Реферат: Хромосомы: строение и структурные особенности. Реферат хромосомы


Доклад - Хромосомы - Медицина

Каждая клетка тела человека содержит в точности 46 хромосом. всегда парны. В клетке всегда имеется по 2 хромосомы каждого вида, пары отличаются друг от друга по длине, форме и наличию утолщений или перетяжек. В большинстве случаев хромосомы достаточно разнятся, чтобы цитолог мог отличить пары хромосом (всего 23 пары). Следует отметить, что во всех соматических клетках (все клетки организма, кроме половых) хромосомы в парах всегда одинаковые по величине, форме, расположению центромер, в то время как половые хромосомы (23-я пара) у мужчин не одинаковые (ХУ), а у женщин одинаковые (ХХ).

Хромосомы в клетке под микроскопом можно увидеть только во время деления — митоза, во время стадии метафазы. Такие хромосомы называются метафазными. Когда клетка не делится хромосомы имеют вид тонких, темноокрашенных нитей, называемых хроматином.

Хроматин представляет собой дезоксирибонуклеопротеид, выявляемый под световым микроскопом в виде тонких нитей и гранул. В процессе митоза (деления клетки) хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры — хромосомы.

Метафазная хромосома состоит из двух продольных нитей дезоксирибонуклеопротеида — хроматид, соединенных друг с другом в области первичной перетяжки — центромеры. Центромера — особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча. В зависимости от расположения первичной перетяжки различают следующие типы хромосом: равноплечие (метацентрические), когда центромера расположена посередине, а плечи примерно равной длины; неравноплечие (субметацентрические), когда центромера смещена от середины хромосомы, а плечи неравной длины; палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Существуют еще точковые (телоцентрические) хромосомы, у них одно плечо отсутствует, но в кариотипе (хромосомном наборе) человека их нет. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков. Как было доказано многочисленными исследованиями, ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию — программу развития клетки, организма, записанную с помощью особого кода. Белки составляют значительную часть вещества хромосом (около 65% массы этих структур).

Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования.

Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям. Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000. Нередко трисомия по 21 паре хромосом является причиной гибели плода, однако иногда люди с синдромом Дауна доживают до значительного возраста, хотя в целом продолжительность их жизни сокращена. Известны трисомии по 13-й хромосоме — Синдром Патау, а также по 18-й хромосоме — синдром Эдвардса, при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития.

Достаточно часто у человека встречается изменение числа половых хромосом. Среди них известна моносомия Х (из пары хромосом присутствует только одна (Х0)) — это синдром Шерешевского-Тернера. Реже встречается трисомия Х и синдром Клайнфельтера (ХХУ, ХХХУ, ХУУ и т.д.). Люди с изменением числа половых хромосом при наличии У-хромосомы развиваются по мужскому типу. Это является следствием того, что факторы, определяющие мужской тип развития, находятся в У-хромосоме. В отличии от мутаций аутосом (все хромосомы, кроме половых), дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдается нарушения развития половых органов и роста. Реже встречаются пороки развития других систем.

www.ronl.ru

Реферат: Хромосомы

Легче всего наблюдать метафазные хромосомы. Под микроскопом их фотографируют или зарисовывают см рисунок. В этой стадии хромосомы наиболее сконденсированны и образуют дискретные структуры. У многих организмов индивидуальные хромосомы и их гомологи легкоразличимы по размеру и форме. Каждая метафазная хромосома действительно состоит из двух идентичных частей, называемых сестринскими хроматидами, поскольку дупликация хромосомной ДНК протекает как раз перед метафазой, в S-фазе клеточного цикла.

Свойства метафазных хромосом эукариот. А. Схематическое изображение двух копий, или хроматид, дуплицированной хромосомы. Две хроматиды удерживаются вместе центромерой, которая в данном случае находится примерно в центре хромосомы (метацентрическая хромосома). Б. Электронная микрофотография субметацентрической хромосомы; увеличение 30000. В. Фотография некоторых хромосом человека, полученная с помощью сканирующего электронного микроскопа. Четко видно, что хромосомы скручены.

У хромосомы имеется перетяжка, называемая центромерой. Положение центромеры для каждой хромосомы строго определено. С центромерой связаны специфические хромосомные функции; это последняя точка, соединяющая плечи сестринских хроматид перед полным расхождением при митотическом или II мейотическом делении. Сами плечи имеют вид отдельных образований задолго до расхождения центромер в анафазе.

Различие между областью центромеры и плечами хромосом становится очевидным после обработки определенными красителями. После окрашивания центромеры выглядят более плотными и компактными по сравнению с плечами (рис. I.7). Такие плотные, интенсивно окрашиваемые хромосомные области называются гетерохроматиновыми. Гетерохроматин центромеры можно наблюдать после окрашивания даже в плохо различимых интерфазных хромосомах. Другие, негетерохроматиновые области хромосом принято называть эухроматиновыми. Эухроматиновые области окрашиваются гораздо менее интенсивно, чем гетерохроматиновые.

Концевые участки хромосом называются теломерами. Часто они тоже гетерохроматиновые. Нередко (но не всегда) в митотических хромосомах можно наблюдать небольшие перетяжки, называемые районом ядрышкового организатора (ЯОР). В мейотических хромосомах они имеют вид утолщений. В пределах данного вида районы ядрышковых организаторов встречаются на одной или нескольких специфических хромосомах (и их гомологах), и если они есть, то всегда находятся в одном и том же месте. В в1-фазе клеточного цикла некоторые ядрышковые организаторы начинают разрастаться; если их больше, чем один, то такие разросшиеся области объединяются в одну или несколько больших, почти сферических структур — нуклеолей. Часто в интерфазном ядре только нуклеоли и можно видеть, но с переходом в профазу они постепенно исчезают.

Применение специальных красителей и особых способов окрашивания, разработанных в последние несколько десятилетий, дало возможность выявить достаточно тонкие детали в структуре прометафазных и метафазных хромосом, даже если это довольно мелкие хромосомы млекопитающих. Итак, после окрашивания в каждой хромосоме можно наблюдать уникальное чередование светлых и темных полос; гомологичные хромосомы имеют идентичный рисунок:

Фотография метафазной хромосомы человека N 13. Видны общее строение хромосомы (Std), характер полос в эухроматиновых плечах, выявляемый после специального окрашивания (три разных метода окрашивания G, Q и R), гетерохроматиновая область в центромере, наблюдаемая благодаря применению особой техники окрашивания (С-окрашивание) и район ядрышкового организатора (ЯОР), также выявляемый с помощью специального окрашивания (АдЯОР). Положение центромеры на этой акроцентрической хромосоме отмечено горизонтальной линией.

Этот рисунок достоверно воспроизводится, и каждую хромосому в наборе можно идентифицировать. На следующем рисунке представлен полный набор прометафазных хромосом в клетке человека. На этом изображении, называемом кариотипом человека, отражены относительный размер и форма хромосом наряду с положением центромеры и характерным видом полос:

человека. Горизонтальные линии на всех фотографиях проходят через центромеры. Хромосомы пронумерованы в порядке уменьшения их длины. А. Полный набор метафазных хромосом мужчины, окрашенных способом, который выявляет особенности рисунка сегментации. Представлены оба члена каждой гомологичной пары. (С любезного разрешения Uta Francke.) Б. Идиограмма хромосом, построенная на основании кариотипа, представленного на рис. А.

В интерфазе хромосомы сильно растягиваются и, как правило, не видны. Встречаются, однако, и существенные исключения, которые уже много лет интенсивно исследуются. Секреторные клетки личинок некоторых насекомых (например, D. melano-gaster) разрастаются до огромных размеров и проходят несколько S-фаз без митоза и клеточного деления. В результате формируется комплекс из множества, иногда вплоть до тысячи, хроматид, которые остаются сцепленными и лежат рядом друг с другом, образуя толстые нити, называемые политенными хромосомами. Так же как и все интерфазные хромосомы, политенные хромосомы растянуты значительно сильнее, чем конденсированные метафазные хромосомы. При окрашивании политенных хромосом специальными красителями выявляется определенный рисунок чередования темных и светлых полос. В отличие от того, что наблюдается в высококонденсированных метафазных хромосомах, число полос огромно. Например, на четырех политенных хромосомах D. melanogaster можно насчитать почти 5000 темных полос, а в полном наборе из 23 метафазных хромосом человека видны по крайней мере 2000 полос.

Четко различимые морфологические признаки индивидуальных прометафазных и политенных хромосом стабильно воспроизводятся из поколения в поколение у данного вида. Необычная форма хромосом или характер полос наряду с атипичным числом хромосом сигнализируют о повреждении хромосомного материала. Наличие таких измененных хромосом часто связано с наследственными заболеваниями. Например, сегмент одной хромосомы иногда перемещается на совершенно неродственную хромосому, и такие перестройки сразу выявляются по необычному размеру или характеру полос. Подобные транслокации иногда бывают реципрокными, т.е. две неродственные хромосомы могут обменяться фрагментами. Другим примером изменений, или аберраций, хромосом служат делеции части нормальной хромосомы, дупликации некоторых областей и даже инверсии сегментов. Иногда наблюдаются потери хромосом или, напротив, появление лишних. Например, заболевание человека, известное как синдром Дауна, обусловлено присутствием трех копий 21-й хромосомы вместо обычных двух (это состояние называют также трисомией 21-й хромосомы).

Успехи в изучении структуры хромосом определялись выбором подходящих экспериментальных объектов. Так, огромные политенные хромосомы D. melanogaster стали излюбленной экспериментальной системой еще на заре развития области биологии, именуемой теперь цитогенетикой; систематическое изучение небольших по размеру хромосом человека и других млекопитающих могло начаться лишь с усовершенствованием экспериментальной техники в начале 50-х годов. Хромосомы прокариот не видны в световом микроскопе; недоступны для анализа с помощью светового микроскопа и мелкие, диффузные хромосомы таких низших эукариот, как дрожжи и трипаносомы.

superbotanik.net

Реферат - Хромосомы: строение и структурные особенности

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

БАЛАШОВСКИЙ ФИЛИАЛ

САРАТОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

ИМ. Н.Г. ЧЕРНЫШЕВСКОГО

КАФЕДРА БИОЛОГИИ И ЭКОЛОГИИ

КОНТРОЛЬНАЯ РАБОТА ПО ГЕНЕТИКЕ

Выполнила: студентка IV курса заочного отделения ФЭБ

Демидова Светлана Григорьевна

Проверила: Сулига Е.М.

БАЛАШОВ 2007

Содержание

1. Хромосомы, их строение, видовая специфичность, кариотип

2. Мейоз как цитологическая основа образования и развития половых клеток

3. Сцепленное с полом наследование

4. Транскрипция ДНК

Хромосомы — наиболее важные компоненты ядра. Они играют ведущую роль в явлениях наследственности. Хромосомы хорошо видны под микроскопом в момент деления клетки. Хромосомы ядра неделящейся клетки не видны, поскольку они деконденсации хромосом, тем активнее протекают метаболические процессы в самом ядре. Морфологические хромосомы растений чаще всего имеют нитевидную или палочкообразную форму. Большинство хромосом разделено первичной перетяжкой на два плеча. Под микроскопом первичная перетяжка представлена светлой (неокрашенной) зоной, получившее название центромеры, которые играют основную роль в перемещении хромосом строго определении ядра. Центромера занимает на каждой из хромосом строго определенного место. По положению центромеры хромосомы делят на метацентрические ( приблизительно равноплечие), субметацентрические (неравноплечие) и акроцентрические (головчатые), у которых центромера сдвинута к одному из концов. У некоторых хромосом имеется и вторичная перетяжка. Она, как правило, располагается у дистального конца хромосомы и отделяет небольшой ее участок, носящий название спутника. Вторичная перетяжка не участвует в движении хромосом при деление ядра. Она получила название ядрышкового организатора, поскольку в месте ее локализация происходит образование ядрышка. Концевые участки хромосомы называют теломерными. Они препятствуют ее соединению с другими хромосомами.

1 2 3 4 5

Формы хромосом на стадии метафазы (схема):

1,5 — равноплечие; 2,3 — неравноплечие; 4 – головчатые

Каждому из населяющих нашу планету видов растений и животных свойственно строгое число хромосом, обозначаемое 2n ( диплоидный набор). В половых клетках число хромосом в два раза меньше и равно n ( гаплоидный набор). В соматических клетках организма каждая хромосома имеет пара, идентичную как морфологически, так и генетически (гомологичные хромосомы). Исключение из этого правила составляют половые хромосомы у гетерогаметных особей. Специфический для определенного вида по числу и структуре набор хромосом получил название кариотипа .

Графическое изображение кариотипа, показывающие его структурные особенности, называется идиограммой. В последние годы получил распространение метод дифференциального окрашивание хромосом. При этом на каждого из хромосом прокрашиваются специфические, характерные для нее полосы (бэнды ), что значительно облегчает идентификацию отдельных хромосом кариотипа. Хромосомы, определяющие пол особи, называют половыми хромосомами, а все остальные — аутосомами. Внутренне строение хромосом чрезвычайно сложно. По химическому составу они на 40% состоят из ДНК и на 60% из белков, в среднем около 60% из которых приходится гистоны. Строение метафазной хромосомы при исследовании с помощью светового микроскопа представляет следующим образом. Каждая хромосома состоит из двух хроматид, спирально закрученными и располагающихся параллельно оси хромосомы. Для прокрашивающихся в интерфазном яде участков хромосом используют термин "хромонема " — красящая нить. Утолщения на хромонемах получили название хромомер. Особенность вышеописанного строения хромосом зависит от уровня меняется при переходе от интерфазного состояния хромосом к метафазному

Первый, получивший название нуклеосомного, определяет скручивание ДНК по поверхности гистоновой сердцевины. Второй — объединение нескольких нуклеосом (до 10) в бусину — называется нуклеомерный. Третий уровень — объединение скрепками из негистоновых белков фибрилл дезоксирибонуклеопротеида в петлевой домен, называемый хромомером. Четвертый — образование хромонем. Далее, по-видимому, хромонема укладывается в виде спирали в хроматиде, хотя весьма вероятно, что это еще один уровень — "петлистых структур".

Мейоз, или редукционное деление, — особый тип деления клеток, характерный только для спорогенных тканей. При этом число хромосом в дочерних клетках уменьшается вдвое, т.е. происходит редукция числа хромосом. Мейоз предшествует интерфаза, которая аналогична таковой при митозе. В S-период интерфазы происходит редупликация хромосом, поэтому хромосомы, вступающие в процесс мейотического деления, состоят из двух хроматид. Мейоз состоит двух ядерных делений, которое следует одно за другим. При первом делении (мейоз II) происходит редукция числа хромосом, т.е. число хромосом в клетке уменьшается в два раза. Второе деление (мейоз II) протекает по типу митоза. Как и митоз, первое и второе деление мейоз подразделяют на следующие фазы: профаза, метафаза, анафаза и телофаза. Соответственно эти фазы обозначают: метафаза I, метафаза II, анафаза I и т.д.

Мейоз I начинается с профазы I. Это наиболее продолжительная фаза мейоза, которая, в свою очередь, подразделяются на стадии лептотена, зиготена, пахитена, диплотена и диакинез.

На стадии лептотены в ядре появляются слабоспирализованные хромосомы. Постепенно они приобретают нитевидную форму.

Зиготена начинается с постепенно попарного соединения (конъюгации, синапсиса) по длине параллельно уложенных гомологичных хромосом. Соединение попарно хромосомы образуют биваленты. В связи с тем, что перед началом мейоза произошла редупликация хромосом, каждый бивалент состоит из четырех хроматид. Функцию синапсиса выполняет синаптонемный комплекс (СК) — белковое образование, входящие в состав бивалента и имеющие вид трехслойной ленты, располагающейся между конъюгирующими хромосомами. СК формируются постепенно по принципу застежки — молнии на протяжении всей стадии зиготены. Образование бивалентов создает предпосылки для возможности обмена гомологичными участками между гомологичными хромосомами (кроссинговера ), что представляет важное генетическое событие. В то же время продолжается процесс конденсации хромосом.

Пахитена — это стадия, на которой СК сформирован по всей длине хромосом (стадия стабильного синапсиса). Она характеризуется продолжающимся утолщением хромосом в результате непрерывной конденсации хроматина. На этой стадии происходит обмен гомологичным участками хроматид (кроссинговер) и, как следствие, рекомбинация сцепленных генов.

На следующей за пахитеной стадии, получившей название диплотены, продолжается конденсация хромосом, но при этом начинается процесс расхождение гомологичных хромосом, которые удерживаются в точках обмена участками, возникшими при кроссинговере. Они получили название хиазм .

Диакинез — последняя стадия профазы I. Она характеризуется максимальной конденсации хромосом. Исчезает ядрышко, а биваленты располагаются по периферии ядра. При этом гомологичные хромосомы удерживаются в составе бивалентов благодаря хиазмам.

Далее следует метафаза I. Ее началу соответствует распад оболочки ядра и формирование веретена деления. Биваленты располагаются в экваториальной плоскости.

Анафаза I — стадия, на которой гомологичные хромосомы расходится к полюсам. В результате число хромосом во вновь образующейся клетке (n) будет в два раза меньше, чем в родительской (2n). В этом отличие анафаза I мейоза от анафазы митоза.

Окончательное расхождение хромосом к полюсам свидетельствует о том, что началась телофаза I.

За ней у ряда видов следует очень короткий интеркинез, во время которого синтез ДНК и репликация хромосом не происходят, и начинается второе деление мейоза (мейоз II). В этом случае хромосомы не деконденсируются. Однако у некоторых видов растений интерфаза между первым и вторым делением мейоза продолжается довольно долго. В этом случае хромосомы деконденсируются, образуя два вида ядра, разделенные клеточной перегородкой. Второе деление мейоза протекает довольно быстро по типу обычного митоза, но уже в клетках с гаплоидным числом хромосом. В тех случаях, когда интерфаза короткая, профаза II выпадает и второе деление начинается с метафазы II, во время которой происходит образование веретена деления и хромосомы располагаются в экваториальной плоскости. В анафазе II центромеры делятся и начинается расхождение хроматид к полюсам, которое заканчивается на стадии телофазы II. На этой стадии происходит полная деконденсация хроматина, образуются ядра и клеточные перегородки. В конечном итоге в результате мейоза образуется 4 клетки, каждая из которых содержит в ядре гаплоидное (n) число хромосом.

В опытах Менделя и других исследователей по изучению закономерностей наследования было установлено, что ход наследования многих признаков не зависит от того, материнским или отцовским организмом вносит тот или другой аллель, т.е. реципрокные скрещивания дают одинаковый результат.

Однако при анализе наследования ряда признаков у раздельнополых организмов оказалось, что некоторые из них передаются своеобразно и явно зависит от пола.

В этих случаях реципрокные скрещивания давали разные результаты. Было высказано предложение о том, что определяющие такие признаки гены находится в половых хромосомах, в то время как гены, определяющие признаки, наследующиеся в соответствии с классическими схемами, локализованы в хромосомы, одинаковых у обоих полов, т.е. в аутосомах.

Этот вывод и его доказательство были получены еще в 1909г.Т. Морганом с сотрудниками. Изучая наследование признаков, он установил у дрозофилы наличие связи определенных генов с половыми хромосомами и таким образом заложил фундамент хромосомной теории наследственности. Кроме генов, определяющих пол, половые хромосомы содержат гены, влияющие на разные признаки, не имеющие отношения к дифференциации пола. При передачи таких генов и наблюдается явление так называемого наследования, сцепленного с полом .

В своих первых опытах Морган использовал мутацию белых глаз. Дикие дрозофилы имеют красные глаза. Красный цвет глаз W доминирует над белыми w (white).

При скрещивании гомозиготной красноглазой самки с белоглазым самцом в F1 глаза у всех мух красные, а в F2 происходило расщепление в равном соотношении на красноглазых и белоглазых мух только среди самцов, а все самки F2 были красноглазые. Соотношение по полу было 1: 1:

P ♀ красноглазая х ♂ белоглазый

F1 ♀ красноглазые, ♂ красноглазые

F2 ♀ красноглазые, Ѕ ♂ красноглазые и Ѕ ♂ белоглазые

В реципрокном скрещивание результаты отличались тем, что уже в F1 надобилось расщепление по цвету глаз, причем все самки были красноглазыми, т.е. похоже на отцов, а все самцы — белоглазыми, т.е. похоже на матерей. Такое наследование называют крисс — кросс, или крест — накрест. В F2 и среди самок, и среди самцов половина особей имела красные глаза, половина — белые:

P ♀ белоглазая х ♂ красноглазый

F1 ♀ красноглазые, ♂ белоглазые

F2 Ѕ ♀ красноглазые и Ѕ ♀ белоглазые

Ѕ ♂ красноглазый и Ѕ ♂ белоглазые

Такое расщепление становится понятным, если допустить, что гены, определяющие окраску глаз, находится в X-хромосоме, а в Y-хромосоме их нет.

В первом случае скрещивание гомозиготной красноглазой самки WW с белоглазым самцом wY приводит к образованию красноглазых гетерозиготных по генам окраски самок (Ww) и красноглазых самцов (WY). В F1 самки образуют два типа гамет: с Х-хромосомой с геном W и с Y-хромосомой, не несущей гена окраски. В соответствии с этим в F2 все самки будут красноглазыми: Ѕ гомозиготы WW и Ѕ гетерозиготы Ww, а самцы Ѕ красноглазые WY и Ѕ белоглазые wY:

P ♀ WW х ♂ wY

Красноглазая Белоглазый

F1 ♀ Ww ♂ WY

Красноглазые Красноглазые

F2 ♀ WW ♀ Ww ♂ WY ♂ wY

Красноглазые Красноглазые Красноглазые Белоглазые

В реципрокном скрещивании результаты получаются другие, так как гомозиготная белоглазая самка ww образует один тип гамет — с Х-хромосомой с геном w, красноглазый самец (WY) — два типа гамет: с Х-хромосомой, несущий ген W, и Y-хромосомой, не несущей окраски. В F1 все самки Ww будут красноглазые, а самцы wY — белоглазые. В F2 появится красноглазые гетерозиготные по гену окраски самки Ww и гомозиготные белоглазые ww; Ѕ самцов получают Х-хромосомы, несущие ген красных глаз, и Ѕ — ген белых глаз wY:

P ♀ ww х ♂ WY

Белоглазая Красноглазый

F1 ♀ Ww ♂ wY

Красноглазые Белоглазые

F2 ♀ Ww ♀ ww ♂ WY ♂ wY

Красноглазые Белоглазые Красноглазые Белоглазые

Из результатов скрещивания следует, что самки могут быть гетерозиготными (Ww) или гомозиготными (WW, ww) по генам окраски глаз. У самцов ген окраски локализован только в Х-хромосоме. Y-хромосому называют в этом случае генетически инертной, т.е. проявляется одна доза гена. Такое состояние называют гемизиготными, т.е. WY — красноглазый самец, wY — белоглазый.

Аналогичным образом наследуется все признаки, определяемые генами, локализованными в Х-хромосомах, и у других организмов, у которых гетерогаметен мужской пол. Так, у человека около 60 генов наследуются сцеплено с Х-хромосомой, в том числе гены, обусловливающие такие заболевания, как гемофилия, цветовая слепота, мускульная дистрофия и др.

Однако установлено, что Y-хромосомы не во всех случаях генетически инертны и их функции не сводят только к роли синаптических партнеров при конъюгации с Х-хромосомы во время мейоза. Известно небольшое число примеров, когда в Y-хромосоме локализованы гены, не имеющие аллелей в Х-хромосоме. Например, у живородящей рыбки лебистуса (гуппи) один из признаков — темное пятно спиной плавнике — обусловлено геном, локализованными в Y-хромосоме, и потому передается только от отца к сыну.

Такие признаки называются голандрическими, т.е. наследуемыми исключительно по мужской линии. У человека, таким образом, наследуется локализованный в Y-хромосоме ген SPY, ответственный за развитие мужской потенции, а также гены, контролирующий размер зубов, развитие кожи перепонки между пальцами ног, волосатость мочек ушей (ихтиоз) и др.

Кроме генов, аллели которых локализованы только либо в Х-, либо в Y-хромосоме, имеются гены, общие для обеих половых хромосом. Такие гены у одного и того же вида наследуется как сцепленные то с Х-, то с Y-хромосомой и проявляются в зависимости от того, в какой из них находится доминантный аллель, а какой — рецессивный.

У разных организмов количество таких общих для Х — и Y-хромосом генов неодинаково, а следовательно, различаются и размеры гомологичных участников половых хромосом.

Специфическая часть Y-хромосомы, не имеющая гомологии с Х-хромосомой, у всех изученных организмов генетически инертна, т.е. содержит очень мало генов.

Это-перенос генетической информации, закодированной в последовательности пар нуклеотидов, с двуцепочечной молекулы ДНК на одноцепочечную молекулу РНК. При этой матрицей для синтеза РНК служит только одна цепь ДНК, называемая смысловой .

В транскрипции, как и в других матричных процессах, различают три стадии: инициацию, элонгацию и терминацию. Фермент, осуществляющий этот процесс, называют ДНК-зависимой РНК-полимеразой или просто РНК-полимеразой; при этом полимеризация полирибонуклеотида (РНК) происходит в направлении от 5 — к 3 — концу растущей цепи.

Синтез ферментов и других белков, необходимых для жизнедеятельности и развития организмов, происходит в основном на первой стадии интерфазы, до начала репликации ДНК.

В результате транскрипции наследственная информация, записанная в ДНК гена, точно транскрибируется ( переписывается) в нуклеотидную последовательность мРНК. Синтез мРНК начинается с участка инициации транскрипции, называемого промотором. Промотор расположен перед геном и включает в себя около 80 пар нуклеотидов (у вирусов и бактерий этот участок соответствует примерно одному витку спирали ДНК и включает около 10 пар нуклеотидов). В нуклеотидных последовательностях промоторов часто встречаются пары АТ, поэтому их называют также ТАТА-последовательностями.

Транскрипция осуществляется с помощью ферментов РНК-полимераз. У эукариот известны три типа РНК-полимераз: I-ответственен за синтез рРНК, II-за синтез мРНК; III-за синтез тРНК и низкомолекулярной рРНК-5S РНК.

РНК-полимераза прочно связывается с промотором и разъединяет нуклеотиды комплементарных цепей. Затем этот фермент начинает двигаться вдоль гена (молекулы ДНК) и по мере разъединения цепей ведет на одну из них (смысловой) синтез мРНК, присоединяя согласно принципу комплементарности аденин к тимину, урацил к аденину, гуанин к цитозин к гуанину. Те участки ДНК, на которых полимераза образовала мРНК, вновь соединяются, а синтезируемая молекула мРНК постепенно отделяется от ДНК. Окончание синтеза мРНК определяется участком остановки транскрипции — терминатором. Нуклеотидные последовательности промотора и терминатора узнаются специальными белками, регулирующими активность РНК-полимеразы.

Перед выходом из ядра к начальной части мРНК (5-концу) присоединяется остаток метилированного гуанина, называемый «колпачком», а к концу мРНК (3-концу) — около 200 остатков адениловой кислоты. В таком виде зрелая мРНК проходит через ядерную мембрану в цитоплазму к рибосоме и соединяется с ней. Полагают, что у эукариот «колпачок» мРНК участвует в связывании её с малой субъединицей рибосомы.

www.ronl.ru

Реферат на тему Хромосомы строение и структурные особенности

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ БАЛАШОВСКИЙ ФИЛИАЛ САРАТОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМ. Н.Г. ЧЕРНЫШЕВСКОГО КАФЕДРА БИОЛОГИИ И ЭКОЛОГИИ КОНТРОЛЬНАЯ РАБОТА ПО ГЕНЕТИКЕ Выполнила: студентка IV курса заочного отделения ФЭБ Демидова Светлана Григорьевна Проверила: Сулига Е.М. БАЛАШОВ 2007 Содержание   1. Хромосомы, их строение, видовая специфичность, кариотип 2. Мейоз как цитологическая основа образования и развития половых клеток 3. Сцепленное с полом наследование 4. Транскрипция ДНК

1. Хромосомы, их строение, видовая специфичность, кариотип

Хромосомы - наиболее важные компоненты ядра. Они играют ведущую роль в явлениях наследственности. Хромосомы хорошо видны под микроскопом в момент деления клетки. Хромосомы ядра неделящейся клетки не видны, поскольку они деконденсации хромосом, тем активнее протекают метаболические процессы в самом ядре. Морфологические хромосомы растений чаще всего имеют нитевидную или палочкообразную форму. Большинство хромосом разделено первичной перетяжкой на два плеча. Под микроскопом первичная перетяжка представлена светлой (неокрашенной) зоной, получившее название центромеры, которые играют основную роль в перемещении хромосом строго определении ядра. Центромера занимает на каждой из хромосом строго определенного место. По положению центромеры хромосомы делят на метацентрические (приблизительно равноплечие), субметацентрические (неравноплечие) и акроцентрические (головчатые), у которых центромера сдвинута к одному из концов. У некоторых хромосом имеется и вторичная перетяжка. Она, как правило, располагается у дистального конца хромосомы и отделяет небольшой ее участок, носящий название спутника. Вторичная перетяжка не участвует в движении хромосом при деление ядра. Она получила название ядрышкового организатора, поскольку в месте ее локализация происходит образование ядрышка. Концевые участки хромосомы называют теломерными. Они препятствуют ее соединению с другими хромосомами.

1                          2                 3       4                5Формы хромосом на стадии метафазы (схема):1,5 - равноплечие; 2,3 - неравноплечие; 4 – головчатыеКаждому из населяющих нашу планету видов растений и животных свойственно строгое число хромосом, обозначаемое 2n (диплоидный набор). В половых клетках число хромосом в два раза меньше и равно n (гаплоидный набор). В соматических клетках организма каждая хромосома имеет пара, идентичную как морфологически, так и генетически (гомологичные хромосомы). Исключение из этого правила составляют половые хромосомы у гетерогаметных особей. Специфический для определенного вида по числу и структуре набор хромосом получил название кариотипа.Графическое изображение кариотипа, показывающие его структурные особенности, называется идиограммой. В последние годы получил распространение метод дифференциального окрашивание хромосом. При этом на каждого из хромосом прокрашиваются специфические, характерные для нее полосы (бэнды), что значительно облегчает идентификацию отдельных хромосом кариотипа. Хромосомы, определяющие пол особи, называют половыми хромосомами, а все остальные - аутосомами. Внутренне строение хромосом чрезвычайно сложно. По химическому составу они на 40% состоят из ДНК и на 60% из белков, в среднем около 60% из которых приходится гистоны. Строение метафазной хромосомы при исследовании с помощью светового микроскопа представляет следующим образом. Каждая хромосома состоит из двух хроматид, спирально закрученными и располагающихся параллельно оси хромосомы. Для прокрашивающихся в интерфазном яде участков хромосом используют термин "хромонема" - красящая нить. Утолщения на хромонемах получили название хромомер. Особенность вышеописанного строения хромосом зависит от уровня меняется при переходе от интерфазного состояния хромосом к метафазномуПервый, получивший название нуклеосомного, определяет скручивание ДНК по поверхности гистоновой сердцевины. Второй - объединение нескольких нуклеосом (до 10) в бусину - называется нуклеомерный. Третий уровень - объединение скрепками из негистоновых белков фибрилл дезоксирибонуклеопротеида в петлевой домен, называемый хромомером. Четвертый - образование хромонем. Далее, по-видимому, хромонема укладывается в виде спирали в хроматиде, хотя весьма вероятно, что это еще один уровень - "петлистых структур".

2. Мейоз как цитологическая основа образования и развития половых клеток

Мейоз, или редукционное деление, - особый тип деления клеток, характерный только для спорогенных тканей. При этом число хромосом в дочерних клетках уменьшается вдвое, т.е. происходит редукция числа хромосом. Мейоз предшествует интерфаза, которая аналогична таковой при митозе. В S-период интерфазы происходит редупликация хромосом, поэтому хромосомы, вступающие в процесс мейотического деления, состоят из двух хроматид. Мейоз состоит двух ядерных делений, которое следует одно за другим. При первом делении (мейоз II) происходит редукция числа хромосом, т.е. число хромосом в клетке уменьшается в два раза. Второе деление (мейоз II) протекает по типу митоза. Как и митоз, первое и второе деление мейоз подразделяют на следующие фазы: профаза, метафаза, анафаза и телофаза. Соответственно эти фазы обозначают: метафаза I, метафаза II, анафаза I и т.д. Мейоз I начинается с профазы I. Это наиболее продолжительная фаза мейоза, которая, в свою очередь, подразделяются на стадии лептотена, зиготена, пахитена, диплотена и диакинез. На стадии лептотены в ядре появляются слабоспирализованные хромосомы. Постепенно они приобретают нитевидную форму.Зиготена начинается с постепенно попарного соединения (конъюгации, синапсиса) по длине параллельно уложенных гомологичных хромосом. Соединение попарно хромосомы образуют биваленты. В связи с тем, что перед началом мейоза произошла редупликация хромосом, каждый бивалент состоит из четырех хроматид. Функцию синапсиса выполняет синаптонемный комплекс (СК) - белковое образование, входящие в состав бивалента и имеющие вид трехслойной ленты, располагающейся между конъюгирующими хромосомами. СК формируются постепенно по принципу застежки - молнии на протяжении всей стадии зиготены. Образование бивалентов создает предпосылки для возможности обмена гомологичными участками между гомологичными хромосомами (кроссинговера), что представляет важное генетическое событие. В то же время продолжается процесс конденсации хромосом.Пахитена - это стадия, на которой СК сформирован по всей длине хромосом (стадия стабильного синапсиса). Она характеризуется продолжающимся утолщением хромосом в результате непрерывной конденсации хроматина. На этой стадии происходит обмен гомологичным участками хроматид (кроссинговер) и, как следствие, рекомбинация сцепленных генов. На следующей за пахитеной стадии, получившей название диплотены, продолжается конденсация хромосом, но при этом начинается процесс расхождение гомологичных хромосом, которые удерживаются в точках обмена участками, возникшими при кроссинговере. Они получили название хиазм.Диакинез - последняя стадия профазы I. Она характеризуется максимальной конденсации хромосом. Исчезает ядрышко, а биваленты располагаются по периферии ядра. При этом гомологичные хромосомы удерживаются в составе бивалентов благодаря хиазмам. Далее следует метафаза I. Ее началу соответствует распад оболочки ядра и формирование веретена деления. Биваленты располагаются в экваториальной плоскости. Анафаза I - стадия, на которой гомологичные хромосомы расходится к полюсам. В результате число хромосом во вновь образующейся клетке (n) будет в два раза меньше, чем в родительской (2n). В этом отличие анафаза I мейоза от анафазы митоза. Окончательное расхождение хромосом к полюсам свидетельствует о том, что началась телофаза I. За ней у ряда видов следует очень короткий интеркинез, во время которого синтез ДНК и репликация хромосом не происходят, и начинается второе деление мейоза (мейоз II). В этом случае хромосомы не деконденсируются. Однако у некоторых видов растений интерфаза между первым и вторым делением мейоза продолжается довольно долго. В этом случае хромосомы деконденсируются, образуя два вида ядра, разделенные клеточной перегородкой. Второе деление мейоза протекает довольно быстро по типу обычного митоза, но уже в клетках с гаплоидным числом хромосом. В тех случаях, когда интерфаза короткая, профаза II выпадает и второе деление начинается с метафазы II, во время которой происходит образование веретена деления и хромосомы располагаются в экваториальной плоскости. В анафазе II центромеры делятся и начинается расхождение хроматид к полюсам, которое заканчивается на стадии телофазы II. На этой стадии происходит полная деконденсация хроматина, образуются ядра и клеточные перегородки. В конечном итоге в результате мейоза образуется 4 клетки, каждая из которых содержит в ядре гаплоидное (n) число хромосом.

3. Сцепленное с полом наследование

В опытах Менделя и других исследователей по изучению закономерностей наследования было установлено, что ход наследования многих признаков не зависит от того, материнским или отцовским организмом вносит тот или другой аллель, т.е. реципрокные скрещивания дают одинаковый результат. Однако при анализе наследования ряда признаков у раздельнополых организмов оказалось, что некоторые из них передаются своеобразно и явно зависит от пола. В этих случаях реципрокные скрещивания давали разные результаты. Было высказано предложение о том, что определяющие такие признаки гены находится в половых хромосомах, в то время как гены, определяющие признаки, наследующиеся в соответствии с классическими схемами, локализованы в хромосомы, одинаковых у обоих полов, т.е. в аутосомах. Этот вывод и его доказательство были получены еще в 1909г.Т. Морганом с сотрудниками. Изучая наследование признаков, он установил у дрозофилы наличие связи определенных генов с половыми хромосомами и таким образом заложил фундамент хромосомной теории наследственности. Кроме генов, определяющих пол, половые хромосомы содержат гены, влияющие на разные признаки, не имеющие отношения к дифференциации пола. При передачи таких генов и наблюдается явление так называемого наследования, сцепленного с полом. В своих первых опытах Морган использовал мутацию белых глаз. Дикие дрозофилы имеют красные глаза. Красный цвет глаз W доминирует над белыми w (white). При скрещивании гомозиготной красноглазой самки с белоглазым самцом в F1 глаза у всех мух красные, а в F2 происходило расщепление в равном соотношении на красноглазых и белоглазых мух только среди самцов, а все самки F2 были красноглазые. Соотношение по полу было 1: 1: P ♀ красноглазая х ♂ белоглазый F1 ♀ красноглазые, ♂ красноглазые F2 ♀ красноглазые, Ѕ ♂ красноглазые и Ѕ ♂ белоглазые В реципрокном скрещивание результаты отличались тем, что уже в F1 надобилось расщепление по цвету глаз, причем все самки были красноглазыми, т.е. похоже на отцов, а все самцы - белоглазыми, т.е. похоже на матерей. Такое наследование называют крисс - кросс, или крест - накрест. В F2 и среди самок, и среди самцов половина особей имела красные глаза, половина - белые: P ♀ белоглазая х ♂ красноглазый F1 ♀ красноглазые, ♂ белоглазые F2 Ѕ ♀ красноглазые и Ѕ ♀ белоглазые Ѕ ♂ красноглазый и Ѕ ♂ белоглазые Такое расщепление становится понятным, если допустить, что гены, определяющие окраску глаз, находится в X-хромосоме, а в Y-хромосоме их нет. В первом случае скрещивание гомозиготной красноглазой самки WW с белоглазым самцом wY приводит к образованию красноглазых гетерозиготных по генам окраски самок (Ww) и красноглазых самцов (WY). В F1 самки образуют два типа гамет: с Х-хромосомой с геном W и с Y-хромосомой, не несущей гена окраски. В соответствии с этим в F2 все самки будут красноглазыми: Ѕ гомозиготы WW и Ѕ гетерозиготы Ww, а самцы Ѕ красноглазые WY и Ѕ белоглазые wY: P       ♀ WW                 х       ♂ wY                Красноглазая                Белоглазый F1          ♀ Ww                           ♂ WY        Красноглазые             Красноглазые F2          ♀ WW                 ♀ Ww                        ♂ WY            ♂ wY        Красноглазые        Красноглазые    Красноглазые   Белоглазые В реципрокном скрещивании результаты получаются другие, так как гомозиготная белоглазая самка ww образует один тип гамет - с Х-хромосомой с геном w, красноглазый самец (WY) - два типа гамет: с Х-хромосомой, несущий ген W, и Y-хромосомой, не несущей окраски. В F1 все самки Ww будут красноглазые, а самцы wY - белоглазые. В F2 появится красноглазые гетерозиготные по гену окраски самки Ww и гомозиготные белоглазые ww; Ѕ самцов получают Х-хромосомы, несущие ген красных глаз, и Ѕ - ген белых глаз wY: P       ♀ ww                   х       ♂ WY         Белоглазая       Красноглазый F1          ♀ Ww                           ♂ wY       Красноглазые               Белоглазые F2          ♀ Ww                    ♀ ww                  ♂ WY                    ♂ wY      Красноглазые          Белоглазые      Красноглазые  Белоглазые     Из результатов скрещивания следует, что самки могут быть гетерозиготными (Ww) или гомозиготными (WW, ww) по генам окраски глаз. У самцов ген окраски локализован только в Х-хромосоме. Y-хромосому называют в этом случае генетически инертной, т.е. проявляется одна доза гена. Такое состояние называют гемизиготными, т.е. WY - красноглазый самец, wY - белоглазый. Аналогичным образом наследуется все признаки, определяемые генами, локализованными в Х-хромосомах, и у других организмов, у которых гетерогаметен мужской пол. Так, у человека около 60 генов наследуются сцеплено с Х-хромосомой, в том числе гены, обусловливающие такие заболевания, как гемофилия, цветовая слепота, мускульная дистрофия и др. Однако установлено, что Y-хромосомы не во всех случаях генетически инертны и их функции не сводят только к роли синаптических партнеров при конъюгации с Х-хромосомы во время мейоза. Известно небольшое число примеров, когда в Y-хромосоме локализованы гены, не имеющие аллелей в Х-хромосоме. Например, у живородящей рыбки лебистуса (гуппи) один из признаков - темное пятно спиной плавнике - обусловлено геном, локализованными в Y-хромосоме, и потому передается только от отца к сыну. Такие признаки называются голандрическими, т.е. наследуемыми исключительно по мужской линии. У человека, таким образом, наследуется локализованный в Y-хромосоме ген SPY, ответственный за развитие мужской потенции, а также гены, контролирующий размер зубов, развитие кожи перепонки между пальцами ног, волосатость мочек ушей (ихтиоз) и др. Кроме генов, аллели которых локализованы только либо в Х-, либо в Y-хромосоме, имеются гены, общие для обеих половых хромосом. Такие гены у одного и того же вида наследуется как сцепленные то с Х-, то с Y-хромосомой и проявляются в зависимости от того, в какой из них находится доминантный аллель, а какой - рецессивный. У разных организмов количество таких общих для Х - и Y-хромосом генов неодинаково, а следовательно, различаются и размеры гомологичных участников половых хромосом. Специфическая часть Y-хромосомы, не имеющая гомологии с Х-хромосомой, у всех изученных организмов генетически инертна, т.е. содержит очень мало генов.

4. Транскрипция ДНК

Это-перенос генетической информации, закодированной в последовательности пар нуклеотидов, с двуцепочечной молекулы ДНК на одноцепочечную молекулу РНК. При этой матрицей для синтеза РНК служит только одна цепь ДНК, называемая смысловой. В транскрипции, как и в других матричных процессах, различают три стадии: инициацию, элонгацию и терминацию. Фермент, осуществляющий этот процесс, называют ДНК-зависимой РНК-полимеразой или просто РНК-полимеразой; при этом полимеризация полирибонуклеотида (РНК) происходит в направлении от 5 - к 3 - концу растущей цепи. Синтез ферментов и других белков, необходимых для жизнедеятельности и развития организмов, происходит в основном на первой стадии интерфазы, до начала репликации ДНК. В результате транскрипции наследственная информация, записанная в ДНК гена, точно транскрибируется (переписывается) в нуклеотидную последовательность мРНК. Синтез мРНК начинается с участка инициации транскрипции, называемого промотором. Промотор расположен перед геном и включает в себя около 80 пар нуклеотидов (у вирусов и бактерий этот участок соответствует примерно одному витку спирали ДНК и включает около 10 пар нуклеотидов). В нуклеотидных последовательностях промоторов часто встречаются пары АТ, поэтому их называют также ТАТА-последовательностями. Транскрипция осуществляется с помощью ферментов РНК-полимераз. У эукариот известны три типа РНК-полимераз: I-ответственен за синтез рРНК, II-за синтез мРНК; III-за синтез тРНК и низкомолекулярной рРНК-5S РНК. РНК-полимераза прочно связывается с промотором и разъединяет нуклеотиды комплементарных цепей. Затем этот фермент начинает двигаться вдоль гена (молекулы ДНК) и по мере разъединения цепей ведет на одну из них (смысловой) синтез мРНК, присоединяя согласно принципу комплементарности аденин к тимину, урацил к аденину, гуанин к цитозин к гуанину. Те участки ДНК, на которых полимераза образовала мРНК, вновь соединяются, а синтезируемая молекула мРНК постепенно отделяется от ДНК. Окончание синтеза мРНК определяется участком остановки транскрипции - терминатором. Нуклеотидные последовательности промотора и терминатора узнаются специальными белками, регулирующими активность РНК-полимеразы. Перед выходом из ядра к начальной части мРНК (5-концу) присоединяется остаток метилированного гуанина, называемый "колпачком", а к концу мРНК (3-концу) - около 200 остатков адениловой кислоты. В таком виде зрелая мРНК проходит через ядерную мембрану в цитоплазму к рибосоме и соединяется с ней. Полагают, что у эукариот "колпачок" мРНК участвует в связывании её с малой субъединицей рибосомы.

bukvasha.ru

Реферат - Хромосомы и пол

С.Ю. Афонькин

Общая схема полового цикла и его регуляция

Гены секса

Сразу надо оговориться – речь пойдет не о наследственных задатках, определяющих тип сексуального поведения, а о генах, которые определяют развитие человеческого зародыша в существо мужского или женского пола. Немного интригующее слово «секс» в переводе с латыни означает вполне нейтральный в русском языке термин «пол». Латинское sexus произошло от глагола secare – разрезать, разделять, чем подчеркивается, что два пола являются как бы независимо существующими отдельностями. Русское же слово «пол» явно намекает на половинку, которой многим людям так недостает для счастья.

До начала XX в. у людей были самые смутные представления о том, каким образом определяется пол будущего ребенка. Например, древние греки верили, что девочка рождается при оплодотворении семенной жидкостью из левого яичка, а мальчики – из правого. Аристотель совершенно серьезно считал, что овца зачинает плод мужского пола, если стоит головой к северу, и женского – если к югу. Долгое время врачи древности полагали, что в женской матке существует три камеры: одна для мальчиков, другая для девочек, а третья, непарная, для гермафродитов. Развеять эту морфологическую несуразицу удалось только в эпоху Возрождения Леонардо да Винчи (1452–1519) и великому анатому Андреасу Везалию (1514–1564).

В 1672 г. Ренье де Грааф впервые увидел фолликулы в яичниках млекопитающих. Он работал с забитыми коровами и свиньями. Чтобы извлеченные из них яичники было легче резать, он варил эти репродуктивные органы в кипятке. Также, кстати, поступал и великий Леонардо да Винчи с глазными яблоками человеческих трупов, когда изучал анатомию органов зрения. Повышенная температура вызывала денатурацию белков, в результате чего фолликулы превращались в белые шарики. Такой же процесс происходит при варке куриных яиц. Неудивительно, что де Грааф считал обнаруженные им фолликулы именно яйцами животных. Теперь-то мы знаем, что фолликул – это своеобразная камера, стенки которой образованы особыми вспомогательными клетками. Внутри этой камеры происходит созревание будущей яйцеклетки, которая гораздо меньше самого фолликула.

Однако по-настоящему разобраться с яйцеклетками млекопитающих удалось лишь два века спустя великому Карлу фон Бэру (1792–1876), эстонцу немецкого происхождения, с 1834 г. работавшему библиотекарем в Санкт-Петербургской Академии наук. Он пытался ответить на, казалось бы, простой вопрос: с чего начинается самое раннее развитие зародышей животных и человека? Где истоки процесса, который приводит к появлению на свет новорожденного существа? Многочисленные опыты и наблюдения убеждали его: начальной точкой такого развития всегда является одна-единственная клетка женского организма! 1 мая 1872 г. Бэр провозгласил на латыни (тогда так было принято) великий биологический закон: «Omne vivum ex ovo» – «Все живое из яйца». При этом он имел в виду не яйцо, а именно яйцеклетку, просто на латыни для нее не было более адекватного термина. Бэру повезло – его выдающиеся научные заслуги были признаны еще при жизни. Российская Академия наук выбила в его честь медаль с латинской надписью «Orsus ab ovo hominem homini ostendit» – «Начавши с яйца, он показал человеку его самого».

Наблюдения и открытия Бэра были верны, хотя информация только о внешнем строении яйцеклетки и сперматозоидов млекопитающих никак не помогала решить загадку определения пола зародышей у человека. Внешне все яйцеклетки были одинаковы, так же как и все спермии. Для того чтобы ответить на вопрос, чем именно определяется развитие зародышей по женскому или мужскому пути, исследователям пришлось пройти долгий путь, полный удивительных открытий. В частности, они обнаружили в ядрах делящихся клеток компактные тела – хромосомы, и выяснили, что именно они являются хранилищами наследственных задатков.

В самом начале второй половины XX в. ученым удалось доказать, что все 46 хромосом человека можно разбить на две группы. Большую из них составляют парные соматические хромосомы, не имеющие никакого отношения к определению пола. Во вторую группу входит всего одна пара половых хромосом. Последние немного отличаются по внешнему виду друг от друга, поэтому несколько условно их стали называть X-хромосомой и Y-хромосомой.

При образовании половых клеток в процессе редукционного деления (мейоза) число хромосом уменьшается вдвое. В результате каждая будущая яйцеклетка несет по одной половой X-хромосоме. В этом плане все яйцеклетки одинаковы. Сперматозоиды, напротив, разделяются на две группы. Одни из них содержат X-хромосому, а другие – Y-хромосому. Пол будущего зародыша и новорожденного определяется тем, сперматозоид какого типа успеет первым достичь яйцеклетки и оплодотворить ее. Если это будет сперматозоид с X-хромосомой, на свет появится особь женского пола. В противном случае оплодотворенная яйцеклетка будет обладать хромосомным набором XY, и из нее разовьется мужская особь.

Описанный механизм определения пола у млекопитающих и человека представляется очень простым, его обычно без проблем усваивают ученики в старших классах школы на уроках генетики. Однако это простота обманчива. В самом деле, представьте себе оплодотворенную яйцеклетку человека с хромосомами XY. Ну и что? Какие процессы должны происходить потом для того, чтобы через девять месяцев акушерка могла сообщить благополучно родившей маме: «У вас мальчик»? Другими словами, как X- и Y-хромосомы влияют на будущий пол ребенка? Существуют ли отдельные «гены сексуальности», действием которых пол и определяется?

Быть может, это гены, кодирующие мужские и женские половые гормоны тестостерон и эстрадиол? Вряд ли. Во-первых, эти гормоны – вовсе не белки, а значит, их структура в ДНК напрямую закодированной быть не может. Во-вторых, хорошо известно, что и мужские, и женские половые гормоны одновременно есть и у мужчин, и у женщин. Дело только в соотношении концентраций этих биологически активных веществ.

В общем, как видите, вопрос с определением пола не так прост, каким он может показаться на первый взгляд. Попробуем разобраться в этой запутанной истории и проследим, как развивается зародыш человека и что происходит при этом с его половыми клетками, половыми железами и органами.

Благополучно оплодотворенная яйцеклетка приступает к делению. В результате вскоре образуется небольшой шарик из клеток, судьба которых уже определена и совершенно различна. Часть из них вскоре образует собственно будущий зародыш, а часть превращается в его окружение – трофобласт. Клеточный комочек – будущий младенец – оказывается заключенным внутри капсулы трофобласта, словно растительный зародыш внутри скорлупы желудя или каштана. Тонкая клеточная стенка трофобласта «вплавляется» в стенку матки, образуя с ней плотное сцепление. В дальнейшем именно в этом месте образуется достаточно сложное образование – плацента – своеобразный «пропускной пункт» на пути питательных веществ, поступающих из тела матери в тело плода.

Через 24 дня после оплодотворения у человеческого зародыша уже можно выделить несколько десятков (обычно 30–50) стволовых половых клеток, т.е. клеток, при делении которых в будущем образуются все половые клетки взрослого организма. У кролика таких стволовых клеток еще меньше – всего 6–8. К слову сказать, существуют организмы, например некоторые крошечные нематоды, развитие которых биологи изучили досконально. В такой ситуации можно уверенно ткнуть пальцем в одну-единственную клетку и сказать: «Из нее позже получатся все половые клетки червя». Можно ли быть столь же уверенным в случае человека – неясно. Однако, скорее всего, такая единственная половая клетка-прародительница все же существует. Просто найти ее нелегко.

Судьба стволовых половых клеток человека зависит от пола новорожденного, но об этом чуть позже. Пока же, на ранних стадиях развития, разницу между будущими яйцеклетками и сперматозоидами заметить не удается. Более того, эти будущие половые клетки находятся у зародыша в совсем неподходящем месте, и им еще только предстоит оказаться там, где надо, т.е. в будущих половых железах. Именно в будущих, поскольку пока их и железами-то назвать нельзя – они представляют собой так называемые половые складки, т.е. группы клеток, из которых со временем разовьются семенники или яичники. Однако судьба этих складок уже предрешена, и они уверенно выделяют аттрактивные вещества, привлекающие к себе по градиенту концентрации стволовые половые клетки. Последние же буквально заползают в места своей будущей постоянной дислокации, активно «колонизируя» половые складки. Кстати, образный термин «колонизация» в данном случае официально принят в медицинской и эмбриологической литературе.

До второго месяца эмбрионального развития зачатки половых желез с находящимися внутри стволовыми половыми клетками и у будущих мальчиков, и у будущих девочек выглядят одинаково. Различия начинают проявляться чуть позже. В это время у человеческого эмбриона существуют две пары зачатков будущих внутренних половых органов – так называемые вольфовы и мюллеровы каналы, названные так по фамилиям биологов, которые впервые их описали. У рыб парные вольфовы протоки являются мочеточниками, по ним удаляются продукты обмена веществ. У более высокоорганизованных существ, вроде рептилий, птиц и млекопитающих, вольфовы протоки превращаются в семяпроводы. Мюллеровы каналы исторически также связаны с выделительной системой древних позвоночных. У млекопитающих они превращаются в половые протоки женской выделительной системы, в частности, в яйцеводы и в зачаток матки.

Процесс оплодотворения:

а–г – проникновение сперматозоидов в яйцеклетку;

д–з – слияние ядер половых клеток.

1 – мембрана яйца; 2 – студенистая оболочка; 3 – бугорок оплодотворения; 4 – оболочка оплодотворения; 5 – центриоль

Эта древняя связь выделительной системы с органами размножения доставила человеку немало психологических проблем, поскольку сексуальная активность невольно ассоциировалась в головах людей с чем-то постыдным, запретным и не подлежащим публичному обсуждению. Только представьте себе, как складывалась бы вся сексуальная культура человека, будь органы размножения связаны не с органами выделения, а, например, с органами слуха или зрения.

К концу второго месяца развития будущие семенники начинают выделять два гормона: уже упоминавшийся тестостерон и так называемый антимюллеровский гормон. Тестостерон стимулирует образование из вольфовых протоков семенников. Антимюллеровский гормон в свою очередь угнетает развитие мюллеровых каналов. В результате внутреннее и внешнее развитие зародыша начинает идти по мужскому пути.

У будущих девочек антимюллеровский гормон не выделяется, поэтому их развитие идет по женскому пути: из мюллеровых каналов у них развиваются внутренние женские органы размножения. Не правда ли, создается впечатление, что для развития по мужскому пути требуются некоторые усилия, а по женской линии оно идет как бы само собой. Не случайно в опытах над животными было показано, что если лишить эмбрион будущего семенника, то независимо от своей мужской хромосомной конституции он развивается в самку! Это может означать, что женский пол является эволюционно более древним, а особи мужского пола, не способные к рождению потомства, являются лишь необходимым довеском к женским организмам.

Таким образом развитие мужской и женской половых систем до определенного момента идет по общему пути. Это отражается и в строении внешних половых органов человека. У мужчин, например, имеется зачаточная матка – небольшая двурогая полость, открывающаяся в мочеполовой канал.

Еще в эмбрионе созревающие в женских половых железах яйцеклетки приступают к редукционному делению – мейозу. По сравнению со сперматозоидами таких клеток, прародительниц следующего поколения, оказывается совсем немного – несколько десятков тысяч. Более того, из этих претенденток лишь несколько сотен превратятся позже в зрелые яйцеклетки яичника. Остальные по неизвестным причинам дегенерируют.

Вообще в судьбе яйцеклеток много таинственного. Например, начавшееся на эмбриональной стадии редукционное деление затем тормозится на годы и заканчивается фактически лишь в момент оплодотворения яйцеклетки сперматозоидом! Зачем нужна такая долгая пауза, совершенно неясно.

Вторая тайна созревающих яйцеклеток – их постепенное дозревание в фолликулах яичника. Как известно, в ходе менструального цикла в яичнике обычно созревает лишь один фолликул, из которого примерно к четырнадцатому дню цикла выделяется готовая к оплодотворению яйцеклетка. Остальные фолликулы, находящиеся тут же рядом, по соседству, ожидают своей очереди. Как же определяется эта очередность? Иначе говоря, почему данный фолликул «решает», что именно ему пора готовить свою яйцеклетку к выходу в свет? Совершенно неясно!

Однако кое-что о созревании яйцеклеток известно. Так, например, в процессе мейоза из одной материнской диплоидной клетки образуются четыре гаплоидных (мейоз проходит в результате двух последовательных делений). При образовании сперматозоидов зрелые спермии получаются одинаковыми. При образовании яйцеклеток образуется одна большая клетка (именно она и способна к оплодотворению) и три крошечные клеточки, называемые «полярными тельцами». Такой перекос понятен – яйцеклетка должна накопить как можно больше питательных веществ для дальнейшего развития, поэтому делить их поровну между несколькими клетками, образующимися в результате мейоза, просто невыгодно.

По сравнению с созреванием яйцеклеток образование сперматозоидов идет достаточно просто. Мейоз в стволовых «мужских» клетках начинается лишь во время полового созревания подростка. Зато потом этот процесс идет с завидной регулярностью до глубокой старости. Каждую секунду у мужчины образуется около 1,5 тыс. зрелых сперматозоидов. Этим могут определяться особенности сексуального поведения. Еще Ч.Дарвин замечал, что «разборчивость со стороны самки, по-видимому, почти такой же закон, как страстность самца». Возможно, эта страстность и разборчивость базируются на простом различии в численности зрелых половых клеток, которые нужно эффективно использовать для продолжения рода.

Итак, ключевым моментом детерминации пола является формирование соответствующих половых желез у эмбриона на втором месяце беременности. Этот факт был установлен еще в 1912 г. американским исследователем Уиманом. Существуют ли гены, которые определяют эту детерминацию? В 1986 г. исследователь Д.Пейдж сделал доклад, в котором рассказал о выделении из Y-хромосомы человека участка длиной в полмиллиона нуклеотидов, который, с его точки зрения, и является «геном мужества». Именно он определяет самую раннюю половую дифференцировку у человека и млекопитающих.

По-видимому, речь идет о каком-то одном белке-регуляторе, поскольку точечные мутации в выделенном Пейджем участке ДНК приводят к сбою в определении пола. В частности, изредка удается обнаружить внешне вполне нормальных женщин с «мужским» хромосомным набором XY. Иначе говоря, несмотря на наличие у них Y-хромосомы, их развитие продолжает упорно идти по женскому пути.

Добавочные Х-хромосомы

Когда рассказываешь в школе о хромосомных нарушениях пола у человека, ученики порой выдвигают любопытную гипотезу о том, что добавочная Х-хромосома должна вызывать появление на свет «суперженщин», этаких описанных в скандинавской мифологии валькирий. На самом деле это не так. Более того. Общаясь с симпатичной женщиной, можно и не заподозрить, что она является носительницей лишней Х-хромосомы, поскольку нередко такая хромосомная аномалия никак не сказывается ни на внешнем облике, ни на репродуктивной способности. Вероятность же такой встречи не так уж и мала. Обнаружить наследственную патологию достаточно просто при окраске клеток – они имеют два тельца Барра. Чаще всего подобные хромосомные аномалии обнаруживаются случайно в результате цитологических исследований, которые проводятся с иными целями.

К сожалению, женщины с хромосомным набором ХХХ чаще встречаются среди умственно отсталых пациентов в психиатрических лечебницах: трисомия по Х-хромосоме в 75% случаев приводит к умственной отсталости и, в частности, к шизофрении. Как связаны между собой добавочные гены Х-хромосомы и интеллектуальные способности и почему в 25% случаев отклонений в умственном развитии нет, пока не ясно.

Иногда добавочная Х-хромосома является причиной высокого роста девушек. Она никак не сказывается на потенциальной половой активности. Наоборот, трисомия Х часто приводит к недостаточному развитию фолликулов в яичниках, преждевременному бесплодию и раннему климаксу. Однако, надо еще раз подчеркнуть – нередко добавочная Х-хромосома не приводит к каким-либо отклонениям. Женщины с хромосомным набором ХХХ плодовиты, хотя риск спонтанных абортов и хромосомных нарушений у потомства у них несколько повышен по сравнению со средними показателями.

Реже, чем трисомия Х, встречается тетрасомия и даже пентасомия по Х-хромосоме, когда женщины обладают наборами половых хромосом ХХХХ и ХХХХХ соответственно. В этом случае нарушения умственного и полового развития более заметны, хотя даже подобные аномальные наборы половых хромосом не исключают возможность рождения нормального потомства.

Синдром Клайнфельтера

Такой синдром проявляется у мужчин с добавочной Х-хромосомой. Их хромосомный набор – XXY. Вероятность рождения детей с подобными нарушениями довольно высока и составляет 1/500. Обычно до начала полового созревания у таких мальчиков никаких отклонений от нормы при внешнем осмотре обнаружить не удается, хотя при цитологических исследованиях в клетках обычно четко выявляется характерное для женского пола тельце Барра.

В процессе возмужания у больных с этим синдромом складывается евнухоидный тип строения тела: узкие плечи и грудная клетка, широкий таз, слабо развитые мускулатура и волосяной покров на лобке и подмышками. Семенные канальцы часто атрофируются, а сперматозоиды не вырабатываются, что является причиной стерильности. У мужчин с синдромом Клайнфельтера регистрируется повышенный уровень характерного для женщин фолликулостимулирующего гормона, который выделяется с мочой; молочные железы увеличены (гинекомастия), однако к лактации они не способны, т.к. состоят из плотной соединительной ткани.

Люди с синдромом Клайнфельтера обычно безынициативны и редко способны к творческой деятельности. Они легко поддаются внушению и эмоционально неустойчивы. Интеллект нередко при этом не страдает, хотя в некоторых случаях отмечается задержка умственного развития, порой приводящая к дебильности. Почти всегда умственная отсталость выявляется у больных с хромосомным набором XXXY или даже с XXXXY. Внешне таких людей можно четко идентифицировать как мужчин, однако они стерильны и обладают внешностью евнухов.

Несколько сгладить проявление синдрома Клайнфельтера можно с помощью инъекций аналога мужского полового гормона метилтестостерона, которые врачи рекомендуют начинать делать в возрасте 10–11 лет. Поэтому очень важно вовремя идентифицировать таких больных, что можно сделать в результате анализа их клеток.

Хромосома агрессивности

В 1967 г. в известном научном журнале Nature появилась статья У.Прайса и П.Уотмора «Преступное поведение и мужской генотип XXY». В ней авторы пытались доказать, что наличие у мужчин в клетках дополнительной Y-хромосомы связано со склонностью к агрессии и различным правонарушениям. Во многом выводы статьи основывались на данных, полученных двумя годами раньше английской исследовательницей П.Джекобс с сотрудниками.

Они изучали хромосомные наборы пациентов, содержащихся в лечебных заведениях для лиц с умственным развитием ниже нормы, имевших склонность к жестокости и антисоциальному поведению. Выяснилось, что среди этой категории больных частота хромосомных наборов XYY составляла 3,5%, т.е. в 35 раза больше, чем в среднем в обществе. Отсюда было уже недалеко до прямого вывода – добавочная хромосома Y является «хромосомой преступности», которая заставляет ее носителей совершать различные правонарушения.

«Отзывчивая» пресса быстро откликнулась на новую и явно сенсационную гипотезу. В США был опубликован роман «XYY-мужчина», который сразу стал бестселлером. В нем описывалось, как вышедший из тюрьмы взломщик с роковой добавочной Y-хромосомой становится секретным агентом британских секретных служб. Для него не существует моральных и этических барьеров, он необычайно агрессивен и способен выполнить самые рискованные и кровавые задания. Уже в 1973 г. в США вышел новый учебник биологии, где прямо указывалось на то, что люди с хромосомным набором XYY очень агрессивны. В научной прессе того времени даже предлагались смелые проекты, как в будущем избавить общество от лиц, «дефектных» по половым хромосомам.

Все описанное выше – хороший пример того, как осторожные научные гипотезы усилиями гораздых до сенсаций журналистов и писателей преподносятся как неоспоримо доказанные истины. На самом деле ситуация с добавочной Y-хромосомой несколько сложнее. Во-первых, известно, что люди с хромосомным набором XYY вполне плодовиты и, как правило, ни внешне, ни по уровню половых гормонов не отличаются от «обычных» мужчин. Их рост лишь ненамного превосходит средние величины. Они – полноправные и законопослушные члены социума. Лишь изредка наличие добавочной Y-хромосомы приводит к снижению умственных способностей.

Пока строго доказанным является лишь факт, что мужчин с хромосомами XYY достоверно больше в тюрьмах и колониях, чем на свободе. При этом можно допустить, что именно низкий уровень интеллекта, а не агрессия как таковая приводит таких людей на скамью подсудимых. Второе возможное объяснение – добавочная Y-хромосома действительно ответственна за повышение уровня врожденной агрессии, однако это влияние оказывается роковым лишь для лиц, не способных адекватно контролировать свои поступки. Для того чтобы более полно оценить это второе предположение, необходимо поговорить вообще о причинах врожденного агрессивного поведения людей.

Достаточно просмотреть любой блок новостей, чтобы убедиться: проявление человеческой агрессии в той или иной форме стало обычным явлением. Хороший пример, лишенный всяческой политической и социальной окраски, – стычки болельщиков на стадионах, доходящие порой до кровавых потасовок. Причем чаще агрессивное поведение демонстрируют мужчины. В чем истинная причина таких столкновений, что движет людьми, готовыми получить тяжелую травму, решая пустяковый, в сущности, вопрос о достоинствах той или иной команды?

Объяснить врожденную повышенную агрессивность многих представителей мужского пола у человека несложно. Для этого надо обратиться мысленным взором к ситуации, которая сложилась в Африке около 2 млн лет назад. В то далекое от нас время в результате глобального изменения климата зеленое пятно джунглей начало постепенно сокращаться. Вместо влажных тропических лесов возникала выжженная солнцем саванна с ее бескрайними просторами, жухлой травой по пояс, спекшейся до твердой корки почвой и одинокими деревьями, способными выносить обжигающие потоки интенсивной солнечной радиации. Для обезьян Африки, привыкших к совсем другим условиям жизни под зонтиком влажного тропического леса, выжить в таком новом для них окружении было совсем не просто. По сути, вопрос стоял так: во что бы то ни стало приспособиться или погибнуть.

Нашим далеким предкам австралопитекам удалось выжить в таких условиях. Для этого им пришлось отказаться от привычного рациона и заняться охотой, что потребовало коллективных действий, разработки сложной системы звуковых сигналов, т.е. основы речи. Как известно, наиболее развитой системой звуковых сигналов у высших животных обладают именно коллективные охотники вроде волков.

Наиболее успешными добывателями пропитания среди австралопитеков становились наименее волосатые особи. Попробуйте побегать по африканской саванне в шубе, и вы сразу поймете, почему голые и интенсивно потеющие загонщики получали преимущество перед своими более волосатыми собратьями. До сих пор многочисленные капельки пота, проступающие у нас на всей поверхности кожи при посещении сауны, свидетельствуют о том, что нашим далеким предкам приходилось интенстивно потеть. Животные такими способностями не обладают. Их потовые железы обычно расположены в строго определенных местах тела. Успех в добывании пищи у австралопитеков почти автоматически определял большую вероятность оставить многочисленное потомство. Так, в течение десятков тысяч лет естественного отбора человек потерял свой волосяной покров на теле.

Для успешной охоты необходимо было высматривать добычу в высокой траве и одновременно использовать руки для примитивных орудий. Именно поэтому австралопитекам пришлось выпрямиться и перейти к прямохождению. Кстати, хребет позвоночных животных был совершенно не приспособлен для вертикальных нагрузок. Практически у всех позвоночных он расположен параллельно земле или плоскости дна моря. Поэтому до сих пор нам приходится расплачиваться за необычный способ использования нашего костяка болями в спине.

Высокой смертности детенышей, да и взрослых особей австралопитеки могли противопоставить только интенсивное размножение и свои интеллектуальные способности – по сути, единственное действенное оружие животных, лишенных естественного вооружения – длинных когтей и острых зубов. Отсюда – отсутствие сезонности размножения, очень короткий по сравнению с остальными крупными млекопитающими менструальный цикл, постоянная готовность заниматься сексом и необычно длинное детство, необходимое для передачи накопленных навыков подрастающему поколению.

Несмотря на все эти приобретенные в процессе эволюции особенности, жизнь в саванне оставалась для австралопитеков тяжелым испытанием. Судя по данным, полученным антропологами, нашим далеким предкам часто приходилось довольствоваться падалью и заниматься каннибализмом.

Ясно, что в таких суровых условиях борьбы за выживание больше шансов остаться в живых и оставить потомство имели наиболее агрессивные особи. Так постепенно, в результате жестокого отбора, у австралопитеков повышался врожденный уровень агрессивности, который достался нам от них в виде не слишком приятного наследства. Более агрессивными были, естественно, самцы, поскольку именно на их плечи ложилась основная тяжесть борьбы и с хищниками, и со своими же соплеменниками из соседних групп. Так, в эволюционной истории человечества агрессивность оказалась более связана с мужским полом, чем с женским. Заметьте, мы ведь не можем определенно сказать, кто более агрессивен у насекомых – самцы или самки, так что связь агрессивности с мужским полом не является абсолютным законом. Кто более агрессивен – самцы или самки речных выдр? Тоже трудно ответить. Вся же история человечества демонстрирует нам, что ввязываются в драки и войны в первую очередь именно представители сильного пола.

Разумеется, этот уровень агрессивности у разных людей может быть разным, как и проявление любого другого признака, будь то рост, мышечная масса или интеллектуальные способности. Однако врожденный характер такой мужской агрессивности – факт, который с сожалением приходится принять.

Современная наука о поведении животных, этология, утверждает, что агрессивность не связана у животных и у человека непосредственно с внешними обстоятельствами.

Любопытный пример, иллюстрирующий это утверждение, демонстрируют опыты с аквариумными рыбками цихлидами. Когда к паре цихлид в аквариум подсаживают третью рыбу другого вида, агрессия половых партнеров естественным образом выплескивается на невольного интервента. Если же ее убрать, то между супругами начинаются внутрисемейные «разборки».

Разумеется, люди не рыбы, но подобный принцип проявления агрессии действует и среди них. За примерами далеко ходить не надо. Даже непримиримые враги почти всегда объединяются под натиском внешней угрозы. Если же «внешнего» врага нет, то для укрепления нации его надо выдумать, и тогда объединяющий порыв обеспечен. К сожалению, для общего братания всего человечества нам не хватает внешней угрозы, либо из космоса, либо в виде глобальной экологической или энергетической опасности.

Из всего сказанного следует, что неизбежно проявляющуюся мужскую агрессию надо уметь спускать по каналам, которые приняты в цивилизованном обществе. Это могут быть спорт во всех его проявлениях, интенсивная физическая работа, не доходящие до рукоприкладства яростные словесные перепалки и другие формы разрядки. Каждый волен выбирать, что ему по душе. Можно вспомнить замечательный пример японских фирм, которые устанавливали в своих холлах резиновые куклы, на которых сотрудники могли вымещать свои негативные эмоции…

Поэтому наличие добавочной Y-хромосомы еще не означает, что ее можно называть «хромосомой преступности». Вероятно, она действительно вызывает несколько более высокий уровень агрессии у мужчин по сравнению со средними показателями. Однако это еще не означает, что он неизбежно придет к столкновению с законом. С другой стороны, у драчливого подростка, который еще не научился контролировать свои негативные эмоции, гораздо больше шансов попасть в полицейский участок или даже в тюрьму.

Разумеется, этот уровень агрессивности у разных людей может быть разным, как и проявление любого другого признака, будь то рост, мышечная масса или интеллектуальные способности. Однако врожденный характер такой мужской агрессивности – факт, который с сожалением приходится принять.

Современная наука о поведении животных – этология – утверждает, что агрессивность не связана у животных и человека непосредственно с внешними обстоятельствами.

Любопытный пример, иллюстрирующий это утверждение, демонстрируют опыты с аквариумными рыбками цихлидами. Когда к паре цихлид в аквариум подсаживают третью рыбу другого вида, агрессия половых партнеров естественным образом выплескивается на невольного интервента. Если же ее убрать, то между супругами начинаются внутрисемейные «разборки».

Разумеется, люди не рыбы, но подобный принцип проявления агрессивности действует и у них. За примерами далеко ходить не надо. Даже непримиримые враги почти всегда объединяются под натиском внешней угрозы. Если же «внешнего» врага нет, то его надо выдумать, и тогда объединяющий порыв обеспечен. К сожалению, для общего братания всего человечества нам не хватает внешней угрозы либо из космоса, либо в виде глобальной экологической или энергетической катастрофы.

Из всего сказанного следует, что неизбежно проявляющуюся мужскую агрессию надо уметь спускать по каналам, которые приняты в цивилизованном обществе. Это могут быть спорт во всех его проявлениях, интенсивная физическая работа, не доходящие до руко-прикладства яростные словесные перепалки и другие формы разрядки. Каждый волен выбирать, что ему по душе. Можно вспомнить замечательный пример японских фирм, которые устанавливают в специальных комнатах резиновых кукол, на которых сотрудники могут вымещать свои негативные эмоции.

Поэтому наличие добавочной Y-хромосомы еще не означает, что ее можно назвать «хромосомой преступности». Вероятно, она действительно вызывает несколько более высокий уровень агрессии у мужчин по сравнению со средними показателями. Однако это еще не означает, что он неизбежно приведет к столкновению с законом. С другой стороны, у драчливого подростка, который еще не научился контролировать свои негативные эмоции, гораздо больше шансов совершить правонарушение.

Тестикулярная феминизация

Это редкое наследственное заболевание, влияющее на определение пола, называют также синдромом Морриса. Оно является результатом нарушения гена, кодирующего клеточный рецептор мужского полового гормона тестостерона. Иначе говоря, этот гормон организмом вырабатывается, но клетками тела не воспринимается. Если все клетки эмбриона обладают X- и Y-хромосомами, теоретически на свет должен появиться мальчик. Именно такой хромосомный набор определяет повышенное содержание в крови мужского полового гормона тестостерона.

В случае тестикулярной феминизации клетки организма оказываются «глухи» к сигналам этого полового гормона, поскольку поврежденными оказываются их белки-рецепторы. В результате клетки зародыша реагируют только на женские половые гормоны (а они у мужчин в небольшом количестве тоже есть), что заставляет эмбрион развиваться, если можно так сказать, в женскую сторону. В конечном итоге на свет рождается псевдогермафродит, который обладает мужским половым набором хромосом, однако внешне четко воспринимается как девочка.

В теле такой девочки во время эмбриогенеза успевают сформироваться семенники. Однако они не опускаются в мошонку, поскольку ее просто нет, и остаются в брюшной полости. Такая ситуация нередко приводит впоследствии к паховым грыжам. Матка и яичники полностью отсутствуют, что является причиной бесплодия, хотя не исключает более-менее нормальной половой жизни. Следовательно, синдром Морриса не может рассматриваться как передающееся по наследству нарушение, поскольку страдающие им люди абсолютно бесплодны. Они просто физически не могут оставить потомство. С вероятностью порядка 1/65 000 тестикулярная феминизация возникает в каждом новом поколении в результате случайных генетических нарушений в хромосомах половых клеток.

Многим тренерам и врачам, занимающимся проблемами спортсменов, известен этот синдром, поскольку обладающие им «девушки» обладают недюжинной мужской силой, активностью и выносливостью. Благодаря этим своим особенностям они нередко проходят все фильтры отборочных соревнований и попадают в сборные высшей лиги и атлетические команды. По статистике около 1% всех выдающихся спортсменок по своей генетической природе вовсе не являются женщинами! К сожалению, судьи безжалостны к таким претенденткам на олимпийское золото, и после несложного анализа на наличие мужской Y-хромосомы такие спортсменки дисквалифицируются.

История знала одну такую знаменитую девушку, которая своей решительностью, сообразительностью, живым умом и необычайной выносливостью не уступала мужчинам. Речь идет о Жанне д’Арк. Отсутствие у нее менструаций было документально зафиксировано, а несколько мужеподобная, хотя и пропорциональная фигура прямо указывала на синдром Морриса. К тому же Жанна была прекрасной наездницей и великолепно держалась в седле. Как и многие псевдогермафродиты, она обладала недюжинной силой, была высокой и стройной. Наиболее яркими чертами ее характера были бесстрашие и героизм. Учебники медицинской генетики характеризуют людей с синдромом Морриса как исключительно активных, деловых, деятельных. Именно такой, вероятно, и была святая дева Жанна – этот знаменитый «жаворонок Франции».

Адреногенитальный синдром

Как известно, надпочечники позвоночных животных и человека вырабатывают несколько очень важных гормонов, среди которых различают адреналин, мужские половые гормоны андрогены и так называемые кортикостероиды. Последние влияют на солевой, белковый и углеводный обмен веществ. Основой для образования кортикостероидов служит всем известный холестерин. Он же является биохимическим «сырьем» для выработки половых гормонов. Получается, что в клетках надпочечников из одного и того же холестерина получаются совершенно разные продукты!

Различные генетически обусловленные нарушения синтеза кортикостероидов встречаются с очень большой частотой. Примерно каждый пятидесятый человек несет те или иные мутации в генах, в которых записана информация о ферментах, играющих важную роль в образовании гормонов коры надпочечников. К счастью, каждый подобный генетический дефект становится по-настоящему актуальным только в гомозиготном состоянии, т.е. когда он встречается одновременно в обеих гомологичных хромосомах. Частота таких состояний оценивается как 1/5000.

Блок синтеза кортикостероидов приводит к повышенному производству мужских половых гормонов. Так возникает адреногенитальный синдром, в результате которого интенсивный синтез половых гормонов начинается еще во внутриутробном периоде. У будущих девочек такой «гормональный удар» мужскими половыми гормонами ведет к так называемой маскулинизации – появлению и проявлению мужских черт. Строение их наружных половых органов приобретает сходство с мужским типом. В частности необычно развивается клитор и половые губы. У мальчиков повышенный уровень мужских половых гормонов тоже не приводит ни к чему хорошему: уже на 2–3-м году жизни у них начинают проявляться признаки полового созревания. Такие дети быстро растут и быстро развиваются физически. Казалось бы, ничего плохого в этом нет. Однако такой ускоренный рост приостанавливается уже к 11–12 годам за счет окостенения скелета, и подростки начинают заметно отставать от сверстников. Они проходят весь период возмужания в ускоренном темпе, в то же время не успевая «дорасти» до физически развитых мужчин.

Половые гормоны с химической точки зрения представляют собой стероид, состоящий из трех шестиуглеродных колец и одного пятиуглеродного. К нему присоединены две метильные и одна гидроксильная группа. У тестостерона есть еще один радикал, представляющий собой атом кислорода, соединенный с шестиуглеродным кольцом двойной химической ковалентной связью. Самое любопытное, что женский половой гормон эстрадиол имеет очень сходную структуру: у него только одна метильная группа, и характерный для тесто-стерона кислород замещен гидроксильной группой. Вот и вся разница!

Образование некоторых стероидных гормонов

Видимо, и тестостерон, и эстрадиол до поры синтезируются по единому сценарию, а различия возникают лишь на финальных этапах. Неудивительно поэтому, что при адреногенитальном синдроме перебои в синтезе кортикостероидов вызывают недостачу андрогенов на фоне нормального синтеза женских половых гормонов.

Будущие мальчики попадают в трудную ситуацию. Несмотря на наличие у них мужской Y-хромосомы, их клетки захлестывает волна эстрогенов. Результат – феминизация с типичным для нее недоразвитием полового члена, аномалиями мочеиспускательного канала вплоть до его частичного заращения. Нередкий результат синдрома при недостатке мужских половых гормонов – крипторхизм, т.е. не-опущение в мошонку из брюшной полости одного или даже обоих яичек.

Молекулы половых гормонов существуют в нашем теле недолго. Например, период полураспада эстрадиола – всего 20–25 мин. Непродолжителен и век кортикостероидов. Для того чтобы их концентрация в крови постоянно поддерживалась на нужной отметке, железы внутренней секреции, в том числе надпочечники, должны постоянно продуцировать новые порции этих гормонов.

Продукты распада кортикостероидов и половых гормонов удаляются вместе с мочой. Поэтому при соответствующем ее анализе ранняя диагностика адреногенитального синдрома возможна в самом юном возрасте. Последующее лечение может заметно сгладить его проявление.

Возможно ли непорочное зачатие?

В XIX в. мюнхенский зоолог Карл Зибольд открыл явление «непорочного зачатия» у некоторых насекомых. Так размножаются, например, обычные тли. Летом их самки без всяких предварительных контактов с самцами откладывают яйца, из которых благополучно вылупляются самки второго поколения. Те, в свою очередь, снова «беспорочно» дают начало новому поколению самок. За летний сезон таких «неполовых» генераций может быть до десяти. В результате фактически бесполое размножение вредителей идет быстро, буквально лавинообразно! Вот, кстати, почему тли порой так быстро оккупируют полюбившиеся им молодые побеги… Даже одна самка, оказавшаяся в силу случая на подходящем растении, может стать праматерью нескольких поколений насекомых. Времени на поиск брачного партнера тратить не надо!

Зибольд назвал такой «непорочный» тип размножения партеногенезом (от греч. parthenos – девственница). Партеногенетическое увеличение численности у тлей может продолжаться вплоть до осени, когда, наконец, в результате укорочения светового дня из некоторых яиц не появляются тли-самцы, которые тут же спешат исполнить свой мужской долг. Кстати, обратите внимание на любопытный факт: в данном случае на определение пола оказывает влияние обычный свет! Самцы спариваются с самками. Оплодотворенные яйца зимуют, и весной из них появляются новые самки тлей.

Прослышав про удивительное открытие Зибольда, его вскоре посетил католический архиепископ, который, несмотря на свой сан, живо интересовался достижениями науки. «Теперь и для девы Марии можно объяснить тот же процесс!» – не скрывал он своего ликования. Зибольд как истинный ученый относился к таким смелым предположениям настороженно. Нельзя же, в самом деле, прямо переносить данные, полученные при изучении насекомых, на позвоночных, тем более на людей!

Между тем прошло более ста лет, и в 1958 г. сотрудник Зоологического института Армянской академии наук Илья Даревский обнаружил, что все пойманные им на берегу горного озера Севан экземпляры скальных ящериц Lacerta saxicola являются самками. При всем старании самцов этого вида обнаружить не удавалось. Вместе с тем не вызывало сомнений, что ящерицы-самки не особо грустили без своих кавалеров. Они откладывали яйца, из которых в срок вылуплялись опять-таки одни самки. Этот факт был позже подтвержден в лаборатории, где в террариумах было выращено несколько поколений скальных ящериц, совершенно не ведавших никаких радостей спаривания. Значит, партеногенез у позвоночных возможен? Да! Быть может, он случается, хотя бы изредка, и у млекопитающих?

К тому времени механизм партеногенеза биологам был уже хорошо известен. В одних случаях в будущей яйцеклетке не проходило редукционное деление – мейоз. В результате яйцеклетка оставалась диплоидной, то есть содержала двойной набор хромосом. Сперматозоиды для ее развития оказывались не нужны. Неоплодотворенная диплоидная яйцеклетка начинала делиться, возникали личинка, зародыш, а потом и молодая особь, которая была точной копией своей матери. По сути, такой тип партеногенеза можно рассматривать как естественно протекающий в природе процесс клонирования организмов. В других случаях мейоз в будущей яйцеклетке проходил. В результате число хромосом уменьшалось вдвое. Однако и тут при партеногенезе дело обходилось без оплодотворения. Гаплоидное ядро яйцеклетки (с одиночным набором хромосом) начинало делиться. В результате появлялось два ядра, каждое из которых содержало гаплоидный набор хромосом. Затем такие ядра сливались друг с другом. Диплоидный набор хромосом восстанавливался, и в дальнейшем из такого, опять-таки неоплодотворенного сперматозоидом, яйца развивалась новая особь.

Партеногенез оказался достаточно распространенным явлением в мире живой природы. Он был обнаружен у многих растений, беспозвоночных и даже позвоночных, за исключением млекопитающих. У обычных медоносных пчел, например, самцы-трутни появляются в конце лета именно благодаря партеногенезу. Если яйцо пчелы, проходя по яйцеводам самки, оплодотворяется сперматозоидами самца, хранящимися в течение всей ее жизни в особом резервуаре, на свет появляется рабочая пчела женского пола. Все ее клетки диплоидны. Если же такое яйцо не оплодотворяется, из него развивается гаплоидный трутень-самец. Стоп! Может, это и есть модель непорочного зачатия, которое упоминается в Библии?!

К сожалению, хромосомное определение пола у перепончатокрылых насекомых происходит не так, как у людей. Как вы уже знаете, особи женского пола у млекопитающих обладают двумя Х-хромосомами. Генотип самки – ХХ. Генотип самца – XY. Следовательно, если даже предположить, что созревающая в яичнике женщины яйцеклетка начала развиваться путем партеногенеза, в результате возникнет диплоидная клетка с хромосомами ХХ. Хромосоме Y просто неоткуда взяться! Значит, в результате такого «непорочного зачатия» (читай – партеногенеза) на свет может появиться только девочка – точная копия своей матери. А Христос, как известно, был мужчиной.

Впрочем, в конце XX в. индийский биолог Чандра из Бангалора выдвинул любопытную гипотезу определения пола, которая проливает свет на проблему непорочного зачатия. Согласно взглядам Чандры развитие зародыша по мужскому пути у млекопитающих и у человека определяется лишь дозой «полового» гена, копии которого присутствуют и в Х-, и в Y-хромосоме. Как вы уже знаете, в «женских» клетках одна из Х-хромосом инактивируется и превращается в компактное тельце Барра. В результате в таких клетках работает только одна копия «полового гена», которой оказывается недостаточно, чтобы «запустить» развитие клеток и организма в целом по мужскому сценарию. В клетках с хромосомами XY активны две копии этого гена. Именно поэтому из клеток с таким генотипом развиваются особи мужского пола. Следовательно, если предположить, что в женской яйцеклетке с хромосомами ХХ произошла дупликация гена, ответственного за половую детерминацию, то есть количество таких генов увеличилось (в принципе мутации такого рода в хромосомах случаются), то согласно гипотезе Чандры такая яйцеклетка могла дать начало мужской особи! Разумеется, при этом надо еще допустить, что такая мутантная яйцеклетка будет способна к партеногенезу.

Не кажется ли вам, что получается слишком много допущений? Хотя, впрочем, чего не бывает… Вот, например, английские исследователи обнаружили в конце XX в. трех девушек, у которых клетки тела имели хромосомный набор XY. Вероятность появления таких аномалий очень низка – порядка 1/100 000. Предполагается, что в одном из «половых» генов таких девушек произошла мутация, которая сделала этот ген или его белковый продукт неактивными. Почему бы не допустить, что бывают и другие хромосомные или генные мутации, которые могут заставить клетки с двумя «женскими» хромосомами ХХ развиваться по мужскому пути?

С другой стороны, специалистам известны случаи, когда на свет появляются мальчики с хромосомным набором ХХ. Вероятность такого рождения, которое ведет к появлению стерильных мужчин, оценивается примерно как 1/10 000. Причины возникновения такой ситуации совершенно не ясны. Выдвигалась гипотеза, согласно которой изначальный хромосомный набор, возникающий при оплодотворении в таких случаях был XXY (то есть как в случае синдрома Клайнфельтера). Затем, на самых первых этапах деления клеток зародыша, хромосома Y терялась, успев, однако, оказать свое влияние на определение пола. К сожалению, это объяснение не выдерживает критики, поскольку известно, что гены Y-хромосомы оказывают влияние на половую детерминацию зачатков половых желез у зародыша человека на втором месяце внутриутробного развития. В это время зародыш состоит уже из миллиардов клеток, и все они потерять свою Y-хромосому никак не могут. Так что в целом мужчины с двумя XX-хромосомами остаются биологической загадкой.

Из этого следует, что данные современной науки о хромосомном определении пола у людей не должны поколебать уверенности верующих в возможности всевозможных «чудес». Что же порой бывает, когда такое неверие закрадывается в их души, ярко демонстрирует следующий курьезный пример. В центре одного из древнейших городов Англии – Йорке – стоит величественный собор. Летом 1984 г. одно из его крыльев было закрыто лесами – шли ремонтные работы. 8 июля один из местных проповедников использовал их как оригинальную кафедру. Стоя прямо на досках, он обратился к своей пастве с необычной проповедью. В ней он, в частности, усомнился в одном из догматов католической церкви и подверг критике возможность непорочного зачатия. На дворе ведь заканчивался XX в., и надо было казаться современным. На следующий день прямо на месте злополучной проповеди случился пожар, в результате которого треснуло и частично расплавилось знаменитое Окно Роз, изображавшее древние символы борьбы за власть Йорков и Ланкастеров. Случайность? Быть может, хотя такие случайности обычно производят на верующих большее впечатление, чем данные современной науки.

www.ronl.ru

Хромосомы

Каждая клетка тела человека содержит в точности 46 хромосом. всегда парны. В клетке всегда имеется по 2 хромосомы каждого вида, пары отличаются друг от друга по длине, форме и наличию утолщений или перетяжек. В большинстве случаев хромосомы достаточно разнятся, чтобы цитолог мог отличить пары хромосом (всего 23 пары). Следует отметить, что во всех соматических клетках (все клетки организма, кроме половых) хромосомы в парах всегда одинаковые по величине, форме, расположению центромер, в то время как половые хромосомы (23-я пара) у мужчин не одинаковые (ХУ), а у женщин одинаковые (ХХ).

Хромосомы в клетке под микроскопом можно увидеть только во время деления - митоза, во время стадии метафазы. Такие хромосомы называются метафазными. Когда клетка не делится хромосомы имеют вид тонких, темноокрашенных нитей, называемых хроматином.

Хроматин представляет собой дезоксирибонуклеопротеид, выявляемый под световым микроскопом в виде тонких нитей и гранул. В процессе митоза (деления клетки) хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры - хромосомы.

Метафазная хромосома состоит из двух продольных нитей дезоксирибонуклеопротеида - хроматид, соединенных друг с другом в области первичной перетяжки - центромеры. Центромера - особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча. В зависимости от расположения первичной перетяжки различают следующие типы хромосом: равноплечие (метацентрические), когда центромера расположена посередине, а плечи примерно равной длины; неравноплечие (субметацентрические), когда центромера смещена от середины хромосомы, а плечи неравной длины; палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Существуют еще точковые (телоцентрические) хромосомы, у них одно плечо отсутствует, но в кариотипе (хромосомном наборе) человека их нет. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков. Как было доказано многочисленными исследованиями, ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию - программу развития клетки, организма, записанную с помощью особого кода. Белки составляют значительную часть вещества хромосом (около 65% массы этих структур).

Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования.

Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям. Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000. Нередко трисомия по 21 паре хромосом является причиной гибели плода, однако иногда люди с синдромом Дауна доживают до значительного возраста, хотя в целом продолжительность их жизни сокращена. Известны трисомии по 13-й хромосоме - Синдром Патау, а также по 18-й хромосоме - синдром Эдвардса, при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития.

Достаточно часто у человека встречается изменение числа половых хромосом. Среди них известна моносомия Х (из пары хромосом присутствует только одна (Х0)) - это синдром Шерешевского-Тернера. Реже встречается трисомия Х и синдром Клайнфельтера (ХХУ, ХХХУ, ХУУ и т.д.). Люди с изменением числа половых хромосом при наличии У-хромосомы развиваются по мужскому типу. Это является следствием того, что факторы, определяющие мужской тип развития, находятся в У-хромосоме. В отличии от мутаций аутосом (все хромосомы, кроме половых), дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдается нарушения развития половых органов и роста. Реже встречаются пороки развития других систем.

www.coolreferat.com


Смотрите также