Реферат: Гидроэнергетика 2. Реферат гидроэнергетика


Реферат: "Гидроэнергетика"

Выдержка из работы

Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и человека «Дубна»

Факультет естественных и инженерных наук

Кафедра экологии и наук о Земле

Реферат

по дисциплине «Техногенные системы»

на тему: «Гидроэнергетика»

Выполнил:

студентка гр. 3021

Утенкова Дарья

Проверил:

К.б.н. Савватеева О. А.

Дубна, 2014

Оглавление

ВВЕДЕНИЕ

ГИДРОЭНЕРГЕТИКА РОССИИ

ВОЛЖСКАЯ ГЭС

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Гидроэнергетика -- одно из наиболее эффективных направлений электроэнергетики. А гидроресурсы являются возобновляемым и наиболее экологичным источником энергии, использование которого позволяет снижать выбросы в атмосферу тепловых электростанций и сохранять запасы углеводородного топлива для будущих поколений.

Кроме своего прямого назначения -- производства электроэнергии -- гидроэнергетика решает дополнительно ряд важнейших для общества и государства задач. Прямая выгода от них включает создание систем питьевого и промышленного водоснабжения, развитие судоходства, создание ирригационных систем в интересах сельского хозяйства, рыборазведение, регулирование стока рек, позволяющее осуществлять борьбу с паводками и наводнениями, обеспечивая безопасность населения. Гидроэнергетика является инфраструктурой для деятельности и развития целого ряда важнейших отраслей экономики и страны в целом. Каждая введенная в эксплуатацию гидроэлектростанция становится точкой роста экономики региона своего расположения, вокруг нее возникают производства, развивается промышленность, создаются новые рабочие места [7].

ГИДРОЭНЕРГЕТИКА РОССИИ

На территории Российской Федерации сосредоточено около 9% мировых запасов гидроресурсов. В настоящее время на территории России функционируют 15 ГЭС мощностью свыше 1000 МВт, 102 гидроэлектростанции мощностью свыше 100 МВт и одна ГАЭС (Загорская гидроаккумулирующая электростанция). По установленной мощности гидроагрегатов (около 48 ГВт) и по выработке электроэнергии на гидроэлектростанциях (около 170 млрд кВт*ч/год) Россия занимает пятое место в мире (табл. 1). Вклад гидроэлектростанций в суммарное производство электроэнергии составляет около 16%.

Таблица 1. Страны, занимающие наибольшую долю в выработке гидроэнергии [6]

Выработка электроэнергии в 2010 г., млрд. кВт ч

Выработка электроэнергии в 2011 г., млрд. кВт ч

Установленная мощность, ГВт

Доля гидроэнергии в общей выработке электроэнергии в стране, %

Китай

713,8

605

196,8

13,1

Канада

347,9

373,4

88,9

59,9

Бразилия

401,1

445,7

69,0

81,9

США

257,1

325,1

78,1

7,8

Россия

165

168

48,1

16

При этом по экономическому потенциалу гидроэнергоресурсов Россия занимает второе место в мире (порядка 852 млрд кВт·ч, после Китая), однако, по степени их освоения -- 20% -- уступает практически всем развитым странам и многим развивающимся государствам [7]. Одним из препятствий развития гидроэнергетики является удаленность основной части потенциала, сконцентрированной в центральной и восточной Сибири и на Дальнем Востоке, от основных потребителей электроэнергии (рис. 1). Наиболее освоен экономический гидроэнергопотенциал в Европейской части России — 46,8%. Существенно ниже освоение гидроэнергопотенциала Сибири — 21,7%. На Востоке России освоение гидроэнергетического потенциала составляет только 3,8% [9].

Самыми крупными ГЭС в России, с установленной мощностью более 2000 МВт, являются Саяно-Шушенская ГЭС с электрической мощностью 6400 МВт (на данный момент продолжаются восстановительные работы после аварии в 2009 году, поэтому еще не вышла на полную мощность), Красноярская ГЭС — 6000 МВт, на которой установлен единственный в России судоподъемник, позволяющий судам проходить через плотину, Братская ГЭС — 4500 МВт, Усть-Илимская ГЭС — 3840 МВт, Богучанская ГЭС — 3000 МВт, Волжская ГЭС — 2541 МВт и Жигулевская ГЭС с мощностью 2300 МВт [2].

Рис. 1. Сравнительный гидроэнергетический потенциал районов России (баллы)

гидроэнергия река гидроэлектростанция освоение

Степень износа оборудования большинства российских гидростанций превышает 40%, а по некоторым ГЭС этот показатель достигает 70%, что связано с системной проблемой всей гидроэнергетической отрасли последних пятнадцати лет -- ее хроническим недофинансированием [7].

На стадии строительства и проектирования в настоящее время находится несколько гидроэлектростанций, таких как Нижне-Бурейская ГЭС на реке Бурея в Амурской области, Загорская ГАЭС-2 на реке Кунья в Сергиево-Посадском районе Московской области, Усть-Среднеканская ГЭС на реке Колыме в Магаданской области и Зарамагский каскад ГЭС на реке Ардон в Северной Осетии, а также ведется комплексная модернизация на Саратовской ГЭС [5].

К объектам гидроэнергетики также относятся малые ГЭС, которые могут быть построены как на малых и средних реках, так (в отдельных случаях) и на крупных реках при низконапорных гидроузлах неэнергетического назначения или при неполном использовании стока. Малые (1−25 МВт), мини- (100−1000 кВт), микро- (2−100 кВт) и пико-ГЭС (менее 2 кВт) относят к нетрадиционным возобновляемым источникам энергии.

Интенсивное строительство малых ГЭС велось в СССР в середине прошлого века. К началу пятидесятых годов прошлого столетия действовало 7000 малых ГЭС суммарной мощностью около 2ГВт. Они решали проблемы энергоснабжения малых населенных пунктов, развития сельско-хозяйственного производства. Вместе с тем принятый курс руководства страны в 1950-е годы на развитие крупной централизованно энергетики привел к консервированию или закрытию большинства малых ГЭС, и в настоящее время в стране в эксплуатации находится всего около сотни малых гидроэнергоустановок.

Оценка экономического потенциала малых ГЭС составляет 40 ТВт*ч/год [1]. Современные технологии преобразования энергии водных потоков с помощью небольших гидроэнергетических установок являются подготовленными к экономически эффективному практическому использованию во многих регионах страны. Малая гидроэнергетика является экологически безопасным способом получения электроэнергии. Гидротехнические сооружения небольших ГЭС не подтопляют леса или сельскохозяйственные угодья, не приводя к сносу и переносу населенных пунктов и производственных объектов. Малые ГЭС позволяют сохранить природный ландшафт, окружающую среду в процессе строительства и на этапе эксплуатации. Малые ГЭС только незначительно влияют на миграцию рыб и не оказывают влияния на нерестовый ход.

В настоящее время компанией «РусГидро» и рядом частных компаний, в том числе зарубежных, с участием региональных администраций разрабатываются программы освоения малых гидроэнергетических ресурсов в различных районах России. Наиболее активные работы в этом направлении ведутся на Северном Кавказе: в Дагестане, Северной Осетии, Кабардино-Балкарии и других регионах. Планируется в течение ближайших 2−3 лет восстановить приостановленные и создать десятки новых малых энергоблоков суммарной мощностью более 100МВт.

К объектам гидроэнергетики относятся также гидроаккумулирующие электростанции (ГАЭС). В последнее десятилетие им уделяется повышенное внимание в связи с обострением необходимости сглаживания несоответствий между графиками выработки электроэнергии базовыми электростанциями и потребительского спроса на нее. В ночные часы, провальные по показателю отношения спроса к выработке, ГАЭС закачивают воду в водоемы-накопители, создавая запас потенциальной энергии, в пиковые — расходуют запасенную потенциальную энергию, покрывая повышенную потребность в электроэнергии. ГАЭС используют в своей работе либо комплекс генераторов и насосов, либо обратимые гидроэлектроагрегаты, которые способны работать как в режиме генераторов, так и в режиме насосов.

Экономическая эффективность ГАЭС определяется тем, что они потребляют дешевую «провальную» электрическую энергию для работы насосов и выдают в сеть дорогую «пиковую» электроэнергию, обеспечивая повышение эффективности использования других маломаневренных мощностей, так и надежность энергоснабжения потребителей.

Средний КПД ГАЭС с учетом потерь в электрических сетях составляет 66%. Под Москвой действует Загорская ГАЭС мощностью 1200/1320 МВт (в турбинном или насосном режимах). В 2007 году начато строительство Загорской ГАЭС-2 мощностью 840/1000 МВт, в стадии проектирования и предпроектных проработок находятся Зеленчукская ГЭС-ГАЭС, Ленинградская ГАЭС на реке Шапше (1560/1760 МВт), Владимирская ГАЭС на реке Клязьма (1000/1100 МВт), волоколамская ГАЭС на реке Сестра (800/900 Мвт), Центральная ГАЭС на реке Тудовка (3640/3820 МВт) [9].

Гидроэлектростанции считаются более безопасными с точки зрения экологии, по сравнению с другими типами электростанций. Но при этом и они не лишены полностью негативных сторон.

В результате строительства гидроузлов создаются водохранилища, которые изменяют естественный гидрологический режим реки и другие, связанные с ним природные процессы: гидрохимический, гидробиологический, термический твердый сток в водохранилище и в нижнем бьефе гидроузла.

Различают прямое и косвенное воздействие водохранилищ на окружающую природу. Прямое воздействие проявляется прежде всего в постоянном и временном затоплении и подтоплении земель. Большая часть этих территорий относится к высокопродуктивным сельскохозяйственным и лесным угодьям. Так, доля сельскохозяйственных земель, затопленных водохранилищами Волжско-Камского каскада ГЭС, составляет 48% всей затопленной территории, причем некоторые из них расположены в пойменной зоне, отличающейся высоким плодородием. Около 38% затопленных земель составили леса и кустарники. В пустынной и полупустынной зонах три четверти всех затопленных земель приходится на пастбища.

Косвенные воздействия водохранилищ на окружающую среду изучены не так полно, как прямые, но некоторые формы их проявления очевидны и сейчас. Так обстоит дело, например с изменением климата, проявляющимся в зоне влияния водохранилища в повышении влажности воздуха и образовании довольно частых туманов, уменьшении облачности в дневное время над акваторией и уменьшении там среднегодовых сумм осадков, изменении направления и скорости ветра, уменьшении амплитуды колебания температуры воздуха в течение суток и года.

Опыт эксплуатации отечественных водохранилищ показывает также, что количество осадков в прибрежной зоне заметно увеличивается, а среднегодовая температура воздуха в зоне крупных южных водохранилищ несколько снижается. Наблюдаются изменения и других метеорологических показателей.

Изменение климата вместе с подтоплением и переформированием берегов иногда ведет к ухудшению состояния прибрежной древесной растительности и даже ее гибели [4].

Влияние водохранилищ также сказывается на изменении гидрологического режима рек. Так в водохранилищах, по сравнению с реками, снижен водообмен.

С уменьшением скоростей течения в водохранилищах, по сравнению с реками, происходит отложение почти всех влекомых по дну рек наносов и значительной доли взвешенных твердых частиц. В среднем в водохранилищах задерживается 90−95% донных и взвешенных наносов, что приводит к их заилению.

Гидрохимический режим водохранилищ формируется под влиянием процессов, происходящих на водосборе, в береговой зоне и в самом водоеме. В водохранилищах минерализация увеличивается, иногда существенно. Кислородный режим в малопроточных и глубоких водохранилищах ухудшается по сравнению с рекой — содержание растворенного кислорода у дна снижается до долей миллиграмма на литр.

На кислородный режим водохранилищ, расположенных в умеренной и северных зонах оказывает ледовый покров. Существенно ухудшается кислородный режим в районах скопления отмерших масс сине-зеленых водорослей и высшей водной растительности.

Наиболее благополучен кислородный режим в горных водохранилищах, где содержание кислорода не падает ниже 70%.

Для гидробиологического режима водохранилищ характерно, что в целом количество биогенных веществ и скорость их кругооборота (кроме железа и кремния) увеличиваются по сравнению с рекой, особенно возрастает (на один-два порядка) амплитуда колебаний биогенных веществ. Биогенный сток водохранилищ по сравнению с рекой увеличивается (кроме соединений железа).

По термическому режиму водохранилища отличаются от рек неоднородностью температуры воды по длине, ширине и глубине, достигающей в отдельные периоды 10 °C.

Роль водохранилищ в формировании качества воды неоднозначна. На улучшение качества воды в водохранилищах по сравнению с рекой решающее влияние оказывают процессы самоочищения, усиливающиеся за счет седиментации, отстоя, разбавления, разрушения органических веществ. Замедление водообмена и явления термической и кислородной стратификации и развитие органической жизни вызывают ухудшение качества воды при усиленном антропогенном воздействии на водоемы. В целом водохранилища более уязвимы для загрязнений, чем реки.

Изменения гидрологического режима рек ниже гидроузлов иногда проявляются на многих сотнях километров. Например, регулирующее влияние водохранилища Волжской ГЭС им. Ленина сказывается на всем протяжении более чем 1000-километрового участка р. Волги от гидроузла до ее устья и т. д. Резкие колебания суточных и недельных расходов и уровней воды довольно быстро уменьшаются по течению реки, распространяясь обычно лишь на несколько десятков километров вниз от гидроузла. При многолетнем и сезонном регулировании стока происходит его выравнивание, т. е. значительно уменьшаются расходы, поступающие ниже гидроузла в паводковый период, увеличиваются, как правило, расходы в летне-осенний и особенно в зимний период.

Преобразование гидрологического режима рек водохранилищами и внутриводоемные процессы меняют гидрохимический и гидробиологический режимы ниже гидроузла. Отличительной чертой нового режима в нижних бьефах гидроузлов является перераспределение стока веществ по периодам года в общее выравнивание его в годовом разрезе. Закономерно также увеличение в зарегулированном стоке доли растворимых веществ. Общее количество годового ионного стока практически осталось прежним, а внутригодовое распределение соответствует распределению водного стока.

Характерной особенностью влияния зарегулированного стока на термический режим ниже подпорного сооружения является понижение температуры воды в весенне-летний период и повышение осенью и зимой при общем уменьшении амплитуд ее колебаний в годовом разрезе.

Меняется и ледовый режим в нижнем бьефе: он отличается более поздним образованием ледового покрова, возникновением непосредственно ниже гидроузла незамерзающего участка — полыньи (майны) и другими особенностями. Вода, сбрасываемая в нижний бьеф, в значительной степени освобождена от внесенных загрязнений.

К косвенным воздействиям водохранилищ следует отнести также появление территорий, которые становятся менее пригодными для использования в хозяйственных целях (например, острова в верхнем бьефе, осуходоленные поймы в нижнем бьефе и др.).

Нельзя также не отметить влияния создания водохранилищ на рыбное хозяйство — сооружение плотины ГЭС препятствует проходу рыбы к местам нерестилищ. В следствии этого происходит сокращение рыбных популяций.

Экологическое преимущество заключается в том, что гидроэлектростанция — одна из самых чистых типов электростанций в плане влияния на окружающей среду. Гидроэлектростанция не загрязняет атмосферу, не выбрасывает в воздух, как ТЭС, огромное количество вредных газообразных выбросов. Воздух вокруг ГЭС всегда чистый. Также гидроэлектростанции не выделяют радиации, как ТЭС и АЭС. ГЭС не вырабатывает тепла, и не происходит тепловое загрязнение гидросферы и атмосферы. Также ГЭС не сбрасывает сточные воды в водоемы. Пожалуй, главным достоинством использования ГЭС является то, что гидроэлектростанция может работать только на возобновляемом природном ресурсе — воде. А вода, мало того, что является возобновляемым источником энергии, так еще и практически неисчерпаемым.

Положительное значение водохранилищ как регуляторов стока распространяется на территории значительно большие, чем те, на которых оно располагается. Так, энергетический эффект регулирования стока проявляется не только в тех энергосистемах, в которых работает данная ГЭС, но при достаточно высокой ее мощности и в их объединениях. Орошение земель и защита плодородных угодий от наводнений, осуществляемые с помощью водохранилищ ГЭС, охватывают площади, в ряде случаев значительно превышающие площади затоплений [3].

ВОЛЖСКАЯ ГЭС

Чтобы увидеть крупнейшую гидроэлектростанцию в Европе, совершенно не обязательно получать Шенгенскую визу и бежать в банк, чтобы обменять рубли на евро. Крупнейшая гидроэлектростанция Европы и Волжско-Камского каскада, а также одна из крупнейших в России, находится на реке Волга, соединяя собой два города: Волгоград и Волжский.

Строительство Волжской, или Сталинской, ГЭС началось в 1950, закончилось в 1961 году. ГЭС является средненапорной гидроэлектростанцией руслового типа. В декабре 1959 года впервые была введена в эксплуатацию высоковольтная линия электропередачи напряжением 500кВ «Сталинград--Москва». Впервые в мировой практике была построена, испытана и сдана в промышленную эксплуатацию ЛЭП постоянного тока 800кВ «Волгоград--Донбасс». После ввода в постоянную эксплуатацию Волжская ГЭС стала испытательным полигоном электротехнического и гидромеханического оборудования для строившихся в 60−70 годы сибирских и зарубежных гидростанций.

Первый гидроагрегат был пущен 22 декабря 1958 года. А уже в 1961 году состоялся торжественный пуск Волжской ГЭС.

ГЭС поражает своими масштабами и объёмом строительства. Полный состав гидротехнических сооружений включает в себя здание ГЭС совмещенного типа с сороудерживающими сооружениями длиной 736 м, бетонную водосливную плотину длиной 725 м, наибольшей высотой 44 м с грязеспуском и рыбоподъемником, правобережную русловую грунтовую плотину длиной 3250 м с наибольшей высотой 47 м и пойменную левобережную грунтовую плотину, разрезанную шлюзами на два участка и два параллельных двухкамерных шлюза с низовым подходным каналом.

Напорные сооружения ГЭС, с общей длиной напорного фронта 4,9 км, образуют крупное Волгоградское водохранилище, которое раскинулось на площади более 3000 км² и используется в интересах различных водопотребителей и водопользователей, основными из них являются энергетика, водный транспорт, водоснабжение, рыбное хозяйство, сельское хозяйство. Это водохранилище — суточного регулирования с недельным циклом. Недельное и суточное регулирование стока Волги является особенностью энергетических режимов Волжской ГЭС, которая используется для покрытия пиковых нагрузок электроэнергии и регулирования частоты.

Ввод в эксплуатацию Волжской ГЭС сыграл решающую роль в энергоснабжении Нижнего Поволжья и Донбасса, а также объединении между собой крупных энергосистем Центра, Поволжья и Юга. Экономический район Нижнего Поволжья также получил мощную энергетическую базу для дальнейшего развития народного хозяйства. Важную роль играет ГЭС и в создании глубоководного пути на всем протяжении Нижней Волги -- от Саратова до Астрахани. По гидроузлу проложены постоянные железнодорожные и автомобильные переходы через Волгу. Они обеспечивают кратчайшую связь районов Поволжья между собой. Кроме своей основной функции -- выработки электроэнергии -- Волжская ГЭС создаёт возможность для орошения и обводнения больших массивов засушливых земель Заволжья.

Первоначально мощность ГЭС составляла 2563МВт, однако 2 гидроагрегата мощностью по 11 МВт в настоящее время не эксплуатируются. Оборудование ГЭС устарело, проводится его замена и модернизация. К апрелю 2006 г. модернизировано 9 гидроагрегатов -- заменены турбины и часть электрооборудования. Полностью модернизацию планируется завершить в 2015 году.

С экологической точки зрения, плотина Волжской ГЭС, являясь нижней ступенью каскада, перекрывает путь на нерест проходным рыбам Каспийского моря. Особенно страдают белуга, русский осётр, белорыбица, волжская сельдь. Для поддержания их поголовья применяется искусственное рыборазведение. Построенный рыбоподъёмник оказался недостаточно эффективным (так, с 1962 по 1967 через плотину Волжской ГЭС осетровых пропускалось от 17 до 67 тысяч особей в год, сельдевых -- от 435 до 1228 тысяч в год, кроме того, проходило также много сомов, сазанов, судаков, лещей и других рыб; однако это не более 15% от необходимого). Меньше страдают виды, нерестящиеся ниже плотины ГЭС, например, севрюга и вобла. Также ухудшились условия воспроизводства рыб и в результате перераспределения стока -- впрочем, здесь виноват весь Волжско-Камский каскад ГЭС.

Как и другие крупные равнинные ГЭС, Волжская гидроэлектростанция критикуется за большие потери земель в результате затопления, подтопления и переработки берегов [8].

ЗАКЛЮЧЕНИЕ

Российская Федерация обладает значительным гидроэнергетическим потенциалом и возможностями для дальнейшего развития ГЭС.

Преимуществом гидроэнергетики является отсутствие топливной составляющей в производстве электроэнергии, так как ГЭС способствует снижению зависимости стоимости электроэнергии от изменения стоимости органического топлива, а также то, что для производства электроэнергии ГЭС используют возобновляемые источники энергии, что способствует глобальным усилиям в борьбе за сокращение выбросов парниковых газов.

Государственная политика в сфере использования возобновляемых источников энергии (ВИЭ) на период до 2030 года предусматривает принятие мер по поддержке данного направления и созданию благоприятных условий для привлечения инвестиций.

Мировой опыт свидетельствует о тенденции максимального освоения гидропотенциала даже при наличии других энергоресурсов. Ярким примером является Норвегия, обладающая крупными запасами природного газа, электроэнергетика которой почти на 100% базируется на ГЭС. Другой пример — во многом схожая с Россией по природным условиям Канада, обеспечивающая на ГЭС более 60% выработки электроэнергии [7].

СПИСОК ЛИТЕРАТУРЫ

1. Асарин А. Е. Развитие гидроэнергетики России // Гидротехническое строительство. — 2003. — № 1. — С. 2−6.

2. Беляков Е. 10 крупнейших ГЭС России // Комсомольская правда. URL: http: //www. kp. ru/daily/25 963/2902571/ (дата обращения 7. 12. 2014).

3. Влияние гидроэлектростанций на водные ресурсы. URL: http: //esis-kgeu. ru/ecology/220-ecology (дата обращения 9. 12. 2014).

4. Гидроэлектростанции и окружающая среда. URL: http: //tochka-rosta. pro/Novosti/gidroelektrostancii-i-okruzhayushhaya-sreda. html (дата обращения 9. 12. 2014).

5. Крупные российские проекты (строящиеся). URL: http: //ruxpert. ru/%D0%9A%D1%80%D1%83%D0%BF%D0%BD%D1%8B%D0%B5_%D1%80%D0%BE%D1%81%D1%81%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B5_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D1%8B_%28%D1%81%D1%82%D1%80%D0%BE%D1%8F%D1%89%D0%B8%D0%B5%D1%81%D1%8F%29#. D0. 93. D0. B8. D0. B4. D1. 80. D0. BE. D1. 8D. D0. BD. D0. B5. D1. 80. D0. B3. D0. B5. D1. 82. D0. B8. D0. BA. D0. B0 (дата обращения 9. 12. 2014).

6. Обзор «Гидроэнергетика России 2011−2016: инвестиционные проекты и описание генерирующих компаний». URL: http: //www. mashportal. ru/Portals/0/Research/Гидроэнергетика_2011−2016_Демоверсия. pdf (дата обращения 7. 12. 2014).

7. РусГидро. URL: http: //www. rushydro. ru/industry/russianhydropower/ (дата обращения 6. 12. 2014).

8. Филиал ОАО «РусГидро» — «Волжская ГЭС». URL: http: //www. yug. so-ups. ru/Page. aspx? IdP=648 (дата обращения 9. 12. 2014).

9. Фортов В. Е., Попель О. С. Энергетика в современном мире. — Долгопрудный: Издательский Дом «Интеллект», 2011. — С. 79−85.

Показать Свернуть

mgutunn.ru

Реферат: Гидроэнергетика

 

Министерство образования Республики Беларусь

Учреждение образования

Лоевский государственный педагогический колледж

 

 

 

 

 

 

 

 

 

 

 

ГИДРОЭНЕРГЕТИКА

 

 

 

 

Реферат учащейся

4 «А» группы

Масловой Марины Игоревны            

 

 

 

 

 

 

2006 год

 

Содержание

 

     Введение

1.    Немного об истории

2.    Гидроэнергетика в Беларуси

3.    Основные схемы использования водной энергии

4.    Описание работы ГЭС

5.    Влияние гидроэнергетических объектов на окружающую среду и охрана природы

6.    Заключение

7.    Литература

 

ВВЕДЕНИЕ

 

Энергетика делится на традиционную и нетрадиционную. Традиционная энергетика базируется на использовании ископаемого горючего или ядерного топлива и энергии воды крупных  рек. Она подразделяется на теплоэнергетику, электроэнергетику, ядерную энергетику и гидроэнергетику. (табл. 1)

Многие тысячелетия верно слу­жит человеку энергия, заключен­ная в текущей воде. Запасы ее на Земле колоссальны. Недаром неко­торые ученые считают, что нашу планету правильнее было бы назы­вать не Земля, а Вода - ведь около трех четвертей поверхности пла­неты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, воз­никают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что челове­чество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научи­лись использовать энергию рек.

Изобретение паровой машины, казалось бы, остановило много­вековое триумфальное шествие водяных колес. Маленькие пыхтя­щие двигатели, которые можно было устанавливать где угодно, а не только на берегу реки, приво­дили в движение станки и кузнечные молоты и сукновальни, покусились даже на извечное предназначение водяных колёс – на орошение полей. Одно за другим шли на слом гигантские водяные колёса, казалось, многовековая история водяной энергетики близится к завершению.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию необходимо было вращать, а это вполне успешно могла делать вода.

 

1. НЕМНОГО ОБ  ИСТОРИИ

 

  Гидроэнергия, равно как и мускульная энергия людей и животных, а также солнечная энергия, используется очень давно. Упоминание об использовании энергии воды на водяных мельницах для помола зерна и дутья воздуха при выплавке металла относится  к концу II в. до н. э. С течением столетий размеры и эффективность водяных колёс увеличились. В XI в. в Англии и Франции одна мельница приходилась на 250 человек. В это время сфера применения мельниц расширилась. Они стали использоваться в сукновальном производстве, при варке пива, распилке леса, для работы откачивающих насосов, на маслобойнях. Можно считать, что современная гидроэнергетика родилась в 1891 году. В этом году русский инженер Михаил Осипович Доливо-Добровольский, эмигрировавший в Германию по причине «политической неблагонадёжности», должен был демонстрировать на электротехнической выставке во Франкфурте-на-Майне изобретённый им двигатель переменного тока. Этот двигатель мощностью около 100 киловатт в эпоху господства постоянного электрического тока сам по себе должен был стать гвоздём выставки, но изобретатель решил для его питания построить ещё и совершенно неожиданное по тем временам сооружение – гидроэлектростанцию. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала небольшая водяная турбина. Электрическая  энергия передавалась на территорию выставки по невероятно протяжённой для тех лет линий передачи длиной 175 километров (это сейчас линии передач длиной в тысячи километров никого не удивляют, тогда же подобное строительство  было единодушно признано невозможным). Всего за несколько лет до этого события виднейший английский инженер  и физик Осборн Рейнольдс в своих Канторовских лекциях  неопровержимо, казалось бы доказал, что при передаче энергии по средствам трансмиссии потери энергии составляют всего лишь 1,4% на милю, в то время как при передачи электрической энергии по проводам на такое же расстояние потери составят 6%.  Опираясь на данные опытов, он сделал вывод о том, что при  использовании  электрического тока на другом конце линии передачи вряд ли удастся иметь более15-20% начальной мощности. В то же время, считал он, можно быть уверенным в том, что при передаче энергии приводным тросом сохранится 90% мощности. Этот «неоспоримый» вывод был успешно опровергнут практикой работы первенца гидроэнергетики в Лауффене.

Но эра гидроэнергетики тогда ещё не наступила. Преимущества гидроэлектростанций очевидны – постоянно  возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалось задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за турбиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объём гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале ХХ века было построено всего несколько гидроэлектростанций. Это было лишь началом. Освоение гидроэнергоресурсов осуществлялось быстрыми темпами, и в 30-е годы ХХ века была завершена реализация таких крупных проектов, как  ГЭС Гувер  в США мощностью 1,3 Гиговатт. Строительство подобных мощных ГЭС вызвало рост использования энергии в промышленно развитых странах, а это, в свою очередь, дало толчок программам освоения крупных гидроэнергетических потенциалов.

В настоящее время использование энергии воды по-прежнему остается актуальным, а основным направлением является производство электроэнергии.                                           

2. ГИДРОЭНЕРГЕТИКА В  БЕЛАРУСИ

 

В Беларуси мест для строи­тельства столь крупных гидроэлектростанций нет. Все наши большие реки ­Днепр, Припять, Двина, Неман - текут на равнинах. Тем не ме­нее еще в советские времена, когда цены на углеродное топливо были на порядки ниже нынешних, ГЭС в БССР строили. Следовательно, опре­деленный экономический потенциал у белорусской гидроэнергетики есть. Тем более что при постоянном подорожании природного газа любое замещение топливных носителей - несомненное благо.

Сейчас для ввода мощности 1 кВт на газе нужно затратить 1 условную денежную единицу, а тот же киловатт в виде гидроэлектростанции будет стоить в два раза дороже - до 2,1 условной денежной единицы. Получается,  вроде как невыгодно. Но ведь и сам газ уже сегодня стоит около 55 долларов, и, как показывает практика цена на него останавливаться не собирается. Поэтому ГЭС с точки зрения энергетической безопасности страны, несомненно, выгодны.

На начало 2004 года установлен­ная мощность 21 ГЭС, входящих в концерн «Белэнерго», составила 10,9 МВт, а их годовая выработка элект­роэнергии - около 29 млн. кВт,ч, что позволяет заместить около 8 тыс. тонн  условного топлива. В то же время потенциальная мощность всех водотоков Беларуси составляет 850 МВт, в том числе технически дос­тупная - 520 МВт, а экономически целесообразная - 250 МВт. (диагр. 1)

Согласно Концепции энергети­ческой безопасности Республики Белорусь, к 2020 году за счет гидроресурсов можно получить до 0,8-0,9 млрд. кВт,ч В год и, соответственно, заместить 220-250 тыс. тонн условно­го топлива. Однако, чтобы реализо­вать такие грандиозные планы, сде­лать предстоит немало. Это и возве­дение каскадов ГЭС на основных водных артериях, и строительство новых мини-ГЭС на малых реках, а также восстановление заброшенных мини-станций с частичной заменой их оборудования .

К слову, мини-ГЭС способны ре­шить множество локальных про­блем, что они доказали еще в совет­ские времена. Например, только в Гродненской области их было 29 (а всего по стране около 180). Однако во времена развития крупной энергети­ки в бывшем СССР (60-е годы) мини­-ГЭС в условиях Беларуси были при­знаны низкоэффективными и их ста­ли повсеместно закрывать. В после­дние годы идет активное восстанов­ление таких электростанций. На той же Гродненщине, например, в 2005 году начала работать мини-ГЭС «Не­мново» на Августовском канале. Мощность станции - 250 кВт, и этого достаточно, чтобы обеспечить свет­лом и теплом местный поселок Са­поцкино. Окупится установка уже через 11 лет, а служить будет как минимум целый век. А всего до 2010 года в Беларуси будет насчитывать­ся около 30 мини-ГЭС.

Интерес к мини-ГЭС проявляют и ученые. Специалисты Института энергетики АПК Национальной ака­демии наук разработали эффектив­ный электрогенератор для таких станций мощностью 15 кВт. Генера­тор изготовлен с использованием широкодоступных магнитов, произ­водимых в республике. Испытания экспериментального образца генератора выявили его способность в 1,5 раза повысить надежность мини-ГЭС, при этом кпд новой разработки на 10-15% выше аналогов. Столь высо­кие показатели эффективности и на­дежности данного агрегата достигну­ты за счет замены редуктора в конст­рукции на постоянные магниты.

По мнению главного специалис­та концерна «Белэнерго» Владимира Кордуба, вполне вероятно, что на равнинную белорусскую землю при­дет и крупная гидроэнергетика. В обозримом будущем, например, воз­можно строительство Гродненской и Полоцкой ГЭС. Более того, на Запад­ной Двине прорабатывается строи­тельство целого каскада гидроэлектростанций (Витебской, Полоцкой, Бешенковичской и Верхнедвинской) общей мощностью около 130 МВт.

Уже сейчас обсуждаются различ­ные варианты строительства боль­ших ГЭС. В частности, согласно од­ному из проектов, Неманская ГЭС в Гродно сможет вырабатывать 81,2 млн. кВт·ч электроэнергии (мощ­ность 17 МВт), что составляет при­мерно 15 % всей энергии, которую потребляет Гродненская область. А водохранилище при станции позво­лит увеличить запасы рыбы и объе­мы пресной воды.

Однако окончательное решение о строительстве этой и других стан­ций пока не принято.

3. ОСНОВНЫЕ СХЕМЫ ИСПОЛЬЗОВАНИЯ ВОДНОЙ ЭНЕРГИИ

 

Имеются три основные схемы создания сосредоточенного напора ГЭС:

1.              плотинная схема, когда напор создается платиной;

2.              деривационная схема, когда напор создается посредствам деривации, осуществляемой виде канала, туннеля или трубопровода;

3.              плотинно-деревационная схема, когда напор создается и плотиной, и деривацией Плотины имеются во всех трех схемах.

Плотинная схема (рис.3) осуществляется преимущественно при больших расходах воды в реке и малых уклонах ее свободной поверхности.

В плотинной схеме в зависимости от напора ГЭС может быть русловой или приплотинной.

Русловой называется такая ГЭС, у которой здание ГЭС наряду с платиной входит в состав сооружений, создающих напор (рис.4) Русловая ГЭС может быть построена при сравнительно небольшом напоре.

При средних и больших напорах, превышающих диаметр турбины более чем в 4-5 раз, здание ГЭС не может входить в состав напорного фронта. В таких случаях строят приплотинную ГЭС, здание которой располагается за плотиной и не воспринимает полного давления воды (рис. 5)

При деривационной схеме (рис.6) высота плотины может быть не большой. На рис. Приведена схема ГЭС с деривацией в виде открытого канала. Плотина создает небольшой подпор. Из подпертого бьефа вода по деривационному каналу поступает в напорный бассейн, откуда она подается по трубопроводам к турбинам ГЭС. От турбин вода по отводящему каналу направляется в реку или в деривацию следующей ГЭС или же в ирригационный оросительный канал.

При пересеченном или горном рельефе местности, деривацию можно выполнить в виде туннеля, прорезывающего горный массив (рис.7) или в виде трубопровода, уложенного по поверхности земли.

В плотинно-деривационной схеме используются выгодные свойства обеих предыдущих схем, т. е. может быть создано водохранилище и использовано падение реки ниже платины (рис.8)

4. ОПИСАНИЕ РАБОТЫ ГЭС

 

Источником гидроэнергии является преобразованная энергия Солнца в виде запасенной потанцеальной энергии воды, которая затем преобразуется в механическую работу и электроэнергию. Действительно под воздействием солнечного излучения вода испаряется с поверхности озер, рек, морей и океанов. Пар поднимается в верхние слои атмосферы, образуя облака; затем он, конденсируясь, выпадает в виде дождя, пополняя запасы воды в водоемах.

 Преобразование потанцеальной энергии воды в электрическую происходит на гидроэлектростанции (рис.1 ).

Поддержание постоянного напора осуществляется с помощью платины, которая образует водохранилище, Служащее акамулятором гидроэнергии. В связи с этим при строительстве ГЭС предъявляются определенные требования к рельефу местности, который должен позволить организовать водохранилище и создать требуемый напор за счет плотины. Все это связано со значительными затратами, и стоимость строительных работ может превышать стоимость оборудования ГЭС. Вместе с тем удельная стоимость электроэнергии, генерируемой ГЭС, является самой низкой по сравнению с себестоимостью энергии, производимой другими источниками. Как правило, срок окупаемости малых ГЭС не превышает 10 лет.

Для преобразования энергии воды в механическую работу используются гидротурбины (рис.2)

Различают активные и реактивные турбины.

В активной турбине кинетическая энергия потока преобразуется в механическую. Дополнительные устройства, обеспечивающие работу турбины, - водовод и сопло. Из сопла выходит струя, обладающая кинетической энергией, которая направляется на лопасти турбины, находящейся в воздухе. Сила, действующая со стороны струи на лопасти, приводит во вращение колесо турбины, с валом которого непосредственно или через привод сопряжен электрогенератор. КПД реальных турбин колеблется от 50 до 90 %. В гидротурбинах малой мощности КПД ниже. Максимальное значение КПД, равно 100% . Оно может быть достигнуто, если струя после взаимодействия с лопатками будет двигаться вертикально вниз только под действием силы тяжести. КПД активной гидротурбины может быть повышен за счет ограниченного увеличения числа сопел, так как при большом их количестве будет сказываться взаимное влияние струй.

В реактивной гидротурбине рабочее колесо полностью погружено в поток, который постоянно воздействует на лопасти турбины. В наиболее распространенной турбине Френсиса вращение колеса осуществляется за счет разности давления потока на входе и на выходе вода поступает в рабочее колесо радиально. Зазор между рабочим колесом и камерой – переменный. После взаимодействия потока с колесом он разворачивается на 90°. Переменный зазор и поворот потока повышает эффективность турбины. Имеются и другие конструктивные решения реактивных гидротурбин, например пропеллерная турбина Каплана.  Однако этот тип турбин распространен в меньшей степени из-за перепада давления.

ГЭС бывают самых различных мощностей – от 3 кВт до 12 ГВт. Малыми ГЭС (именуемыми также микро-ГЭС и сельские ГЭС) называются ГЭС установленной мощностью менее 500 кВт. Сооружение их осуществляется обычно в качестве составной части комплекса, предусматривающего также развитие сельскохозяйственного производства, водоснабжение и регулирование стока.

5. Влияние гидроэнергетических объектов на окружающую среду и охрана природы

 

Гидроэнергетические объекты оказывают существенное влияние на окружающую природную среду. Это влияние является локальным. Однако сооружение каскадов крупных водохранилищ, намечая переброска части стока рек Сибири в Среднюю Азию и другие крупные водохозяйственные мероприятия могут изменить природные условия в региональном масштабе. При рассмотрении влияния гидроэнергетических объектов на окружающую среду необходимо различать период строительства гидроэнергетических объектов и период их эксплуатации.

Первый период сравнительно кратковременный – несколько лет. В это время в районе строительства нарушается естественный ландшафт.  В связи с прокладкой дорог, постройкой промышленной базы и посёлка резко повышается уровень шума. Вода, используемая для разнообразных строительных работ, возвращается в реку с механическими примесями – частицами песка, глины и т. п. Возможно загрязнение воды коммунально-бытовыми стоками строительного посёлка. Подъём уровня воды в верхнем бьефе начинается обычно в период строительства. В результате производного при этом наполнении водохранилища изменяются расходы и уровни воды в нижнем бьефе.

В период эксплуатации происходит разносторонне влияние гидроэнергетических объектов на окружающую среду. Наиболее существенное влияние на природу оказывают водохранилища:

1.      Затопление в верхнем бьефе. Создание водохранилищ ведёт за собой затопление территории (см. рис. 9) В зону затопления могут попасть сельскохозяйственные угодья, месторождения полезных ископаемых, промышленные и гражданские сооружения, памятники старины, дороги,  лесные массивы, места постоянного обитания животных и растений и т. д. Наиболее заселены и освоены прирусловые участки реки и районы в устьях притоков. На склонах гор мало сельскохозяйственных угодий, обычно там отсутствуют промышленные объекты. Поэтому создание водохранилищ в горных условиях приносит значительно меньший ущерб, чем на равнинах.

2.      Подтопление. Подтопление прилежащих к водохранилищу земель происходит вследствие подъёма уровня грунтовых вод. В зоне избыточного увлажнения подтопление влечёт за собой негативны последствия – переувлажнение корней растений и их отмирание. С изменением водно-воздушного режима почвы может произойти заболачивание и оглеение почв, что ухудшает качество почвы и снижает её продуктивность. В засушливых районах подтопление улучшает условия произрастания растений при соответствующих глубинах почвенных вод. В неблагоприятных условиях может происходить засоление почвы.

3.      Переработка берегов. Вследствие подъёма и снижения уровня воды в водохранилище при регулировании стока и волновых явлений проходит переработка берегов водохранилища, Она заключается в размыве и обрушении крутых склонов, срезке мысов и кос. Размеры переработки берегов зависят от их геологического строения, режима уровней воды и глубины водохранилища, конфигурации берегов, господствующих ветров и т. п. Относительная стабилизация берегов  происходит через 5-20 лет после наполнения водохранилища.

4.      Качество воды. Вследствие снижения скорости течения и уменьшения перемещения воды по глубине существенно изменяются физико-химические характеристики воды по отношению к бытовым условиям реки до создания водохранилища. На качество в годы в водохранилище влияет заселённость зоны затопления, видовой и возрастной состав леса, подлеска и лесной подстилки, наличие притоков, режим и глубина сработки водохранилища и т. п. Качество воды ухудшают сточные воды промышленных, горнорудных и животноводческих комплексов, комунально-бытовые  сточные воды и вынос удобрений с сельскохозяйственных угодий. Для южных районов неприятным следствием перенасыщения воды в водохранилищах органическими и биогенными веществами(в основном ионами азота и фосфора) является бурное развитие в тёплой воде сине-зелёны водорослей. При создании водохранилищ необходимо тщательно изучить Совместное влияние всех факторов с учётом перспектив строительства каскадов ГЭС и принимать меры для поддержания качества воды. Качество воды – характеристика состава и свойств воды, определяющая пригодность её для конкретных видов водопользования.. Должна производиться тщательная очистка сточных вод, поступающих в водохранилище. Использовать прилегающие земли в сельском хозяйстве надо, применяя передовые методы агротехники, ограничивающие вынос удобрений в водохранилище.

5.      Влияние водохранилищ на микроклимат. Водохранилища повышают влажность воздуха, изменяют ветровой режим прибрежной зоны, а также температурный и ледяной режим водотока. Это приводит к изменению природных условий, а также жизни и хозяйственной деятельности населения, обитания животных, рыб. Степень влияния крупных водохранилищ на микроклимат различна для отдельных регионов страны. Интегральное влияние, оказываемое акваторией на развитие растительности, благоприятно в условиях степной и лесостепной зоны и неблагоприятно в лесной.

6.      Влияние водохранилищ на фауну. Многие животные из зоны затопления вынуждены мигрировать на территорию с более с высокими отметками. При этом видовой состав и численность животных значительно уменьшается. В ряде случаев водохранилища способствуют обогащению фауны новыми видами водоплавающих птиц и в особенности рыб: карасёвых, сазана, щуки и т. п. При ранней сработке водохранилища после весеннего половодья осушаются мелководья, что отрицательно влияет на нерест рыбы в верхнем бьефе. Глубокая зимняя сработка водохранилища в средней полосе страны может повлечь за собой замор рыбы на мелководных участках водохранилища.

Также на окружающую среду влияют гидротехнические сооружения. Возведение платин гидроузлов приводит к подъёму уровней воды в верхнем бьефе и образованию водохранилищ. Плотины, перегораживающие реки затрудняют проход рыб к местам естественных нерестилищ в верховьях рек. Но платины, здания ГЭС шлюзы каналы и т. п., удачно вписанные в рельеф местности и хорошо архитектурно оформленные, создают вместе с акваторией верхнего бьефа монументальные и живописные ансамбли.

Разрушения ГЭС при военных действиях приведёт к спуску воды водохранилища, возникновению волны высотой десятки метров, которая может уничтожить города, расположенные ниже ГЭС. Строительство ГЭС приводит к наведённой сейсмичности, в частности в США и Индии возникали землетрясения, разрушившие ГЭС.

Мероприятия по охране природы Производство работ по возведению гидроэнергетических объектов следует проектировать с минимальным ущербом природе. При разработке стройгенпланов необходимо рационально выбирать карьеры, месторасположение дорог и т. п.  К моменту завершения строительства должны быть проведены необходимые работы по рекультивации нарушения земель и озеленении территории. По водохранилищу наиболее  эффективным природоохранным мероприятием является инженерная защита. Например, строительство дамб обвалования уменьшает площадь затопления и сохраняет для хозяйственного использования земли, месторождения полезных ископаемых, уменьшает площадь мелководий и улучшает санитарные условия водохранилища, сохраняет природные естественные комплексы. Если постройка дамб экономически не оправдана, то мелководья могут быть использованы для разведения птиц и для других хозяйственных нужд. При поддержании необходимых уровней воды мелководья могут  быть использованы для рыбного хозяйства, как нерестилище и кормовая база.

Для предотвращения или уменьшения переработки берегов производят берегоукрепления. Предприятия, железные дороги, жилые и комунально-бытовые постройки, памятники старины выносятся из зоны затопления.

Для обеспечения высокого качества воды необходима санитарная очистка ложа водохранилища до его затопления водой. С этой целью производят агротехнические мероприятия для уменьшения загрязненного поверхностного стока и строятся очистные сооружения.

В случаях необходимости организуются заповедники, заказники, отлов и перемещение животных, производятся лесопосадки. В целях рыборазведения создают искусственные нерестилища, нерестно-выростные хозяйства, строятся рыбопропускные сооружения для прохода рыбы на нерест из нижнего бьефа в верхний. Большие работы по инженерной защите проводятся в нижнем бьефе.

8. Литература

 

1.              Володин В.В., Хазановский П.М. «Энергия, век двадцать первый: Научно-художественная литература». – М.: Дет. лит., 1989г.

2.              Андрижиевский А.А., Володин В.И. «Энергосбережение и энергетический менеджмент». – Мн: «Вышейшая школа» 2005г.

3.              Журнал «Экономика Беларуси» - №3(4)/2005г.

4.              Щавелев Ю. С. И др. – 2-е изд. – Л.: Энергоиздат, 1981г

5.              Р.Кларк «Более чем достаточно?» - М.: Энергоиздат,1984г.

7. Заключение

 

 

Анализируя вышеизложенный материал и информацию, получаемую из средств массовой информации можно сделать следующие выводы.

На фоне событий в странах ближнего и дальнего зарубежья нам просто необходимо осваивать новые виды энергоресурсов, которые в дальнейшем могли бы обеспечить республику более дешевыми энергоносителями. Так как нашу республику называют краем рек и озер развитие гидроэнергетики в нашей республики, а в частности мини-ГЭС, можно считать перспективным и вполне рентабельным.

 

 

 

www.referatmix.ru

Реферат на тему Гидроэнергетика

Министерство образования Республики Беларусь Учреждение образования Лоевский государственный педагогический колледж ГИДРОЭНЕРГЕТИКА Реферат учащейся 4 «А» группы Масловой Марины Игоревны             2006 год

Содержание      Введение 1.    Немного об истории 2.    Гидроэнергетика в Беларуси 3.    Основные схемы использования водной энергии 4.    Описание работы ГЭС 5.    Влияние гидроэнергетических объектов на окружающую среду и охрана природы 6.    Заключение 7.    Литература

ВВЕДЕНИЕ Энергетика делится на традиционную и нетрадиционную. Традиционная энергетика базируется на использовании ископаемого горючего или ядерного топлива и энергии воды крупных  рек. Она подразделяется на теплоэнергетику, электроэнергетику, ядерную энергетику и гидроэнергетику. (табл. 1) Многие тысячелетия верно слу­жит человеку энергия, заключен­ная в текущей воде. Запасы ее на Земле колоссальны. Недаром неко­торые ученые считают, что нашу планету правильнее было бы назы­вать не Земля, а Вода - ведь около трех четвертей поверхности пла­неты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, воз­никают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что челове­чество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научи­лись использовать энергию рек. Изобретение паровой машины, казалось бы, остановило много­вековое триумфальное шествие водяных колес. Маленькие пыхтя­щие двигатели, которые можно было устанавливать где угодно, а не только на берегу реки, приво­дили в движение станки и кузнечные молоты и сукновальни, покусились даже на извечное предназначение водяных колёс – на орошение полей. Одно за другим шли на слом гигантские водяные колёса, казалось, многовековая история водяной энергетики близится к завершению. Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию необходимо было вращать, а это вполне успешно могла делать вода. 1. НЕМНОГО ОБ  ИСТОРИИ   Гидроэнергия, равно как и мускульная энергия людей и животных, а также солнечная энергия, используется очень давно. Упоминание об использовании энергии воды на водяных мельницах для помола зерна и дутья воздуха при выплавке металла относится  к концу II в. до н. э. С течением столетий размеры и эффективность водяных колёс увеличились. В XI в. в Англии и Франции одна мельница приходилась на 250 человек. В это время сфера применения мельниц расширилась. Они стали использоваться в сукновальном производстве, при варке пива, распилке леса, для работы откачивающих насосов, на маслобойнях. Можно считать, что современная гидроэнергетика родилась в 1891 году. В этом году русский инженер Михаил Осипович Доливо-Добровольский, эмигрировавший в Германию по причине «политической неблагонадёжности», должен был демонстрировать на электротехнической выставке во Франкфурте-на-Майне изобретённый им двигатель переменного тока. Этот двигатель мощностью около 100 киловатт в эпоху господства постоянного электрического тока сам по себе должен был стать гвоздём выставки, но изобретатель решил для его питания построить ещё и совершенно неожиданное по тем временам сооружение – гидроэлектростанцию. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала небольшая водяная турбина. Электрическая  энергия передавалась на территорию выставки по невероятно протяжённой для тех лет линий передачи длиной 175 километров (это сейчас линии передач длиной в тысячи километров никого не удивляют, тогда же подобное строительство  было единодушно признано невозможным). Всего за несколько лет до этого события виднейший английский инженер  и физик Осборн Рейнольдс в своих Канторовских лекциях  неопровержимо, казалось бы доказал, что при передаче энергии по средствам трансмиссии потери энергии составляют всего лишь 1,4% на милю, в то время как при передачи электрической энергии по проводам на такое же расстояние потери составят 6%.  Опираясь на данные опытов, он сделал вывод о том, что при  использовании  электрического тока на другом конце линии передачи вряд ли удастся иметь более15-20% начальной мощности. В то же время, считал он, можно быть уверенным в том, что при передаче энергии приводным тросом сохранится 90% мощности. Этот «неоспоримый» вывод был успешно опровергнут практикой работы первенца гидроэнергетики в Лауффене. Но эра гидроэнергетики тогда ещё не наступила. Преимущества гидроэлектростанций очевидны – постоянно  возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалось задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за турбиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объём гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале ХХ века было построено всего несколько гидроэлектростанций. Это было лишь началом. Освоение гидроэнергоресурсов осуществлялось быстрыми темпами, и в 30-е годы ХХ века была завершена реализация таких крупных проектов, как  ГЭС Гувер  в США мощностью 1,3 Гиговатт. Строительство подобных мощных ГЭС вызвало рост использования энергии в промышленно развитых странах, а это, в свою очередь, дало толчок программам освоения крупных гидроэнергетических потенциалов. В настоящее время использование энергии воды по-прежнему остается актуальным, а основным направлением является производство электроэнергии.                                           

2. ГИДРОЭНЕРГЕТИКА В  БЕЛАРУСИ В Беларуси мест для строи­тельства столь крупных гидроэлектростанций нет. Все наши большие реки ­Днепр, Припять, Двина, Неман - текут на равнинах. Тем не ме­нее еще в советские времена, когда цены на углеродное топливо были на порядки ниже нынешних, ГЭС в БССР строили. Следовательно, опре­деленный экономический потенциал у белорусской гидроэнергетики есть. Тем более что при постоянном подорожании природного газа любое замещение топливных носителей - несомненное благо. Сейчас для ввода мощности 1 кВт на газе нужно затратить 1 условную денежную единицу, а тот же киловатт в виде гидроэлектростанции будет стоить в два раза дороже - до 2,1 условной денежной единицы. Получается,  вроде как невыгодно. Но ведь и сам газ уже сегодня стоит около 55 долларов, и, как показывает практика цена на него останавливаться не собирается. Поэтому ГЭС с точки зрения энергетической безопасности страны, несомненно, выгодны. На начало 2004 года установлен­ная мощность 21 ГЭС, входящих в концерн «Белэнерго», составила 10,9 МВт, а их годовая выработка элект­роэнергии - около 29 млн. кВт,ч, что позволяет заместить около 8 тыс. тонн  условного топлива. В то же время потенциальная мощность всех водотоков Беларуси составляет 850 МВт, в том числе технически дос­тупная - 520 МВт, а экономически целесообразная - 250 МВт. (диагр. 1) Согласно Концепции энергети­ческой безопасности Республики Белорусь, к 2020 году за счет гидроресурсов можно получить до 0,8-0,9 млрд. кВт,ч В год и, соответственно, заместить 220-250 тыс. тонн условно­го топлива. Однако, чтобы реализо­вать такие грандиозные планы, сде­лать предстоит немало. Это и возве­дение каскадов ГЭС на основных водных артериях, и строительство новых мини-ГЭС на малых реках, а также восстановление заброшенных мини-станций с частичной заменой их оборудования . К слову, мини-ГЭС способны ре­шить множество локальных про­блем, что они доказали еще в совет­ские времена. Например, только в Гродненской области их было 29 (а всего по стране около 180). Однако во времена развития крупной энергети­ки в бывшем СССР (60-е годы) мини­-ГЭС в условиях Беларуси были при­знаны низкоэффективными и их ста­ли повсеместно закрывать. В после­дние годы идет активное восстанов­ление таких электростанций. На той же Гродненщине, например, в 2005 году начала работать мини-ГЭС «Не­мново» на Августовском канале. Мощность станции - 250 кВт, и этого достаточно, чтобы обеспечить свет­лом и теплом местный поселок Са­поцкино. Окупится установка уже через 11 лет, а служить будет как минимум целый век. А всего до 2010 года в Беларуси будет насчитывать­ся около 30 мини-ГЭС. Интерес к мини-ГЭС проявляют и ученые. Специалисты Института энергетики АПК Национальной ака­демии наук разработали эффектив­ный электрогенератор для таких станций мощностью 15 кВт. Генера­тор изготовлен с использованием широкодоступных магнитов, произ­водимых в республике. Испытания экспериментального образца генератора выявили его способность в 1,5 раза повысить надежность мини-ГЭС, при этом кпд новой разработки на 10-15% выше аналогов. Столь высо­кие показатели эффективности и на­дежности данного агрегата достигну­ты за счет замены редуктора в конст­рукции на постоянные магниты. По мнению главного специалис­та концерна «Белэнерго» Владимира Кордуба, вполне вероятно, что на равнинную белорусскую землю при­дет и крупная гидроэнергетика. В обозримом будущем, например, воз­можно строительство Гродненской и Полоцкой ГЭС. Более того, на Запад­ной Двине прорабатывается строи­тельство целого каскада гидроэлектростанций (Витебской, Полоцкой, Бешенковичской и Верхнедвинской) общей мощностью около 130 МВт. Уже сейчас обсуждаются различ­ные варианты строительства боль­ших ГЭС. В частности, согласно од­ному из проектов, Неманская ГЭС в Гродно сможет вырабатывать 81,2 млн. кВт·ч электроэнергии (мощ­ность 17 МВт), что составляет при­мерно 15 % всей энергии, которую потребляет Гродненская область. А водохранилище при станции позво­лит увеличить запасы рыбы и объе­мы пресной воды. Однако окончательное решение о строительстве этой и других стан­ций пока не принято.

3. ОСНОВНЫЕ СХЕМЫ ИСПОЛЬЗОВАНИЯ ВОДНОЙ ЭНЕРГИИ Имеются три основные схемы создания сосредоточенного напора ГЭС: 1.              плотинная схема, когда напор создается платиной; 2.              деривационная схема, когда напор создается посредствам деривации, осуществляемой виде канала, туннеля или трубопровода; 3.              плотинно-деревационная схема, когда напор создается и плотиной, и деривацией Плотины имеются во всех трех схемах. Плотинная схема (рис.3) осуществляется преимущественно при больших расходах воды в реке и малых уклонах ее свободной поверхности. В плотинной схеме в зависимости от напора ГЭС может быть русловой или приплотинной. Русловой называется такая ГЭС, у которой здание ГЭС наряду с платиной входит в состав сооружений, создающих напор (рис.4) Русловая ГЭС может быть построена при сравнительно небольшом напоре. При средних и больших напорах, превышающих диаметр турбины более чем в 4-5 раз, здание ГЭС не может входить в состав напорного фронта. В таких случаях строят приплотинную ГЭС, здание которой располагается за плотиной и не воспринимает полного давления воды (рис. 5) При деривационной схеме (рис.6) высота плотины может быть не большой. На рис. Приведена схема ГЭС с деривацией в виде открытого канала. Плотина создает небольшой подпор. Из подпертого бьефа вода по деривационному каналу поступает в напорный бассейн, откуда она подается по трубопроводам к турбинам ГЭС. От турбин вода по отводящему каналу направляется в реку или в деривацию следующей ГЭС или же в ирригационный оросительный канал. При пересеченном или горном рельефе местности, деривацию можно выполнить в виде туннеля, прорезывающего горный массив (рис.7) или в виде трубопровода, уложенного по поверхности земли. В плотинно-деривационной схеме используются выгодные свойства обеих предыдущих схем, т. е. может быть создано водохранилище и использовано падение реки ниже платины (рис.8)

4. ОПИСАНИЕ РАБОТЫ ГЭС Источником гидроэнергии является преобразованная энергия Солнца в виде запасенной потанцеальной энергии воды, которая затем преобразуется в механическую работу и электроэнергию. Действительно под воздействием солнечного излучения вода испаряется с поверхности озер, рек, морей и океанов. Пар поднимается в верхние слои атмосферы, образуя облака; затем он, конденсируясь, выпадает в виде дождя, пополняя запасы воды в водоемах.  Преобразование потанцеальной энергии воды в электрическую происходит на гидроэлектростанции (рис.1 ). Поддержание постоянного напора осуществляется с помощью платины, которая образует водохранилище, Служащее акамулятором гидроэнергии. В связи с этим при строительстве ГЭС предъявляются определенные требования к рельефу местности, который должен позволить организовать водохранилище и создать требуемый напор за счет плотины. Все это связано со значительными затратами, и стоимость строительных работ может превышать стоимость оборудования ГЭС. Вместе с тем удельная стоимость электроэнергии, генерируемой ГЭС, является самой низкой по сравнению с себестоимостью энергии, производимой другими источниками. Как правило, срок окупаемости малых ГЭС не превышает 10 лет. Для преобразования энергии воды в механическую работу используются гидротурбины (рис.2) Различают активные и реактивные турбины. В активной турбине кинетическая энергия потока преобразуется в механическую. Дополнительные устройства, обеспечивающие работу турбины, - водовод и сопло. Из сопла выходит струя, обладающая кинетической энергией, которая направляется на лопасти турбины, находящейся в воздухе. Сила, действующая со стороны струи на лопасти, приводит во вращение колесо турбины, с валом которого непосредственно или через привод сопряжен электрогенератор. КПД реальных турбин колеблется от 50 до 90 %. В гидротурбинах малой мощности КПД ниже. Максимальное значение КПД, равно 100% . Оно может быть достигнуто, если струя после взаимодействия с лопатками будет двигаться вертикально вниз только под действием силы тяжести. КПД активной гидротурбины может быть повышен за счет ограниченного увеличения числа сопел, так как при большом их количестве будет сказываться взаимное влияние струй. В реактивной гидротурбине рабочее колесо полностью погружено в поток, который постоянно воздействует на лопасти турбины. В наиболее распространенной турбине Френсиса вращение колеса осуществляется за счет разности давления потока на входе и на выходе вода поступает в рабочее колесо радиально. Зазор между рабочим колесом и камерой – переменный. После взаимодействия потока с колесом он разворачивается на 90°. Переменный зазор и поворот потока повышает эффективность турбины. Имеются и другие конструктивные решения реактивных гидротурбин, например пропеллерная турбина Каплана.  Однако этот тип турбин распространен в меньшей степени из-за перепада давления. ГЭС бывают самых различных мощностей – от 3 кВт до 12 ГВт. Малыми ГЭС (именуемыми также микро-ГЭС и сельские ГЭС) называются ГЭС установленной мощностью менее 500 кВт. Сооружение их осуществляется обычно в качестве составной части комплекса, предусматривающего также развитие сельскохозяйственного производства, водоснабжение и регулирование стока.

5. Влияние гидроэнергетических объектов на окружающую среду и охрана природы Гидроэнергетические объекты оказывают существенное влияние на окружающую природную среду. Это влияние является локальным. Однако сооружение каскадов крупных водохранилищ, намечая переброска части стока рек Сибири в Среднюю Азию и другие крупные водохозяйственные мероприятия могут изменить природные условия в региональном масштабе. При рассмотрении влияния гидроэнергетических объектов на окружающую среду необходимо различать период строительства гидроэнергетических объектов и период их эксплуатации.Первый период сравнительно кратковременный – несколько лет. В это время в районе строительства нарушается естественный ландшафт.  В связи с прокладкой дорог, постройкой промышленной базы и посёлка резко повышается уровень шума. Вода, используемая для разнообразных строительных работ, возвращается в реку с механическими примесями – частицами песка, глины и т. п. Возможно загрязнение воды коммунально-бытовыми стоками строительного посёлка. Подъём уровня воды в верхнем бьефе начинается обычно в период строительства. В результате производного при этом наполнении водохранилища изменяются расходы и уровни воды в нижнем бьефе.В период эксплуатации происходит разносторонне влияние гидроэнергетических объектов на окружающую среду. Наиболее существенное влияние на природу оказывают водохранилища:1.      Затопление в верхнем бьефе. Создание водохранилищ ведёт за собой затопление территории (см. рис. 9) В зону затопления могут попасть сельскохозяйственные угодья, месторождения полезных ископаемых, промышленные и гражданские сооружения, памятники старины, дороги,  лесные массивы, места постоянного обитания животных и растений и т. д. Наиболее заселены и освоены прирусловые участки реки и районы в устьях притоков. На склонах гор мало сельскохозяйственных угодий, обычно там отсутствуют промышленные объекты. Поэтому создание водохранилищ в горных условиях приносит значительно меньший ущерб, чем на равнинах. 2.      Подтопление. Подтопление прилежащих к водохранилищу земель происходит вследствие подъёма уровня грунтовых вод. В зоне избыточного увлажнения подтопление влечёт за собой негативны последствия – переувлажнение корней растений и их отмирание. С изменением водно-воздушного режима почвы может произойти заболачивание и оглеение почв, что ухудшает качество почвы и снижает её продуктивность. В засушливых районах подтопление улучшает условия произрастания растений при соответствующих глубинах почвенных вод. В неблагоприятных условиях может происходить засоление почвы.3.      Переработка берегов. Вследствие подъёма и снижения уровня воды в водохранилище при регулировании стока и волновых явлений проходит переработка берегов водохранилища, Она заключается в размыве и обрушении крутых склонов, срезке мысов и кос. Размеры переработки берегов зависят от их геологического строения, режима уровней воды и глубины водохранилища, конфигурации берегов, господствующих ветров и т. п. Относительная стабилизация берегов  происходит через 5-20 лет после наполнения водохранилища.4.      Качество воды. Вследствие снижения скорости течения и уменьшения перемещения воды по глубине существенно изменяются физико-химические характеристики воды по отношению к бытовым условиям реки до создания водохранилища. На качество в годы в водохранилище влияет заселённость зоны затопления, видовой и возрастной состав леса, подлеска и лесной подстилки, наличие притоков, режим и глубина сработки водохранилища и т. п. Качество воды ухудшают сточные воды промышленных, горнорудных и животноводческих комплексов, комунально-бытовые  сточные воды и вынос удобрений с сельскохозяйственных угодий. Для южных районов неприятным следствием перенасыщения воды в водохранилищах органическими и биогенными веществами(в основном ионами азота и фосфора) является бурное развитие в тёплой воде сине-зелёны водорослей. При создании водохранилищ необходимо тщательно изучить Совместное влияние всех факторов с учётом перспектив строительства каскадов ГЭС и принимать меры для поддержания качества воды. Качество воды – характеристика состава и свойств воды, определяющая пригодность её для конкретных видов водопользования.. Должна производиться тщательная очистка сточных вод, поступающих в водохранилище. Использовать прилегающие земли в сельском хозяйстве надо, применяя передовые методы агротехники, ограничивающие вынос удобрений в водохранилище.5.      Влияние водохранилищ на микроклимат. Водохранилища повышают влажность воздуха, изменяют ветровой режим прибрежной зоны, а также температурный и ледяной режим водотока. Это приводит к изменению природных условий, а также жизни и хозяйственной деятельности населения, обитания животных, рыб. Степень влияния крупных водохранилищ на микроклимат различна для отдельных регионов страны. Интегральное влияние, оказываемое акваторией на развитие растительности, благоприятно в условиях степной и лесостепной зоны и неблагоприятно в лесной.6.      Влияние водохранилищ на фауну. Многие животные из зоны затопления вынуждены мигрировать на территорию с более с высокими отметками. При этом видовой состав и численность животных значительно уменьшается. В ряде случаев водохранилища способствуют обогащению фауны новыми видами водоплавающих птиц и в особенности рыб: карасёвых, сазана, щуки и т. п. При ранней сработке водохранилища после весеннего половодья осушаются мелководья, что отрицательно влияет на нерест рыбы в верхнем бьефе. Глубокая зимняя сработка водохранилища в средней полосе страны может повлечь за собой замор рыбы на мелководных участках водохранилища.Также на окружающую среду влияют гидротехнические сооружения. Возведение платин гидроузлов приводит к подъёму уровней воды в верхнем бьефе и образованию водохранилищ. Плотины, перегораживающие реки затрудняют проход рыб к местам естественных нерестилищ в верховьях рек. Но платины, здания ГЭС шлюзы каналы и т. п., удачно вписанные в рельеф местности и хорошо архитектурно оформленные, создают вместе с акваторией верхнего бьефа монументальные и живописные ансамбли. Разрушения ГЭС при военных действиях приведёт к спуску воды водохранилища, возникновению волны высотой десятки метров, которая может уничтожить города, расположенные ниже ГЭС. Строительство ГЭС приводит к наведённой сейсмичности, в частности в США и Индии возникали землетрясения, разрушившие ГЭС.Мероприятия по охране природы Производство работ по возведению гидроэнергетических объектов следует проектировать с минимальным ущербом природе. При разработке стройгенпланов необходимо рационально выбирать карьеры, месторасположение дорог и т. п.  К моменту завершения строительства должны быть проведены необходимые работы по рекультивации нарушения земель и озеленении территории. По водохранилищу наиболее  эффективным природоохранным мероприятием является инженерная защита. Например, строительство дамб обвалования уменьшает площадь затопления и сохраняет для хозяйственного использования земли, месторождения полезных ископаемых, уменьшает площадь мелководий и улучшает санитарные условия водохранилища, сохраняет природные естественные комплексы. Если постройка дамб экономически не оправдана, то мелководья могут быть использованы для разведения птиц и для других хозяйственных нужд. При поддержании необходимых уровней воды мелководья могут  быть использованы для рыбного хозяйства, как нерестилище и кормовая база. Для предотвращения или уменьшения переработки берегов производят берегоукрепления. Предприятия, железные дороги, жилые и комунально-бытовые постройки, памятники старины выносятся из зоны затопления.Для обеспечения высокого качества воды необходима санитарная очистка ложа водохранилища до его затопления водой. С этой целью производят агротехнические мероприятия для уменьшения загрязненного поверхностного стока и строятся очистные сооружения. В случаях необходимости организуются заповедники, заказники, отлов и перемещение животных, производятся лесопосадки. В целях рыборазведения создают искусственные нерестилища, нерестно-выростные хозяйства, строятся рыбопропускные сооружения для прохода рыбы на нерест из нижнего бьефа в верхний. Большие работы по инженерной защите проводятся в нижнем бьефе.

8. Литература 1.              Володин В.В., Хазановский П.М. «Энергия, век двадцать первый: Научно-художественная литература». – М.: Дет. лит., 1989г. 2.              Андрижиевский А.А., Володин В.И. «Энергосбережение и энергетический менеджмент». – Мн: «Вышейшая школа» 2005г. 3.              Журнал «Экономика Беларуси» - №3(4)/2005г. 4.              Щавелев Ю. С. И др. – 2-е изд. – Л.: Энергоиздат, 1981г 5.              Р.Кларк «Более чем достаточно?» - М.: Энергоиздат,1984г.

7. Заключение Анализируя вышеизложенный материал и информацию, получаемую из средств массовой информации можно сделать следующие выводы. На фоне событий в странах ближнего и дальнего зарубежья нам просто необходимо осваивать новые виды энергоресурсов, которые в дальнейшем могли бы обеспечить республику более дешевыми энергоносителями. Так как нашу республику называют краем рек и озер развитие гидроэнергетики в нашей республики, а в частности мини-ГЭС, можно считать перспективным и вполне рентабельным.

bukvasha.ru

Реферат - Гидроэнергетика 2 - Экология

ВВЕДЕНИЕ

Без сомнения, энергообеспечение – одна из наиболее актуальных проблем человечества. Мировые запасы нефти и газа стремительно уменьшаются и недалёк тот день, когда они будут полностью исчерпаны. Это понимают все, и поэтому с каждым годом всё большее число специалистов изучает возможности их равноценной замены. Сегодня существует несколько направлений альтернативной энергетики: использование солнечной энергии и энергии ветра, биоэнергетика, геотермальная энергетика.

Каждое их этих направлений отличается определёнными достоинствами и недостатками. И поэтому необходимо определиться: какой альтернативный источник энергии лучше всего подходит для удовлетворения нужд человечества и в то же время наносит минимальный ущерб природе.

В данной работе мы поговорим о потенциале гидроэнергетики, рассмотрим её сильные и слабые стороны, затронем экологические аспекты эксплуатации гидроэлектростанций.

Глава1 Гидроэлектростанция. Устройство и принцип работы.

Человек всегда жил возле водоёмов и не мог не обращать внимание на огромный потенциал воды как источника энергии. Поэтому история гидроэнергетики ведёт своё начало ещё с древних времён. Уже тогда люди научились с помощью воды производить помол зерна или дутьё воздуха при выплавке металла.

Постепенно механизмы совершенствовались, и водяные колёса становились всё более эффективными. В конце девятнадцатого века наступил современный этап в развитии гидроэнергетики.

Но полномасштабное использование водных ресурсов началось только в двадцатом столетии, а точнее – в тридцатых годах, когда вода начала использоваться человеком для получения электричества. Именно в это время в мире начинается строительство крупных гидроэлектростанций.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор. Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор. Последний показатель представляет собой разность высот между начальной и конечной точкой падения воды. Проект станции может основываться на каком-то одном из этих показателей или на обоих.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко.

Минимальный срок службы электростанций – около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

Глава 2. Достоинства и недостатки гидроэнергетики

Достоинства

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами

Недостатки.

Гидроэнергетические объекты оказывают существенное влияние на окружающую природную среду. Это влияние является локальным. Однако сооружение каскадов крупных водохранилищ, намечая переброска части стока рек Сибири в Среднюю Азию и другие крупные водохозяйственные мероприятия могут изменить природные условия в региональном масштабе. При рассмотрении влияния гидроэнергетических объектов на окружающую среду необходимо различать период строительства гидроэнергетических объектов и период их эксплуатации.

Первый период сравнительно кратковременный — несколько лет. В это время в районе строительства нарушается естественный ландшафт. В связи с прокладкой дорог, постройкой промышленной базы и посёлка резко повышается уровень шума. Вода, используемая для разнообразных строительных работ, возвращается в реку с механическими примесями — частицами песка, глины и т. п. Возможно загрязнение воды коммунально-бытовыми стоками строительного посёлка. Подъём уровня воды в верхнем бьефе начинается обычно в период строительства. В результате производного при этом наполнении водохранилища изменяются расходы и уровни воды в нижнем бьефе.

В период эксплуатации происходит разносторонне влияние гидроэнергетических объектов на окружающую среду. Наиболее существенное влияние на природу оказывают водохранилища:

1. Затопление в верхнем бьефе. Создание водохранилищ ведёт за собой затопление территории.В зону затопления могут попасть сельскохозяйственные угодья, месторождения полезных ископаемых, промышленные и гражданские сооружения, памятники старины, дороги, лесные массивы, места постоянного обитания животных и растений и т. д. Наиболее заселены и освоены прирусловые участки реки и районы в устьях притоков. На склонах гор мало сельскохозяйственных угодий, обычно там отсутствуют промышленные объекты. Поэтому создание водохранилищ в горных условиях приносит значительно меньший ущерб, чем на равнинах.

2. Подтопление. Подтопление прилежащих к водохранилищу земель происходит вследствие подъёма уровня грунтовых вод. В зоне избыточного увлажнения подтопление влечёт за собой негативны последствия — переувлажнение корней растений и их отмирание. С изменением водно-воздушного режима почвы может произойти заболачивание и оглеение почв, что ухудшает качество почвы и снижает её продуктивность. В засушливых районах подтопление улучшает условия произрастания растений при соответствующих глубинах почвенных вод. В неблагоприятных условиях может происходить засоление почвы.

3. Переработка берегов. Вследствие подъёма и снижения уровня воды в водохранилище при регулировании стока и волновых явлений проходит переработка берегов водохранилища, Она заключается в размыве и обрушении крутых склонов, срезке мысов и кос. Размеры переработки берегов зависят от их геологического строения, режима уровней воды и глубины водохранилища, конфигурации берегов, господствующих ветров и т. п. Относительная стабилизация берегов происходит через 5-20 лет после наполнения водохранилища.

4. Качество воды. Вследствие снижения скорости течения и уменьшения перемещения воды по глубине существенно изменяются физико-химические характеристики воды по отношению к бытовым условиям реки до создания водохранилища. На качество в годы в водохранилище влияет заселённость зоны затопления, видовой и возрастной состав леса, подлеска и лесной подстилки, наличие притоков, режим и глубина сработки водохранилища и т. п. Качество воды ухудшают сточные воды промышленных, горнорудных и животноводческих комплексов, комунально-бытовые сточные воды и вынос удобрений с сельскохозяйственных угодий. Для южных районов неприятным следствием перенасыщения воды в водохранилищах органическими и биогенными веществами(в основном ионами азота и фосфора) является бурное развитие в тёплой воде сине-зелёны водорослей. При создании водохранилищ необходимо тщательно изучить Совместное влияние всех факторов с учётом перспектив строительства каскадов ГЭС и принимать меры для поддержания качества воды. Качество воды — характеристика состава и свойств воды, определяющая пригодность её для конкретных видов водопользования… Должна производиться тщательная очистка сточных вод, поступающих в водохранилище. Использовать прилегающие земли в сельском хозяйстве надо, применяя передовые методы агротехники, ограничивающие вынос удобрений в водохранилище.

5. Влияние водохранилищ на микроклимат. Водохранилища повышают влажность воздуха, изменяют ветровой режим прибрежной зоны, а также температурный и ледяной режим водотока. Это приводит к изменению природных условий, а также жизни и хозяйственной деятельности населения, обитания животных, рыб. Степень влияния крупных водохранилищ на микроклимат различна для отдельных регионов страны. Интегральное влияние, оказываемое акваторией на развитие растительности, благоприятно в условиях степной и лесостепной зоны и неблагоприятно в лесной.

6. Влияние водохранилищ на фауну. Многие животные из зоны затопления вынуждены мигрировать на территорию с более с высокими отметками. При этом видовой состав и численность животных значительно уменьшается. В ряде случаев водохранилища способствуют обогащению фауны новыми видами водоплавающих птиц и в особенности рыб: карасёвых, сазана, щуки и т. п. При ранней сработке водохранилища после весеннего половодья осушаются мелководья, что отрицательно влияет на нерест рыбы в верхнем бьефе. Глубокая зимняя сработка водохранилища в средней полосе страны может повлечь за собой замор рыбы на мелководных участках водохранилища.

Также на окружающую среду влияют гидротехнические сооружения. Возведение платин гидроузлов приводит к подъёму уровней воды в верхнем бьефе и образованию водохранилищ. Плотины, перегораживающие реки затрудняют проход рыб к местам естественных нерестилищ в верховьях рек. Но платины, здания ГЭС шлюзы каналы и т. п., удачно вписанные в рельеф местности и хорошо архитектурно оформленные, создают вместе с акваторией верхнего бьефа монументальные и живописные ансамбли.

Разрушения ГЭС при военных действиях приведёт к спуску воды водохранилища, возникновению волны высотой десятки метров, которая может уничтожить города, расположенные ниже ГЭС. Строительство ГЭС приводит к наведённой сейсмичности, в частности в США и Индии возникали землетрясения, разрушившие ГЭС.

Вывод

Вне всяких сомнений, гидроэнергетика в перспективе должна не оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.

Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов.

Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко.

Сегодня разработка методов определения экологического энергопотенциала не производится. А это означает, что развитие гидроэнергетики пока приостановлено, поскольку отсутствие экологических экспертиз может нарушить энергетическую безопасность, которая и без того находится под угрозой

www.ronl.ru

Реферат - Гидроэнергетика - Физика

Министерство образования Республики Беларусь

Учреждение образования

Лоевский государственный педагогический колледж

ГИДРОЭНЕРГЕТИКА

Реферат учащейся

4 «А» группы

Масловой Марины Игоревны

2006 год

Содержание

Введение

1. Немного об истории

2. Гидроэнергетика в Беларуси

3. Основные схемы использования водной энергии

4. Описание работы ГЭС

5. Влияние гидроэнергетических объектов на окружающую среду и охрана природы

6. Заключение

7. Литература

ВВЕДЕНИЕ

Энергетика делится на традиционную и нетрадиционную. Традиционная энергетика базируется на использовании ископаемого горючего или ядерного топлива и энергии воды крупных рек. Она подразделяется на теплоэнергетику, электроэнергетику, ядерную энергетику и гидроэнергетику. (табл. 1)

Многие тысячелетия верно слу­жит человеку энергия, заключен­ная в текущей воде. Запасы ее на Земле колоссальны. Недаром неко­торые ученые считают, что нашу планету правильнее было бы назы­вать не Земля, а Вода — ведь около трех четвертей поверхности пла­неты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы иотливы, воз­никают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что челове­чество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научи­лись использовать энергию рек.

Изобретение паровой машины, казалось бы, остановило много­вековое триумфальное шествие водяных колес. Маленькие пыхтя­щие двигатели, которые можно было устанавливать где угодно, а не только на берегу реки, приво­дили в движение станки и кузнечные молоты и сукновальни, покусились даже на извечное предназначение водяных колёс – на орошение полей. Одно за другим шли на слом гигантские водяные колёса, казалось, многовековая история водяной энергетики близится к завершению.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию необходимо было вращать, а это вполне успешно могла делать вода.

1. НЕМНОГО ОБ ИСТОРИИ

Гидроэнергия, равно как и мускульная энергия людей и животных, а также солнечная энергия, используется очень давно. Упоминание об использовании энергии воды на водяных мельницах для помола зерна и дутья воздуха при выплавке металла относится к концу IIв. до н. э. С течением столетий размеры и эффективность водяных колёс увеличились. В XIв. в Англии и Франции одна мельница приходилась на 250 человек. В это время сфера применения мельниц расширилась. Они стали использоваться в сукновальном производстве, при варке пива, распилке леса, для работы откачивающих насосов, на маслобойнях. Можно считать, что современная гидроэнергетика родилась в 1891 году. В этом году русский инженер Михаил Осипович Доливо-Добровольский, эмигрировавший в Германию по причине «политической неблагонадёжности», должен был демонстрировать на электротехнической выставке во Франкфурте-на-Майне изобретённый им двигатель переменного тока. Этот двигатель мощностью около 100 киловатт в эпоху господства постоянного электрического тока сам по себе должен был стать гвоздём выставки, но изобретатель решил для его питания построить ещё и совершенно неожиданное по тем временам сооружение – гидроэлектростанцию. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала небольшая водяная турбина. Электрическая энергия передавалась на территорию выставки по невероятно протяжённой для тех лет линий передачи длиной 175 километров (это сейчас линии передач длиной в тысячи километров никого не удивляют, тогда же подобное строительство было единодушно признано невозможным). Всего за несколько лет до этого события виднейший английский инженер и физик Осборн Рейнольдс в своих Канторовских лекциях неопровержимо, казалось бы доказал, что при передаче энергии по средствам трансмиссии потери энергии составляют всего лишь 1,4% на милю, в то время как при передачи электрической энергии по проводам на такое же расстояние потери составят 6%. Опираясь на данные опытов, он сделал вывод о том, что при использовании электрического тока на другом конце линии передачи вряд ли удастся иметь более15-20% начальной мощности. В то же время, считал он, можно быть уверенным в том, что при передаче энергии приводным тросом сохранится 90% мощности. Этот «неоспоримый» вывод был успешно опровергнут практикой работы первенца гидроэнергетики в Лауффене.

Но эра гидроэнергетики тогда ещё не наступила. Преимущества гидроэлектростанций очевидны – постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалось задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за турбиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объём гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале ХХ века было построено всего несколько гидроэлектростанций. Это было лишь началом. Освоение гидроэнергоресурсов осуществлялось быстрыми темпами, и в 30-е годы ХХ века была завершена реализация таких крупных проектов, как ГЭС Гувер в США мощностью 1,3 Гиговатт. Строительство подобных мощных ГЭС вызвало рост использования энергии в промышленно развитых странах, а это, в свою очередь, дало толчок программам освоения крупных гидроэнергетических потенциалов.

В настоящее время использование энергии воды по-прежнему остается актуальным, а основным направлением является производство электроэнергии.

2. ГИДРОЭНЕРГЕТИКА В БЕЛАРУСИ

В Беларуси мест для строи­тельства столь крупных гидроэлектростанций нет. Все наши большие реки ­Днепр, Припять, Двина, Неман — текут на равнинах. Тем не ме­нее еще в советские времена, когда цены на углеродное топливо были на порядки ниже нынешних, ГЭС в БССР строили. Следовательно, опре­деленный экономический потенциал у белорусской гидроэнергетики есть. Тем более что при постоянном подорожании природного газа любое замещение топливных носителей — несомненное благо.

Сейчас для ввода мощности 1 кВт на газе нужно затратить 1 условную денежную единицу, а тот же киловатт в виде гидроэлектростанции будет стоить в два раза дороже — до 2,1 условной денежной единицы. Получается, вроде как невыгодно. Но ведь и сам газ уже сегодня стоит около 55 долларов, и, как показывает практика цена на него останавливаться не собирается. Поэтому ГЭС с точки зрения энергетической безопасности страны, несомненно, выгодны.

На начало 2004 года установлен­ная мощность 21 ГЭС, входящих в концерн «Белэнерго», составила 10,9 МВт, а их годовая выработка элект­роэнергии — около 29 млн. кВт, ч, что позволяет заместить около 8 тыс. тонн условного топлива. В то же время потенциальная мощность всех водотоков Беларуси составляет 850 МВт, в том числе технически дос­тупная — 520 МВт, а экономически целесообразная — 250 МВт. (диагр. 1)

Согласно Концепции энергети­ческой безопасности Республики Белорусь, к 2020 году за счет гидроресурсов можно получить до 0,8-0,9 млрд. кВт, ч В год и, соответственно, заместить 220-250 тыс. тонн условно­го топлива. Однако, чтобы реализо­вать такие грандиозные планы, сде­лать предстоит немало. Это и возве­дение каскадов ГЭС на основных водных артериях, и строительство новых мини-ГЭС на малых реках, а также восстановление заброшенных мини-станций с частичной заменой их оборудования.

К слову, мини-ГЭС способны ре­шить множество локальных про­блем, что они доказали еще в совет­ские времена. Например, только в Гродненской области их было 29 (а всего по стране около 180). Однако во времена развития крупной энергети­ки в бывшем СССР (60-е годы) мини­-ГЭС в условиях Беларуси были при­знаны низкоэффективными и их ста­ли повсеместно закрывать. В после­дние годы идет активное восстанов­ление таких электростанций. На той же Гродненщине, например, в 2005 году начала работать мини-ГЭС «Не­мново» на Августовском канале. Мощность станции — 250 кВт, и этого достаточно, чтобы обеспечить свет­лом и теплом местный поселок Са­поцкино. Окупится установка уже через 11 лет, а служить будет как минимум целый век. А всего до 2010 года в Беларуси будет насчитывать­ся около 30 мини-ГЭС.

Интерес к мини-ГЭС проявляют и ученые. Специалисты Института энергетики АПК Национальной ака­демии наук разработали эффектив­ный электрогенератор для таких станций мощностью 15 кВт. Генера­тор изготовлен с использованием широкодоступных магнитов, произ­водимых в республике. Испытания экспериментального образца генератора выявили его способность в 1,5 раза повысить надежность мини-ГЭС, при этом кпд новой разработки на 10-15% выше аналогов. Столь высо­кие показатели эффективности и на­дежности данного агрегата достигну­ты за счет замены редуктора в конст­рукции на постоянные магниты.

По мнению главного специалис­та концерна «Белэнерго» Владимира Кордуба, вполне вероятно, что на равнинную белорусскую землю при­дет и крупная гидроэнергетика. В обозримом будущем, например, воз­можно строительство Гродненской и Полоцкой ГЭС. Более того, на Запад­ной Двине прорабатывается строи­тельство целого каскада гидроэлектростанций (Витебской, Полоцкой, Бешенковичской и Верхнедвинской) общей мощностью около 130 МВт.

Уже сейчас обсуждаются различ­ные варианты строительства боль­ших ГЭС. В частности, согласно од­ному из проектов, Неманская ГЭС в Гродно сможет вырабатывать 81,2 млн. кВт·ч электроэнергии (мощ­ность 17 МВт), что составляет при­мерно 15 % всей энергии, которую потребляет Гродненская область. А водохранилище при станции позво­лит увеличить запасы рыбы и объе­мы пресной воды.

Однако окончательное решение о строительстве этой и других стан­ций пока не принято.

3. ОСНОВНЫЕ СХЕМЫ ИСПОЛЬЗОВАНИЯ ВОДНОЙ ЭНЕРГИИ

Имеются три основные схемы создания сосредоточенного напора ГЭС:

1. плотинная схема, когда напор создается платиной;

2. деривационная схема, когда напор создается посредствам деривации, осуществляемой виде канала, туннеля или трубопровода;

3. плотинно-деревационная схема, когда напор создается и плотиной, и деривацией Плотины имеются во всех трех схемах.

Плотинная схема (рис.3) осуществляется преимущественно при больших расходах воды в реке и малых уклонах ее свободной поверхности.

В плотинной схеме в зависимости от напора ГЭС может быть русловой или приплотинной.

Русловой называется такая ГЭС, у которой здание ГЭС наряду с платиной входит в состав сооружений, создающих напор (рис.4) Русловая ГЭС может быть построена при сравнительно небольшом напоре.

При средних и больших напорах, превышающих диаметр турбины более чем в 4-5 раз, здание ГЭС не может входить в состав напорного фронта. В таких случаях строят приплотинную ГЭС, здание которой располагается за плотиной и не воспринимает полного давления воды (рис. 5)

При деривационной схеме (рис.6) высота плотины может быть не большой. На рис. Приведена схема ГЭС с деривацией в виде открытого канала. Плотина создает небольшой подпор. Из подпертого бьефа вода по деривационному каналу поступает в напорный бассейн, откуда она подается по трубопроводам к турбинам ГЭС. От турбин вода по отводящему каналу направляется в реку или в деривацию следующей ГЭС или же в ирригационный оросительный канал.

При пересеченном или горном рельефе местности, деривацию можно выполнить в виде туннеля, прорезывающего горный массив (рис.7) или в виде трубопровода, уложенного по поверхности земли.

В плотинно-деривационной схеме используются выгодные свойства обеих предыдущих схем, т. е. может быть создано водохранилище и использовано падение реки ниже платины (рис.8)

4. ОПИСАНИЕ РАБОТЫ ГЭС

Источником гидроэнергии является преобразованная энергия Солнца в виде запасенной потанцеальной энергии воды, которая затем преобразуется в механическую работу и электроэнергию. Действительно под воздействием солнечного излучения вода испаряется с поверхности озер, рек, морей и океанов. Пар поднимается в верхние слои атмосферы, образуя облака; затем он, конденсируясь, выпадает в виде дождя, пополняя запасы воды в водоемах.

Преобразование потанцеальной энергии воды в электрическую происходит на гидроэлектростанции (рис.1 ).

Поддержание постоянного напора осуществляется с помощью платины, которая образует водохранилище, Служащее акамулятором гидроэнергии. В связи с этим при строительстве ГЭС предъявляются определенные требования к рельефу местности, который должен позволить организовать водохранилище и создать требуемый напор за счет плотины. Все это связано со значительными затратами, и стоимость строительных работ может превышать стоимость оборудования ГЭС. Вместе с тем удельная стоимость электроэнергии, генерируемой ГЭС, является самой низкой по сравнению с себестоимостью энергии, производимой другими источниками. Как правило, срок окупаемости малых ГЭС не превышает 10 лет.

Для преобразования энергии воды в механическую работу используются гидротурбины (рис.2)

Различают активные и реактивные турбины.

В активной турбине кинетическая энергия потока преобразуется в механическую. Дополнительные устройства, обеспечивающие работу турбины, — водовод и сопло. Из сопла выходит струя, обладающая кинетической энергией, которая направляется на лопасти турбины, находящейся в воздухе. Сила, действующая со стороны струи на лопасти, приводит во вращение колесо турбины, с валом которого непосредственно или через привод сопряжен электрогенератор. КПД реальных турбин колеблется от 50 до 90 %. В гидротурбинах малой мощности КПД ниже. Максимальное значение КПД, равно 100%. Оно может быть достигнуто, если струя после взаимодействия с лопатками будет двигаться вертикально вниз только под действием силы тяжести. КПД активной гидротурбины может быть повышен за счет ограниченного увеличения числа сопел, так как при большом их количестве будет сказываться взаимное влияние струй.

В реактивной гидротурбине рабочее колесо полностью погружено в поток, который постоянно воздействует на лопасти турбины. В наиболее распространенной турбине Френсиса вращение колеса осуществляется за счет разности давления потока на входе и на выходе вода поступает в рабочее колесо радиально. Зазор между рабочим колесом и камерой – переменный. После взаимодействия потока с колесом он разворачивается на 90°. Переменный зазор и поворот потока повышает эффективность турбины. Имеются и другие конструктивные решения реактивных гидротурбин, например пропеллерная турбина Каплана. Однако этот тип турбин распространен в меньшей степени из-за перепада давления.

ГЭС бывают самых различных мощностей – от 3 кВт до 12 ГВт. Малыми ГЭС (именуемыми также микро-ГЭС и сельские ГЭС) называются ГЭС установленной мощностью менее 500 кВт. Сооружение их осуществляется обычно в качестве составной части комплекса, предусматривающего также развитие сельскохозяйственного производства, водоснабжение и регулирование стока.

5. Влияние гидроэнергетических объектов на окружающую среду и охрана природы

Гидроэнергетические объекты оказывают существенное влияние на окружающую природную среду. Это влияние является локальным. Однако сооружение каскадов крупных водохранилищ, намечая переброска части стока рек Сибири в Среднюю Азию и другие крупные водохозяйственные мероприятия могут изменить природные условия в региональном масштабе. При рассмотрении влияния гидроэнергетических объектов на окружающую среду необходимо различать период строительства гидроэнергетических объектов и период их эксплуатации.

Первый период сравнительно кратковременный – несколько лет. В это время в районе строительства нарушается естественный ландшафт. В связи с прокладкой дорог, постройкой промышленной базы и посёлка резко повышается уровень шума. Вода, используемая для разнообразных строительных работ, возвращается в реку с механическими примесями – частицами песка, глины и т. п. Возможно загрязнение воды коммунально-бытовыми стоками строительного посёлка. Подъём уровня воды в верхнем бьефе начинается обычно в период строительства. В результате производного при этом наполнении водохранилища изменяются расходы и уровни воды в нижнем бьефе.

В период эксплуатации происходит разносторонне влияние гидроэнергетических объектов на окружающую среду. Наиболее существенное влияние на природу оказывают водохранилища:

1. Затопление в верхнем бьефе. Создание водохранилищ ведёт за собой затопление территории (см. рис. 9) В зону затопления могут попасть сельскохозяйственные угодья, месторождения полезных ископаемых, промышленные и гражданские сооружения, памятники старины, дороги, лесные массивы, места постоянного обитания животных и растений и т. д. Наиболее заселены и освоены прирусловые участки реки и районы в устьях притоков. На склонах гор мало сельскохозяйственных угодий, обычно там отсутствуют промышленные объекты. Поэтому создание водохранилищ в горных условиях приносит значительно меньший ущерб, чем на равнинах.

2. Подтопление. Подтопление прилежащих к водохранилищу земель происходит вследствие подъёма уровня грунтовых вод. В зоне избыточного увлажнения подтопление влечёт за собой негативны последствия – переувлажнение корней растений и их отмирание. С изменением водно-воздушного режима почвы может произойти заболачивание и оглеение почв, что ухудшает качество почвы и снижает её продуктивность. В засушливых районах подтопление улучшает условия произрастания растений при соответствующих глубинах почвенных вод. В неблагоприятных условиях может происходить засоление почвы.

3. Переработка берегов. Вследствие подъёма и снижения уровня воды в водохранилище при регулировании стока и волновых явлений проходит переработка берегов водохранилища, Она заключается в размыве и обрушении крутых склонов, срезке мысов и кос. Размеры переработки берегов зависят от их геологического строения, режима уровней воды и глубины водохранилища, конфигурации берегов, господствующих ветров и т. п. Относительная стабилизация берегов происходит через 5-20 лет после наполнения водохранилища.

4. Качество воды. Вследствие снижения скорости течения и уменьшения перемещения воды по глубине существенно изменяются физико-химические характеристики воды по отношению к бытовым условиям реки до создания водохранилища. На качество в годы в водохранилище влияет заселённость зоны затопления, видовой и возрастной состав леса, подлеска и лесной подстилки, наличие притоков, режим и глубина сработки водохранилища и т. п. Качество воды ухудшают сточные воды промышленных, горнорудных и животноводческих комплексов, комунально-бытовые сточные воды и вынос удобрений с сельскохозяйственных угодий. Для южных районов неприятным следствием перенасыщения воды в водохранилищах органическими и биогенными веществами(в основном ионами азота и фосфора) является бурное развитие в тёплой воде сине-зелёны водорослей. При создании водохранилищ необходимо тщательно изучить Совместное влияние всех факторов с учётом перспектив строительства каскадов ГЭС и принимать меры для поддержания качества воды. Качество воды – характеристика состава и свойств воды, определяющая пригодность её для конкретных видов водопользования… Должна производиться тщательная очистка сточных вод, поступающих в водохранилище. Использовать прилегающие земли в сельском хозяйстве надо, применяя передовые методы агротехники, ограничивающие вынос удобрений в водохранилище.

5. Влияние водохранилищ на микроклимат. Водохранилища повышают влажность воздуха, изменяют ветровой режим прибрежной зоны, а также температурный и ледяной режим водотока. Это приводит к изменению природных условий, а также жизни и хозяйственной деятельности населения, обитания животных, рыб. Степень влияния крупных водохранилищ на микроклимат различна для отдельных регионов страны. Интегральное влияние, оказываемое акваторией на развитие растительности, благоприятно в условиях степной и лесостепной зоны и неблагоприятно в лесной.

6. Влияние водохранилищ на фауну. Многие животные из зоны затопления вынуждены мигрировать на территорию с более с высокими отметками. При этом видовой состав и численность животных значительно уменьшается. В ряде случаев водохранилища способствуют обогащению фауны новыми видами водоплавающих птиц и в особенности рыб: карасёвых, сазана, щуки и т. п. При ранней сработке водохранилища после весеннего половодья осушаются мелководья, что отрицательно влияет на нерест рыбы в верхнем бьефе. Глубокая зимняя сработка водохранилища в средней полосе страны может повлечь за собой замор рыбы на мелководных участках водохранилища.

Также на окружающую среду влияют гидротехнические сооружения. Возведение платин гидроузлов приводит к подъёму уровней воды в верхнем бьефе и образованию водохранилищ. Плотины, перегораживающие реки затрудняют проход рыб к местам естественных нерестилищ в верховьях рек. Но платины, здания ГЭС шлюзы каналы и т. п., удачно вписанные в рельеф местности и хорошо архитектурно оформленные, создают вместе с акваторией верхнего бьефа монументальные и живописные ансамбли.

Разрушения ГЭС при военных действиях приведёт к спуску воды водохранилища, возникновению волны высотой десятки метров, которая может уничтожить города, расположенные ниже ГЭС. Строительство ГЭС приводит к наведённой сейсмичности, в частности в США и Индии возникали землетрясения, разрушившие ГЭС.

Мероприятия по охране природы Производство работ по возведению гидроэнергетических объектов следует проектировать с минимальным ущербом природе. При разработке стройгенпланов необходимо рационально выбирать карьеры, месторасположение дорог и т. п. К моменту завершения строительства должны быть проведены необходимые работы по рекультивации нарушения земель и озеленении территории. По водохранилищу наиболее эффективным природоохранным мероприятием является инженерная защита. Например, строительство дамб обвалования уменьшает площадь затопления и сохраняет для хозяйственного использования земли, месторождения полезных ископаемых, уменьшает площадь мелководий и улучшает санитарные условия водохранилища, сохраняет природные естественные комплексы. Если постройка дамб экономически не оправдана, то мелководья могут быть использованы для разведения птиц и для других хозяйственных нужд. При поддержании необходимых уровней воды мелководья могут быть использованы для рыбного хозяйства, как нерестилище и кормовая база.

Для предотвращения или уменьшения переработки берегов производят берегоукрепления. Предприятия, железные дороги, жилые и комунально-бытовые постройки, памятники старины выносятся из зоны затопления.

Для обеспечения высокого качества воды необходима санитарная очистка ложа водохранилища до его затопления водой. С этой целью производят агротехнические мероприятия для уменьшения загрязненного поверхностного стока и строятся очистные сооружения.

В случаях необходимости организуются заповедники, заказники, отлов и перемещение животных, производятся лесопосадки. В целях рыборазведения создают искусственные нерестилища, нерестно-выростные хозяйства, строятся рыбопропускные сооружения для прохода рыбы на нерест из нижнего бьефа в верхний. Большие работы по инженерной защите проводятся в нижнем бьефе.

8. Литература

1. Володин В.В., Хазановский П.М. «Энергия, век двадцать первый: Научно-художественная литература». – М.: Дет. лит., 1989г.

2. Андрижиевский А.А., Володин В.И. «Энергосбережение и энергетический менеджмент». – Мн: «Вышейшая школа» 2005г.

3. Журнал «Экономика Беларуси» — №3(4)/2005г.

4. Щавелев Ю. С. И др. – 2-е изд. – Л.: Энергоиздат, 1981г

5. Р.Кларк «Более чем достаточно?» — М.: Энергоиздат,1984г.

7. Заключение

Анализируя вышеизложенный материал и информацию, получаемую из средств массовой информации можно сделать следующие выводы.

На фоне событий в странах ближнего и дальнего зарубежья нам просто необходимо осваивать новые виды энергоресурсов, которые в дальнейшем могли бы обеспечить республику более дешевыми энергоносителями. Так как нашу республику называют краем рек и озер развитие гидроэнергетики в нашей республики, а в частности мини-ГЭС, можно считать перспективным и вполне рентабельным.

www.ronl.ru

Доклад - Гидроэнергетика - Физика

Министерство образования Республики Беларусь

Учреждение образования

Лоевский государственный педагогический колледж

ГИДРОЭНЕРГЕТИКА

Реферат учащейся

4 «А» группы

Масловой Марины Игоревны

2006 год

Содержание

Введение

1. Немного об истории

2. Гидроэнергетика в Беларуси

3. Основные схемы использования водной энергии

4. Описание работы ГЭС

5. Влияние гидроэнергетических объектов на окружающую среду и охрана природы

6. Заключение

7. Литература

ВВЕДЕНИЕ

Энергетика делится на традиционную и нетрадиционную. Традиционная энергетика базируется на использовании ископаемого горючего или ядерного топлива и энергии воды крупных рек. Она подразделяется на теплоэнергетику, электроэнергетику, ядерную энергетику и гидроэнергетику. (табл. 1)

Многие тысячелетия верно слу­жит человеку энергия, заключен­ная в текущей воде. Запасы ее на Земле колоссальны. Недаром неко­торые ученые считают, что нашу планету правильнее было бы назы­вать не Земля, а Вода — ведь около трех четвертей поверхности пла­неты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы иотливы, воз­никают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что челове­чество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научи­лись использовать энергию рек.

Изобретение паровой машины, казалось бы, остановило много­вековое триумфальное шествие водяных колес. Маленькие пыхтя­щие двигатели, которые можно было устанавливать где угодно, а не только на берегу реки, приво­дили в движение станки и кузнечные молоты и сукновальни, покусились даже на извечное предназначение водяных колёс – на орошение полей. Одно за другим шли на слом гигантские водяные колёса, казалось, многовековая история водяной энергетики близится к завершению.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию необходимо было вращать, а это вполне успешно могла делать вода.

1. НЕМНОГО ОБ ИСТОРИИ

Гидроэнергия, равно как и мускульная энергия людей и животных, а также солнечная энергия, используется очень давно. Упоминание об использовании энергии воды на водяных мельницах для помола зерна и дутья воздуха при выплавке металла относится к концу IIв. до н. э. С течением столетий размеры и эффективность водяных колёс увеличились. В XIв. в Англии и Франции одна мельница приходилась на 250 человек. В это время сфера применения мельниц расширилась. Они стали использоваться в сукновальном производстве, при варке пива, распилке леса, для работы откачивающих насосов, на маслобойнях. Можно считать, что современная гидроэнергетика родилась в 1891 году. В этом году русский инженер Михаил Осипович Доливо-Добровольский, эмигрировавший в Германию по причине «политической неблагонадёжности», должен был демонстрировать на электротехнической выставке во Франкфурте-на-Майне изобретённый им двигатель переменного тока. Этот двигатель мощностью около 100 киловатт в эпоху господства постоянного электрического тока сам по себе должен был стать гвоздём выставки, но изобретатель решил для его питания построить ещё и совершенно неожиданное по тем временам сооружение – гидроэлектростанцию. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала небольшая водяная турбина. Электрическая энергия передавалась на территорию выставки по невероятно протяжённой для тех лет линий передачи длиной 175 километров (это сейчас линии передач длиной в тысячи километров никого не удивляют, тогда же подобное строительство было единодушно признано невозможным). Всего за несколько лет до этого события виднейший английский инженер и физик Осборн Рейнольдс в своих Канторовских лекциях неопровержимо, казалось бы доказал, что при передаче энергии по средствам трансмиссии потери энергии составляют всего лишь 1,4% на милю, в то время как при передачи электрической энергии по проводам на такое же расстояние потери составят 6%. Опираясь на данные опытов, он сделал вывод о том, что при использовании электрического тока на другом конце линии передачи вряд ли удастся иметь более15-20% начальной мощности. В то же время, считал он, можно быть уверенным в том, что при передаче энергии приводным тросом сохранится 90% мощности. Этот «неоспоримый» вывод был успешно опровергнут практикой работы первенца гидроэнергетики в Лауффене.

Но эра гидроэнергетики тогда ещё не наступила. Преимущества гидроэлектростанций очевидны – постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалось задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за турбиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объём гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале ХХ века было построено всего несколько гидроэлектростанций. Это было лишь началом. Освоение гидроэнергоресурсов осуществлялось быстрыми темпами, и в 30-е годы ХХ века была завершена реализация таких крупных проектов, как ГЭС Гувер в США мощностью 1,3 Гиговатт. Строительство подобных мощных ГЭС вызвало рост использования энергии в промышленно развитых странах, а это, в свою очередь, дало толчок программам освоения крупных гидроэнергетических потенциалов.

В настоящее время использование энергии воды по-прежнему остается актуальным, а основным направлением является производство электроэнергии.

2. ГИДРОЭНЕРГЕТИКА В БЕЛАРУСИ

В Беларуси мест для строи­тельства столь крупных гидроэлектростанций нет. Все наши большие реки ­Днепр, Припять, Двина, Неман — текут на равнинах. Тем не ме­нее еще в советские времена, когда цены на углеродное топливо были на порядки ниже нынешних, ГЭС в БССР строили. Следовательно, опре­деленный экономический потенциал у белорусской гидроэнергетики есть. Тем более что при постоянном подорожании природного газа любое замещение топливных носителей — несомненное благо.

Сейчас для ввода мощности 1 кВт на газе нужно затратить 1 условную денежную единицу, а тот же киловатт в виде гидроэлектростанции будет стоить в два раза дороже — до 2,1 условной денежной единицы. Получается, вроде как невыгодно. Но ведь и сам газ уже сегодня стоит около 55 долларов, и, как показывает практика цена на него останавливаться не собирается. Поэтому ГЭС с точки зрения энергетической безопасности страны, несомненно, выгодны.

На начало 2004 года установлен­ная мощность 21 ГЭС, входящих в концерн «Белэнерго», составила 10,9 МВт, а их годовая выработка элект­роэнергии — около 29 млн. кВт, ч, что позволяет заместить около 8 тыс. тонн условного топлива. В то же время потенциальная мощность всех водотоков Беларуси составляет 850 МВт, в том числе технически дос­тупная — 520 МВт, а экономически целесообразная — 250 МВт. (диагр. 1)

Согласно Концепции энергети­ческой безопасности Республики Белорусь, к 2020 году за счет гидроресурсов можно получить до 0,8-0,9 млрд. кВт, ч В год и, соответственно, заместить 220-250 тыс. тонн условно­го топлива. Однако, чтобы реализо­вать такие грандиозные планы, сде­лать предстоит немало. Это и возве­дение каскадов ГЭС на основных водных артериях, и строительство новых мини-ГЭС на малых реках, а также восстановление заброшенных мини-станций с частичной заменой их оборудования.

К слову, мини-ГЭС способны ре­шить множество локальных про­блем, что они доказали еще в совет­ские времена. Например, только в Гродненской области их было 29 (а всего по стране около 180). Однако во времена развития крупной энергети­ки в бывшем СССР (60-е годы) мини­-ГЭС в условиях Беларуси были при­знаны низкоэффективными и их ста­ли повсеместно закрывать. В после­дние годы идет активное восстанов­ление таких электростанций. На той же Гродненщине, например, в 2005 году начала работать мини-ГЭС «Не­мново» на Августовском канале. Мощность станции — 250 кВт, и этого достаточно, чтобы обеспечить свет­лом и теплом местный поселок Са­поцкино. Окупится установка уже через 11 лет, а служить будет как минимум целый век. А всего до 2010 года в Беларуси будет насчитывать­ся около 30 мини-ГЭС.

Интерес к мини-ГЭС проявляют и ученые. Специалисты Института энергетики АПК Национальной ака­демии наук разработали эффектив­ный электрогенератор для таких станций мощностью 15 кВт. Генера­тор изготовлен с использованием широкодоступных магнитов, произ­водимых в республике. Испытания экспериментального образца генератора выявили его способность в 1,5 раза повысить надежность мини-ГЭС, при этом кпд новой разработки на 10-15% выше аналогов. Столь высо­кие показатели эффективности и на­дежности данного агрегата достигну­ты за счет замены редуктора в конст­рукции на постоянные магниты.

По мнению главного специалис­та концерна «Белэнерго» Владимира Кордуба, вполне вероятно, что на равнинную белорусскую землю при­дет и крупная гидроэнергетика. В обозримом будущем, например, воз­можно строительство Гродненской и Полоцкой ГЭС. Более того, на Запад­ной Двине прорабатывается строи­тельство целого каскада гидроэлектростанций (Витебской, Полоцкой, Бешенковичской и Верхнедвинской) общей мощностью около 130 МВт.

Уже сейчас обсуждаются различ­ные варианты строительства боль­ших ГЭС. В частности, согласно од­ному из проектов, Неманская ГЭС в Гродно сможет вырабатывать 81,2 млн. кВт·ч электроэнергии (мощ­ность 17 МВт), что составляет при­мерно 15 % всей энергии, которую потребляет Гродненская область. А водохранилище при станции позво­лит увеличить запасы рыбы и объе­мы пресной воды.

Однако окончательное решение о строительстве этой и других стан­ций пока не принято.

3. ОСНОВНЫЕ СХЕМЫ ИСПОЛЬЗОВАНИЯ ВОДНОЙ ЭНЕРГИИ

Имеются три основные схемы создания сосредоточенного напора ГЭС:

1. плотинная схема, когда напор создается платиной;

2. деривационная схема, когда напор создается посредствам деривации, осуществляемой виде канала, туннеля или трубопровода;

3. плотинно-деревационная схема, когда напор создается и плотиной, и деривацией Плотины имеются во всех трех схемах.

Плотинная схема (рис.3) осуществляется преимущественно при больших расходах воды в реке и малых уклонах ее свободной поверхности.

В плотинной схеме в зависимости от напора ГЭС может быть русловой или приплотинной.

Русловой называется такая ГЭС, у которой здание ГЭС наряду с платиной входит в состав сооружений, создающих напор (рис.4) Русловая ГЭС может быть построена при сравнительно небольшом напоре.

При средних и больших напорах, превышающих диаметр турбины более чем в 4-5 раз, здание ГЭС не может входить в состав напорного фронта. В таких случаях строят приплотинную ГЭС, здание которой располагается за плотиной и не воспринимает полного давления воды (рис. 5)

При деривационной схеме (рис.6) высота плотины может быть не большой. На рис. Приведена схема ГЭС с деривацией в виде открытого канала. Плотина создает небольшой подпор. Из подпертого бьефа вода по деривационному каналу поступает в напорный бассейн, откуда она подается по трубопроводам к турбинам ГЭС. От турбин вода по отводящему каналу направляется в реку или в деривацию следующей ГЭС или же в ирригационный оросительный канал.

При пересеченном или горном рельефе местности, деривацию можно выполнить в виде туннеля, прорезывающего горный массив (рис.7) или в виде трубопровода, уложенного по поверхности земли.

В плотинно-деривационной схеме используются выгодные свойства обеих предыдущих схем, т. е. может быть создано водохранилище и использовано падение реки ниже платины (рис.8)

4. ОПИСАНИЕ РАБОТЫ ГЭС

Источником гидроэнергии является преобразованная энергия Солнца в виде запасенной потанцеальной энергии воды, которая затем преобразуется в механическую работу и электроэнергию. Действительно под воздействием солнечного излучения вода испаряется с поверхности озер, рек, морей и океанов. Пар поднимается в верхние слои атмосферы, образуя облака; затем он, конденсируясь, выпадает в виде дождя, пополняя запасы воды в водоемах.

Преобразование потанцеальной энергии воды в электрическую происходит на гидроэлектростанции (рис.1 ).

Поддержание постоянного напора осуществляется с помощью платины, которая образует водохранилище, Служащее акамулятором гидроэнергии. В связи с этим при строительстве ГЭС предъявляются определенные требования к рельефу местности, который должен позволить организовать водохранилище и создать требуемый напор за счет плотины. Все это связано со значительными затратами, и стоимость строительных работ может превышать стоимость оборудования ГЭС. Вместе с тем удельная стоимость электроэнергии, генерируемой ГЭС, является самой низкой по сравнению с себестоимостью энергии, производимой другими источниками. Как правило, срок окупаемости малых ГЭС не превышает 10 лет.

Для преобразования энергии воды в механическую работу используются гидротурбины (рис.2)

Различают активные и реактивные турбины.

В активной турбине кинетическая энергия потока преобразуется в механическую. Дополнительные устройства, обеспечивающие работу турбины, — водовод и сопло. Из сопла выходит струя, обладающая кинетической энергией, которая направляется на лопасти турбины, находящейся в воздухе. Сила, действующая со стороны струи на лопасти, приводит во вращение колесо турбины, с валом которого непосредственно или через привод сопряжен электрогенератор. КПД реальных турбин колеблется от 50 до 90 %. В гидротурбинах малой мощности КПД ниже. Максимальное значение КПД, равно 100%. Оно может быть достигнуто, если струя после взаимодействия с лопатками будет двигаться вертикально вниз только под действием силы тяжести. КПД активной гидротурбины может быть повышен за счет ограниченного увеличения числа сопел, так как при большом их количестве будет сказываться взаимное влияние струй.

В реактивной гидротурбине рабочее колесо полностью погружено в поток, который постоянно воздействует на лопасти турбины. В наиболее распространенной турбине Френсиса вращение колеса осуществляется за счет разности давления потока на входе и на выходе вода поступает в рабочее колесо радиально. Зазор между рабочим колесом и камерой – переменный. После взаимодействия потока с колесом он разворачивается на 90°. Переменный зазор и поворот потока повышает эффективность турбины. Имеются и другие конструктивные решения реактивных гидротурбин, например пропеллерная турбина Каплана. Однако этот тип турбин распространен в меньшей степени из-за перепада давления.

ГЭС бывают самых различных мощностей – от 3 кВт до 12 ГВт. Малыми ГЭС (именуемыми также микро-ГЭС и сельские ГЭС) называются ГЭС установленной мощностью менее 500 кВт. Сооружение их осуществляется обычно в качестве составной части комплекса, предусматривающего также развитие сельскохозяйственного производства, водоснабжение и регулирование стока.

5. Влияние гидроэнергетических объектов на окружающую среду и охрана природы

Гидроэнергетические объекты оказывают существенное влияние на окружающую природную среду. Это влияние является локальным. Однако сооружение каскадов крупных водохранилищ, намечая переброска части стока рек Сибири в Среднюю Азию и другие крупные водохозяйственные мероприятия могут изменить природные условия в региональном масштабе. При рассмотрении влияния гидроэнергетических объектов на окружающую среду необходимо различать период строительства гидроэнергетических объектов и период их эксплуатации.

Первый период сравнительно кратковременный – несколько лет. В это время в районе строительства нарушается естественный ландшафт. В связи с прокладкой дорог, постройкой промышленной базы и посёлка резко повышается уровень шума. Вода, используемая для разнообразных строительных работ, возвращается в реку с механическими примесями – частицами песка, глины и т. п. Возможно загрязнение воды коммунально-бытовыми стоками строительного посёлка. Подъём уровня воды в верхнем бьефе начинается обычно в период строительства. В результате производного при этом наполнении водохранилища изменяются расходы и уровни воды в нижнем бьефе.

В период эксплуатации происходит разносторонне влияние гидроэнергетических объектов на окружающую среду. Наиболее существенное влияние на природу оказывают водохранилища:

1. Затопление в верхнем бьефе. Создание водохранилищ ведёт за собой затопление территории (см. рис. 9) В зону затопления могут попасть сельскохозяйственные угодья, месторождения полезных ископаемых, промышленные и гражданские сооружения, памятники старины, дороги, лесные массивы, места постоянного обитания животных и растений и т. д. Наиболее заселены и освоены прирусловые участки реки и районы в устьях притоков. На склонах гор мало сельскохозяйственных угодий, обычно там отсутствуют промышленные объекты. Поэтому создание водохранилищ в горных условиях приносит значительно меньший ущерб, чем на равнинах.

2. Подтопление. Подтопление прилежащих к водохранилищу земель происходит вследствие подъёма уровня грунтовых вод. В зоне избыточного увлажнения подтопление влечёт за собой негативны последствия – переувлажнение корней растений и их отмирание. С изменением водно-воздушного режима почвы может произойти заболачивание и оглеение почв, что ухудшает качество почвы и снижает её продуктивность. В засушливых районах подтопление улучшает условия произрастания растений при соответствующих глубинах почвенных вод. В неблагоприятных условиях может происходить засоление почвы.

3. Переработка берегов. Вследствие подъёма и снижения уровня воды в водохранилище при регулировании стока и волновых явлений проходит переработка берегов водохранилища, Она заключается в размыве и обрушении крутых склонов, срезке мысов и кос. Размеры переработки берегов зависят от их геологического строения, режима уровней воды и глубины водохранилища, конфигурации берегов, господствующих ветров и т. п. Относительная стабилизация берегов происходит через 5-20 лет после наполнения водохранилища.

4. Качество воды. Вследствие снижения скорости течения и уменьшения перемещения воды по глубине существенно изменяются физико-химические характеристики воды по отношению к бытовым условиям реки до создания водохранилища. На качество в годы в водохранилище влияет заселённость зоны затопления, видовой и возрастной состав леса, подлеска и лесной подстилки, наличие притоков, режим и глубина сработки водохранилища и т. п. Качество воды ухудшают сточные воды промышленных, горнорудных и животноводческих комплексов, комунально-бытовые сточные воды и вынос удобрений с сельскохозяйственных угодий. Для южных районов неприятным следствием перенасыщения воды в водохранилищах органическими и биогенными веществами(в основном ионами азота и фосфора) является бурное развитие в тёплой воде сине-зелёны водорослей. При создании водохранилищ необходимо тщательно изучить Совместное влияние всех факторов с учётом перспектив строительства каскадов ГЭС и принимать меры для поддержания качества воды. Качество воды – характеристика состава и свойств воды, определяющая пригодность её для конкретных видов водопользования… Должна производиться тщательная очистка сточных вод, поступающих в водохранилище. Использовать прилегающие земли в сельском хозяйстве надо, применяя передовые методы агротехники, ограничивающие вынос удобрений в водохранилище.

5. Влияние водохранилищ на микроклимат. Водохранилища повышают влажность воздуха, изменяют ветровой режим прибрежной зоны, а также температурный и ледяной режим водотока. Это приводит к изменению природных условий, а также жизни и хозяйственной деятельности населения, обитания животных, рыб. Степень влияния крупных водохранилищ на микроклимат различна для отдельных регионов страны. Интегральное влияние, оказываемое акваторией на развитие растительности, благоприятно в условиях степной и лесостепной зоны и неблагоприятно в лесной.

6. Влияние водохранилищ на фауну. Многие животные из зоны затопления вынуждены мигрировать на территорию с более с высокими отметками. При этом видовой состав и численность животных значительно уменьшается. В ряде случаев водохранилища способствуют обогащению фауны новыми видами водоплавающих птиц и в особенности рыб: карасёвых, сазана, щуки и т. п. При ранней сработке водохранилища после весеннего половодья осушаются мелководья, что отрицательно влияет на нерест рыбы в верхнем бьефе. Глубокая зимняя сработка водохранилища в средней полосе страны может повлечь за собой замор рыбы на мелководных участках водохранилища.

Также на окружающую среду влияют гидротехнические сооружения. Возведение платин гидроузлов приводит к подъёму уровней воды в верхнем бьефе и образованию водохранилищ. Плотины, перегораживающие реки затрудняют проход рыб к местам естественных нерестилищ в верховьях рек. Но платины, здания ГЭС шлюзы каналы и т. п., удачно вписанные в рельеф местности и хорошо архитектурно оформленные, создают вместе с акваторией верхнего бьефа монументальные и живописные ансамбли.

Разрушения ГЭС при военных действиях приведёт к спуску воды водохранилища, возникновению волны высотой десятки метров, которая может уничтожить города, расположенные ниже ГЭС. Строительство ГЭС приводит к наведённой сейсмичности, в частности в США и Индии возникали землетрясения, разрушившие ГЭС.

Мероприятия по охране природы Производство работ по возведению гидроэнергетических объектов следует проектировать с минимальным ущербом природе. При разработке стройгенпланов необходимо рационально выбирать карьеры, месторасположение дорог и т. п. К моменту завершения строительства должны быть проведены необходимые работы по рекультивации нарушения земель и озеленении территории. По водохранилищу наиболее эффективным природоохранным мероприятием является инженерная защита. Например, строительство дамб обвалования уменьшает площадь затопления и сохраняет для хозяйственного использования земли, месторождения полезных ископаемых, уменьшает площадь мелководий и улучшает санитарные условия водохранилища, сохраняет природные естественные комплексы. Если постройка дамб экономически не оправдана, то мелководья могут быть использованы для разведения птиц и для других хозяйственных нужд. При поддержании необходимых уровней воды мелководья могут быть использованы для рыбного хозяйства, как нерестилище и кормовая база.

Для предотвращения или уменьшения переработки берегов производят берегоукрепления. Предприятия, железные дороги, жилые и комунально-бытовые постройки, памятники старины выносятся из зоны затопления.

Для обеспечения высокого качества воды необходима санитарная очистка ложа водохранилища до его затопления водой. С этой целью производят агротехнические мероприятия для уменьшения загрязненного поверхностного стока и строятся очистные сооружения.

В случаях необходимости организуются заповедники, заказники, отлов и перемещение животных, производятся лесопосадки. В целях рыборазведения создают искусственные нерестилища, нерестно-выростные хозяйства, строятся рыбопропускные сооружения для прохода рыбы на нерест из нижнего бьефа в верхний. Большие работы по инженерной защите проводятся в нижнем бьефе.

8. Литература

1. Володин В.В., Хазановский П.М. «Энергия, век двадцать первый: Научно-художественная литература». – М.: Дет. лит., 1989г.

2. Андрижиевский А.А., Володин В.И. «Энергосбережение и энергетический менеджмент». – Мн: «Вышейшая школа» 2005г.

3. Журнал «Экономика Беларуси» — №3(4)/2005г.

4. Щавелев Ю. С. И др. – 2-е изд. – Л.: Энергоиздат, 1981г

5. Р.Кларк «Более чем достаточно?» — М.: Энергоиздат,1984г.

7. Заключение

Анализируя вышеизложенный материал и информацию, получаемую из средств массовой информации можно сделать следующие выводы.

На фоне событий в странах ближнего и дальнего зарубежья нам просто необходимо осваивать новые виды энергоресурсов, которые в дальнейшем могли бы обеспечить республику более дешевыми энергоносителями. Так как нашу республику называют краем рек и озер развитие гидроэнергетики в нашей республики, а в частности мини-ГЭС, можно считать перспективным и вполне рентабельным.

www.ronl.ru

Реферат: "Малая гидроэнергетика"

Выдержка из работы

ВВЕДЕНИЕ

Человек еще в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии люди научились строить водяные колеса, которые вращала вода; этими колесами приводились в движение мельничные постава и другие установки. Водяная мельница является ярким примером древнейшей гидроэнергетической установки, сохранившейся во многих странах до нашего времени почти в первозданном виде. До изобретения паровой машины водная энергия была основной двигательной силой на производстве. По мере совершенствования водяных колес увеличивалась мощность гидравлических установок, приводящих в движение станки и т. д. В 1-й половине XIX века была изобретена гидротурбина, открывшая новые возможности по использованию гидроэнергоресурсов. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния началось освоение водной энергии путем преобразования ее в электрическую энергию на гидроэлектростанциях (ГЭС)

Малые и микроГЭС — объекты малой гидроэнергетики. Эта часть энергопроизводства занимается использованием энергии водных ресурсов и гидравлических систем с помощью гидроэнергетических установок малой мощности (от 1 до 3000 кВт). Малая энергетика получила развитие в мире в последние десятилетия, в основном из-за стремления избежать экологического ущерба, наносимого водохранилищами крупных ГЭС, из-за возможности обеспечить энергоснабжение в труднодоступных и изолированных районах, а также, из-за небольших капитальных затрат при строительстве станций и быстрого возврата вложенных средств (в пределах 5 лет). Строительство МГЭС имеет также широкие перспективы развития в различных регионах мира с трансграничными речными бассейнами.

В настоящее время нет общепринятого для всех стран понятия малой гидроэлектростанции. Однако во многих странах в качестве основной характеристики такой ГЭС принята ее установленная мощность. К малым, как правило, относятся ГЭС мощностью до 10 МВт (в некоторых странах до 50 МВт).

Малая гидроэнергетика свободна от многих недостатков крупных ГЭС и признана одним из наиболее экономичных и экологически безопасных способов получения электроэнергии, особенно при использовании небольших водотоков. В малых, микро- или нано-ГЭС сочетаются преимущества большой ГЭС с одной стороны и возможность децентрализованной подачи энергии с другой стороны. Они не имеют многих недостатков, характерных для больших ГЭС, а именно: дорогостоящие трансмиссии, проблемы, связанные с негативным воздействием на окружающую среду.

1. ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ МАЛОЙ ГИДРОЭНЕРГЕТИКИ

1.1 В МИРЕ

Малая гидроэнергетика за последние десятилетия заняла устойчивое положение во многих странах мира. Например, в 2005 году суммарная мощность малых ГЭС в мире выросла на 8% (5 ГВт) и достигла 66 ГВт, причем она составила 36% от суммарной мощности всех возобновляемых источников энергии (исключая большую гидроэнергетику) и 1. 6% от общих электроэнергетических мощностей. Таким образом, можно сказать, что МГЭС являются одним из основных источников получения электроэнергии среди возобновляемых ресурсов.

Развивающиеся страны строят малые ГЭС в качестве автономных источников электроэнергии в сельской местности.

В Швейцарии доля производства электроэнергии на МГЭС достигла 8,3%, в Испании — 2,8%, в Швеции — почти 3%, а в Австрии — 10%. Лидирующие позиции по совокупным генерирующим мощностям МГЭС занимают: Китай (47 ГВт), Япония (4 ГВт), США (3,4 ГВт), Италия и Бразилия.

По данным ESHA (European Small Hydropower Association), в 2011 году суммарная установленная мощность МГЭС в мире составила 87 ГВт.

Суммарные мощности МГЕС:

Таким образом, можно сказать, что малая гидроэнергетика будет оставаться одним из самых важных и конкурентоспособных возобновляемых источников энергии. Латинская Америка, Северная Америка и Европа имеют значительный гидроэнергетический потенциал, большая часть которого уже использована. В Восточной, Южной Азии и Африке малая гидроэнергетика еще недостаточно развита, что говорит о большом потенциале ее использования в этих странах.

1.2 В РОССИИ

возобновляемый источник гидроэнергетика малый

В России зоны децентрализованного энергоснабжения составляют более 70% территории страны. До сих пор тут можно встретить населенные пункты, в которых электричества не было никогда. Причем не всегда это поселения Крайнего Севера или Сибири. Электрификация не затронула, например, некоторые уральские поселки — края, который вряд ли назовешь неблагополучным с точки зрения энергетики. Между тем, электрификация отдаленных и труднодоступных населенных селений — дело не такое уж и сложное. Так, в любом уголке России найдется речка или ручей, где можно установить микроГЭС.

Технико-экономический потенциал малой гидроэнергетики в России превышает потенциал таких возобновляемых источников энергии, как ветер, солнце и биомасса, вместе взятых. В настоящее время он определен в размере 60 млрд. кВт-ч в год. Но используется этот потенциал крайне слабо: всего на 1%. Не так давно, в 1950−60-х годах, у нас действовало несколько тысяч МГЭС. Сейчас — всего лишь несколько сотен — сказались результаты перекосов в ценовой политике и недостаточное внимание к совершенствованию конструкций оборудования, к применению более совершенных материалов и технологий.

В России малая гидроэнергетика представлена бесплотинными гидроэлектростанциями (ГЭС), мощность которых не превышает 30 МВт, а мощность единичного гидроагрегата составляет менее 10 МВт.

В настоящее время по всей России количество действующих МГЭС оценивается от нескольких десятков (60−70 единиц) до нескольких сотен (200−300 единиц).

1.3 В УКРАИНЕ

То, что после Второй мировой войны энергоснабжение Украины осуществлялось в основном за счет малой гидроэлектроэнергетики, помнят разве что историки и специалисты отрасли. Всего на начало 1960-х насчитывалось около 956 малых ГЭС общей мощностью 30 тыс. кВт. Для сравнения: в 1948 году в республике действовали 3 тыс. малых гидроустановок. Однако вследствие развития централизованного электроснабжения и концентрации производства электроэнергии на мощных тепло- и гидростанциях строительство малых ГЭС было остановлено. Началась их консервация, демонтаж, сотни мини-гидроэлектростанций были разрушены, а оборудование разворовано.

К концу 1980-х удалось сохранить всего 49 станций, и до 1995 года малой гидроэнергетикой в Украине практически никто не занимался. Только в 1996 году появились первые энтузиасты, проявившие к ней интерес. Несколько лет назад и на государственном уровне было принято решение пересмотреть энергополитику и заняться возрождением малых ГЭС. Согласно данным ассоциации «Укргидроэнерго», в Украине сегодня работают 81 малая гидроэлектростанция и семь микроустановок общей мощностью 111,75 МВт, что составляет всего около 5% технически возможного потенциала страны.

Из действующих в настоящее время МГЭС государственных — 25, при этом пять из них находятся на балансе Госводхоза и 20 принадлежат соответствующим облэнерго («Винницаоблэнерго» — пять, «Закарпатье облэнерго» — три, «Киевэнерго» — две, «Кировоградоблэнерго» — четыре и т. д.). В случае приватизации облэнерго в частные руки переходят и ГЭС. Кроме этого, многие малые станции находились в коллективной собственности, поскольку были построены колхозами. Именно их сегодня почти полностью выкупили частные собственники. Частными являются и уже восстановленные станции (к примеру, Яблунецкая МГЭС была выкуплена ассоциацией «Новосвит» еще в 2002 году).

Эксплуатация минигидроэлектростанций в Украине дает возможность производить около 250 млн кВт·год электроэнергии на год, что эквивалентно ежегодной экономии до 75 тыс. тонн органического топлива.

2. ПЛЮСЫ И МИНУСЫ МГЭС

Одним из основных достоинств объектов малой гидроэнергетики является экологическая безопасность. В процессе их сооружения и последующей эксплуатации вредных воздействий на свойства и качество воды нет. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения. Однако и помимо этого у микро и малых ГЭС немало достоинств. Современные станции просты в конструкции и полностью автоматизированы, т. е. не требуют присутствия человека при эксплуатации. Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению, причем станции могут работать как в автономном режиме, т. е. вне электросети энергосистемы края или области, так и в составе этой электросети. А полный ресурс работы станции — не менее 40 лет (не менее 5 лет до капитального ремонта). Ну, а главное — объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.

При строительстве и эксплуатации МГЭС сохраняется природный ландшафт, практически отсутствует нагрузка на экосистему. К преимуществам малой гидроэнергетики — по сравнению с электростанциями на ископаемом топливе — можно также отнести: низкую себестоимость электроэнергии и эксплуатационные затраты, относительно недорогую замену оборудования, более длительный срок службы ГЭС (40−50 лет), комплексное использование водных ресурсов (электроэнергетика, водоснабжение, мелиорация, охрана вод, рыбное хозяйство).

Многие из малых ГЭС не всегда обеспечивают гарантированную выработку энергии, являясь сезонными электростанциями. Зимой их энергоотдача резко падает, снежный покров и ледовые явления (лед и шуга) так же, как и летнее маловодье и пересыхание рек могут вообще приостановить их работу. Сезонность малых ГЭС требует дублирующих источников энергии, большое их количество может привести к потере надежности энергоснабжения. Поэтому во многих районах мощность малых ГЭС рассматривается не в качестве основной, а в качестве дублирующей.

У водохранилищ малых ГЭС, особенно горных и предгорных районов, очень остро стоит проблема их заиления и связанная с этим проблема подъема уровня воды, затоплений и подтоплений, снижения гидроэнергетического потенциала рек и выработки электроэнергии. Известно, например, что водохранилище Земонечальской ГЭС на реке Куре было заилено на 60% в течение 5 лет.

Для рыбного хозяйства плотины малых ГЭС менее опасны, чем средних и крупных, перекрывающих миграционные пути проходных и полупроходных рыб и перекрывающих нерестилища. Хотя в целом создание гидроузлов не устраняет полностью урон рыбному стаду на основных реках, т.к. речной бассейн — это единая экологическая система и нарушения ее отдельных звеньев неизбежно отражаются на системе в целом.

ЗАКЛЮЧЕНИЕ

Из всего вышеизложенного следует, что малая гидроэнергетика занимает устойчивое положение как в мире, так и в Украине.

Строительство и реконструкция малых ГЭС позволит не только получить экологически чистую электроэнергию, но и обеспечить электричеством энергодефицитные районы, где отсутствуют мощные источники тока. Развитие малой гидроэнергетики способствует децентрализации общей энергетической системы, что позволяет стабильно обеспечивать труднодоступные села электричеством. Энергия, выработанная малыми ГЭС, используется ближайшими потребителями, соответственно, снижаются траты на ее транспортировку, и повышается надежность энергообеспечения. Кроме того, ГЭС могут выполнять и другие задачи, к примеру, защищать прилегающие территории от сезонных паводков.

С учетом ограниченности гидроресурсов в мире можно предположить, что в период до 2030 года темпы развития гидроэнергетики заметно снизятся, но при этом будет поддерживаться диверсификация малой гидроэнергетики. При темпе роста в 4. 5−4. 7% производство электроэнергии на малых ГЭС достигнет к 2030 году 770−780 ТВт. ч, что будет составлять более 2% всего производства электроэнергии в мире. Таким образом, можно сказать, что малая гидроэнергетика в обозримой перспективе останется одним из самых важных и конкурентоспособных возобновляемых источников энергии.

ЛИТЕРАТУРА

1. Березовский Н. И. и др. Технология энергосбережения

2. Волков С. Г., Гидроэнергетика, СПб, 1997 г.

3. Источники энергии. Факты, проблемы, решения, М., Наука и техника, 1997 г.

4. Михайлов Л. П. Малая гидроэнергетика

5. Мунц В. А. Энергосбережение в энергетике и теплотехнологиях

6. Непорожний П. С., Попков В. И., Энергетические ресурсы мира, М., Энергоатомиздат, 1995 г.

7. Самойлов М. В. Основы энергоргосбережения

Показать Свернуть

referat.bookap.info


Смотрите также