Понятие и устройство фотодиода. Реферат фотодиоды


Фотодиоды: принцип работы и характеристики

В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.

Принцип действия фотодиода

Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.

Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.

Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока.

Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС.  Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.

Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве элементов солнечной батареи. Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.

В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.

Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами. Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов. Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.

Характеристики фотодиодов

Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.

Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.

Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость. Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением. Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.

electric-220.ru

Реферат Принцип действия фотодиода

Принцип действия фотодиодаПолупроводниковый фотодиод — это полупроводниковый диод обратный ток которого зависит от освещенности.Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.Характеристики фотодиодовСвойства фотодиода можно охарактеризовать следующими характеристиками:Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.Спектральная характеристика фотодиода — это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.Постоянная времени — это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.Темновое сопротивление — сопротивление фотодиода в отсутствие освещения.Интегральная чувствительность определяется формулой:где 1ф — фототок, Ф — освещенность.ИнерционностьСуществует три физических фактора, влияющих на инерционность:1.          Время диффузии или дрейфа неравновесных носителей через базу т;2.           Время пролета через р-n переход т,;3.          Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, — 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.Расчет КПД фотодиода и мощностиКПД вычисляется по формуле:где Росв — мощность освещенности; I — сила тока;U — напряжение на фотодиоде.Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы токаМаксимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.Таблица 2.1. Зависимость мощности от КПД

Мощность освещенности, мВт      

Сила тока, мА          

Напряжение, В         

КПД, %1         

0,0464

0,24    

1,13         

0,1449

0,41    

25         

0,248  

0,26    

1,37         

0,242  

0,45    

1,6Применение фотодиода в олтоэлектроникеФотодиод является составным элементом во многих сложных оптоэлектронных устройствах:•        Оптоэлектронные интегральные микросхемы.Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.•        Многоэлементные фотоприемники.Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).Как происходит восприятие образов?Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. • Оптроны.Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель — в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом — чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод — только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 — КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.Графическим обозначениям оптронов по ГОСТу присвоен условный код — латинская буква U, после которой следует порядковый номер прибора в схеме.В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.Применение фотоприемниковЛюбое оптоэлектронное устройство содержит фотоприемный блок. И в большинстве современных оптоэлектронных устройств фотодиод составляет основу фотоприемника.обладают наилучшим сочетанием фотоэлектрических параметров, основных с точки зрения использования в оптоэлектронике: высокие значения чувствительности и быстродействия, малые значения паразитных параметров (например, тока утечки). Простота их устройства позволяет достигнуть физического и конструктивного оптимума и обеспечить наиболее полное использование падающего света.В сопоставлении с другими, более сложными фотоприемниками, они обладают наибольшей стабильностью температурных характеристик и лучшими эксплуатационными свойствами.Основной недостаток, на который обычно указывают, — отсутствие усиления. Но он достаточно условен. Почти в каждом оп- тоэлектронном устройстве фотоприемник работает на ту или иную согласующую электронную схему. И введение усилительного каскада в нее значительно проще и целесообразнее, чем придание фотоприемнику несвойственных ему функций усиления.Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 1015 Гц) в 103…104 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 108 бит/см2).Острая направленность (кучность) светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электрическую энергию в любую область пространства.Возможность двойной — временной и пространственной — модуляции светового луча. Так как источник и приемник в опто- электронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), то они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении — от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам, что определяет их высокую помехозащищенность.Важная особенность фотодиодов — высокое быстродействие. Они могут работать на частотах до нескольких МГц. обычно изготовляют из германия или кремния.Фотодиод является потенциально широкополосным приемником. Этим обуславливается его повсеместное применение и популярность.ИК спектраИнфракрасный излучающий диод (ИК диод) представляет собой полупроводниковый диод, который при протекании через него прямого тока излучает электромагнитную энергию в инфракрасной области спектра.В отличие от видимого человеческим глазом спектра излучения (какое, например, производит обычный светоизлучающий диод на основе фосфида галлия) ИК излучение не может быть воспринято человеческим глазом, а регистрируется с помощью специальных приборов, чувствительных к данному спектру излучения. Среди популярных фотоприемных диодов ИК спектра можно отметить фоточувствительные приборы МДК-1, ФД263-01 и подобные им.Спектральные характеристики ИК излучающих диодов имеют выраженный максимум в интервале волн 0,87…0,96 мкм. Эффективность излучения и КПД данных приборов выше, чем у светоизлучающих диодов.На основе ИК диодов (которые в электронных конструкциях занимают важное место передатчиков импульсов ИК спектра) конструируются волоконно-оптические линии (выгодно отличающиеся своим быстродействием и помехозащищенностью), многоплановые электронные бытовые узлы и, конечно же, электронные узлы охраны. В этом есть свое преимущество, т.к. ИК луч невидим человеческим глазом и в некоторых случаях (при условии использования нескольких разнонаправленных ИК лучей) определить визуально наличие самого охранного устройства невозможно до его перехода в режим «тревога»). Опыты работы в сфере производства и обслуживания систем охраны на основе ИК излучателей позволяют все же дать некоторую рекомендацию по определению рабочего состояния ИК излучателей.Если близко всмотреться в излучающую поверхность ИК диода (например, АЛ147А, АЛ156А), когда на него подан сигнал управления, то можно заметить слабое красное свечение. Световой спектр этого свечения близок к цвету глаз животных альбиносов (крыс, хомяков и т.д.). В темноте ИК свечение еще более выражено. Необходимо заметить, что длительное время всматриваться в излучающий ИК световую энергию прибор нежелательно с медицинской точки зрения.Кроме систем охраны, ИК излучающие диоды в настоящее время находят применение в брелоках сигнализации для автомобилей, различного рода беспроводных передатчиках сигналов на расстояние. Например, подключив к передатчику модулированный НЧ сигнал от усилителя, с помощью ИК приемника на некотором расстоянии (зависит от мощности излучения и рельефа местности) можно прослушивать звуковую информацию, телефонные переговоры также можно транслировать на расстояние. Этот способ сегодня менее эффективен, но все же является альтернативным вариантом домашнему радиотелефону. Самым популярным (в быту) применением ИК излучающих диодов являются пульты дистанционного управления различными бытовыми приборами.Как может легко убедиться любой радиолюбитель, вскрыв крышку ПДУ, электронная схема этого прибора не сложна и может быть повторена без особых проблем. В радиолюбительских конструкциях, некоторые из которых описаны в третьей главе данной книги, электронные устройства с ИК излучающими и приемными приборами намного проще, чем промышленные устройства.Параметры, определяющие статические режимы работы ИК диодов (прямое и обратное максимально допустимое напряжение, прямой ток и т.д.) сходны с параметрами фотодиодов. Основными специфическими параметрами, по которым их идентифицируют, для ИК диодов являются:Мощность излучения — Ризл — поток излучения определенного спектрального состава, излучаемого диодом. Характеристикой диода, как источника ИК излучения, является ватт-амперная характеристика — зависимость мощности излучения в Вт (милливаттах) от прямого тока, протекающего через диод. Диаграмма направленности излучения диода показывает уменьшение мощности излучения в зависимости от угла между направлением излучения и оптической осью прибора. Современные ИК диоды различаются между имеющими остронаправленное излучение и рассеянное.При конструировании электронных узлов следует учитывать, что дальность передачи ИК сигнала прямо зависит от угла наклона (совмещения передающей и приемной частей устройства) и мощности ИК диода. При взаимозаменах ИК диодов необходимо учитывать этот параметр мощности излучения. Некоторые справочные данные по отечественным ИК диодам приведены в табл. 2.2.Данные по взаимозаменам зарубежных и отечественных приборов приведены в приложении. Сегодня наиболее популярными типами ИК диодов среди радиолюбителей считаются приборы модельного ряда АЛ 156 и АЛ147. Они оптимальны по универсальности применения и стоимости.Импульсная мощность излучения — Ризл им — амплитуда потока излучения, измеряемая при заданном импульсе прямого тока через диод.Ширина спектра излучения — интервал длин волн, в котором спектральная плотность мощности излучения составляет половину максимальной.Максимально допустимый прямой импульсный ток 1пр им (ИК диоды в основном используются в импульсном режиме работы).Таблица 2.2. Излучающие диоды инфракрасного спектра

ИК диод        

Мощность излучения, мВт 

Длина волны, мкм   

Ширина спектра, мкм         

Напряжение на приборе, В

Угол излучения, градАЛ107Б         

9         

0,94…0,96     

0,03    

2         

60АЛ107Г         

12       

0,94…0,96     

0,03    

2         

60АЛ145Д        

20       

0,93…0,98     

0,06    

1,6      

40АЛ156В         

12       

0,82…0,9       

0,04    

1,8      

35АЛ161А        

8         

0,83…0,9       

0,07    

1,5      

10АЛ165Б         

15       

0,85…0,89     

0,04    

2         

35АЛ165В         

400     

0,85…0,9       

нет данных   

1,6      

нет данныхАЛ170В         

100     

0,85…0,89     

0,1      

1,5      

4Время нарастания импульса излучения tHap изл — интервал времени, в течение которого мощность излучения диода нарастает с 10 до 100% от максимального значения.Параметр времени спада импульса tcnM3J1 аналогичен предыдущему.Скважность — Q — отношение периода импульсных колебаний к длительности импульса.В основе предлагаемых к повторению электронных узлов (глава 3 данной книги) лежит принцип передачи и приема модулированного ИК сигнала. Но не только в таком виде можно использовать принцип работы ИК диода. Такие оптореле могут работать и в режиме реагирования на отражение лучей (фотоприемник размещается рядом с излучателем). Этот принцип воплощен в электронные узлы, реагирующие на приближение к объединенному приемо-передающему узлу какого-либо предмета или человека, что также может служить датчиком в системах охраны.Вариантов применения ИК диодов и устройств на их основе бесконечно много и они ограничиваются только эффективностью творческого подхода радиолюбителя.

bukvasha.ru

Понятие и устройство фотодиода

Понятие и устройство фотодиода

Фотодиод, полупроводниковый диод, обладающий свойством односторонней фотопроводимости при воздействии на него оптического излучения. Ф. представляет собой полупроводниковый кристалл обычно с электронно-дырочным переходом (р–n-переходом), снабженный 2 металлическими выводами (один от р-, другой от n-области) и вмонтированный в металлический или пластмассовый защитный корпус. Материалами, из которых выполняют Ф., служат Ge, Si, GaAs, HgCdTe и др.

Различают 2 режима работы Ф.: фотодиодный, когда во внешней цепи Ф. содержится источник постоянного тока, создающий на р–n-переходе обратное смещение, и вентильный, когда такой источник отсутствует. В фотодиодном режиме Ф., как и фоторезистор, используют для управления электрическим током в цепи Ф. в соответствии с изменением интенсивности падающего излучения. Возникающие под действием излучения неосновные носители диффундируют через р–n-переход и ослабляют электрическое поле последнего. Фототок в Ф. в широких пределах линейно зависит от интенсивности падающего излучения и практически не зависит от напряжения смещения. В вентильном режиме Ф., как и полупроводниковый фотоэлемент, используют в качестве генератора фотоэдс.

Основные параметры Ф.: 1) порог чувствительности (величина минимального сигнала, регистрируемого Ф., отнесённая к единице полосы рабочих частот), достигает 10-14 вт/гц1/2; 2) уровень шумов – не свыше 10-9 а; 3) область спектральной чувствительности лежит в пределах 0,3–15 мкм; 4) спектральная чувствительность (отношение фототока к потоку падающего монохроматического излучения с известной длиной волны) составляет 0,5–1 а/вт; 5) инерционность (время установления фототока) порядка 10-7–10-8 сек. В лавинном Ф., представляющем собой разновидность Ф. с р–n-cтруктурой, для увеличения чувствительности используют т. н. лавинное умножение тока в р–n-переходе, основанное на ударной ионизации атомов в области перехода фотоэлектронами. При этом коэффициент лавинного умножения составляет 102–104. Существуют также Ф. с р–i–n-cтруктурой, близкие по своим характеристикам к Ф. с р–n-cтруктурой; по сравнению с последними они обладают значительно меньшей инерционностью (до 10-10 сек).

Ф. находят применение в устройствах автоматики, лазерной техники, вычислительной техники, измерительной техники и т.п.Режим работы

Фотодиод может работать в фотодиодном и гальваническом режиме.

   В фотодиодном режиме p-n переход смещается обратным напряжением величина которого зависит от конкретного фотодиода от единиц до сотни вольт, чем больше смещение тем быстрее он будет работать, и больше токи через него будут течь.Недостаток фотодиодного режима в том, что с ростом обратного тока, в последствии увеличения напряжения или освещения, увеличивается уровень шумов, а уровень полезного сигнала в целом остается постоянным, считается, что в этом режиме диод имеет меньшую постоянную времени.

   В фотогальваническом режиме к диоду не прикладывается ни какое напряжение, он сам становится источником ЭДС с большим внутренним сопротивлением.Недостаток фотогальванического режима заключается в ослаблении полезного сигнала с ростом уровня паразитной засветки но уровень шумов не растет, остается постоянным.

   Фотодиодная схема включения.

 http://detect-ufo.narod.ru/pribor/detect_ir/vkl_ir_fotodiod_01/img_001.gif     Приведенная схема включения фотодиода является универсальной и подходит для тестирования и выбора, применительно к окончательной схеме своей конструкции.Изменяя положение подстроечного резистора, в приведенной схеме, можно протестировать и выбрать оптимальный режим работы фотодиода.Изменяя сопротивление резистора от минимального до максимального, можно подобрать наилучший режим смещения на фотодиоде.Вывернув резистор на минимум, замкнув подвижный контакт на землю, мы переведем схему в фотогальванический режим. Можно попробовать работу фотодиода и в прямом смещении (он все равно будет реагировать на свет), для этого надо поменять схему включения, перевернув диод.Сопротивление в 50 Ком, не должно дать повредить фотодиод, а по переменной составляющей оно оказывается включенным параллельно с нагрузкой (меньше 5 КОм), и полезный сигнал практически не ослабляет. Конденсатор избавляет нас от постоянной составляющей. Если мы принимаеи импульсный сигнал то от постоянной составляющей, которая меняется в зависимости от фоновой засветки, лучше избавится сразу, смысла ее усиливать нет.

http://detect-ufo.narod.ru/pribor/detect_ir/vkl_ir_fotodiod_01/img_006.gif   Еще одна стандартная схема включения фотодиода показана на рисунке.В данной установке для уменьшения влияния шумов и наводок в схему добавлены буферные конденсаторы в цепи питания, накопительный конденсатор С3 и интегрирующая цепочка R2С4 на выходе.C1- электролитический конденсатор большой ёмкости С = 100 мкФ, С2 - быстрый керамический 0,1 мкФ, С3, С4 - керамические по 100 пФ, R1 - 8 кОм, R2- 5,6 кОм.

    Нагрузкой для достижения максимального быстродействия должен быть или каскад с общей базой или быстродействующий операционник включенный по схеме преобразователя ток-напряжение. Эти усилители имеют минимальное входное сопротивление.

http://detect-ufo.narod.ru/pribor/detect_ir/vkl_ir_fotodiod_01/img_002.gif http://detect-ufo.narod.ru/pribor/detect_ir/vkl_ir_fotodiod_01/img_003.gif

СОДЕРЖАНИЕ:

Понятие и устройство фотодиода ……………………………………………1

Режим работы……………………………………………………………………………..2

Фотодиодная схема включения…………………………………………………………2

Список литературы:

1.Забродин Ю.С. Промышленная электроника: Учебник для вузов. – М.: Высш. Школа, 1982.

Сайт: www.elektronika-nsu.ru

www.coolreferat.com

Реферат Лавинный фотодиод

скачать

Реферат на тему:

План:

Введение

Структура лавинного фотодиода на основе кремния: 1 — омические контакты, 2 — антиотражающее покрытие

Лавинные фотодиоды, ЛФД (avalanche photodiode (APD)) — это высокочувствительные полупроводниковые приборы, преобразующие свет в электрический сигнал за счёт фотоэффекта. Их можно рассматривать в качестве фотоприёмников, обеспечивающих внутреннее усиление посредством эффекта лавинного умножения. С функциональной точки зрения они являются твердотельными аналогами фотоумножителей. Лавинные фотодиоды обладают большей чувствительностью по сравнению с другими полупроводниковыми фотоприёмниками, что позволяет использовать их для регистрации малых световых мощностей (≲ 1 нВт).

1. Принцип работы

При подаче сильного обратного смещения (близкого к напряжению лавинного пробоя, обычно порядка нескольких сотен вольт для кремниевых приборов), происходит усиление фототока (примерно в 100 раз) за счёт ударной ионизации ( лавинного умножения) генерированных светом носителей заряда. Суть процесса в том, что энергия образовавшегося под действием света электрона увеличивается под действием внешнего приложенного поля и может превысить порог ионизации вещества, так что столкновение такого «горячего» электрона с электроном из валентной зоны может привести к возникновению новой электрон-дырочной пары, носители заряда которой также будут ускоряться полем и могут стать причиной образования всё новых и новых носителей заряда.

Зависимость тока (I) и коэффициента умножения (M) от обратного напряжения (U) на ЛФД.

Существует ряд формул для коэффициента лавинного умножения (M), довольно информативной является следующая:

M = \frac{1}{1 - \int_0^L\alpha(x)\, dx}

где L — длина обрасти пространственного заряда, а α — коэффициент умножения для электронов (и дырок). Этот коэффициент сильно зависит от приложенного напряжения, температуры и профиля легирования. Отсюда возникает требование хорошей стабилизации питающего напряжения и температуры, либо учёт температуры задающей напряжение схемой.

Ещё одна эмпирическая формула показывает сильную зависимость коэффициента лавинного умножения (M) от приложенного обратного напряжения [1] :

M = \frac{1}{1 - (U / U_b)^n}

где Ub — напряжение пробоя. Показатель степени n принимает значения от 2 до 6, в зависимости от характеристик материала и структуры p — n-перехода.

Исходя из того, что в общем случае с возрастанием обратного напряжения растёт и коэффициент усиления, существует ряд технологий, позволяющих повысить напряжение пробоя до более чем 1500 вольт, и получить таким образом усиление более чем в 1000 раз. Следует иметь в виду, что простое повышение напряженности поля без предприятия дополнительных мер может привести к увеличению шумов.

Если требуются очень высокие коэффициенты усиления (105 — 106), возможна эксплуатация некоторых типов ЛФД при напряжениях выше пробойных. В этом случае требуется подавать на фотодиод ограниченные по току быстро спадающие импульсы. Для этого могут использоваться активные и пассивные стабилизаторы тока. Приборы, действующие таким образом работают в режима Гейгера (Geiger mode). Этот режим применяется для создания однофотонных детекторов (при условии, что шумы достаточно малы)

2. Применение

Типичное применение ЛФД — лазерные дальномеры и волоконные линии связи. Среди новых применений можно назвать позитронно-эмиссионную томографию и физику элементарных частиц [2]. В настоящее время уже появляются коммерческие образцы массивов лавинных светодиодов.

Сфера применения и эффективность ЛФД зависят от многих факторов. Наиболее важными являются:

3. Шумы

Электронные шумы могут быть двух типов: последовательные и параллельные. Первые являются следствием дробовых флуктуаций и в основном пропорциональны ёмкости ЛФД, тогда как параллельные связаны с механическими колебаниями прибора и поверхностными токами утечки. Другим источником шума является фактор избыточного шума (excess noise factor),F. В нем описываются статистические шумы, которые присущи стохастическому процессу лавинного умножения M в ЛФД. Обычно он выражается следующим образом:

F = \kappa M + \left(2 - \frac{1}{M}\right)\left(1 - \kappa\right)

где \kappa\, — соотношение коэффициентов ударной ионизации для дырок и электронов. Таким образом, увеличение асимметрии коэффициентов ионизации приводит к уменьшению этих помех. К этому стремятся на практике, так как F(M) вносит основной вклад в ограничение разрешающей способности приборов по энергии.

4. Ограничения по быстродействию

Ограничения на скорость работы накладывают ёмкости, времена транзита электронов и дырок и время лавинного умножения. Ёмкость увеличивается с ростом площади переходов и уменьшением толщины. Время транзита электронов и дырок возрастает с увеличением толщины, что заставляет идти на компромисс между емкостью и временем. Задержки, связанные с лавинным умножением определяются структурой диодов применяемыми материалам, существует зависимость от \kappa\,.

5. Технологии изготовления

Зонная диаграмма лавинного фотодиода на гетероструктуре InP-InGaAs. Фототок образован дырками. [3]

Для создания данного класса приборов может быть использован широкий круг полупроводников:

6. Лавинные диоды на сверхрешетках

Зонная диаграмма лавинного фотодиода на сверхрешетке. [3]

Причина применения сверхрешеток для построения лавинных фотодиодов заключается в том, что большие различия между коэффициентами ударной ионизации для электронов и дырок приводят к сокращению шумов.

Ещё одно преимущество подобных структур в том, что процесс лавинного размножения более локализован, что также уменьшает помехи. Толщины отдельных слоёв лежат между 100 и 500 Å.

wreferat.baza-referat.ru

Фотодиоды. Виды. Устройство и работа. Характеристики

Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

Устройство и принцип действия

Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

Fotodiody ustroistvo

1 – полупроводниковый переход.2 – положительный полюс.3 – светочувствительный слой.4 – отрицательный полюс.

При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Еф». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.

Режимы работы

Фотодиоды способны функционировать в следующих режимах:

• Режим фотогенератора. Без подключения источника электричества.• Режим фотопреобразователя. С подключением внешнего источника питания.

В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт / м2.

При функционировании фотодиода в качестве фотопреобразователя, источник напряжения Е подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.

Fotodiody 1

Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Виды фотодиодов

Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

p – i – n фотодиод

В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 1010 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.

 Fotodiody 2
Лавинные фотодиоды

Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

Fotodiody rabota1 — омические контакты 2 — антиотражающее покрытие

Лавинные фотоэлементы более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

Принцип действия

При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

Характеристики

Свойства таких световых диодов можно описать некоторыми зависимостями.

Вольт-амперная

Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

 Fotodiody grafikI — ток M — коэффициент умножения U — напряжение

Световая

Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

Спектральная

Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

Постоянная времени

Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

Темновое сопротивление

Это значение сопротивления диода в темноте.

Инерционность

Факторы, влияющие на эту характеристику:

Сфера применения

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Наиболее влияющими оказались такие факторы:

Похожие темы: Комментарии:

Похожее

 

electrosam.ru


Смотрите также