Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Кто открыл электричество? Исследования и открытия. Реферат история открытия электричества


История электричества

Автор: Легостин Артем Алексеевич

Скачать (в формате Word)

Скачать презентацию

Скачать пояснение к презентации (в формате Word)

 

 

 

ШКОЛА ГИМНАЗИЯ №66

_____________________________________________________

 

 

Легостин Артем Алексеевич

 

 

РЕФЕРАТ

 

 

История открытий электричества и электромагнетизма.

Создание электрических машин.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Санкт-Петербург – 2011

ВВЕДЕНИЕ. 3

1. ЭЛЕКТРИЧЕСТВО.. 4

2. МАГНЕТИЗМ (МАГНИТЫ)10

3.  ЭЛЕКТРОМАГНЕТИЗМ.. 13

4. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ.. 17

5. ТРАНСФОРМАТОР ТЕСЛА.. 25

ВЫВОД.. 28

СПИСОК ЛИТЕРАТУРЫ.. 29

Начнем наш рассказ словами самого Теслы, написавшего незадолго до смерти замечательный очерк истории электротехники "Сказку об электричестве": "Кто действительно хочет помять все величие нашего времени, тот должен познакомиться с историей науки об электричестве”.

Впервые явления, ныне называемые электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Сохранившиеся предания гласят, что древнегреческому философу Фалесу Милетскому (640-550 гг. до н. э.) было уже известно свойство янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря - "электрон" - явление это позднее получило наименование электризации[1].

На протяжении многих столетий, электрические явления считались проявлениями божественной силы, пока в 17в. ученые не подошли вплотную к изучению электричества. Кулон, Гильберт, Отто фон Герике, Мушенбрек,  Франклин, Эрстед, Араго, Ломоносов, Луиджи Гальвани, Алессандро Вольта – вот далеко не полный список ученых занимавшихся проблемами электричества. Особо следует сказать о деятельности замечательного ученого Андре Мари Ампера, положившего начало изучению динамических действий электрического тока и установившему целый ряд законов электродинамики.

Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. Другой английский физик Джеймс Клерк (Кларк) Ма́ксвелл 1873 году издал капитальный двухтомный труд «Трактат об электричестве и магнетизме», который объединил понятия электричество, магнетизм и электромагнитное поле. С этого момента началась эра активного использования электрической энергии в повседневной жизни.

 

Электри́чество — понятие, выражающее свойства и явления, обусловленные структурой физических тел и процессов, сущностью которой является движение и взаимодействие микроскопических заряженных частиц вещества (электронов, ионов, молекул, их комплексов и т. п.)[1].

Гильберт впервые обнаружил, что свойства электризации присущи не только янтарю, но и алмазу, сере, смоле. Он заметил также, что некоторые тела, например металлы, камни, кость, не электризуются, и разделил все тела, встречающиеся в природе, электризуемые и неэлектризуемые. Обратив особое внимание на первые, он производил опыты по изучению их свойств.

В 1650 году известный немецкий ученый, бургомистр города Магдебурга, изобретатель воздушного насоса Отто фон Герике построил специальную "электрическую машину", представлявшую шар из серы величиной с детскую голову, насаженный на ось.

Рисунок 1 – Электрическая машина фон Герике, усовершенствованная Ван де Графом

Если при вращении шара его натирали ладонями рук, он вскоре приобретал свойство притягивать и отталкивать легкие тела. На протяжении нескольких столетий машину Герике значительно усовершенствовали англичанин Хоксби, немецкие ученые Бозе, Винклер и другие. Опыты с этими машинами привели к ряду важных открытий:

·        в 1707 году французский физик дю Фей обнаружил различие между электричеством, получаемым от трения стеклянного шара и получаемым от трения крута из древесной смолы;

·        в 1729 году англичане Грей и Уилер обнаружили способность некоторых тел проводить электричество и впервые указали на то, что все тела можно разделить на проводники и непроводники электричества.

Но значительно более важное открытие было описано в 1729 году Мушенбреком - профессором математики и философии в городе Лейдене. Он обнаружил, что стеклянная банка, оклеенная с обеих сторон оловянной фольгой (листочками станиоля), способна накапливать электричество. Заряженное до определенного потенциала (понятие о котором появилось значительно позднее), это устройство могло быть разряжено со значительным эффектом - большой искрой, производившей сильный треск, подобный разряду молнии, и оказывавшей физиологические действия при прикосновении рук к обкладкам банки. От названия города, где производились опыты, прибор, созданный Мушенбреком, был назван лейденской банкой.

Рисунок 2 – Лейденская банка. Параллельное соединение четырёх банок

Исследования ее свойств производились в различных странах и вызвали появление множества теорий, пытавшихся объяснить обнаруженное явление конденсации заряда. Одна из теорий этого явления была дана, выдающимся американским ученым и общественным деятелем Бенджамином Франклином, который указал на существование положительного и отрицательного электричества. С точки зрения этой теории Франклин объяснил процесс заряда и разряда лейденской банки и доказал, что ее обкладки можно произвольно электризовать разными по знаку электрическими зарядами[1].

Франклин, как и русские ученые М. В. Ломоносов и Г. Рихман, уделил немало внимания изучению атмосферного электричества, грозового разряда (молнии). Как известно, Рихман погиб, производя опыт по изучению молнии. В 1752 году Бенджамином Франклином изобретен молниеотвод. Молниеотвод (в быту также употребляется более благозвучное «громоотвод») — устройство, устанавливаемое на зданиях и сооружениях и служащее для защиты от удара молнии. Состоит из трёх связанных между собой частей:

  • молниеприёмник — служит для приёма разряда молнии и располагается в зоне возможного контакта с каналом молнии; в зависимости от защищаемого объекта может представлять собой металлический штырь, сеть из проводящего материала или металлический трос, натянутый над защищаемым объектом
  • заземляющий проводникили токоотвод — проводник, служащий для отвода заряда от молниеприёмника к заземлителю; обычно представляет собой провод достаточно большого сечения
  • заземлитель— проводник или несколько соединённых между собой проводников, находящихся в соприкосновении с грунтом; обычно представляет собой металлическую плиту, заглублённую в грунт[2].

В 1785 году Ш. Кулоном открыт основной закон электростатики. На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия неподвижных зарядов, находящихся в вакууме, прямо пропорциональна произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними[1]- [3], [7]:

                                                        (1)

В 1799 год Создан первый источник электрического тока — гальванический элемент и батарея элементов.  Гальванический элемент (химический источник тока) – устройство, которое позволяет превращать энергию химической реакции в электрическую работу. По принципу работы различают первичные (разовые), вторичные (аккумуляторы) и топливные элементы. Гальванический элемент состоит из ионпроводящего электролита и двух разнородных электродов (полуэлементов), процессы окисления и восстановления в гальваническом элементе пространственно разделены. Положительный полюс гальванического элемента называется катодом, отрицательный - анодом. Электроны выходят из элемента через анод и движутся во внешней цепи к катоду[3].

Работы русских академиков Эпинуса, Крафта и других выявили целый ряд весьма важных свойств электрического заряда, но все они изучали электричество в состоянии неподвижном или мгновенный раз ряд его, то есть свойства статического электричества. Движение его проявлялось лишь в форме разряда. Об электрическом токе, то есть о непрерывном движении электричества, еще ничего не было известно.

Одним из первых глубоко исследовал свойства электрического тока в 1801 -1802 годах петербургский академик В. В. Петров. Работы этого выдающегося ученого, построившего самую крупную в мире в те годы батарею из 4200 медных и цинковых кружков, установили возможность практического использования электрического тока для нагрева проводников. Кроме того, Петров наблюдал явление электрического разряда между концами слегка разведенных углей как в воздухе, так и в других газах и вакууме, получившее название электрической дуги. В. В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов и тем самым впервые высказал мысль о практическом применении электрического тока. С этого момента и должно начинать историю электротехники как самостоятельной отрасли техники[1].

Опыты с электрическим током привлекали внимание многих ученых разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В конце 1819 года это явление было вновь наблюдаемо датским физиком Эрстедом, который в марте 1820 года опубликовал на латинском языке брошюру под заглавием "Опыты, касающиеся действия электрического конфликта на магнитную стрелку". В этом сочинении "электрическим конфликтом" был назван электрический ток[1].

Едва лишь Араго продемонстрировал на заседании Парижской Академии наук опыт Эрстеда, как Ампер, повторив его, 18 сентября 1820 года, ровно через неделю, представил в академию сообщение о своих исследованиях. На следующем заседании, 25 сентября, Ампер докончил чтение доклада, в котором он изложил законы взаимодействия двух токов, протекающих по параллельно расположенным проводникам. С этого момента академия еженедельно слушала новые сообщения Ампера о его опытах, завершивших открытие и формулирование основных законов электродинамики.

Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления - электричество и магнетизм - одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы. Эта теория, встреченная современниками Ампера с большим недоверием, была весьма прогрессивной и сыграла огромную роль в правильном понимании открытых позднее явлений.

В 1827 году немецкий ученый Георг Ом открыл один из фундаментальных законов электричества, устанавливающий основные зависимости между силой тока, напряжением и сопротивлением цепи, по которой протекает электрический ток[2], [3], [7], [8]

                                                              (2)

В 1847 году Кирхгоф сформулировал законы развертывания токов в сложных цепях [2], [3], [7], [8]:

·    Первый закон Кирхгофа

Применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю. Знаки определяются в зависимости от того, направлен ток к узлу или от него (в любом случае произвольно).

                                                                (3)

·        Второй закон Кирхгофа

Применяется к контурам: в любом контуре сумма напряжений на всех элементах и участках цепи, входящих в этот контур, равна нулю. Направление обхода каждого  контура можно выбирать произвольно. Знаки определяются в зависимости от совпадения напряжений с направлением обхода.

                                                              (4)

Вторая формулировка: в любом замкнутом контуре алгебраическая сумма напряжений на всех участках с сопротивлениями, входящих в этот контур, равно алгебраической сумме ЭДС.

                                                     (5)

·        Обобщение законов Кирхгофа

Пусть У - количество узлов цепи, В - количество  ветвей, К - число контуров[4].

Рисунок 3 - Линейная разветвленная электрическая цепь (У=3, В=5, K=6)

 

 

Магнетизм–это форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля[5].

Магнитное поле- это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела[6].

Постоянный магнит - изделие из магнитотвердого материала, автономный источник постоянного магнитного поля. Магниты [греч. magnetis, от Magnetis Lithos, — камень из Магнесии (древний город в Малой Азии)] бывают естественные и искусственные. Естественным магнитом является кусок железной руды, обладающий способностью притягивать к себе находящиеся вблизи небольшие железные предметы.

Гигантскими естественными магнитами являются Земля и другие планеты (Магнитосфера) так как они обладают магнитным полем. Искусственные магниты представляют собой предметы и изделия, получившие магнитные свойства в результате контакта с естественным магнитом или намагниченные в магнитном поле. Постоянный магнит является искусственным магнитом.

В наиболее простых случаях постоянный магнит представляет собой тело (в виде подковы, полосы, шайбы, стержня и т. д.), прошедшее соответствующую термическую обработку и предварительно намагниченное до насыщения.

          

             а                                             б                                             в

Рисунок 4 – Виды магнитов: а) подковообразный; б) полосовой; в) кольцевой

Постоянный магнит обычно входит как составная часть в магнитную систему, предназначенную для формирования магнитного поля. Напряженность магнитного поля, формируемого постоянным магнитом, может быть как постоянная, так и регулируемая. Различные части постоянного магнита притягивают железные предметы по-разному. Концы магнита, где притяжение максимальное, называются полюсами магнита, а средняя часть, где притяжение практически отсутствует, называется нейтральной зоной магнита. Искусственные магниты в виде полосы или подковы всегда имеют два полюса на концах полосы и нейтральную зону между ними. Можно намагнитить кусок стали таким образом, что он будет иметь 4, 6 и более полюсов, разделенных нейтральными зонами, при этом число полюсов всегда остается четным. Невозможно получить магнит с одним полюсом. Соотношение между размерами полюсных областей и нейтральной зоны магнита зависит от его формы.

Уединенный магнит в виде длинного и тонкого стержня называют магнитной стрелкой. Конец укрепленной на острие или подвешенной магнитной стрелки — простейший компас, указывает географический север Земли, и называется северным полюсом (N) магнита, противоположный полюс магнита, указывает на юг, и называется южным полюсом (S). Области применения постоянных магнитов весьма разнообразны. Их применяют в электродвигателях, в автоматике, робототехнике, для магнитных муфт магнитных подшипников, в часовой промышленности, в бытовой технике, как автономные источники постоянного магнитного поля в электротехнике и радиотехнике.

Магнитные цепи, включающие постоянные магниты, должны быть разомкнутыми, т. е. иметь воздушный зазор. Если постоянный магнит изготовлен в виде кольцевого сердечника, то он практически не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри него. В этом случае магнитное поле вне сердечника практически отсутствует. Чтобы использовать магнитную энергию постоянных магнитов, нужно в замкнутом магнитопроводе создать воздушный зазор определенного размера[5]-[8].

Когда постоянный магнит служит для создания магнитного потока в воздушном зазоре, например между полюсами подковообразного магнита, воздушный зазор уменьшает индукцию (и намагниченность) постоянного магнита[7].

 

 

Электромагнитное взаимодействие— одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Сам фотон электрическим зарядом не обладает, а значит не может непосредственно взаимодействовать с другими фотонами.

Из фундаментальных частиц в электромагнитном взаимодействии участвуют также имеющие электрический заряд частицы: кварки, электрон, мюон и тау-частица (из фермионов), а также заряженые калибровочные W^{pm}бозоны.

Электромагнитное взаимодействие отличается от слабого и сильноговзаимодействия своим дальнодействующим характером — сила взаимодействия между двумя зарядами спадает только как вторая степень расстояния (см.: закон Кулона). По такому же закону спадает с расстоянием гравитационное взаимодействие.

Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой на космических масштабах — электрическая нейтральность материи, то есть наличие в каждой области Вселенной с высокой степенью точности равных количеств положительных и отрицательных зарядов[8].

Электромагнитное поле- это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязан­ные переменные электрическое поле и магнитное поле. Взаимная связь электрического Е и магнитного Н полей заключается в том, что всякое изменение одного из них приводит к появ­лению другого: переменное электрическое поле, порождаемое уско­ренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке простран­ства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источ­ника и не исчезает с устранением источника (например, радио­волны не исчезают с прекращением тока в излучившей их антенне).

Электромагнитное поле в вакууме описывается напряженностью электри­ческого поля Е и магнитной индукцией В. Электромагнитное поле в среде характеризуется дополнительно двумя вспомогательными величина­ми: напряженностью магнитного поля Н и электрической индукцией D. Связь компонентов электромагнитного поля с зарядами и то­ками описывается уравнениями Максвелла.

Электромагнитные волны представляют собой электромагнитные колебания, распространяющиеся в пространстве с конеч­ной скоростью, зависящей от свойств среды (рисунок 5).

Рисунок 5 - Электромагнитные волны

Существо­вание электромагнитных волн предсказано английским физиком М. Фарадеем в 1832 г. Другой английский ученый, Дж. Максвелл, в 1865 г. теоретически показал, что электромагнитные колебания не остаются локализован­ными в пространстве, а распространяются во все стороны от источника. Теория Максвелла позволила единым образом подойти к описанию радио­волн, оптического излучения, рентгеновского излучения, гамма-излучения. Оказалось, что все эти виды излуче­ния – электромагнитные волны с различной длиной волны λ, т. е. родственны по своей природе. Каждое из них имеет своё определён­ное место в единой шкале электромагнитных волн (рисунок 6).

Рисунок 6 - Шкала электромагнитных волн

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

Электромагнитные волны различных диапазонов длин волн характеризуются различными способами возбуждения и регистрации, по-разному взаимо­действуют с веществом. Процессы излучения и поглощения электромагнитных волн от самых длинных до ИК излучения достаточно полно описываются соотношениями классической электро­динамики.

В диапазонах более коротких длин волн, в особен­ности в диапазонах рентгеновских и γ-лучей, доминируют процессы, имеющие квантовую природу, и могут быть описаны только в рамках квантовой электроди­намики на основе представлении о дискретности этих процессов.

Электромагнитные волны широко используются в радиосвязи, радиолокации, телевидении, медицине, биологии, физике, астрономии и др. областях науки и техники[9].

Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. В 1821 году он нашел еще одно решение поставленной задачи превращения электрической и магнитной энергии в механическую и продемонстрировал свой прибор, в котором он получал явление непрерывного электромагнитного вращения. В тот же день Фарадей записал в свой рабочий дневник обратную задачу: "Превратить магнетизм в электричество". Более десяти лет потребовалось, чтобы решить ее и найти способ получения электрической энергии из магнитной и механической. Лишь в конце 1831 года Фарадей сообщил об открытии им явления, названного затем электромагнитной индукцией и составляющего основу всей современной электроэнергетики[5]-[8].

 

Исследование Фарадея и работы русского академика Э. X. Ленца, сформулировавшего закон, по которому можно было определить направление электрического тока, возникающего в результате электромагнитной индукции, дали возможность создать первые электромагнитные генераторы и электродвигатели.

Вначале электрогенераторы и электродвигатели развивались независимо друг от друга, как две совершенно разные машины. Первый изобретатель электрического генератора, основанного на принципе электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное инициалами Р. М. Оно содержало описание первого в мире синхронного генератора и приложенный к нему чертеж. Фарадей, внимательно разобравшись в этом проекте, направил письмо Р. М. и чертеж в тот же журнал, в котором был в свое время помещен его доклад, надеясь, что неизвестный изобретатель, следя за журналом, увидит опубликованным не только свой проект, но и сопровождающее его письмо Фарадея, исключительно высоко оценивающее изобретение Р. М[1]- [3], [7], [8].

Действительно, спустя почти полгода Р. М. прислал в редакцию журнала дополнительные разъяснения и описание предложенной им конструкции электрогенератора, но и на этот раз пожелал остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым под инициалами, и человечество до сих пор, несмотря на тщательные розыски историков электротехники, остается в неведении, кому же оно обязано одним из важнейших изобретений. Машина Р. М. не имела устройства для выпрямления тока и была первым генератором переменного тока. Но этот ток, казалось, не мог быть использован для дугового освещения, электролиза, телеграфа, уже прочно вошедших в жизнь. Необходимо было, по мысли конструкторов того времени, создать машину, в которой можно было бы получать ток постоянным по направлению и величине[3].

Почти одновременно с Р. М. конструированием генераторов занимались братья Пикси и профессор физики Лондонского университета и член Королевского общества В. Риччи. Созданные ими машины имели специальное устройство для выпрямления переменного тока в постоянный - так называемый коллектор. Дальнейшее развитие конструкций генератора постоянного тока шло необычайно быстрыми темпами. Менее чем за сорок лет динамо-машина приобрела почти полностью форму современного генератора постоянного тока. Правда, обмотка этих динамо-машин была распределена по окружности неравномерно, что ухудшало работу таких генераторов - напряжение в них то возрастало, то снижалось, вызывая неприятные толчки[].

В 1870 году Зенобей Грамм предложил особую, так называемую кольцевую обмотку якоря динамо-машины. Равномерное распределение обмотки якоря давало возможность получать совершенно равномерное напряжение в генераторе и такое же вращение двигателя, что значительно улучшило свойства электрических машин. По существу, изобретение это повторяло то, что было уже создано и описано в 1860 году итальянским физиком Пачинноти, но прошло незамеченным и осталось неизвестным 3. Грамму. Машины с кольцевым якорем получили особенно большое распространение после того, как на Венской всемирной выставке в 1873 году была обнаружена обратимость электрических машин Грамма: одна и та же машина при вращении якоря давала электрический ток, при протекании тока через якорь вращалась и могла быть использована в качестве электродвигателя[7].

С этого времени начинается быстрый рост применения электродвигателей и все расширяющееся потребление электроэнергии, чему немало способствовало изобретение П. Н. Яблочковым способа освещения с помощью так называемой "свечи Яблочкова" - дуговой электролампы с параллельным расположением углей.

Простота и удобство "свечей Яблочкова", заменивших дорогие, сложные и громоздкие дуговые фонари с регуляторами для непрерывного сближения сгорающих углей, вызвали их повсеместное распространение, и вскоре "свет Яблочкова", "русский" или "северный" свет, освещал бульвары Парижа, набережные Темзы, проспекты столицы России и даже древние города Камбоджи. Это было подлинным триумфом русского- изобретателя.

Но для питания этих свечей электроэнергией потребовалось создание особых электрогенераторов, дающих не постоянный, а переменный ток, то есть ток, хотя бы и не часто, но непрерывно меняющий свою величину и направление. Это было необходимо потому, что угли, соединенные с разными полюсами генератора постоянного тока, сгорали неравномерно - анод, подключенный к положительному, сгорал вдвое быстрее катода. Переменный ток попеременно превращал анод в катод и тем самым обеспечивал равномерное сгорание углей. Специально для питания "свечей Яблочкова" и был создан самим П. Н. Яблочковым, а затем усовершенствован французскими инженерами Лонтеном и Граммом генератор переменного тока. Однако о двигателе переменного тока еще не возникало и мысли[2].

Вместе с тем для раздельного питания отдельных свечей от генератора переменного тока изобретателем был создан особый прибор - индукционная катушка (трансформатор), позволявший изменять напряжение тока в любом ответвлении цепи в соответствии с числом подключенных свечей. Вскоре растущие потребности в электроэнергии и возможности получения ее в больших количествах вступили в противоречие с ограниченными возможностями передачи ее на расстояние. Применявшееся в то время низкое напряжение (100-120 вольт) постоянного тока и передача его по проводам сравнительно небольшого сечения вызывали огромные потери в линиях передачи. С конца 70-х годов прошлого столетия основной проблемой, от успешного решения которой зависело все будущее электротехники, стала проблема передачи электроэнергии на значительные расстояния без больших потерь[3].

Первое теоретическое обоснование возможности передачи любых количеств электроэнергии на любые расстояния по проводам сравнительно небольшого диаметра без значительных потерь путем повышения напряжения было дано профессором физики Петербургского лесного института Д. А. Лачиновым в июле 1880 года. Вслед за этим французский физик и электротехник Марсель Депре в 1882 году на Мюнхенской электротехнической выставке осуществил передачу электроэнергии в несколько лошадиных сил на расстояние 57 километров с коэффициентом полезного действия в 38 процентов[7].

Позднее Депре произвел еще ряд опытов, осуществив передачу электроэнергии на расстояние в сотню километров и доведя мощность передачи до нескольких сот киловатт. Дальнейшее увеличение расстояния требовало значительного повышения напряжения. Депре довел его до 6 тысяч вольт и убедился, что изоляция пластин в коллекторе генераторов и электродвигателей постоянного тока не позволяет достигнуть более высокого напряжения.

Несмотря на все эти трудности, в начале 80-х годов развитие промышленности и концентрация производства все более и более настоятельно требовали создания нового двигателя, более совершенного, чем широко распространенная паровая машина. Уже было ясно, что электростанции выгодно строить вблизи месторождений угля или на реках с большим падением воды, в то время как фабрики возводить поближе к источникам сырья. Это зачастую требовало передачи огромных количеств электроэнергии к объектам ее потребления на значительные расстояния. Такая передача была бы целесообразна лишь при применении напряжения в десятки тысяч вольт. Но получить такое напряжение в генераторах постоянного тока было невозможно. На помощь пришли переменный ток и трансформатор: пользуясь ими, стали производить переменный ток низкого напряжения, затем повышать его до любой требуемой величины, передавать на расстояние высоким напряжением, а на месте потребления снова снижать до требуемого и использовать в токоприемниках.

Еще не существовало электродвигателей переменного тока. Ведь уже в начале 80-х годов электроэнергия потреблялась главным образом для силовых нужд. Электродвигатели постоянного тока для привода самых различных машин применялись все чаще и чаще. Создать электродвигатель, который мог бы работать на переменном токе, стало основной задачей электротехники. В поисках новых путей всегда необходимо оглянуться назад. Не было ли в истории электротехники чего-либо такого, что могло бы подсказать путь к созданию электродвигателя переменного тока? Поиски в прошлом увенчались успехом. Вспомнили: еще в 1824 году Араго демонстрировал опыт, положивший начало множеству плодотворных исследований. Речь идет о демонстрации "магнетизма вращения". Медный (не магнитный) диск увлекался вращающимся магнитом[1].

Возникла идея, нельзя ли, заменив диск витками обмотки, а вращающийся магнит вращающимся магнитным полем, создать электродвигатель переменного тока? Наверное, можно, но как получить вращение магнитного поля?

В эти годы было предложено много различных способов применения переменного тока. Добросовестный историк электротехники должен будет назвать имена различных физиков и инженеров, пытавшихся в середине 80-х годов создать электродвигатели переменного тока. Он не забудет напомнить об опытах Бейли (1879 г.), Марселя Депре (1883 г), Бредли (1887 г.), о работах Венстрома, Хазельвандера и многих других. Предложения, несомненно, были очень интересны, но ни одно из них не могло удовлетворить промышленность: электродвигатели их были либо громоздки и неэкономичны, либо сложны и ненадежны. Не был еще найден сам принцип постройки простых экономичных и надежных электродвигателей переменного тока.

Именно в этот период и начал, как мы уже знаем, поиски решения этой задачи Никола Тесла. Он шел своим путем, путем размышлений над сущностью опыта Араго, и предложил коренное решение возникшей проблемы, сразу же оказавшееся приемлемым для практических целей. Еще в Будапеште весной 1882 года Тесла ясно представил себе, что если каким-либо образом осуществить питание обмоток магнитных полюсов электродвигателя двумя различными переменными токами, отличающимися друг от друга лишь сдвигом по фазе, то чередование этих токов вызовет переменное образование северного и южного полюсов или вращение магнитного поля. Вращающееся магнитное поле должно увлечь и обмотку ротора машины.

Построив специальный источник двухфазного тока (двухфазный генератор) и такой же двухфазный электродвигатель, Тесла осуществил свою идею. И хотя конструктивно его машины были весьма несовершенны, принцип вращающегося магнитного поля, примененный в первых же моделях Теслы, оказался правильным.

Рассмотрев все возможные случаи сдвига фаз, Тесла остановился на сдвиге в 90°, то есть на двухфазном токе. Это было вполне логично - прежде чем создавать электродвигатели с большим числом фаз, следовало начать с тока двухфазного. Но можно было бы применить и другой сдвиг фаз: на 120° (трехфазный ток). Не проанализировав теоретически и не осмыслив все возможные случаи, даже не сравнив их между собой (вот в чем большая ошибка Теслы), он все свое внимание сосредоточил на двухфазном токе, создав двухфазные генераторы и электродвигатели и лишь мельком упомянул в своих патентных заявках о многофазных токах и возможности их применения.

Но Тесла не был единственным ученым, вспомнившим об опыте Араго и нашедшим решение важной проблемы. В те же годы исследованиями в области переменных токов занимался итальянский физик Галилео Феррарис, представитель Италии на многих международных конгрессах электриков (1881 и 1882 годы в Париже, 1883 год в Вене и другие). Подготавливая лекции по оптике, он пришел к мысли о возможности постановки опыта, демонстрирующего свойства световых волн. Для этого Феррарис укрепил на тонкой нити медный цилиндр, на который действовали два магнитных поля, сдвинутых под углом в 90°. При включении тока в катушки, попеременно создающие магнитные поля то в одной, то в другой из них, цилиндр под действием этих полей поворачивался и закручивал нить, в результате чего поднимался на некоторую величину вверх. Устройство это прекрасно моделировало явление, известное под названием поляризации света[1].

Феррарис и не предполагал использовать свою модель для каких-либо электротехнических целей. Это был всего лишь лекционный прибор, остроумие которого заключалось в умелом применении электродинамического явления для демонстраций в области оптики.

Феррарис не ограничился этой моделью. Во второй, более совершенной модели ему удалось достигнуть вращения цилиндра со скоростью до 900 оборотов в минуту. Но за определенными пределами, как бы ни увеличивалась в цепи сила тока, создававшего магнитные поля (другими словами, как бы ни увеличивалась затрачиваемая мощность), достигнуть увеличения числа оборотов не удавалось. Подсчеты показали, что мощность второй модели не превышала 3 ватт.

Несомненно, Феррарис, будучи не только оптиком, но и электриком, не мог не понимать значения произведенных им опытов. Однако ему, по собственному его признанию, и в голову не приходило применить этот принцип к созданию электродвигателя переменного тока. Самое большое, что он предполагал, это использовать его для измерения силы тока, и даже начал конструировать такой прибор.

18 марта 1888 года в Туринской Академии наук Феррарис сделал доклад "Электродинамическое вращение, произведенное с помощью переменных токов". В нем он рассказал о своих опытах и пытался доказать, что получение в таком приборе коэффициента полезного действия свыше 50 процентов невозможно. Феррарис был искренне убежден, что, доказав нецелесообразность использования переменных магнитных полей для практических целей, он оказывает науке большую услугу. Доклад Феррариса опередил сообщение Николы Теслы в Американском институте электроинженеров. Но заявка, поданная для получения патента еще в октябре 1887 года, свидетельствует о несомненном приоритете Теслы перед Феррарисом. Что же касается публикации, то статья Феррариса, доступная для чтения всем электрикам мира, была опубликована лишь в июне 1888 года, то есть после широко известного доклада Теслы.

На утверждение Феррариса, что работы по изучению вращающегося магнитного поля начаты им в 1885 году, Тесла имел все основания возразить, что он занимался этой проблемой еще в Граце, решение ее нашел в 1882 году, а в 1884 году в Страсбурге демонстрировал действующую модель своего двигателя Но, конечно, дело не только в приоритете. Несомненно, оба ученых сделали одно и то же открытие независимо друг от друга: Феррарис не мог знать о патентной заявке Теслы, так же как и последний не мог знать о работах итальянского физика.

Гораздо важнее то, что Г. Феррарис, открыв явление вращающегося магнитного поля и построив свою модель мощностью в 3 ватта, и не думал об их практическом использовании. Более того: если бы ошибочный вывод Феррариса о нецелесообразности применения переменных многофазных токов был принят, то человечество еще несколько лет было бы направлено по ложному пути и лишено возможности широкого использования электроэнергии в самых различных отраслях производства и быта. Заслуга Николы Теслы и заключается в том, что, несмотря на множество препятствий и скептическое отношение к переменному току, он практически доказал целесообразность применения многофазного тока. Созданные им первые двигатели двухфазного тока, хотя и имели ряд недостатков, привлекли внимание электротехников всего мира и возбудили интерес к его предложениям[1].

Однако статья Галилео Феррариса в журнале "Атти ди Турино" сыграла огромную роль в развитии электротехники. Ее перепечатал один крупный английский журнал, и номер с этой статьей попал в руки другого ученого, теперь заслуженно признанного создателем современной электротехники трехфазного тока[1].

 

 

Известны различными по конструкции трансформаторы Тесла от простейших с разрядником до современных схем с задающими высокочастотными генераторами для его первичной обмотки, выполненных как на полупроводниковых так и на ламповых схемах.

 Схема простейшего трансформатора Тесла:

 В элементарной форме трансформатор Теслы состоит из двух катушек, первичной и вторичной, и обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как “выход”).

Рисунок 7 - Простейшая схема трансформатора Тесла

Рисунок 8 – Трансформатор Тесла в действии

Первичная катушка построена из 5—30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов, здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.

 Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.

 Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияет на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств[10].

 

 

 

 

 

Ставшие привычными в нашей повседневной жизни вещи, использующие электроэнергию, являются плодами научной и технической мысли многих поколений ученых. Часто понимание практической ценности и значимости открытых явлений приходило с запозданием или приходило со следующим поколением ученых.

Однако, нельзя не отметить, что именно развитие электротехники, способствовало ускорению технического прогресса. Создание и развитие электрических машин постоянного и переменного тока позволило проектировать гибкие системы управления, что не могло быть реализуемо на двигателях, использующих энергию газа и жидкости. Развитие микропроцессорной техники позволило создавать мощные компьютеры, участвующие в экспериментах физиков-теоретиков, открывающих тайны мироздания (БАК в Церне).

По моему глубокому убеждению, в области электротехники осталось еще не мало загадок, тайн и великих открытий.

1.           В.З. Озерников «Неслучайные случайности. Рассказы о великих открытиях и выдающихся ученых»

2.           Л.С.Жданов, В.А.Маранджян «Курс физики»

3.           Справочник школьника под редакцией А.Барашкова

4.           М.И.Блудов «Беседы по физике»

5.           М.И.Яковлева «Физиологические механизмы действия электромагнитных полей»

6.           А.А.Боровой, Э.Б. Финкельштейн, А.Н.Херувимов «Законы электромагнетизма»

7.           И.Е. Иродов «Электромагнетизм. Основные законы. Курс физики».

8.           В.П. Сафронов, Б.Б. Конкин, В.А.Ваган «Физика: Краткий курс»

 

 

[1] http://ru.wikipedia.org/wiki/Электричество

[2] http://ru.wikipedia.org/wiki/Молниеотвод

[3] http://chem03.ru/index.php?id=125

[4] http://it.fitib.altstu.ru/neud/oe/index.php?doc=teor&module=2

[5] http://www.omagnetizme.ru/

[6] http://sfiz.ru/page.php?id=62

[7] http://dic.academic.ru/dic.nsf/es/45545/

[8] http://ru.wikipedia.org/wiki/Электромагнетизм

[9] http://grachev.distudy.ru/Uch_kurs/sredstva/Templ_1/templ_1_1.htm

[10] http://www.sciteclibrary.ru/rus/catalog/pages/9710.html

ext.spb.ru

Изобретение электричества: история, применение, получение

Одной из важнейших вех в истории планеты является изобретение электричества. Именно это открытие помогает и по сей день развиваться нашей цивилизации. Электричество – один из наиболее экологичных видов энергии. Кому принадлежит открытие этого явления? Каким образом электричество получают и применяют? Можно ли самостоятельно создать гальванический элемент?

изобретение электричества

История изобретения электричества кратко

Электричество было обнаружено еще в 7 веке до нашей эры древнегреческим философом Фалесом. Он выяснил, что натертый шерстью янтарь способен притягивать меньшие по массе предметы.

Однако масштабные эксперименты с электричеством начинаются в эпоху возрождения в Европе. В 1650 г. магдебургским бургомистром фон Герике была построена электростатическая установка. В 1729 г. Стивеном Греем был поставлен опыт по передаче электроэнергии на расстояние. В 1747 Бенджамин Франклин издал очерк, где была собраны все известные факты об электричестве и выдвинуты новые теории. В 1785-м был открыт закон Кулона.

1800 год стал переломным: итальянец Вольт изобретает первый источник постоянного тока. В 1820-м датским ученым Эрстедом было обнаружено электромагнитное взаимодействие предметов. Годом позднее Ампер выяснил, что магнитное поле создается электрическим током, но не статическими зарядами.

Такие великие исследователи, как Гаусс, Джоуль, Ленц, Ом внесли неоценимый вклад в изобретение электричества. Год 1830-й также стал важным, ведь Гауссом была разработана теория электростатического поля. Явление электромагнитной индукции и разработка двигателя, работающего на токе, принадлежит Майклу Фарадею.

В конце 19 века опыты с электричеством проводились многими учеными, в их числе Пьер Кюри, Лачинов, Герц, Томсон, Резерфорд. В начале 20 века появилась теория квантовой электродинамики.

история изобретения электричества

Электричество в природе

Открытие и изобретение электричества произошло уже очень давно. Однако ранее считалось, что в природе его просто нет. Но американец Франклин выяснил, что такое явление, как молния, имеет чисто электрическую природу. Долгое время его точка зрения отвергалась научным сообществом.

Электричество имеет огромное значение в природе. Многие ученые полагают, что благодаря разрядам молний осуществился синтез аминокислот, в результате чего на Земле зародилась жизнь. Без нервных импульсов невозможно функционирование организма ни одного животного. Существуют разновидности морских организмов, которые применяют электричество как средство для обороны, нападения, ориентации в пространстве и поиска пищи.

изобретение электричества год

Получение электричества

Изобретение электричества оказало влияние на научно-технический прогресс. Для получения электроэнергии создаются вот уже на протяжении многих десятилетий электростанции. Электричество создается с помощью генераторов энергии, а затем оно передается по ЛЭП. Принцип создания тока заключается в переводе механической энергии в электрическую. Электростанции подразделяются на следующие типы:

  • атомные;
  • ветровые;
  • гидроэнергетические;
  • приливно-отличные;
  • солнечные;
  • тепловые.

Применение электричества

Изобретение электричества по праву является величайшим открытием, ведь без него становится невозможной современная жизнь. Оно имеется почти в каждом доме и применяется для освещения, обмена информацией, приготовления пищи, обогрева, функционирования бытовых приборов. Также электроэнергия необходима для движения трамваем, троллейбусов, метро, электропоездов. Работа компьютера, сотового телефона тоже невозможна без электричества.

изобретение электричества дата

Любопытный опыт

Оказывается, гальванический элемент можно изготовить самостоятельно, и делается это достаточно просто. Такой способ получил известность в начале 20 века.

Для начала необходимо пополам разрезать достаточно острым ножом лимон посередине. Крайне нежелательно снимать или срывать перегородки между дольками. После этого нужно к каждой дольке подсоединить поочередно небольшой кусок проволоки, размером около 2 сантиметров. В ячейках должны чередоваться медная и цинковая проволоки. Затем следует концы торчащих проволок последовательно соединить металлической проволокой меньшего диаметра. Таким образом можно получить элемент питания. Как проверить, работает ли он? Для этого можно замерить напряжение вольтметром.

Одним из важнейших открытий в истории человечества стало изобретение электричества. Дата открытия точно неизвестна. Однако эксперименты начал проводить еще древнегреческий ученый Фалес. Активное изучение электричества началось в эпоху возрождения. Без него невозможна деятельность ни одного живого организма. Сегодня без этого изобретения мы практически не можем представить свою жизнь. Люди уже давно научились получать, передавать и использовать электроэнергию.

fb.ru

Кто открыл электричество? Исследования и открытия

Трудно найти человека, который не был бы знаком с электричеством. А вот найти того, кто знает историю его открытия, гораздо сложнее. Кто открыл электричество? Что представляет собой это явление?

Немного об электричестве

Понятие «электричество» обозначает форму движения материи, охватывает явление существования и взаимодействия заряженных частиц. Термин появился в 1600 году от слова «электрон», что с греческого переводится как «янтарь». Автор этого понятия – Уильям Гилберт – человек открывший электричество Европе.

Это понятие, прежде всего не искусственное изобретение, а явление, связанное со свойством некоторых тел. Поэтому на вопрос: "Кто открыл электричество?" - ответить не так легко. В природе оно проявляется в виде молний, что обусловлено различными зарядами верхних и нижних слоев атмосферы планеты.

кто открыл электричество

Оно является важной частью жизни человека и животных, ведь работа нервной системы осуществляется благодаря электрическим импульсам. Некоторые рыбы, например, скаты и угри, генерируют электричество для поражения добычи или врага. Многие растения, такие как венерина мухоловка, мимоза стыдливая, также способны вырабатывать электрические разряды.

Кто открыл электричество?

Существует предположение, что люди изучали электричество ещё в Древнем Китае и Индии. Однако подтверждения этому нет. Более достоверно считать, что открыл статическое электричество древнегреческий ученый Фалес.

Он был известным математиком и философом, проживал в городе Милет, примерно в VI-V веках до нашей эры. Считается, что Фалес обнаружил свойство янтаря притягивать мелкие предметы, например перо или волос, если натереть его шерстяной тканью. Никакого практического применения такому явлению не нашлось, и его оставили без внимания.

В 1600 году англичанин Уильям Гилберт публикует труд о магнитных телах, где приводятся факты о родственной природе магнетизма и электричества, а также приводятся доказательства, что наэлектризовываться, кроме янтаря, могут и другие минералы, например, опал, аметист, алмаз, сапфир. Тела, способные наэлектризовываться ученый окрестил электриками, а само свойство – электричеством. Именно он впервые предположил, что молния связана с электричеством.

открыл статическое электричество

Электрические опыты

После Гилберта исследованиями в этой области занялся немецкий бургомистр Отто фон Герике. Он, хоть и не был тем, кто первый открыл электричество, все же сумел повлиять на ход научной истории. Отто стал автором электростатической машины, которая выглядела как серный шар, вращающийся на металлическом стержне. Благодаря этому изобретению удалось узнать, что наэлектризованные тела могут не только притягиваться, но и отталкиваться. Исследования бургомистра легли в основу электростатики.

Далее последовала череда исследований, в том числе с использованием электростатической машины. Стивен Грей в 1729 году изменил устройство Герике, заменив серный шар стеклянным, и, продолжив опыты, открыл явление электропроводности. Чуть позже Шарль Дюфе обнаруживает наличие двух видов заряда – от стекла и от смол.

В 1745 году Питер ван Мушенбрук и Юрген фон Клейст, считая, что вода накапливает заряд, создают «лейденскую банку» - первый в мире конденсатор. Бенджамин Франклин утверждает, что накапливает заряд не вода, а стекло. Он также вводит термины «плюс» и «минус» для электрических зарядов, "конденсатор", "заряд" и "проводник".

ученый открывший электричество

Великие открытия

В конце XVIII века электричество становится серьезным объектом исследований. Теперь особое внимание уделяется изучению динамических процессов и взаимодействию частиц. На сцену выходит электрический ток.

В 1791 году Гальвани говорит о существовании физиологического электричества, которое присутствует в мышцах животных. Вслед за ним Алессандро Вольта изобретает гальванический элемент - вольтов столб. Это был первый источник постоянного тока. Таким образом, Вольта - ученый, открывший электричество заново, ведь его изобретение послужило началом для практического и многофункционального применения электричества.

В 1802 году происходит открытие вольтовой дуги Василием Петровым. Антуан Нолле создает электроскоп и исследует эффект электричества на живые организмы. А уже в 1809 году Физик Деларю изобретает лампу накаливания.

Далее изучается связь магнетизма и электричества. Над исследованиями работают Ом, Ленц, Гаусс, Ампер, Джоуль, Фарадей. Последний создает первый генератор энергии и электродвигатель, открывает закон электролиза и электромагнитную индукцию.

В XX веке исследованиями электричества занимается также Максвелл (теория электромагнитных явлений), Кюри (открыл пьезоэлектричество), Томсон (открыл электрон) и многие другие.

кто первый открыл электричество

Заключение

Конечно, нельзя с уверенностью сказать, кто открыл электричество на самом деле. Явление это существует в природе, и вполне возможно, что открыли его ещё до Фалеса. Однако многие ученые, такие как Уильям Гилберт, Отто фон Герике, Вольта и Гальвани, Ом, Ампер, определенно внесли свой вклад в нашу сегодняшнюю жизнь.

fb.ru

История развития электричества

История развития электричества

Ученые Вашингтонского университета доказали, что с появлением электричества люди стали спать гораздо меньше, поскольку исчезла необходимость ложиться с заходом солнца. Diletant. media и «Ростех» расскажут о том, как учёные смогли совладать с электрическими зарядами.

Первый опыт

Вплоть до начала XVII века знания об электричестве ограничивались размышлениями античных философов, которые в своё время заметили, что потертый об шерсть янтарь имеет свойство притягивать маленькие предметы. Янтарь по-гречески, кстати, именно так и звучит — «электрон». Само название «электричество», соответственно, и произошло от янтаря.

Изображение 1.jpg

Устройство для получения статического электричества Отто фон Герике

Отто фон Герике, вероятно, первый наблюдал электролюминесценцию в 1663 г.

Именно эффект трения (как в случае с шерстью и янтарем) использовал Отто фон Герике для создания одного из первых в мире электрических генераторов. Он натирал руками шар из серы, а ночью видел, как его шар излучает свет и потрескивает. Он, вероятно, одним из первых наблюдал электролюминесценцию уже в 1663 году.

Учёный и шутник Стивен Грей

Стивен Грей — британский астроном-любитель, всю жизнь едва сводивший концы с концами — как-то раз заметил, что пробка, заткнувшая стеклянную трубку, притягивает мелкие кусочки бумаги, если трубку натереть. Затем вместо пробки любопытный учёный вставил длинную щепку и заметил такой же эффект. После этого Стивен Грей заменил щепку на пеньковую верёвку. В результате своих опытов Грей смог передать электрический заряд на расстояние восьмисот футов. По сути, учёный смог открыть явление передачи электричества на расстоянии и дать людям представление о том, что может проводить ток, а что нет.

Стивен Грей смог открыть передачу электричества на расстоянии

Изображение 2.jpg

Стивен Грей стал первым лауреатом Медали Копли, высшей награды Королевского общества Великобритании

Некоторые источники утверждают, что на своём открытии Стивен Грей сделал забавный бизнес. Он якобы брал мальчишек из приюта Чартерхаус и подвешивал их на шнурках из изолирующего материала. После этого он «электрифицировал его прикосновением натертого стекла и высекал искры из его носа».

Лейденская банка

У Питера ван Мушенбрука, ученика Ньютона, изобретательство, можно сказать, было в крови, так как его отец занимался созданием специализированных научных приборов.

Изображение 3.jpg

Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру

Став преподавателем философии Лейденского университета, Мушенбрук направил свои силы на изучение нового на тот момент явления — электричества. Его научная деятельность дала результаты: в 1745 году он вместе со своим учеником соорудил устройство для накопления заряда, так называемую Лейденскую банку. Отчет об этом событии выглядит очень комично: «Банку устроил голландский физик Мушенбрук, впервые испытал удар от разряда банки лейденский гражданин Кюнеус».

Некто Бозе высказал желание быть убитым электричеством

Создание Лейденской банки продвинуло эксперименты с электричеством на новый уровень. Некто Бозе даже высказал желание быть убитым электричеством, если об этом напишут в изданиях Парижской академии наук. Кстати, именно Мушенбрук впервые сравнил действие разряда с ударом ската, первым употребив термин «электрическая рыба».

Электрическая панацея

После изобретения Лейденской банки опыты с электричеством приобрели небывалую популярность. Почему-то люди стали считать, что электрические разряды обладают врачебными свойствами. На волне этого заблуждения Мэри Шелли написала роман «Франкенштейн, или Современный Прометей», в котором умершего смогли оживить с помощью сильного разряда тока.

Изображение 4.jpg

Обложка книги «Франкенштейн, или Современный Прометей», 1831 год

Аббе Нолле придумал, используя электричество, необычную забаву. В Версале, демонстрируя королю Людовику чудеса электричества, учёный в 1746 году выстроил монахов в 270-метровую цепь, соединив друг с другом кусками железной проволоки. Когда всё было готово, Нолле подал электричество, и монахи в ту же секунду вскрикнули и вместе подпрыгнули. Ещё практически через сто лет Максвелл подсчитает, что электричество распространяется со скоростью света.

Вольт и гальванический элемент

Эти хорошо знакомые нам обозначения на самом деле произошли от фамилий двух учёных — Александро Вольта и Луиджи Гальвани.

Изображение 5.jpeg

Лаборатория, в которой Гальвани проводил свои опыты

Обозначение «вольт» произошло от фамилии ученого — Александро Вольта

Первый опустил пластины из цинка и меди в кислоту, тем самым получив непрерывный электрический ток, а второй первым исследовал электрические явления при мышечном сокращении. В дальнейшем эти открытия сыграли важнейшую роль в становлении науки об электричестве. На открытия Вольта и Гальвани будут опираться работы Ампера, Джоуля, Ома и Фарадея.

Судьбоносный подарок

Майкл Фарадей, ученик переплетчика в лондонском книжном магазине, заприметил книжку по электричеству и химии. Чтение настолько увлекло его, что уже тогда он сам пытался проводить простейшие опыты с электричеством. Отец, поощряя тягу сына к знаниям, даже купил тому Лейденскую банку, что позволило молодому Фарадею проводить более серьёзные опыты.

Изображение 6.jpg

Фарадей за опытами в своей лаборатории

Фарадей сыграл едва ли не главную роль в становлении теории электричества

Как выяснилось, подарок скончавшегося вскоре отца оказал огромное влияние на юношу — через двадцать лет Фарадей откроет явление электромагнитной индукции, соберёт первый в мире генератор электроэнергии и электродвигатель, выведет законы электролиза и сыграет едва ли не главную роль в становлении теории электричества.

'+$(this).find('.num-quest').html()+'. '+ $(this).find('.x_big-i').html() +'

diletant.media

История изучения и развития электричества

История электричестваИстория электричества, с чего же она началась? Я думаю, на этот вопрос вряд ли кто даст точный, исчерпывающий ответ. Но все же попробуем разобраться.

Явления, связанные с электричеством были замечены в древнем Китае, Индии и древней Греции за несколько столетий до начала нашей эры. Около 600 года до н.э., как гласят сохранившиеся предания, древнегреческому философу Фалесу Милетскому было известно свойство янтаря, натертого об шерсть, притягивать легкие предметы. Кстати словом “ электрон” древние греки называли янтарь. От него же пошло и слово “электричество”. Но греки всего лишь наблюдали явления электричества, но не могли объяснить.

Лишь в 1600 году придворный врач английской королевы Елизаветы Уильям Гилберт с помощью своего электроскопа доказал, что способность притягивать легкие тела имеет не только натертый янтарь, но и другие минералы: алмаз, сапфир, опал, аметист и др. В этом же году он издает труд “О магните и магнитных телах”, где изложил целый свод знаний о магнетизме и электричестве.

В 1650 году немецкий ученый и по совместительству бургомистр Магдебурга Отто фон Герике создает первую “электрическую машину”. Она представляла собой шар, отлитый из серы, при вращении и натирании которой, притягивались и отталкивались легкие тела. В последствии его машину усовершенствовали немецкие и французские ученые.

В 1729 году англичанин Стивен Грей обнаружил способность некоторых веществ, проводить электричество. Он, по сути, впервые ввел понятие проводников и непроводников электричества.

В 1733 году французский физик Шарль Франсуа Дюфе обнаружил два вида электричества:”смоляное” и “стеклянное”. Одно возникает в янтаре, шелке, бумаге; второе – в стекле, драгоценных камнях, шерсти.

В 1745 году голландский физик и математик Лейденского университета Питер ван Мушенбрук обнаружил, что стеклянная банка оклеенная оловянной фольгой, способна накапливать электричество. Мушенбрук назвал ее лейденская банка. Это по сути был первый электрический конденсатор.

В 1747 году член Парижской Академии наук физик Жан Антуан Нолле изобрел электроскоп – первый прибор для оценки электрического потенциала. Также он сформулировал теорию действия электричества на живые организмы и выявил свойство электричества “стекать” быстрее с более острых тел.

В 1747-1753 гг. американский ученый и государственный деятель Бенджамин Франклин   провел ряд исследований и сопутствующих им открытий. Ввел используемое до сих пор понятие двух заряженных состояний: «+» и «-». Объяснил действие лейденской банки, установив определяющую роль диэлектрика между проводящими обкладками. Установил электрическую природу молнии. Предложил идею молниеотвода, установив, что металлические острия соединенные с землей снимают электрические заряды с заряженных тел. Выдвинул идею электрического двигателя. Впервые применил для зажигания пороха электрическую искру.

В 1785-1789 гг. французский физик Шарль Огюстен Кулон публикует ряд работ о взаимодействии электрических зарядов и магнитных полюсов. Проводит доказательство расположения электрических зарядов на поверхности проводника. Вводит понятия магнитного момента и поляризации зарядов.

В 1791 году итальянским врачом и анатомом Луиджи Гальвани было обнаружено возникновения электричества при соприкосновении двух разнородных металлов с живым организмом. Обнаруженный им эффект лежит в основе современных электрокардиографов.

В 1795 году другой итальянский ученый Алессандро Вольта, исследуя обнаруженный предшественником эффект, доказал, что электрический ток возникает между парой разнородных металлов разделенных специальной проводящей жидкостью.

В 1801 году русский ученый Василий Владимирович Петров установил возможность практического использования электрического тока для нагрева проводников, наблюдал явление электрической дуги в вакууме и различных газах. Выдвинул идею использования тока для освещения и плавки металлов.

В 1820 году датский физик Ханс Христиан Эрстэд установил связь между электричеством и магнетизмом, что заложило основы формирования современной электротехники. В этом же году французский физик Андре Мари Ампер сформулировал правило определения направления действия электрического тока на магнитное поле. Он впервые объединил электричество и магнетизм и сформулировал законы взаимодействия электрических и магнитных полей.

В 1827 году немецкий ученый Георг Симон Ом открыл свой закон (закон Ома) – один из фундаментальных законов электричества, устанавливающий зависимость между силой тока и напряжением.

В 1831 году английский физик Майкл Фарадей открыл явление электромагнитной индукции, что приводит к формированию новой отрасли промышленности – электротехники.

В 1847 году немецкий физик Густав Роберт Кирхгоф сформулировал законы для токов и напряжений в электрических цепях.

Конец XIX- начало XX веков  был полон открытий связанных с электричеством. Одно открытие порождало целую цепь открытий в течении нескольких десятилетий. Электричество из предмета исследования начало превращаться в предмет потребления. Началось его широкое внедрение в различные области производства. Были изобретены и созданы электрические двигатели, генераторы, телефон, телеграф, радио. Начинается внедрение электричества в медицину.

В 1878 году улицы Парижа осветили дуговые лампы Павла Николаевича Яблочкова. Появляются первые электростанции. Не так давно кажущееся чем-то невероятным и фантастическим, электричество становиться привычным и незаменимым помощником человечества.

 

< Предыдущая Следующая >
 

scsiexplorer.com.ua

История электричества

Электричество, совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрических зарядов - электростатического поля).

Развитие электроэнергетической базы страны

Развитие электроэнергетической базы страны.

Движущиеся заряды (электрический ток) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством которого осуществляется электромагнитное взаимодействие (учение о магнетизме является составной частью общего учения об электричестве). Электромагнитные явления описываются классической электродинамикой, в основе которой лежат Максвелла уравнения

Законы классической теории электричества охватывают огромную совокупность электромагнитных процессов. Среди 4 типов взаимодействий (электромагнитных, гравитационных, сильных и слабых), существующих в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц противоположных знаков, взаимодействия между которыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой - являются дальнодействующими в отличие от сильных взаимодействий. Строение атомных оболочек, сцепление атомов в молекулы (химические силы) и образование конденсированного вещества определяются электромагнитным взаимодействием.

Опыты по электролечению

Опыты по электролечению.

Простейшие электрические и магнитные явления известны ещё с глубокой древности. Были найдены минералы, притягивающие кусочки железа, а также обнаружено, что янтарь (греч. электрон, elektron, отсюда термин электричество), потёртый о шерсть, притягивает лёгкие предметы (электризация трением). Однако лишь в 1600 У. Гильберт впервые установил различие между электрическими и магнитными явлениями. Он открыл существование магнитных полюсов и неотделимость их друг от друга, а также установил, что земной шар - гигантский магнит.

В XVII - 1-й половине XVIII вв. проводились многочисленные опыты с наэлектризованными телами, были построены первые электростатические машины, основанные на электризации трением, установлено существование электрических зарядов двух родов (Ш. Дюфе), обнаружена электропроводность металлов (английский учёный С. Грей). С изобретением первого конденсатора - лейденской банки (1745) - появилась возможность накапливать большие электрические заряды. В 1747-53  Франклин изложил первую последовательную теорию электрических явлений, окончательно установил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине XVIII в. началось количественное изучение электрических и магнитных явлений. Появились первые измерительные приборы - электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и  Ш.Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов (работы Кавендиша были опубликованы лишь в 1879).

Схема мультипликатора Швейггера

Схема мультипликатора Швейггера.

Этот основной закон электростатики (Кулона закон) впервые позволил создать метод измерения электрических зарядов по силам взаимодействия между ними. Кулон установил также закон взаимодействия между полюсами длинных магнитов и ввёл понятие о магнитных зарядах, сосредоточенных на концах магнитов.

Следующий этап в развитии науки об электричестве связан с открытием в конце XVIII в. Л.Гальвани "животного электричества" и работами А.Вольты, который изобрёл первый источник электрического тока - гальванический элемент (т. н. вольтов столб, 1800), создающий непрерывный (постоянный) ток в течение длительного времени. В 1802 В.В.Петров, построив гальванический элемент значительно большей мощности, открыл электрическую дугу, исследовал её свойства и указал на возможность применений её для освещения, а также для плавления и сварки металлов. Г. Дэви электролизом водных растворов щелочей получил (1807) неизвестные ранее металлы - натрий и калий. Дж,П.Джоуль установил (1841), что количество теплоты, выделяемой в проводнике электрическим током, пропорционально квадрату силы тока; этот закон был обоснован (1842) точными экспериментами Э.Х.Ленца (закон Джоуля - Ленца).

Г.Ом установил (1826) количественную зависимость электрического тока от напряжения в цепи. К.Ф.Гаусс сформулировал (1830) основную теорему электростатики.

Схема опыта Фарадея

Схема опыта Фарадея.

Наиболее фундаментальное открытие было сделано Х.Эрстедом в 1820; он обнаружил действие электрического тока на магнитную стрелку - явление, свидетельствовавшее о связи между электричеством и магнетизмом. Вслед за этим в том же году А.М.Ампер установил закон взаимодействия электрических токов (Ампера закон). Он показал также, что свойства постоянных магнитов могут быть объяснены на основе предположения о том, что в молекулах намагниченных тел циркулируют постоянные электрические токи (молекулярные токи). Т. о., согласно Амперу, все магнитные явления сводятся к взаимодействиям токов, магнитных же зарядов не существует. Со времени открытий Эрстеда и Ампера учение о магнетизме сделалось составной частью учения об электричестве.

Со 2-й четверти XIX в. началось быстрое проникновение электричества в технику. В 20-х гг. появились первые электромагниты. Одним из первых применений электричества был телеграфный аппарат, в 30-40-х гг. построены электродвигатели и генераторы тока, а в 40-х гг.- электрические осветительные устройства и т. д. Практическое применение электричества в дальнейшем всё более возрастало, что в свою очередь оказало существенное, влияние на учение об электричестве.

В 30-40-х гг. XIX в. в развитие науки об электричестве внёс большой вклад М.Фарадей - творец общего учения об электромагнитных явлениях, в котором все электрические и магнитные явления рассматриваются с единой точки зрения. С помощью опытов он доказал, что действия электрических зарядов и токов не зависят от способа их получения [до Фарадея различали "обыкновенное" (полученное при электризации трением), атмосферное, "гальваническое", магнитное, термоэлектрическое, "животное" и другие виды Э.].

Опыт Араго ("магнетизм вращения")

Опыт Араго ("магнетизм вращения").

В 1831 Фарадей открыл индукцию электромагнитную - возбуждение электрического тока в контуре, находящемся в переменном магнитном поле. Это явление (наблюдавшееся в 1832 также Дж. Генри) составляет фундамент электротехники. В 1833-34 Фарадей установил законы электролиза; эти его работы положили начало электрохимии. В дальнейшем он, пытаясь найти взаимосвязь электрических и магнитных явлений с оптическими, открыл поляризацию диэлектриков (1837), явления парамагнетизма и диамагнетизма (1845), магнитное вращение плоскости поляризации света (1845) и др.

Фарадей впервые ввёл представление об электрическом и магнитном полях. Он отрицал концепцию дальнодействия, сторонники которой считали, что тела непосредственно (через пустоту) на расстоянии действуют друг на друга.

Согласно идеям Фарадея, взаимодействие между зарядами и токами осуществляется посредством промежуточных агентов: заряды и токи создают в окружающем пространстве электрическое или (соответственно) магнитное поля, с помощью которых взаимодействие передаётся от точки к точке (концепция близкодействия). В основе его представлений об электрическом и магнитном полях лежало понятие силовых линий, которые он рассматривал как механические образования в гипотетической среде - эфире, подобные растянутым упругим нитям или шнурам.

Идеи Фарадея о реальности электромагнитного поля не сразу получили признание. Первая математическая формулировка законов электромагнитной индукции была дана ф. Нейманом в 1845 на языке концепции дальнодействия.

Устройство электродвигателя Бурбуза

Устройство электродвигателя Бурбуза.

Им же были введены важные понятия коэффициентов само- и взаимоиндукции токов. Значение этих понятий полностью раскрылось позднее, когда У. Томсон (лорд Кельвин) развил (1853) теорию электрических колебаний в контуре, состоящем из конденсатора (электроёмкость) и катушки (индуктивность).Большое значение для развития учения об электричестве имело создание новых приборов и методов электрических измерений, а также единая система электрических и магнитных единиц измерений, созданная Гауссом и В.Вебером.

В 1846 Вебер указал на связь силы тока с плотностью электрических зарядов в проводнике и скоростью их упорядоченного перемещения. Он установил также закон взаимодействия движущихся точечных зарядов, который содержал новую универсальную электродинамическую постоянную, представляющую собой отношение электростатических и электромагнитных единиц заряда и имеющую размерность скорости.

При экспериментальном определении (Вебер и ф. Кольрауш, 1856) этой постоянной было получено значение, близкое к скорости света; это явилось определённым указанием на связь электромагнитных явлений с оптическими.

Схема устройства Колеса Барлоу

Схема устройства Колеса Барлоу.

В 1861-73 учение об электричестве получило своё развитие и завершение в работах Дж. К. Максвелла. Опираясь на эмпирические законы электромагнитных явлений и введя гипотезу о порождении магнитного поля переменным электрическим полем, Максвелл сформулировал фундаментальные уравнения классической электродинамики, названные его именем. При этом он, подобно Фарадею, рассматривал электромагнитные явления как некоторую форму механических процессов в эфире.

Главное новое следствие, вытекающее из этих уравнений, - существование электромагнитных волн, распространяющихся со скоростью света. Уравнения Максвелла легли в основу электромагнитной теории света. Решающее подтверждение теория Максвелла нашла в 1886-89, когда  Г.Герц экспериментально установил существование электромагнитных волн. После его открытия были предприняты попытки установить связь с помощью электромагнитных волн, завершившиеся созданием радио, и начались интенсивные исследования в области радиотехники.

В конце XIX - начале XX вв. начался новый этап в развитии теории электричества. Исследования электрических разрядов увенчались открытием Дж. Дж. Томсоном дискретности электрических зарядов. В 1897 он измерил отношение заряда электрона к его массе, а в 1898 определил абсолютную величину заряда электрона. Х. Лоренц, опираясь на открытие Томсона и выводы молекулярно-кинетической теории, заложил основы электронной теории строения вещества. В классической электронной теории вещество рассматривается как совокупность электрически заряженных частиц, движение которых подчинено законам классической механики. Уравнения Максвелла получаются из уравнений электронной теории статистическим усреднением.

Внешний вид первого двигателя Якоби

Внешний вид первого двигателя Якоби.

Попытки применения законов классической электродинамики к исследованию электромагнитных процессов в движущихся средах натолкнулись на существенные трудности. Стремясь разрешить их, А. Эйнштейн пришёл (1905) к относительности теории. Эта теория окончательно опровергла идею существования эфира, наделённого механическими свойствами. После создания теории относительности стало очевидно, что законы электродинамики не могут быть сведены к законам классической механики.

На малых пространственно-временных интервалах становятся существенными квантовые свойства электромагнитного поля, не учитываемые классической теорией электричества. Квантовая теория электромагнитных процессов - квантовая электродинамика - была создана во 2-й четверти XX в. Квантовая теория вещества и поля уже выходит за пределы учения об электричестве, изучает более фундаментальные проблемы, касающиеся законов движения элементарных частиц и их строения.

С открытием новых фактов и созданием новых теорий значение классического учения об электричестве не уменьшилось, были определены лишь границы применимости классической электродинамики. В этих пределах уравнения Максвелла и классическая электронная теория сохраняют силу, являясь фундаментом современной теории электричества.

Классическая электродинамика составляет основу большинства разделов электротехники, радиотехники, электроники и оптики (исключение составляет квантовая электроника). С помощью её уравнений было решено огромное число задач теоретического и прикладного характера. В частности, многочисленные проблемы поведения плазмы в лабораторных условиях и в космосе решаются с помощью уравнений Максвелла.

Поделитесь полезной статьей:

Top

fazaa.ru

История Электричества.

Начало

ГЛАВА ЧЕТВЕРТАЯ

Из истории электротехники. "Сказка об электричестве". Века и люди. Тесла или Феррарис? Михаил Осипович Доливо-Добровольский

Начнем наш рассказ словами самого Теслы, написавшего незадолго до смерти замечательный очерк истории электротехники "Сказку об электричестве": "Кто действительно хочет помять все величие нашего времени, тот должен познакомиться с историей науки об электричестве. И тогда он узнает сказку, какой нет и среди сказок "Тысячи и одной ночи".

Впервые явления, ныне называемые электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Сохранившиеся предания гласят, что древнегреческому философу Фалесу Милетскому (640-550 гг. до н. э.) было уже известно свойство янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря - "электрон" - явление это позднее получило наименование электризации.

Об янтаре в "Сказке" Теслы мы находим следующие поэтические строки: "Рассказ начинается задолго до начала нашей эры, в те времена, когда Фалес, Теофраст и Плиний говорили о чудесных свойствах "электрона" (янтаря), этого удивительного вещества, возникшего из слез Гелиад, сестер несчастного юноши Фаэтона, который пытался овладеть колесницей Феба и едва не сжег всю землю" Однако, создав поэтические легенды о янтаре, греки не продолжали изучения его свойств. Римляне ничего не прибавили к знаниям древних греков, а в средние века было забыто и то, что знали о янтаре в древнем мире. Только в конце XVI века придворный врач английской королевы Елизаветы Уильям Гильберт изучил все, что было известно о свойствах янтаря древним народам, и сам провел немало опытов с янтарем и магнитами. В 1600 году он издал большой труд "О магните, магнитных телах и о самом большое магните - Земле" - настоящий свод знаний того времени об электричестве и магнетизме.

Гильберт впервые обнаружил, что свойства электризации присущи не только янтарю, но и алмазу, сере, смоле. Он заметил также, что некоторые тела, например металлы, камни, кость, не электризуются, и разделил все тела, встречающиеся в природе, на электризуемые и неэлектризуемые. Обратив особое внимание на первые, он производил опыты по изучению их свойств. В середине XVII века известный немецкий ученый, бургомистр города Магдебурга, изобретатель воздушного насоса Отто фон Г ерике построил специальную "электрическую машину", представлявшую шар из серы величиной с детскую голову, насаженный на ось. Если при вращении шара его натирали ладонями рук, он вскоре приобретал свойство притягивать и отталкивать легкие тела. На протяжении нескольких столетий машину Герике значительно усовершенствовали англичанин Хоксби, немецкие ученые Бозе, Винклер и другие. Опыты с этими машинами привели к ряду важных открытий: в 1707 году французский физик дю Фей обнаружил различие между электричеством, получаемым от трения стеклянного шара (или круга) и получаемым от трения крута из древесной смолы. В 1729 гаду англичане Грей и Уилер обнаружили способность некоторых тел проводить электричество и впервые указали на то, что все тела можно разделить на проводники и непроводники электричества.

Но значительно более важное открытие было описано в 1729 году Мушенбреком - профессором математики и философии в городе Лейдене. Он обнаружил, что стеклянная банка, оклеенная с обеих сторон оловянной фольгой (листочками станиоля), способна накапливать электричество. Заряженное до определенного потенциала (понятие о котором появилось значительно позднее), это устройство могло быть разряжено со значительным эффектом - большой искрой, производившей сильный треск, подобный разряду молнии, и оказывавшей физиологические действия при прикосновении рук к обкладкам банки. От названия города, где производились опыты, прибор, созданный Мушенбреком, был назван лейденской банкой. Исследования ее свойств производились в различных странах и вызвали появление множества теорий, пытавшихся объяснить обнаруженное явление конденсации заряда.

Одна из теорий этого явления была дана, выдающимся американским ученым и общественным деятелем Вениамином Франклином, который указал на существование положительного и отрицательного электричества. С точки зрения этой теории Франклин объяснил процесс заряда и разряда лейденской банки и доказал, что ее обкладки можно произвольно электризовать разными по знаку электрическими зарядами.

Франклин, как и русские ученые М. В. Ломоносов и Г. Рихман, уделил немало внимания изучению атмосферного электричества, грозового разряда (молнии). Как известно, Рихман погиб, производя опыт по изучению молнии.

Работы русских академиков Эпинуса, Крафта и других выявили целый ряд весьма важных свойств электрического заряда, но все они изучали электричество в состоянии неподвижном или мгновенный раз ряд его, то есть свойства статического электричества. Движение его проявлялось лишь в форме разряда. Об электрическом токе, то есть о непрерывном движении электричества, еще ничего не было известно.

Практическое значение накопленных за два столетия знаний об электричестве было сравнительно невелико. Это объясняется тем, что потребности практики, промышленности не выдвигали перед наукой требований познания электричества и изучения возможности его использования. "Об электричестве мы узнали кое-что разумное только с тех пор, как была открыта его техническая применимость", - писал Энгельс в письме к Г. Штаркенбургу 25 января 1894 года.

Самым крупным открытием в этой области в XVIII веке было обнаружение в 1791 году итальянским анатомом Луиджи Гальвани появления электричества при соприкосновении двух разнородных металлов с телом препарированной лягушки. Сам Гальвани ошибочно считал, что это явление вызывается наличием особого животного электричества.

Но вскоре другой итальянский ученый, Алессандро Вольта, дал иное объяснение этим опытам. Он экспериментально доказал, что электрические явления, которые наблюдал Гальвани, объясняются только тем, что определенная пара разнородных металлов, разделенная слоем специальной электропроводящей жидкости, служит источником электрического тока, протекающего по замкнутым проводникам внешней цепи.

Эта теория, разработанная А. Вольтой в 1794 году, позволила создать первый в мире источник электрического тока в виде так называемого Вольтова столба. Последний представлял набор кружков из двух металлов (меди и цинка), разделенные прокладками из войлока, смоченного в соляном растворе или щелочи. Описание этого прибора, изготовленного в конце 1799 года, дано в письме А. Вольты к президенту Лондонского королевского общества Банксу от 20 марта 1800 года. Надо заметить, что и Гальвани был недалек от истины: как это установили позднее, в любом организме жизненные процессы сопровождаются возникновением электричества, которое с полным основанием может быть названо животным, не имеющим, однако, ничего общего с электричеством, открытым самим Гальвани.

Одним из первых глубоко исследовал свойства электрического тока в 1801 -1802 годах петербургский академик В. В. Петров. Работы этого выдающегося ученого, построившего самую крупную в мире в те годы батарею из 4200 медных и цинковых кружков, установили возможность практического использования электрического тока для нагрева проводников. Кроме того, Петров наблюдал явление электрического разряда между концами слегка разведенных углей как в воздухе, так и в других газах и вакууме, получившее название электрической дуги. В. В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов и тем самым впервые высказал мысль о практическом применении электрического тока. С этого момента и должно начинать историю электротехники как самостоятельной отрасли техники.

Опыты с электрическим током привлекали внимание многих ученых разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В конце 1819 года это явление было вновь наблюдаемо датским физиком Эрстедом, который в марте 1820 года опубликовал на латинском языке брошюру под заглавием "Опыты, касающиеся действия электрического конфликта на магнитную стрелку". В этом сочинении "электрическим конфликтом" был назван электрический ток.

Небольшая, всего в пять страниц, книжка Эрстеда в том же году была издана в Копенгагене на шести языках. Сами опыты его были повторены осенью 1820 года швейцарским естествоиспытателем де ля Ривом на съезде естествоиспытателей в Женеве. На этом съезде присутствовал член Парижской Академии наук Араго, который по возвращении показал в заседании академии опыт Эрстеда. Еще до конца 1820 года Араго провел ряд исследований, из которых наиболее важным было открытие в 1824 году явления увлечения медного диска вращающимся вблизи него магнитом. Это явление, названное "магнетизмом вращения", долгое время оставалось лишь эффектным физическим опытом. Но позднее именно оно послужило основой многих практических изобретений и, в частности, электродвигателя переменного тока.

Большое значение имели также открытие Био и Саваром законов действия тока на магнитную стрелку. Особо следует сказать о деятельности замечательного ученого Андре Мари Ампера , положившего начало изучению динамических действий электрического тока и установившему целый ряд законов электродинамики.

Едва лишь Араго продемонстрировал на заседании Парижской Академии наук опыт Эрстеда, как Ампер, повторив его, 18 сентября 1820 года, ровно через неделю, представил в академию сообщение о своих исследованиях. На следующем заседании, 25 сентября, Ампер докончил чтение доклада, в котором он изложил законы взаимодействия двух токов, протекающих по параллельно расположенным проводникам. С этого момента академия еженедельно слушала новые сообщения Ампера о его опытах, завершивших открытие и формулирование основных законов электродинамики.

Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления - электричество и магнетизм - одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы. Эта теория, встреченная современниками Ампера с большим недоверием, была весьма прогрессивной и сыграла огромную роль в правильном понимании открытых позднее явлений.

Через пять лет после первых работ Ампера был построен первый электромагнит и началось глубокое изучение законов электромагнетизма. В 1827 году немецкий ученый Георг Ом открыл один из фундаментальных законов электричества, устанавливающий основные зависимости между силой тока, напряжением и сопротивлением цепи, по которой протекает электрический ток; в 1847 году Кирхгоф сформулировал законы развертывания токов в сложных цепях.

Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. В 1821 году он нашел еще одно решение поставленной задачи превращения электрической и магнитной энергии в механическую и продемонстрировал свой прибор, в котором он получал явление непрерывного электромагнитного вращения. В тот же день Фарадей записал в свой рабочий дневник обратную задачу: "Превратить магнетизм в электричество". Более десяти лет потребовалось, чтобы решить ее и найти способ получения электрической энергии из магнитной и механической. Лишь в конце 1831 года Фарадей сообщил об открытии им явления, названного затем электромагнитной индукцией и составляющего основу всей современной электроэнергетики.

Исследование Фарадея и работы русского академика Э. X. Ленца, сформулировавшего закон, по которому можно было определить направление электрического тока, возникающего в результате электромагнитной индукции, дали возможность создать первые электромагнитные генераторы и электродвигатели.

Вначале электрогенераторы и электродвигатели развивались независимо друг от друга, как две совершенно разные машины. Первый изобретатель электрического генератора, основанного на принципе электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное инициалами Р. М. Оно содержало описание первого в мире синхронного генератора и приложенный к нему чертеж. Фарадей, внимательно разобравшись в этом проекте, направил письмо Р. М. и чертеж в тот же журнал, в котором был в свое время помещен его доклад, надеясь, что неизвестный изобретатель, следя за журналом, увидит опубликованным не только свой проект, но и сопровождающее его письмо Фарадея, исключительно высоко оценивающее изобретение Р. М.

Действительно, спустя почти полгода Р. М. прислал в редакцию журнала дополнительные разъяснения и описание предложенной им конструкции электрогенератора, но и на этот раз пожелал остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым под инициалами, и человечество до сих пор, несмотря на тщательные розыски историков электротехники, остается в неведении, кому же оно обязано одним из важнейших изобретений. Машина Р. М. не имела устройства для выпрямления тока и была первым генератором переменного тока. Но этот ток, казалось, не мог быть использован для дугового освещения, электролиза, телеграфа, уже прочно вошедших в жизнь. Необходимо было, по мысли конструкторов того времени, создать машину, в которой можно было бы получать ток постоянным по направлению и величине.

Почти одновременно с Р. М. конструированием генераторов занимались братья Пикси и профессор физики Лондонского университета и член Королевского общества В. Риччи. Созданные ими машины имели специальное устройство для выпрямления переменного тока в постоянный - так называемый коллектор. Дальнейшее развитие конструкций генератора постоянного тока шло необычайно быстрыми темпами. Менее чем за сорок лет динамо-машина приобрела почти полностью форму современного генератора постоянного тока. Правда, обмотка этих динамо-машин была распределена по окружности неравномерно, что ухудшало работу таких генераторов - напряжение в них то возрастало, то снижалось, вызывая неприятные толчки.

В 1870 году Зенобей Грамм предложил особую, так называемую кольцевую обмотку якоря динамо-машины. Равномерное распределение обмотки якоря давало возможность получать совершенно равномерное напряжение в генераторе и такое же вращение двигателя, что значительно улучшило свойства электрических машин. По существу, изобретение это повторяло то, что было уже создано и описано в 1860 году итальянским физиком Пачинноти, но прошло незамеченным и осталось неизвестным 3. Грамму. Машины с кольцевым якорем получили особенно большое распространение после того, как на Венской всемирной выставке в 1873 году была обнаружена обратимость электрических машин Грамма: одна и та же машина при вращении якоря давала электрический ток, при протекании тока через якорь вращалась и могла быть использована в качестве электродвигателя.

С этого времени начинается быстрый рост применения электродвигателей и все расширяющееся потребление электроэнергии, чему немало способствовало изобретение П. Н. Яблочковым способа освещения с помощью так называемой "свечи Яблочкова" - дуговой электролампы с параллельным расположением углей.

Простота и удобство "свечей Яблочкова", заменивших дорогие, сложные и громоздкие дуговые фонари с регуляторами для непрерывного сближения сгорающих углей, вызвали их повсеместное распространение, и вскоре "свет Яблочкова", "русский" или "северный" свет, освещал бульвары Парижа, набережные Темзы, проспекты столицы России и даже древние города Камбоджи. Это было подлинным триумфом русского- изобретателя.

Но для питания этих свечей электроэнергией потребовалось создание особых электрогенераторов, дающих не постоянный, а переменный ток, то есть ток, хотя бы и не часто, но непрерывно меняющий свою величину и направление. Это было необходимо потому, что угли, соединенные с разными полюсами генератора постоянного тока, сгорали неравномерно - анод, подключенный к положительному, сгорал вдвое быстрее катода. Переменный ток попеременно превращал анод в катод и тем самым обеспечивал равномерное сгорание углей. Специально для питания "свечей Яблочкова" и был создан самим П. Н. Яблочковым, а затем усовершенствован французскими инженерами Лонтеном и Граммом генератор переменного тока. Однако о двигателе переменного тока еще не возникало и мысли.

Вместе с тем для раздельного питания отдельных свечей от генератора переменного тока изобретателем был создан особый прибор - индукционная катушка (трансформатор), позволявший изменять напряжение тока в любом ответвлении цепи в соответствии с числом подключенных свечей. Вскоре растущие потребности в электроэнергии и возможности получения ее в больших количествах вступили в противоречие с ограниченными возможностями передачи ее на расстояние. Применявшееся в то время низкое напряжение (100-120 вольт) постоянного тока и передача его по проводам сравнительно небольшого сечения вызывали огромные потери в линиях передачи. С конца 70-х годов прошлого столетия основной проблемой, от успешного решения которой зависело все будущее электротехники, стала проблема передачи электроэнергии на значительные расстояния без больших потерь.

Первое теоретическое обоснование возможности передачи любых количеств электроэнергии на любые расстояния по проводам сравнительно небольшого диаметра без значительных потерь путем повышения напряжения было дано профессором физики Петербургского лесного института Д. А. Лачиновым в июле 1880 года. Вслед за этим французский физик и электротехник Марсель Депре в 1882 году на Мюнхенской электротехнической выставке осуществил передачу электроэнергии в несколько лошадиных сил на расстояние 57 километров с коэффициентом полезного действия в 38 процентов.

В истории передачи электроэнергии на дальние расстояния эта первая передача из Мисбаха в Мюнхен имеет особое значение - на нее обратили внимание Маркс и Энгельс, живо интересовавшиеся опытами М. Депре. Их переписка об этих опытах, как и письмо Энгельса к Э. Бернштейну от 28 февраля 1883 года, содержит замечательное предвидение социальной и технической роли электрификации.

Позднее Депре произвел еще ряд опытов, осуществив передачу электроэнергии на расстояние в сотню километров и доведя мощность передачи до нескольких сот киловатт. Дальнейшее увеличение расстояния требовало значительного повышения напряжения. Депре довел его до 6 тысяч вольт и убедился, что изоляция пластин в коллекторе генераторов и электродвигателей постоянного тока не позволяет достигнуть более высокого напряжения.

Несмотря на все эти трудности, в начале 80-х годов развитие промышленности и концентрация производства все более и более настоятельно требовали создания нового двигателя, более совершенного, чем широко распространенная паровая машина. Уже было ясно, что электростанции выгодно строить вблизи месторождений угля или на реках с большим падением воды, в то время как фабрики возводить поближе к источникам сырья. Это зачастую требовало передачи огромных количеств электроэнергии к объектам ее потребления на значительные расстояния. Такая передача была бы целесообразна лишь при применении напряжения в десятки тысяч вольт. Но получить такое напряжение в генераторах постоянного тока было невозможно. На помощь пришли переменный ток и трансформатор: пользуясь ими, стали производить переменный ток низкого напряжения, затем повышать его до любой требуемой величины, передавать на расстояние высоким напряжением, а на месте потребления снова снижать до требуемого и использовать в токоприемниках. Но... снова возникало "но"...

Еще не существовало электродвигателей переменного тока. Л ведь уже в начале 80-х годов электроэнергия потреблялась главным образом для силовых нужд. Электродвигатели постоянного тока для привода самых различных машин применялись все чаще и чаще. Создать электродвигатель, который мог бы работать на переменном токе, стало основной задачей электротехники. В поисках новых путей всегда необходимо оглянуться назад. Не было ли в истории электротехники чего-либо такого, что могло бы подсказать путь к созданию электродвигателя переменного тока? Поиски в прошлом увенчались успехом. Вспомнили: еще в 1824 году Араго демонстрировал опыт, положивший начало множеству плодотворных исследований. Речь идет о демонстрации "магнетизма вращения". Медный (не магнитный) диск увлекался вращающимся магнитом.

Возникла идея, нельзя ли, заменив диск витками обмотки, а вращающийся магнит вращающимся магнитным полем, создать электродвигатель переменного тока? Наверное, можно, но как получить вращение магнитного поля?

В эти годы было предложено много различных способов применения переменного тока. Добросовестный историк электротехники должен будет назвать имена различных физиков и инженеров, пытавшихся в середине 80-х годов создать электродвигатели переменного тока. Он не забудет напомнить об опытах Бейли (1879 г.), Марселя Депре (1883 г), Бредли (1887 г.), о работах Венстрома, Хазельвандера и многих других. Предложения, несомненно, были очень интересны, но ни одно из них не могло удовлетворить промышленность: электродвигатели их были либо громоздки и неэкономичны, либо сложны и ненадежны. Не был еще найден сам принцип постройки простых экономичных и надежных электродвигателей переменного тока.

Именно в этот период и начал, как мы уже знаем, поиски решения этой задачи Никола Тесла. Он шел своим путем, путем размышлений над сущностью опыта Араго, и предложил коренное решение возникшей проблемы, сразу же оказавшееся приемлемым для практических целей. Еще в Будапеште весной 1882 года Тесла ясно представил себе, что если каким-либо образом осуществить питание обмоток магнитных полюсов электродвигателя двумя различными переменными токами, отличающимися друг от друга лишь сдвигом по фазе, то чередование этих токов вызовет переменное образование северного и южного полюсов или вращение магнитного поля. Вращающееся магнитное поле должно увлечь и обмотку ротора машины.

Построив специальный источник двухфазного тока (двухфазный генератор) и такой же двухфазный электродвигатель, Тесла осуществил свою идею. И хотя конструктивно его машины были весьма несовершенны, принцип вращающегося магнитного поля, примененный в первых же моделях Теслы, оказался правильным.

Рассмотрев все возможные случаи сдвига фаз, Тесла остановился на сдвиге в 90°, то есть на двухфазном токе. Это было вполне логично - прежде чем создавать электродвигатели с большим числом фаз, следовало начать с тока двухфазного. Но можно было бы применить и другой сдвиг фаз: на 120 е (трехфазный ток). Не проанализировав теоретически и не осмыслив все возможные случаи, даже не сравнив их между собой (вот в чем большая ошибка Теслы), он все свое внимание сосредоточил на двухфазном токе, создав двухфазные генераторы и электродвигатели и лишь мельком упомянул в своих патентных заявках о многофазных токах и возможности их применения.

Но Тесла не был единственным ученым, вспомнившим об опыте Араго и нашедшим решение важной проблемы. В те же годы исследованиями в области переменных токов занимался итальянский физик Галилео Феррарис, представитель Италии на многих международных конгрессах электриков (1881 и 1882 годы в Париже, 1883 год в Вене и другие). Подготавливая лекции по оптике, он пришел к мысли о возможности постановки опыта, демонстрирующего свойства световых волн. Для этого Феррарис укрепил на тонкой нити медный цилиндр, на который действовали два магнитных поля, сдвинутых под углом в 90°. При включении тока в катушки, попеременно создающие магнитные поля то в одной, то в другой из них, цилиндр под действием этих полей поворачивался и закручивал нить, в результате чего поднимался на некоторую величину вверх. Устройство это прекрасно моделировало явление, известное под названием поляризации света.

Феррарис и не предполагал использовать свою модель для каких-либо электротехнических целей. Это был всего лишь лекционный прибор, остроумие которого заключалось в умелом применении электродинамического явления для демонстраций в области оптики.

Феррарис не ограничился этой моделью. Во второй, более совершенной модели ему удалось достигнуть вращения цилиндра со скоростью до 900 оборотов в минуту. Но за определенными пределами, как бы ни увеличивалась в цепи сила тока, создававшего магнитные поля (другими словами, как бы ни увеличивалась затрачиваемая мощность), достигнуть увеличения числа оборотов не удавалось. Подсчеты показали, что мощность второй модели не превышала 3 ватт.

Несомненно, Феррарис, будучи не только оптиком, но и электриком, не мог не понимать значения произведенных им опытов. Однако ему, по собственному его признанию, и в голову не приходило применить этот принцип к созданию электродвигателя переменного тока. Самое большое, что он предполагал, это использовать его для измерения силы тока, и даже начал конструировать такой прибор.

18 марта 1888 года в Туринской Академии наук Феррарис сделал доклад "Электродинамическое вращение, произведенное с помощью переменных токов". В нем он рассказал о своих опытах и пытался доказать, что получение в таком приборе коэффициента полезного действия свыше 50 процентов невозможно. Феррарис был искренне убежден, что, доказав нецелесообразность использования переменных магнитных полей для практических целей, он оказывает науке большую услугу. Доклад Феррариса опередил сообщение Николы Теслы в Американском институте электроинженеров. Но заявка, поданная для получения патента еще в октябре 1887 года, свидетельствует о несомненном приоритете Теслы перед Феррарисом. Что же касается публикации, то статья Феррариса, доступная для чтения всем электрикам мира, была опубликована лишь в июне 1888 года, то есть после широко известного доклада Теслы.

На утверждение Феррариса, что работы по изучению вращающегося магнитного поля начаты им в 1885 году, Тесла имел все основания возразить, что он занимался этой проблемой еще в Граце, решение ее нашел в 1882 году, а в 1884 году в Страсбурге демонстрировал действующую модель своего двигателя Но, конечно, дело не только в приоритете. Несомненно, оба ученых сделали одно и то же открытие независимо друг от друга: Феррарис не мог знать о патентной заявке Теслы, так же как и последний не мог знать о работах итальянского физика.

Гораздо важнее то, что Г. Феррарис, открыв явление вращающегося магнитного поля и построив свою модель мощностью в 3 ватта, и не думал об их практическом использовании. Более того: если бы ошибочный вывод Феррариса о нецелесообразности применения переменных многофазных токов был принят, то человечество еще несколько лет было бы направлено по ложному пути и лишено возможности широкого использования электроэнергии в самых различных отраслях производства и быта. Заслуга Николы Теслы и заключается в том, что, несмотря на множество препятствий и скептическое отношение к переменному току, он практически доказал целесообразность применения многофазного тока. Созданные им первые двигатели двухфазного тока, хотя и имели ряд недостатков, привлекли внимание электротехников всего мира и возбудили интерес к его предложениям.

Однако статья Галилео Феррариса в журнале "Атти ди Турино" сыграла огромную роль в развитии электротехники. Ее перепечатал один крупный английский журнал, и номер с этой статьей попал в руки другого ученого, теперь заслуженно признанного создателем современной электротехники трехфазного тока.

В один из июльских дней 1888 года статью Феррариса в английском журнале с увлечением читал молодой еще, всего лишь за четыре года до этого окончивший Дармштадтское Высшее техническое училище, русский инженер Михаил Осипович Доливо-Добровольский.

Михаил Осипович родился в России, в Гатчине - одном из живописных пригородов Петербурга, в семье чиновника. Десяти лет он вместе с родителями переехал в Одессу, где его отец, выйдя в отставку, начал издавать прогрессивную газету "Правда". К участию в этой газете он привлек многих передовых деятелей русской и мировой литературы, и вскоре газета эта за непозволительный образ мыслей была закрыта.

В этот период в семье Доливо-Добровольских сильно развилось критическое отношение к царскому строю, и юноша Добровольский отличался от своих сверстников если не революционными, то, во всяком случае, передовыми взглядами.

В 1880 году Михаил Осипович окончил Одесское реальное училище и осенью того же года поступил на химический факультет Рижского политехнического института. Но недолго пришлось ему быть студентом этого учебного заведения: весной 1881 года, после убийства царя Александра II, многих революционно настроенных студентов русских университетов и других высших учебных заведений уволили без права продолжать учение в России. В число их попал и Михаил Осипович.

В конце 1881 года Доливо-Добровольский поступил на химический факультет Дармштадтского высшего технического училища, но сразу же больше чем химией увлекся новым тогда предметом - электротехникой. В Дармштадте курс электротехники читал профессор Китлер, прекрасный педагог, имевший богатый практический опыт, сумевший не только увлечь М. О. Доливо-Добровольского, но и дать ему порядочный запас знаний.

Отлично окончивший курс Дармштадтского высшего технического училища, Доливо-Добровольский был приглашен в Германскую эдисоновскую компанию и в 1884 году начал работу на одном из ее заводов. Глубокий и вдумчивый инженер, он хорошо представлял себе все недостатки постоянного тока и не раз размышлял о возможности создания электродвигателей переменного тока.

Михаил Осипович немало думал над этой задачей, не раз пытался превратить электродвигатель постоянного тока Грамма в машину переменного тока, - мы помним, что примерно в это время той же проблемой занимался и Никола Тесла.

Статья Феррариса произвела на М. О. Доливо-Добровольского исключительное впечатление, и еще во время чтения он представил себе принцип действия электродвигателя, основанного на использовании явления вращающегося магнитного поля. Ошибка Феррариса в расчете коэффициента полезного действия была найдена также мгновенно, и для Михаила Осиповича не оставалось сомнений в возможности быстрого решения проблемы применения переменного тока. Но уже с самого начала М. О. Доливо-Добровольский оцепил все преимущества трехфазного тока перед двухфазным, примененным Теслой и Феррарисом, и начал конструировать электродвигатели трехфазного переменного тока. Так появился опасный соперник двухфазного тока, скоро показавший ряд неоспоримых преимуществ перед своим близнецом.

SpyLOG
Электропроекты домов лучший проект электропроводки в частном доме. Сайт управляется системой uCoz

innovatory.narod.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.