении гуманитарных исследований

Введение

Математика представляет собой основу фундаментальных исследований в естественных и гуманитарных науках. В силу этого значение её в общей системе человеческих знаний постоянно возрастает. Математические идеи и методы проникают в управление весьма сложными и большими системами разной природы: полетами космических кораблей, отраслями промышленности, работой обширных транспортных систем и других видов деятельности. В математике возникают новые теории в ответ на запросы практики и внутреннего развития самой математики. Приложения различных областей математики стали неотъемлемой частью науки, в том числе: физики, химии, геологии, биологии, медицины, лингвистики, экономики, социологии и др.

Математика играет важную роль в естественно-научных, инженерно-технических и гуманитарных исследованиях. Она стала для многих отраслей знаний не только орудием количественного расчета, но также методом точного исследования и средством предельно четкой формулировки понятий и проблем. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного специалиста-гуманитария.

Кроме того, в современном обществе работу специалиста любого профиля невозможно представить без применения средств вычислительной техники. Использование информационных технологий позволяет повысить эффективность принятия многих решений за счет своевременного получения необходимой информации. Информатика играет роль связующего звена между естественными и гуманитарными науками [Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater.–2002, № 8, стр. 3 – 9].

Данная работа призвана раскрыть роль математики и информатики в проведении гуманитарных исследований, описать средства проведения исследований, которые предоставляют специалисту-гуманитарию эти две науки.

1. Математика в гуманитарных исследованиях

Математика — наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами науки и техники запас количественных отношений и пространственных форм, изучаемых математикой, непрерывно расширяется, так что приведенное определение необходимо понимать в самом общем смысле.

Истины, добываемые математическим естествознанием, инвариантны относительно времени и места протекающих явлений. Гуманитарное же знание, напротив, сосредоточено на конкретно-исторических особенностях эпохи, в которой довелось жить как выдающимся, так и простым рядовым гражданам той или иной страны. Пусть первые, благодаря своим талантам, способны «творить» историю, в то время как на долю других нередко выпадает лишь роль ее «строительного материала», но и в том и в другом случае исследователь равнодушен к закономерностям естественных наук, вскрывающих общие природные предпосылки исторического процесса и потому никак не выражающих его специфические особенности в конкретных условиях места и времени. Математическое естествознание и гуманитарные науки как бы дополняют друг друга, но о плодотворном взаимодействии между ними не может быть и речи в силу кардинального различия предмета и методов данных областей знания.

Можно ли что-нибудь противопоставить этим доводам, во многом опирающимся на реальную практику современной науки? Если рассматривать сегодняшнее состояние математического естествознания и гуманитарных наук как совершенно адекватное исследуемым в них предметным областям, приведенные аргументы поколебать не удастся. Для обоснования самой возможности существования какой-либо альтернативы в вопросе о взаимоотношении математического и гуманитарного образования необходима точка зрения, позволяющая критически взглянуть на каждую из указанных областей человеческого знания, поставив под сомнение непреложность взглядов современной науки на собственные основания.

В истории науки общим местом является констатация уникального характера древнегреческой математики, разительно отличающейся доказательным характером своих построений от рецептурно-вычислительной математики восточных цивилизаций. Поскольку современная математика справедливо считает себя правопреемницей математики Древней Эллады, то математические знания Индии, Китая и других стран Востока автоматически начинают выглядеть как ущербные, не «дотягивающие» до уровня подлинной науки. Между тем имеются все основания рассматривать древнегреческую математику как уникальный феномен не только с исторической, но и с чисто теоретической точки зрения. Можно показать, что идеализация современной математики отражает не «вневременную природу математического знания», а лишь исторически сложившиеся стандарты этой науки, которые в качестве таковых в ней не осознаются. Но в таком случае отмеченная выше разделительная грань между математикой и гуманитарным знанием начинает стираться, и математика становится похожей на «нематематические» дисциплины. Похожей в том смысле, что, как и другие дисциплины, она занимается не поиском неких «божественных истин», бесконечно далеких от приземленных потребностей простых смертных, а ответом на вопросы, вырастающие из запросов общественной жизни. И если математика и отличается, скажем, от истории или психологии, то, главным образом, относительной простотой предмета своего исследования. Поэтому она оказывается в первую очередь школой научного мышления, приобретение навыков которого является необходимым условием успехов и в сфере гуманитарного знания.

Рассмотрим, каким же образом можно применить математические знания при проведении исследований в различных гуманитарных исследованиях?

Как известно предметом любого исследования является объект, а любой объект есть некая совокупность количественных характеристик, описывающих его поведение. Предметом гуманитарных исследований являются довольно сложные объекты, такие как социальные, экономические и прочие процессы и явления, обладающих множеством свойств.

В процессе числового представления свойства сопоставляются, упорядочиваются, подчиняются отношениям порядка. Число выступает не как самоцель, а как инструмент упорядочивания, сопоставления. Числовым представлением объектов гуманитарных исследований занимается математическая теория измерений. Для каждой гуманитарной науки способы количественного измерения свойств исследуемого объекта – свои. Так, например, в социологии это могут быть: анкетирование, интервьюирование, наблюдение.

Наиболее удобным методом исследования сложных объектов может служить, в частности, математическое моделирование. Что и происходит на практике [Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука, 1982, стр. 234].

Вообще говоря, этап математизации гуманитарной науки начинается тогда, когда ей не хватает того естественного языка, с которого началось ее становление, когда возможности этого языка для прогресса науки оказались исчерпанными. Сейчас стало ясно, что принципиально не математических дисциплин вообще не существует. Другое дело, степень математизации и этап эволюции научной дисциплины, на котором математизация становится необходимой. Одним из серьезных направлений по использованию математики для гуманитарных исследований является моделирование различных процессов. Можно указать лишь несколько наиболее типичных видов математических моделей, используемых гуманитарных исследованиях:

Вероятностные распределения. Логарифмически нормальное распределение используется, например, для моделирования распределения доходов населения, распределение Пуассона — для моделирования среднего времени ожидания обслуживания и т. д.

Статистические исследования зависимостей — класс моделей, широко распространенный в гуманитарных исследованиях.

Аппарат марковских цепей используется для анализа и прогноза численности тех или иных социальных групп, тенденций их изменения и т. п. (в демографии, криминологии, эпидемиологии, исследованиях социальной мобильности).

Моделирование предпочтений описывается на языке теоретико-множественных отношений или целевых функций.

Модели целенаправленного поведения представляют собой непосредственное использование целевых функций и предпочтений для анализа, прогнозирования и планирования процессов в сфере потребления, трудового поведения и др.

Имитационные модели представляют собой класс моделей, реализованных в виде алгоритмов и программ для ЭВМ, отражающих относительно сложные зависимости, не поддающиеся аналитическому анализу. Этот способ моделирования широко применяется для исследования проблем развития городов, регионов, экологических и других сложных систем [Математические модели в экологии и генетике. М., 1994. с. 195.].

Так, например, большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система. Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность — наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований — в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы. Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования. Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Но арсенал применяемых в гуманитарных науках математических средств весьма обширен и многообразен — различные методы математической статистики, теория игр, теория информации, аппарат теории устойчивости, теория марковских цепей, линейное программирование, факторный анализ, корреляционный анализ, теория графов, матричная алгебра и многое другое [Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, стр. 68.].

Таким образом, математика прочно вошла в процесс гуманитарных исследований, и любая гуманитарная наука может подобрать набор конкретных математических методов для проведения исследований в своей области.

2. Информатика в гуманитарных исследованиях

Мы все живем в эпоху, когда компьютерные технологии проникли абсолютно во все отрасли человеческой деятельности. Не исключением является и экономика.

При нынешних темпах развития производства непрерывно идет процесс взаимодействия всех его составляющих частей.

Использование математических методов и современных компьютерных технологий в гуманитарных исследованиях не только ускоряет расчеты, но и в десятки, в сотни раз уменьшает время, нужное для этого. При наличии специализированных программ можно проводить так называемое моделирование, пришедшее на замену дорогостоящим поискам ответов и путей решения проблем с помощью проб и ошибок [Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, стр. 65].

В основном применяют модели двух видов. Модели, описывающие какое-либо состояние моделируемого положения, называют статическими. Если моделируются последовательности таких состояний и связи между ними, нужны модели динамические, учитывающие фактор времени и разнообразные по уровню сложности моделируемого явления.

И те и другие модели достаточно наглядны: показывают различные системы в их развитии, позволяют проанализировать, где, каким образом, с какими затратами можно что-то исправить, что-либо дополнить.

В хозяйственной практике, в планово-экономической работе, в теории экономики возникает множество разнообразных задач, которые решают на экономико-математических моделях, если надо достигнуть углубленного понимания реальных хозяйственных процессов. С помощью этих методов можно разрабатывать планы развития производства, давать практические рекомендации по улучшению пропорций экономики и ее отраслей, рационализировать использование материальных и трудовых ресурсов. А это огромная по своим масштабам система экономических показателей, характеризующих основные соотношения, пропорции и темпы развития производства.

В такой системе требуется отыскать сотни миллионов взаимосвязанных неизвестных. Например, у нас выпускается десятки миллионов разных наименований изделий, на разных предприятиях, по разным технологиям, в разных регионах страны. Также, надо учитывать и износ оборудования на производстве, и ограниченность ресурсов, и темпы научно-технического прогресса, и многое, многое другое. По громоздкости расчетов задача трудно вообразимая даже при современном уровне развития ЭВМ и компьютерных технологий [Иванов В. Н., Стогний А. А. Банк социальных данных. // Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, стр. 168].

Вот почему предметом глубокого изучения в гуманитарных исследованиях становится информация. Вовремя полученная и точно обработанная она способствует успеху в работе над решением различных проблем. Поэтому информационно-поисковые и информационно-справочные системы ориентируются и на удовлетворение нужд гуманитарных наук. Применение в гуманитарных исследованиях информационно-справочных сетей позволяет вести мониторинг за различными факторами, обязательную обратную связь между объектом управления и результатами исследования, их корректировку.

Нельзя не отметить, что существенной частью управления хозяйством являются информационные технологии. Без них невозможно ни экономическое планирование производства, ни распределение ресурсов, ни выявление с определенной степенью точности пропорций и связей в экономике, ни осуществление руководства, управления и контроля на предприятии, в отрасли, в регионе, в целом в экономике.

В последнее время для решения гуманитарных задач большое внимание уделяют применению автоматизированных систем управления и автоматических систем обработки данных. Использование таких систем помогает находить оптимальные варианты, позволяющие разрешить различные вопросы, требующие в процессе поиска ответов не только скорости и больших объемов вычислений, но и гибкости, динамизма, неординарных подходов.

Существует множество программных продуктов, позволяющих решать те или иные задачи гуманитарных исследований от бухгалтерской деятельности в экономике, до различных социологических, археологических и других задач.

О проблемах и перспективах применения математики и информатики в проведении гуманитарных исследований рассказывает следующий раздел реферата.

3. Проблемы и перспективы применения математики и информатики в гуманитарных исследованиях

Уже длительное время главным тормозом практического применения математического моделирования в гуманитарных исследованиях является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы наблюдений и использования результатов этих наблюдений разрабатываются статистикой. Поэтому стоит отметить только специфические проблемы наблюдений, связанные с моделированием процессов [Социально-экономическая статистика. // Под ред. Г. Л.Громыко. — М.: Изд-во МГУ, 1989, стр. 380].

Как известно многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в гуманитарных исследованиях должно опираться на массовые наблюдения.

Другая проблема порождается динамичностью исследуемых процессов, изменчивостью их параметров и структурных отношений. Вследствие этого процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей требуется корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений исследуемых процессов и явлений опирается на измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает взаимодействие «первичных» и «вторичных» измерителей. Любая модель опирается на определенную систему измерителей (продукции, ресурсов, элементов и т. д.). В то же время одним из важных результатов моделирования является получение новых (вторичных) измерителей — экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения «интересов» моделирования в гуманитарных исследованиях в настоящее время наиболее актуальными проблемами совершенствования измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Можно выделить, по крайней мере, четыре аспекта применения математических методов в решении практических проблем.

Совершенствование системы информации. Математические методы позволяют упорядочить систему информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение математических моделей указывают пути совершенствования информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.

Интенсификация и повышение точности расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Углубление количественного анализа проблем. Благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа; изучение многих факторов, оказывающих влияние на процессы, количественная оценка последствий изменения условий развития экономических объектов и т. п.

Решение принципиально новых задач. Посредством математического моделирования удается решать такие задачи, которые иными средствами решить практически невозможно, например: нахождение оптимального варианта народнохозяйственного плана, имитация народнохозяйственных мероприятий, автоматизация контроля за функционированием сложных экономических объектов.

Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий [Бронштейн М. П. Социальные проблемы информатики. — М., 1990, стр. 32].

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются прежде всего средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

Заключение

В настоящее время математика и информатика играют очень важную роль в проведении гуманитарных исследований.

Математика со своей стороны предлагает исследователю ряд математических методов, позволяющих не только получить числовые характеристики исследуемого объекта, но и промоделировать его поведение под влиянием различных факторов, что имеет огромное значение.

Информатика предоставляет инструментарий, позволяющий исследователю многократно ускорить процесс проведения исследований. Применение специализированного программного обеспечения позволяет повысить точность и сократить трудоемкость, позволяет проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.

Таким образом, взаимодействие математики и информатики в проведении гуманитарных исследований позволяет качественно повысить уровень исследований, получить наиболее приближенные к реальности результаты и затратить минимальное количество времени как на проведение исследований, так и на обработку полученных результатов.

Список литературы

Бронштейн М. П. Социальные проблемы информатики. — М., 1990, 230 с.

Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, 398 с.

Иванов В. Н., Стогний А. А. Банк социальных данных. Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, 280 с.

Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater, 2002, № 8.

Математические модели в экологии и генетике. — М., 1994, 420 с.

Социально-экономическая статистика. // Под ред. Г. Л. Громыко. — М.: Изд-во МГУ, 1989, 350 с.

Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, 160 с.

Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука. 1982, 259 с.

Для подготовки данной работы были использованы материалы с сайта http://www.matematika-r.info/

Дата добавления: 07.06.2008

2dip.su


Смотрите также