Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Биография Альберта Эйнштейна. Реферат эйнштейн


РЕФЕРАТ на тему «Альберт Ейнштейн» - Реферат - Альберт Эйнштейн

Реферат - Альберт Эйнштейн (367 kb.)Доступные файлы (1):
1.doc367kb.17.11.2011 17:10
содержание

1.doc

Кафедра «Історії науки і техніки »

РЕФЕРАТна тему «Альберт Ейнштейн»Содержание:

  • Введение
  • Биография
    • Ранние годы
    • Начало научной деятельности
    • «Год чудес». Специальная теория относительности
    • Статистика Бозе — Эйнштейна
    • Эмиграция
  • Политические убеждения
  • Религиозные взгляды
  • Культурное влияние
  • Заключение
  • Список литературы

Введение

Альберт Эйнштейн (нем. Albert Einstein) — физик; один из основателей современной физической теории; создатель Специальной и Общей теорий относительности; лауреат Нобелевской премии по физике 1921 года; его имя прочно ассоциируется с гениальностью и силой человеческого мышления.

Иностранный член-корреспондент РАН (1922г.), иностранный почётный член АН СССР(1926г.).

Эйнштейн жил в Швейцарии (с 1893г.), Германии (с 1914г.) и США (с 1933г.). Создал специальную (1905г.) и общую (1907—1916гг.) теории относительности; открыл закон взаимосвязи массы и энергии (E=mc²), хотя авторство Эйнштейна ставится под сомнение. Автор основополагающих трудов по квантовой теории: ввёл понятие фотона(1905г.), установил законы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал (1916г.) индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе — Эйнштейна. С 1933 г. работал над проблемами коcмологии и единой теории поля.

В 30-е годы эмигрировал из Германии в США и позже в знак протеста против национал-социализма отказался от немецкого подданства и вышел из состава Прусской и Баварской Академий наук. Также выступал против войны, в 1940-х — против применения ядерного оружия. В 1940 г. подписал письмо президенту США об опасности создания мощного ядерного оружия в Германии. Горячо поддерживал идею создания еврейского государства.

1.Биография

Альберт Эйнштейн

1.1.Ранние годы

Альберт Эйнштейн родился 14 марта 1879 г. в немецком городе Ульме в небогатой еврейской семье Германа и Паулины Эйнштейн. Герман Эйнштейн (1847—1902), обладавший незаурядными математическими способностями, владел небольшим предприятием, но постоянно стоял на грани разорения. Мать, Паулина (1858—1920) происходила из семьи состоятельного торговца кукурузой Юлиуса Дерцбахера (в 1842 году сменил фамилию на Кох) и Йетты Бернхаймер. У Эйнштейна была младшая сестра Мария (Майя, 1881—1951). Дом, в котором родился ученый, был разрушен во время бомбардировок 1944 года и не был восстановлен. Сохранилась городская регистрационная книга, в которой записано: «К нижеподписавшемуся чиновнику городского регистрационного бюро сегодня явился знакомый ему в лицо коммерсант Герман Эйнштейн, иудейского вероисповедания, проживающий в Ульме на Бронгофштрассе, 135…».

^

Будучи ребёнком нерелигиозных родителей, Альберт Эйнштейн посещал католическую начальную школу в Мюнхене и до 12-ти лет был довольно глубоко верующим подростком, хотя и не разграничивал христианское и иудейское вероучения. Однако, чтение научно-популярных книг вскоре сделало его вольнодумцем и навсегда породило в нём недоверие к авторитетам.

Мальчик рос замкнутым и необщительным и не демонстрировал каких-либо значительных успеховв школе. Распространённым является мнение, что в детстве Альберт Эйнштейн был не способен к обучению. В качестве доказательств приводятся низкие показатели, которые он демонстрировал в школе, а также то свидетельство, что будущий гений весьма поздно начал ходить и говорить. Однако такая точка зрения оспаривается многими исследователями биографии Альберта Эйнштейна. Действительно, учителя критиковали Эйнштейна (преподаватель немецкого языка даже утверждал, будто из Эйнштейна «никогда не выйдет ничего путного») за медлительность и плохую успеваемость, однако объяснение низкой успеваемости и сложностям в учёбе Эйнштейна следует искать не в лени или плохих способностях ученика, а в элементарной скромности, невосприятии устаревших педагогических методов, применявшихся в немецких школах конца XIX-начала XX веков, возможной дислексии или специфической структуре мозга Эйнштейна.

Когда Альберту было пять лет, его отец впервые показал ему компас. Это первое впечатление от знакомства с техникой у Эйнштейна сохранилось на всю жизнь и, как он сам признавал, определило его увлечение разнообразными механизмами и наукой. В1889 г. знакомый студент-медик познакомил Эйнштейна с классической философией, в частности, с «Критикой чистого разума» Иммануила Канта. Сочинение Канта также в значительной степени побудило будущего учёного к изучению математики, физики и философии. Кроме того, в детстве по настоянию матери он с шести лет начал заниматься игрой на скрипке. Увлечение музыкой также сохранялось у Эйнштейна на протяжении всей жизни, и в 1908г. он даже выступал в квинтете музыкантов-любителей (совместно с математиком, полицейским, юристом и переплётчиком). Уже находясь в США в Принстоне, в 1934г. Альберт Эйнштейн дал благотворительный концерт Моцарта для скрипки в пользу эмигрировавших из нацистской Германии учёных и деятелей культуры.

Обучаясь в Луитпольской гимназии, Альберт Эйнштейн впервые обратился к самообразованию: в возрасте 12 лет в 1891 г. он начал самостоятельно изучать математику с помощью школьного учебника по геометрии. Хотя часто утверждается, будто Эйнштейн был некомпетентен в математике, но это также не соответствует действительности. В гимназии он уже был в числе первых учеников в изучении точных наук, однако укоренившаяся система механического заучивания материала учащимися, которая, как он сам считал, наносит вред самому духу учёбы и творческому мышлению, как и относительно тираническое отношение учителей к ученикам вызывало у Альберта Эйнштейна неприятие, поэтому он часто вступал в споры со своими преподавателями, продолжавшими считать его бесперспективным учеником.

После окончательного разорения отца семейства в 1894 г. Эйнштейны переехали из Мюнхена в Италию в Павию близ Милана. Сам Альберт оставался в Мюнхене ещё некоторое время, чтобы окончить все шесть классов гимназии. Не получив аттестата зрелости, в1895 г. он присоединился к своей семье в Милане. Осенью 1895 г. Альберт Эйнштейн прибыл в Швейцарию, чтобы сдать вступительные экзамены в Высшее техническое училище (Eidgenössische Technische Hochschule) в Цюрихе и стать преподавателем физики. Блестяще проявив себя на экзамене по математике, он в то же время провалил экзамены по ботанике и французскому языку, что не позволило ему поступить в Цюрихский Политехникум. Однако директор училища посоветовал молодому человеку поступить в выпускной класс школы в Аарау (Швейцария), чтобы получить аттестат и повторить поступление.

В Аарау Альберт Эйнштейн посвящал своё свободное время изучению электромагнитной теории Максвелла. В сентябре 1896 г. он весьма успешно сдал все, за исключением экзамена по французскому языку, выпускные экзамены в кантональной школе Аарау, и получил аттестат, а в октябре 1896 г. был принят в Высшее техническое училище в Цюрихе на педагогический факультет. Здесь он познакомился с родившейся в Венгрии сербской студенткой факультета медицины Милевой Марич, впоследствии ставшей его женой. В этом же году Эйнштейн отказался от своего гражданства и стал апатридом. Чтобы получить швейцарское гражданство, ему требовалось выплатить 1000 швейцарских франков, однако бедственное материальное положение его семьи не позволило ему сделать это во время учёбы.

Стиль и методика преподавания в Политехникуме обнаруживали существенные различия с закостеневшей и авторитарной прусской школой, поэтому дальнейшее обучение давалось Альберту куда проще. Однако определённые трудности всё же возникали. В частности, за годы учёбы в Цюрихе у Эйнштейна предельно осложнились отношения с возглавлявшим кафедру физики профессором В. Г. Вебером (однофамильцем знаменитого физика Вильгельма Эдуарда Вебера). Вебер, занимательный лектор и одарённый экспериментатор, оставался чересчур консервативным в своём неприятии новых теорий в электротехнике. В частности, Вебер негативно относился к теории поля Максвелла, будучи сторонником концепции дальнодействия, и в этом плане у него возникали разногласия с молодым учеником, который интересовался трудами Майкельсона и независимо, не зная об опытах Майкельсона, предложил собственную интерференционную методику, но из-за несогласия преподавателя так и не смог провести задуманные им опыты.

1.2.Начало научной деятельности

В 1900г. Эйнштейн закончил Политехникум, получив диплом преподавателя математики и физики. Хотя его успеваемость не была образцовой, однако он серьёзно заинтересовался целым рядом наук, в том числе геологией, биологией, историей культуры, литературоведением, политической экономией. Хотя в следующем, 1901 году Эйнштейн получил и гражданство Швейцарии, но вплоть до весны 1902г. не был способен найти постоянное место работы, он мог лишь подрабатывать, заменяя учителя в Винтеруре. В армию он призван не был из-за плоскостопия и расширения вен. Вследствие отсутствия заработка Альберт Эйнштейн буквально голодал, не принимая пищу по несколько дней подряд. Впоследствии это стало причиной болезни печени, с которой учёный жил до конца жизни.

Несмотря на лишения, преследовавшие его в 1900—1902 гг., Эйнштейн находил время для дальнейшего изучения физики. В 1901г.берлинские «Анналы физики» опубликовали его первую статью «Следствия теории капиллярности» (Folgerungen aus den Capillaritätserscheinungen), посвящённую анализу сил притяжения между атомами жидкостей на основании теории капиллярности.

^

На некоторое время Эйнштейну удалось устроиться учителем математики и физики в Шафхаузене, в пансионате для иностранцев, поступавших в высшие учебные заведения Швейцарии. Один из друзей Эйнштейна, математик Марсель Гроссман, бывший одновременно и отцом одного из его учеников, рекомендовал Эйнштейна на должность эксперта третьего класса в федеральное Бюро патентования изобретений с окладом 3500 франков в год. Великий физик работал в Бюро патентов Швейцарии с июля 1902г. по октябрь1909г., занимаясь преимущественно патентованием изобретений, связанных с электромагнетизмом. С 1903г. он был постоянным работником Бюро. Характер работы позволял Эйнштейну посвящать свободное время исследованиям в области теоретической физики.

6 января 1903г. Эйнштейн женился на двадцатисемилетней Милеве Марич. Влияние Милевы Марич, дипломированного математика, на труды её мужа до нашего времени остаётся нерешённым вопросом. Тем не менее, их брак был скорее интеллектуальным союзом, и сам Альберт Эйнштейн называл свою жену «созданием, равным мне, таким же сильным и независимым, как и я». Между Эйнштейном и Марич всегда существовало определённое расстояние, так как великий учёный часто нуждался в одиночестве для проведения своих исследований. Интересно, что советский физик Абрам Фёдорович Иоффе, лично знакомый с Эйнштейном, назвал последнего в некрологе Эйнштейном-Маричем, и этот факт часто приводится в качестве доказательства совместности научной деятельности выдающегося физика и его жены. Тем не менее, высказываются предположения, что Иоффе добавил к фамилии Эйнштейна фамилию его жены только потому, что считал это традицией, принятой в Швейцарии.

1.3.«Год чудес». Специальная теория относительности

^

Ещё в 1904г. «Анналы физики» получили от Альберта Эйнштейна ряд статей, посвящённых изучению вопросов статистической механики и молекулярной физики. Они были опубликованы в1905г., открыв так называемый «Год чудес» (лат. Annus Mirabilis), когда четыре статьи Эйнштейна совершили революцию в теоретической физике, дав начало теории относительности которая была разработана на основании "теории относительности" в геометрии, созданной Николаем Лобачевским, (в которой Эйнштейн заменил частицы событиями и рассматривал «материю» не как часть конечного материала мира, но просто как удобный способ связывания событий воедино) и перевернув представления о фотоэффекте и броуновском движении. Физическое сообщество в целом согласно с тем, что три из них заслуживали Нобелевской премии (которая в итоге досталась Эйнштейну лишь за работу по фотоэффекту — довольно примечательный факт, если учесть, что учёный лучше всего известен именно благодаря его теории относительности, тогда как ему так и не удалось согласовать её положения с квантовой механикой).

1.4.Статистика Бозе — Эйнштейна

В 1924 молодой индийский физик Шатьендранат Бозе в кратком письме обратился к Эйнштейну с просьбой помочь в публикации статьи, в которой выдвигал предположение, положенное в основу квантовой статистики. Бозе предложил рассматривать свет в качестве газа фотонов. Эйнштейн пришёл к выводу, что эту же статистику можно использовать для атомов и молекул в целом. В1925 Эйнштейн опубликовал статью на немецком языке, в которой излагал модель Бозе, применимую к системам тождественных частиц с целым спином, называемых бозонами. На основании данной квантовой статистики, известной ныне как статистика Бозе — Эйнштейна, двое физиков ещё в середине 20-ых годов теоретически обосновали существование пятого агрегатного состояния вещества — конденсата Бозе — Эйнштейна.

В 1921 году

Суть «конденсата» Бозе — Эйнштейна состоит в переходе большого числа частиц идеального газа в состояние с нулевым импульсом при температурах, приближающихся к абсолютному нулю, когда длина волны де Бройля теплового движения частиц и среднее расстояние между этими частицами сводятся к одному порядку. Начиная с1995г., когда первый подобный конденсат был получен в университете Колорадо, учёные практически доказали возможность существования конденсатов Бозе — Эйнштейна из водорода, лития, натрия, рубидия и гелия. Аутентичные наброски данной теории, выполненные Эйнштейном, были обнаружены в библиотеке Лейденского университета в августе 2005.

Занимаясь разработкой статистики Бозе — Эйнштейна, Альберт Эйнштейн одновременно содействовал Эрвину Шрёдингеру в разработке уравнения Шрёдингера, объясняющего свойства волн де Бройля с позиций классической механики, что соответствовало статистике Больцмана. Вместе с тем, Эйнштейн считал, что исследования в данном направлении сочетания классической и квантовой моделей идеального газа менее перспективны, чем дальнейшее развитие статистики Бозе — Эйнштейна, поэтому отказался от соавторства.

1.5.Эмиграция

По мере нарастания экономического кризиса в Веймарской Германии усиливалась политическая нестабильность, содействовавшая усилению антисемитских и националистических настроений. В результате, усилилась и травля одного из величайших учёных современности со стороны антисемитских и консервативных кругов, называемых самим Эйнштейном «Компанией теории антиотносительности ltd». После прихода к власти нацистов в 1933г. физик покинул Германию навсегда, выехав в Соединённые Штаты Америки. В скором времени в знак протеста против преступлений фашизма он отказался от немецкого гражданства и членства в Прусской и Баварской Академиях наук.

После переезда в США Альберт Эйнштейн получил должность профессора физики в недавно созданном институте фундаментальных исследований в Принстоне, штат Нью-Джерси. В Принстоне он продолжал работу над исследованием проблем космологии и созданием единой теории поля, призванной объединить теорию гравитации и электромагнетизм. В США Эйнштейн мгновенно превратился в одного из самых известных и уважаемых людей страны, получив репутацию гениальнейшего учёного в истории, а также олицетворения образа «рассеянного профессора» и интеллектуальных возможностей человека вообще. Ежедневно он получал множество писем разнообразного содержания. Будучи естествоиспытателем с мировым именем, он оставался доступным, скромным, нетребовательным и приветливым человеком.

Физик, перевернувший представления человечества о Вселенной, Альберт Эйнштейн умер 18 апреля 1955г. в 1 час 25 мин. в Принстоне от аневризмы аорты. Не воспринимая никаких форм культа личности, он запретил пышное погребение с громкими церемониями, для чего пожелал, чтобы место и время захоронения не разглашались. 19 апреля 1955г. без широкой огласки состоялись похороны великого учёного, на которых присутствовало всего 12 самых близких друзей. Его прах был сожжён в крематории Юинг-Симтери, а пепел развеян по ветру…

2.Политические убеждения

Альберт Эйнштейн был убеждённым демократическим социалистом, гуманистом, пацифистом и антифашистом. Авторитет Эйнштейна, достигнутый благодаря его революционным открытиям в физике, позволял учёному активно влиять на общественно-политические преобразования в мире.

В эссе под названием «Почему социализм?» («Зачем нужен социализм?», «Why Socialism?»), изданном в качестве статьи в крупнейшем марксистском журнале США «Ежемесячное обозрение» (Monthly Review) в мае 1949г., Альберт Эйнштейн изложил своё видение социалистических преобразований. В частности, великий физик обосновал нежизнеспособность экономической анархии капиталистических отношений, являющихся причиной социальной несправедливости, а главным пороком капитализма называл «пренебрежение человеческой личностью». Осуждая отчуждение человека при капитализме, стремление к наживе и приобретательству, Эйнштейн отмечал, что демократическое общество само по себе не может ограничить своеволие капиталистической олигархии, и обеспечение прав человека становится возможным только в условиях плановой экономики. Следует отметить, что статья была написана в разгар маккартистской «охоты на ведьм» по просьбе марксистского экономиста Пола Суизи и выражала смелую гражданскую позицию учёного.

Альберт Эйнштейн выступал за построение демократического социализма, который соединил бы социальную защиту населения и планирование экономики с демократическим режимом и правами человека. Он не одобрял тоталитарные методы построения социалистического общества, наблюдавшиеся в сталинском СССР, однако всегда оставался другом Советского Союза и противником конфронтации западных демократий и социалистического лагеря. Одновременно он отвергал национализм в любых его проявлениях и называл его «корью человечества»

Эйнштейн поддерживал ненасильственные средства борьбы за права народных масс, особо отмечая заслуги Махатмы Ганди: «Я считаю воззрения Ганди наиболее выдающимися из всех политиков-наших современников. Мы должны стараться совершать поступки в этом духе: не использовать насилие для борьбы за наши права». Он был одним из соучредителей леволиберальной Немецкой демократической партии и членом связанной с Американской федерацией труда Американской федерации учителей. Также он активно содействовал борьбе темнокожего населения США за гражданские права, будучи на протяжении двух десятилетий близким другом известного и в СССР темнокожего певца и актёра Поля Робсона. Так, Альберт Эйнштейн и Поль Робсон были сопредседателями «Крестового похода за отмену линчевания» (American Crusade to End Lynching).

Из-за своих политических убеждений и национального происхождения Эйнштейн принимал активное участие в борьбе с фашизмом и нацизмом, а его племянник Карл Эйнштейн, бывший анархо-синдикалистом, воевал на стороне республиканцев на фронтах Гражданской войны в Испании. В ответ на антифашистскую деятельность эмигрировавшего в 1933 году Эйнштейна в гитлеровской Германии теория относительности официально считалась частью вымышленного «еврейского заговора в физике».

Из-за своей «левизны» величайший учёный как поклонник истинной демократии и социализма часто подвергался нападкам со стороны правоконсервативных кругов в США. Во время разгула маккартизма ФБР располагало личным делом «неблагонадёжного» Эйнштейна, состоявшим из 1427 страниц. В частности, он обвинялся в том, что «проповедует доктрину, направленную на установление анархии». Архивы ФБР также свидетельствуют о том, что физик был объектом пристального внимания со стороны спецслужб, поскольку на протяжении 1937—1954 годов Эйнштейн «состоял или был спонсором и почётным членом в 34 коммунистических фронтах», а также являлся почётным председателем трёх подобных организаций.

Альберт Эйнштейн также известен как сторонник создания еврейского государства. Будучи сторонником левого сионизма, он содействовал организации Еврейского университета в Иерусалиме в 1925г. и государства Израиль в 1947г. В 1952г. к нему даже поступило предложение стать президентом Израиля, от которого учёный отказался. Считается, что Эйнштейн был первым за всю историю американским гражданином, которому предлагали стать главой иностранного государства.

2.1.Борьба за мир

Значительным является и вклад Альберта Эйнштейна в борьбу за мир. Используя свою известность во всех странах мира, физик призывал народы мира к сопротивлению агрессивным устремлениям нацистской Германии и её союзников во Второй мировой войне. Опасавшийся возможности создания ядерного оружия в Германии Альберт Эйнштейн был в числе учёных и общественных деятелей, подписавшихся под написанным физиком-эмигрантом из Венгрии Лео Силардом обращением к президенту США Франклину Делано Рузвельту. Обращение взывало к необходимости предупреждения разработки атомного оружия гитлеровской Германией путём ускорения ядерной программы самих США, отмечая, что разрушительный потенциал урана и производных радиоактивных элементов может привести к созданию оружия невиданной раннее разрушительной силы.

Позже Альберт Эйнштейн сожалел о подписанном им письме, понимая, что для нового руководителя США Гарри Трумэна ядерная энергия служит инструментом устрашения и шантажа других государств. В дальнейшем он критиковал все разработки ядерного оружия, в особенности, испытание его на атолле Бикини, а свою причастность к ускорению работ над американской ядерной программой считал величайшей трагедией своей жизни. Широкую известность получило обращение гениального учёного к президенту США Гарри Трумэну по поводу угрозы ядерной войны: «Я не знаю, каким оружием будет вестись третья мировая война, но четвёртая — палками и камнями» (иногда приводится другой вариант: «Я не знаю, будет ли третья мировая война, но четвёртой — не будет»).

Эйнштейн был одним из основателей Пагуошского движения учёных за мир. Хотя его первая конференция проводилась уже после смерти Эйнштейна, в 1957г., но инициатива созвания такого движения была выложена в получившем широкую известность Манифесте Рассела — Эйнштейна (написанном совместно с Бертраном Расселом), предупреждавшем также об опасности создания и применения водородной бомбы. В рамках этого движения Эйнштейн, бывший его председателем, совместно с Альбертом Швейцером, Бертраном Расселом, Фредериком Жолио-Кюри и другими всемирно известными деятелями науки вёл борьбу против гонки вооружений, создания ядерного и термоядерного оружия. После смерти Эйнштейна руководство движением взял на себя Рассел.

3.Религиозные взгляды

Отношение Эйнштейна к вере и религии менялось в течении его жизни.

В 1921 году Эйнштейн получил телеграмму от нью-йоркского раввина Герберта Гольдштейна: «Верите ли вы в Бога тчк оплаченный ответ 50 слов». Эйнштейн уложился в 24 слова: «Я верю в Бога Спинозы, который проявляет себя в закономерной гармонии бытия, но вовсе не в Бога, который хлопочет о судьбах и делах людей».

В 1934 году Эйнштейн становится почетным членом Ассоциации рационалистской прессы, также он работал в комиссии экспертовПервого гуманистического общества Нью-Йорка.

В 1940 году он описал свои взгляды в журнале «Nature» в статье под названием «Наука и религия». Там он пишет: «по моему мнению, религиозно просвещённый человек — это тот, кто в максимально возможной для него степени освободил себя от пут эгоистических желаний и поглощён мыслями, чувствами и стремлениями, которых он придерживается ввиду их сверхличностного характера… безотносительно от того, делается ли попытка связать это с божественным существом, ибо в противном случае нельзя было бы считать Будду или Спинозу религиозными личностями. Религиозность такого человека состоит в том, что у него нет сомнений в значимости и величии этих сверхличностных целей, которые не могут быть рационально обоснованы, но в этом и не нуждаются… В этом смысле религия — древнее стремление человечества ясно и полностью осознать эти ценности и цели и усиливать и расширять их влияние». Он утверждает, что все конфликты между наукой и религией «происходили в результате фатальных ошибок», в результате непонимания того, что «сферы религии и науки сами по себе ясно разграничены». В то же время «между ними существует сильная взаимосвязь и взаимозависимость». «Наука без религии хрома, религия без науки слепа… Подлинного конфликта между религией и наукой не может быть».

В то же время, он даёт понять, что не верит в персонифицированного Бога, и утверждает, что «не существует ни господства человека, ни господства божества как независимых причин явлений природы. Конечно, доктрина Бога как личности, вмешивающейся в природные явления, никогда не может быть в буквальном смысле опровергнута наукой, ибо эта доктрина может всегда найти убежище в тех областях, куда научное знание ещё не способно проникнуть. Но я убеждён, что такое поведение части представителей религии не только недостойно, но и фатально».

Эйнштейн одобрял работу психолога Пола Диля (англ. Paul Diel), предлагавшего биологические и физиологические основы для нравственности вместо теологических или социологических.

В 1950 году, в письме М. Берковитцу Эйнштейн писал: «По отношению к Богу я агностик. Я убеждён, что для отчётливого понимания первостепенной важности нравственных принципов в деле улучшения и облагораживания жизни не требуется понятие законодателя, особенно — законодателя, работающего по принципу награды и наказания».

Эйнштейн описал свои религиозные взгляды, отвечая тем, кто приписывал ему веру в иудео-христианского Бога: «То, что вы читали о моих религиозных убеждениях — разумеется, ложь, которая систематически повторяется. Я не верю в персонифицированного бога, и я никогда не отрицал этого, но выразил это отчетливо. Если во мне есть что-то, что можно назвать религиозным, то это только безграничное восхищение устройством мира, насколько наша наука способна его постичь».

В 1954 году, за полтора года до своей смерти, Эйнштейн так охарактеризовал свое отношение к религии: «Слово бог для меня всего лишь проявление и продукт человеческих слабостей, а Библия – свод почтенных, но все же примитивных легенд, которые, тем не менее, являются довольно ребяческими. Никакая даже самая изощренная интерпретация не сможет это (для меня) изменить».

Наиболее полный обзор религиозных взглядов Эйнштейна опубликовал его друг, Макс Джеммер (англ. Max Jammer), в книге 1999 года «Эйнштейн и религия».

4.Культурное влияние

Личность Альберта Эйнштейна оказала ощутимое влияние на популярную культуру, сделав его имя синонимом гениальности. Альберт Эйнштейн превратился в героя ряда художественных романов, фильмов и театральных постановок. В частности, он выступает в качестве действующего лица в фильме Николаса Рога «Insignificance», комедии Фреда Шепизи «I.Q.» (в которой его играет Вальтер Маттау), комической пьесе Стива Мартина, романах Жана-Клода Карье «Пожалуйста, месье Эйнштейн» (Einstein S’il Vous Plait) и Алана Лайтмэна «Мечты Эйнштейна» (Einstein’s Dreams). Юмористическая составляющая личности великого физика фигурирует в постановке Эда Метцгера «Альберт Эйнштейн: Практичный богемец». «Профессор Эйнштейн», создающий хроносферу и предотвращающий приход к власти Гитлера, является одним из ключевых персонажей созданной им альтернативной Вселенной в серии компьютерных стратегий реального времени Command & Conquer.

^

Внешний вид Альберта Эйнштейна, в зрелом возрасте обычно появлявшегося в простом свитере с растрёпанными волосами, принят за основу в изображении «безумных учёных» и «забывчивых профессоров» в популярной культуре. Кроме того, в ней активно эксплуатируется и мотив забывчивости и непрактичности великого физика, переносимый на собирательный образ его коллег. Журнал «Таймс» даже назвал Эйнштейна «сбывшейся мечтой мультипликатора».

Широкую известность приобрели фотографии Альберта Эйнштейна. Одна из наиболее знаменитых была сделана 11 февраля 1949г. канадским фотографом армянского происхождения Юсуфом Каршем. Однако её популярность была превзойдена фотографией с 72-ого дня рождения физика в 1951г. Фотограф Артур Сасс попросил Эйнштейна улыбнуться для камеры, на что тот показал язык. Это изображение стало иконой современной популярной культуры, представляя портрет одновременно и гения, и жизнерадостного живого человека.

Популярность Эйнштейна в современном мире столь велика, что возникают спорные моменты в широком использовании имени и внешности учёного в рекламе и торговых марках. Поскольку Эйнштейн завещал своё имущество (в том числе использование его изображений) Еврейскому университету в Иерусалиме, бренд «Альберт Эйнштейн» был зарегистрирован в качестве торговой марки. Соответственно, при использовании имени Эйнштейна в коммерческих целях необходимо добавлять к нему символ ™.Заключение

В архивах Нобелевского комитета сохранилось около 60 номинаций Эйнштейна в связи с формулировкой теории относительности, однако премия была присуждена только в результате номинации шведского физика Карла Вильгельма Озеена, в связи с объяснением фотоэлектрического эффекта. Озеен особенно подчеркивал, что на этот раз он номинирует Эйнштейна не в связи с теорией, которая представлялась спорной членам Нобелевского комитета, а в связи с объяснением природного явления, несомненно наблюдаемого в эксперименте. В результате этой номинации Эйнштейн получил премию за 1921 г. задним числом одновременно с Нильсом Бором осенью 1922 г.

Культовое фото физикаВ честь Эйнштейна названы:

  • Эйнштейн — единица энергии, применяемая в фотохимии
  • Химический элемент эйнштейний (№ 99 в Периодической системе элементов Менделеева)
  • Астероид 2001 Эйнштейн
  • Кратер на Луне
  • Квазар Крест Эйнштейна
  • Международная Золотая медаль ЮНЕСКО имени Альберта Эйнштейна
  • Премия имени Альберта Эйнштейна
  • Премия мира имени Альберта Эйнштейна
  • Колледж медицины им. Альберта Эйнштейна при университете Йешива
  • Центр медицины им. Альберта Эйнштейна в Филадельфии
  • Дом-музей Альберта Эйнштейна на Крамгассе, Берн
  • Спутник-обсерватория «Эйнштейн»
  • многочисленные улицы многих городов мира
  • «кольца Эйнштейна»
Посмертно Альберт Эйнштейн был награждён целым рядом отличий:
  • В 1992г. он был назван № 10 в подготовленном Майклом Хартом списке самых влиятельных личностей в истории.
  • В 1999г. журнал «Тайм» назвал Эйнштейна «Личностью века».
  • В 1999г. Gallup Poll привёл Эйнштейна под № 4 в списке самых почитаемых в XX веке людей.
  • 2005 год был объявлен ЮНЕСКО годом физики по случаю столетия «года чудес», увенчавшегося открытием специальной теории относительности Эйнштейном.
Список литературы:
  • Всемирный Биографический Энциклопедический Словарь. — М.: Большая Росс. энциклопедия, 1998.
    • Собрание научных трудов в четырех томах. Том I. Работы по теории относительности 1905—1920 
    • Собрание научных трудов в четырех томах. Том II. Работы по теории относительности 1921—1955 
  • Стовпюк М. Ф. Бор и Эйнштейн (сравнительные соционические портреты)
  • Альберт Эйнштейн в библиотеке сайта журнала «Скепсис»
  • Статья Альберта Эйнштейна «Почему социализм?» (1949)
  • Куприянов, Алексей (2006) Научное сообщество против Академии: Как 85 лет назад Эйнштейн не получил Нобелевскую премиюПолит.ру Проверено 4 августа 2007 г.
  • В. Нюхтилин «Будущее настоящего прошлого» Глава «Дом, который построил Альберт»
  • Чему равно Е. Две книги об Энштейне
  • Гайденко П. П. Понимание времени. Статья вторая: Понятие времени в философии науки конца XIX - начала XX в. А. Эйнштейн// Знание. Понимание. Умение. — 2005. — № 1. — С. 167-178.

www.studmed.ru

Доклад - Альберт Эйнштейн - Биографии

Эйнштейн

Эйнштейн вырос в свободомыслящей мелкобуржуазной семье, чьи предки из поколения в поколение жили в Швабии (юго-западная часть Германии). По происхождению они были евреями, но безразлично относились к религии. Жизнь семьи была сносной, хотя и беспечной, но они никогда не были так бедны, как Уэллсы или Резерфорды.

В детстве Эйнштейн не был особенно способным ребенком. Он казался отсталым (как и Черчилль), поздно начал говорить. Все это кажется несколько странным, особенно для будущего математика. Как правило, математические способности проявляются в очень раннем возрасте. Многие из выдающихся математиков уже задавали вопросы о больших или бесконечно больших числах, когда им не было и трех лет (рассказы об этом вполне достоверны, скажем, в отношении Харди и Дирака). Я лично наблюдал за одним действительно талантливым юным математиком, которому было четыре года. И я полагаю, что теперь, когда начали внимательно изучать этот ярко выраженный и особенный талант, мы будем знать, есть ли у ребенка математические способности, еще до того, как он научился читать.

Итак, в детстве Эйнштейн не проявлял математических способностей, но не следует думать, что он был вовсе лишен их. Они просто не обнаруживались в раннем возрасте. С десяти лет в нем стали заметны признаки быстрого развития, но это было быстрое развитие не интеллекта, а характера.

Его родители, которые вполне могли быть и католиками, если бы они вообще были верующими, отдали сына в католическую начальную школу. Он отнесся к ней равнодушно. Десяти лет его определили в одну из гимназий Мюнхена. Ее он возненавидел по тем же причинам, по которым ненавидел и в семьдесят лет: гимназия была пропитана милитаристским духом, а ему раз и навсегда, на всю жизнь, стал ненавистен немецкий милитаризм. Дети маршировали, учителя рявкали — это была не школа, а казарма. Уже в десять лет он отвергал всякую муштру. Он приходил в ужас от принуждения в любом виде или в любой форме — физической, эмоциональной или умственной. Zwang. Знаю ли я это немецкое слово, спросил он у меня, когда мы говорили об английских нравах. Так вот, в мюнхенской гимназии он впервые ополчился на этот Zwang.

Zwang — насилие (нем.).

В десять лет он, казалось, с такой же уверенностью полагался на свой разум, как и в семьдесят. В детстве у него был период религиозного настроения. Но недолго. Очень скоро в центре его внимания стал разум, и в двенадцать лет он исповедовал нечто вроде космической религии неверующего, которая сохранилась у него на всю жизнь. Но он так часто произносил слово «бог», что вводил этим людей в заблуждение. Ребенком он действительно пережил глубокое религиозное чувство, но когда потом говорил о боге, то вовсе не имел в виду то, что под этим понимали верующие. «Я верю в бога Спинозы, который раскрывается в гармонии всего сущего, а не в того бога, который управляет судьбами и поступками людей», — говорил он уже в зрелом возрасте.

В ранней юности он сам пришел к этому умозаключению, когда был еще скромным учеником мюнхенской гимназии. С такой же самостоятельностью он решил, чем он будет заниматься. У него были хорошие — но не больше того — успехи в физике и математике. Но он не выносил большинства школьных предметов и вовсе не хотел преуспевать в них. В этом он весьма отличался от многих одаренных мальчиков и почти от всех будущих ученых. В школьные годы Резерфорд, например (он тоже был творчески самобытным человеком), учился всему тому, чему его учили, и учился отлично. Харди не любил свою школу в Уинчестере, но он стремился проявить себя, чтобы получить награду и стипендии в Тринити-колледже. Для Эйнштейна соревнование ничего не значило, оно не соблазняло его. Здесь снова можно заметить духовное сходство с молодым Черчиллем, не способным или не желающим проявить прилежание в школе. Только написание английских эссе доставляло ему радость.

Отец Эйнштейна был неудачным коммерсантом. В Мюнхене дела у него шли плохо, и он переехал в Милан, где стало еще хуже. Сына, которому тогда было пятнадцать лет, родители оставили в Мюнхене, чтобы он окончил гимназию. Разлука с семьей мало повлияла на мальчика, уже отличавшегося независимым умом, но, оставшись один, он в эти шесть месяцев принял окончательное решение.

Приехав в Милан, он объявил свое решение родным, которые, по-видимому, одобрили его. Во-первых, он решил бросить мюнхенскую гимназию, которую ненавидел, и не сдавать выпускных экзаменов, которые презирал. Во-вторых, порвать с еврейской общиной, в которой он еще формально состоял. И в-третьих, самое тяжелое, отказаться от немецкого подданства. Он решил не иметь обязательств, которые были бы ему навязаны. Его уверенность в себе была безграничной. Он полагался только на самого себя.

В результате он сразу же провалился на вступительных экзаменах в Политехнический институт в Цюрихе. Он хотел поступить туда, чтобы стать инженером-электриком, что выглядит несколько странно в свете легенды о его непрактичности. На самом же деле о непрактичности Эйнштейна можно говорить ничуть не больше, чем о рассеянности Харди, но шаблонные представления трудно искоренить.

Хотя отец Эйнштейна не мог найти денег, лучшие члены семьи Эйнштейнов, разбросанные по всей Европе, решили, что получить образование.в Цюрихе действительно неплохо, и были готовы наскрести деньги на обучение молодого Эйнштейна. И уж неудивительно, что он сдал вступительные экзамены по тем предметам, которые изучал, и провалился по остальным.

Итак, молодой Эйнштейн, уже достигший такой степени зрелости, какую не встретишь у многих людей почтенного возраста, вынужден был провести один год в швейцарской кантональной школе. Затем он перебирается в Цюрих и поступает на педагогический факультет Политехникума, желая теперь стать учителем физики. Естественно, он тут же сталкивается с тем же Zwang, с которым не в силах мириться. Не то, чтобы ему не нравилась Швейцария, которую он считал цивилизованной и демократической страной. Нет, на этот раз Zwang — это экзамены. Они так подавляют и сковывают его ум, что в течение целого года по окончании института Эйнштейн не хочет заниматься научными проблемами.

Швейцарская кантональная школа — В Швейцарии нет единой системы народного образования, и каждый кантон имеет свое школьное законодательство и управление; общим для всех кантонов является обязательное обучение детей от 6—7 до 15—16 лет; начальная школа бывает 7—9-летняя и состоит из двух ступеней.

Впрочем, в институте ему очень повезло. Он учился у Минковского, выдающегося ученого, который после опубликования первых эйнштейновских работ признал, что ученик намного превзошел его (хотя учился Эйнштейн с ленцой). Цюрихский Политехникум был хорошим учебным заведением, и общий уровень преподавания был там достаточно высоким. У Эйнштейна появились друзья, которые восторгались им, как высшим существом. В Цюрихе Эйнштейн, вероятно, находился в таких же благоприятных условиях, как и Харди в Кембридже.

Словом, Эйнштейн получил диплом, но стал безработным. Одно время казалось, что ему никогда не найти себе работы. Раза два удалось временно устроиться преподавателем. Пока он учился, родители помогали ему, а теперь они ожидали, что он сам будет зарабатывать себе на жизнь. У Эйнштейна был единственный поношенный костюм (с этим он легко мирился) и маловато еды (с чем примириться было куда труднее). Ему помог верный и любящий друг Марсель Гроссман, впоследствии сам ставший видным ученым. Он уговорил своего отца, состоятельного швейцарского промышленника, куда-нибудь устроить Эйнштейна.

В Берне, вскоре после поступления на работу в патентное бюро, он женился. Об этом браке и о его первой жене существуют противоречивые свидетельства. Сербская девушка Милева Марич, ставшая его первой женой, училась вместе с ним в Цюрихе и была на четыре года старше его. Вот, пожалуй, и все, что о ней достоверно известно. Большинство швейцарских знакомых Эйнштейна считали ее угрюмой, малоодаренной, хотя она, вероятно, просто была скрытным, меланхоличным человеком. Ни то ни другое нельзя считать привлекательным, но иные источники говорят о ее чисто славянском отношении к жизни и очаровательной беззащитности.

Эйнштейну было двадцать шесть лег, когда у него родился первый сын. К этому времени он уже избавился от горькой нужды и, продолжая работать в патентном бюро, опубликовал (в 1905 году) в «Анналах физики» пять научных статей. Среди них три работы принадлежат к числу величайших в истории физики.

В одной, очень просто написанной, давалось квантовое объяснение фотоэлектрического эффекта — за эту работу через шестнадцать лет он был удостоен Нобелевской премии.

Другая рассматривала так называемое броуновское движение, иначе говоря, беспорядочные колебания мельчайших частиц, находящихся во взвешенном состоянии в жидкости. Эйнштейн показал, что движение этих частиц подчиняется конкретному статистическому закону. Это было похоже на фокус иллюзиониста: то, что казалось загадочным и почти чудесным, становилось предельно простым и понятным после объяснения. Если раньше кто-либо из физиков мог сомневаться в реальном существовании молекул и атомов, то теперь статья Эйнштейна давала почти прямое доказательство этому. Самое убедительное доказательство, о котором мог мечтать теоретик!

Третья статья излагала специальную теорию относительности, соединявшую в одно целое материю, пространство и время.

Между тем семейная жизнь у него не ладилась. Никто не может сказать, как глубоко это повлияло на него. К тому времени, когда он переехал в Прагу, семейный разлад все более углублялся. Вообще его пребывание в Праге было не из самых приятных. Приглашенный в Пражский университет на должность профессора, Эйнштейн становится чиновником империи Габсбургов. При назначении на должность требовалось, чтобы он объявил о своей религиозной принадлежности. Эйнштейн давно.и окончательно порвал с еврейской общиной, но в Австрии был силен антисемитизм, и это было достаточным основанием для него, чтобы заявить о своем происхождении.

Эйнштейн не падал духом, и по-прежнему громко звучал его смех. До нас дошли трогательные рассказы о его игре на скрипке в одном из литературных салонов Праги, где велись споры о Kанте, Гегеле и Фихте и исполнялась камерная музыка. Там часто бывал не известный еще в те времена Франц Кафка, но вряд ли они когда-нибудь говорили друг с другом. Между ними было мало общего.

Но и в атмосфере милитаристского угара ему удалось обрести покой и в личной жизни, и в творчестве. Во всяком случае, он был счастлив, переехав в Берлин, где он встретился со своим дядей и его дочерью Эльзой, которая недавно развелась после неудачного замужества. Быть может, он полюбил ее, но нам трудно судить об этом. Мы знаем лишь, что после развода с Милевой Марич он женился на Эльзе. Нетребовательная, жизнерадостная, умеющая распознавать людей, она всю жизнь ограждала его от житейских неприятностей. В отличие от первой жены, которая изучала математику, Эльза ничего не понимала в работах Эйнштейна. Это был один из тех браков, какие нередко бывают у великих ученых: он давал Эйнштейну свободу и оставлял наедине с самим собой. До встречи с Эльзой у него был период спада в научной работе. Почти сразу после женитьбы он стал работать с особой энергией и достиг небывалого творческого подъема.

Общая теория относительности была опубликована в 1916 году, и, как только с ней познакомились в Англии (куда она дошла, преодолев рогатки, воздвигнутые войной), наши ученые пришли к заключению, что она почти безоговорочно верна. «Это величайшее открытие в науке со времен Ньютона», — заявили они. На основании этой теории Эйнштейном было сделано, в частности, предсказание, которое могло быть сразу же проверено астрономами. В своей статье он просил их произвести эту проверку. Английские астрономы решили это сделать. В марте 1917 года они объявили, что 29 мая 1919 года, когда произойдет полное солнечное затмение, должна быть произведена решающая проверка общей теории относительности.

Все это дела давно минувших дней. Проверка, конечно, дала требуемое подтверждение.

Как только была опубликована общая теория относительности (а слава пришла к Эйнштейну еще до ее подтверждения), он занял в общественной жизни такое положение, какое вряд ли займет в будущем другой ученый. Никто, собственно, не знает, почему, но он вошел в общественное сознание всего мира, став живым символом науки и властителем дум двадцатого века. Казалось, что люди снова хотят возвеличить человеческий разум и изгладить из памяти ужасы войны. Благоговея перед Эйнштейном, они, в сущности, не понимали значения того, перед чем они благоговели. Но как бы то ни было, они верили, что перед ними существо высшего порядка.

Эйнштейн всегда более трезво, чем большинство его коллег, оценивал политическую обстановку в Германии. Он видел, как под поверхностью Веймарской республики бродят темные силы. Как только Гитлер пришел к власти, Эйнштейн гораздо быстрее многих политических деятелей понял, что ожидает мир в будущем. Значит, следовало расстаться с надеждами на международный пацифизм. Эйнштейну было ясно, что нацистская империя должна быть уничтожена, и он открыто выступал против Гитлера.

Его не было в Германии, когда Гитлер стал канцлером. Эйнштейн был смелым человеком, но он понимал, что если он вернется в Германию, то фашисты убьют его. Большую часть 1933 года он прожил в маленьком фламандском приморском городке Ден-Хаан (Кок-сюр-Мер). Там он основал своего рода интеллектуальный двор для беженцев. Ден-Хаан стал временной столицей германоязычного научного мира. Между прочим, это самое милое местечко на побережье Фландрии, где был приятный обычай называть улицы в честь великих людей. У них были улицы Шекспира, Данте, Рембрандта и так далее. Но они не назвали ни одну улицу именем своего наиболее выдающегося жителя.

Последние годы жизни Эйнштейн постоянно болел. Его мучила болезнь кишечника, печени и под конец тяжелое заболевание аорты. Он был лишен житейских удобств, часто страдал от острой боли, но оставался приветливым и спокойным, не обращая внимания на свою болезнь и приближение смерти. И продолжал работать. Смерть он встретил спокойно. «Свою задачу на земле я выполнил», — сказал он безо всякого сожаления.

В то воскресенье ночью на столике у его кровати лежала рукопись. В ней были новые уравнения, приводящие к единой теории поля, которую он никак не мог завершить. Он надеялся, что завтра боли утихнут и он сможет поработать над рукописью. Но на рассвете произошло прободение стенки аорты, и он умер.

www.ronl.ru

Реферат - Биография Альберта Эйнштейна

Когда посетители знаменитого учёного видели в его домашнем кабинете (небольшой телескоп, они не могли не спросить, для чего он предназначен. Эйнштейн обычно отвечал: «Нет, это не для звёзд. Телескоп принадлежал бакалейщику, ранее жившему рдесь. Приятная вещь. Я его берегу, как игрушку». Конечно, Эйнштейну доводилось бывать на крупнейших обсерваториях мира и видеть лучшие телескопы, но его «инструментом» было теоретическое мышление, а не астрономическая труба.

Альберт Эйнштейн — один из величайших мыслителей всех времён. В детские годы будущая гениальность Эйнштейна внешне никак не проявлялась. Альберт рос тихим, замкнутым ребёнком; он редко играл с другими детьми, долго учился говорить и в семилетнем возрасте мог лишь повторять короткие фразы. Но ещё в пятилетнем возрасте на него произвёл неизгладимое впечатление компас, подаренный ему отцом. Способность стрелки показывать направление на север и на юг заворожило его своей загадочностью и необъяснимостью на основе обыденных представлений. В 12 лет он был пленён красотой математической логики, прочитав случайно попавшуюся ему книгу по евклидовой геометрии. Способности к логическому мышлению Альберт унаследовал от отца, а склонность к музыке — от матери. Со временем он научился неплохо играть на рояле и на скрипке.

Альберт Эйнштейн родился 14 марта 1879 г. в баварском городе Ульме. Его отец Герман Эйнштейн был владельцем магазина электротехнических товаров. Вскоре после рождения Альберта семья переехала в столицу Баварии — Мюнхен. В этом городе он поступил в гимназию. В то время в немецких учебных заведениях царили зубрёжка и принудительное натаскивание.

Однако из Эйнштейна сделать послушное «стадное животное» было невозможно. Он с жадностью читал научно-популярную литературу, по-своему осмысливая явления общественной жизни: «Следствием этого было моё прямо-таки фанатическое свободомыслие, соединённое с выводами, что государство умышленно обманывает молодёжь; это был потрясающий вывод». Не меньше, чем теория относительности, известен афоризм Эйнштейна: «Лишь немногие в состоянии спокойно высказывать мнения, расходящиеся с предрассудками окружающей среды; большинство же людей вообще неспособно прийти к такого рода мнениям».

Как-то в гимназии к Альберту подошёл классный наставник и сказал:

«Мне хотелось бы, чтобы Вы покинули нашу школу!». Изумлённый Альберт ответил: «Но ведь я ни в чём не провинился!». «Да, это верно, — перебил его учитель, — но одного Вашего присутствия в классе достаточно, чтобы полностью подорвать уважение к учителям».

Неудивительно, что, как только представилась возможность, ранней весной 1895 г. 16-летний Альберт покинул гимназию и направился в Милан, где к тому времени обосновались его родители. Они не были очень обрадованы, когда сын прибыл к ним без аттестата о среднем образовании и даже без паспорта.

Альберт попытался поступить в Политехникум, федеральное высшее

политехническое училище в Цюрихе, известное своим высоким уровнем преподавания в области естественных наук. Однако он не сдал вступительные экзамены. Несмотря на обширные познания в области математики и физики, Эйнштейн провалился на экзаменах по иностранным языкам и истории.

По совету ректора Политехникума Альберт поступил в выпускной класс кантональной школы в Аарау. Какой разительный контраст почувствовал он по сравнению с немецкой гимназией! «Эта школа произвела на меня неизгладимое впечатление своим либеральным духом, а также скромностью и серьёзностью педагогов, которым помогал в работе подлинный, а не дутый авторитет. Сравнение с шестилетним пребыванием в немецкой гимназии, где царила авторитарность, отчётливо показало мне, насколько воспитание, основанное на свободе действий и чувства ответственности перед самим собой, совершеннее воспитания, строящегося на муштре, дутом авторитете и честолюбии. Демократия — не пустой звук».

Именно тогда, в школе Аарау, Эйнштейн стал задумываться над вопросами физики, которые впоследствии привели его к созданию специальной теории относительности. Именно тогда, говоря его же словами, он проверял свои умозаключения в «первом детском мысленном эксперименте».

Эйнштейн твердо решил стать преподавателем физики и, сдав в школе выпускные экзамены, в октябре 1896 г. был принят в Политехникум. Здесь Альберт Эйнштейн учился у таких выдающихся математиков, как Адольф Гурвиц и Герман Минковский.

Нельзя не сказать ещё об одном увлечении Эйнштейна — музыке. Он охотно участвовал и в домашнем музицировании, и в любительских концертах. В студенческие годы он стал хорошим скрипачом. Он играл Гендетя и Брамса, Шумана и Шуберта, но его любимыми композиторами всегда оставались Бах и Моцарт. Именно в их произведениях его покоряла та прозрачность и гармония, которую он искал, строя свои теории Вселенной.

Летом 1900 г. Эйнштейн сдал экзамены на получение диплома преподавателя физики. Оценки были не слишком высокими, так что ему не удалось получить место ассистента и вместе с ним — возможность заниматься столь заманчивой для него научной работой. Только через два года по рекомендации друзей он получил постоянную работу экспертом федерального патентного бюро в Берне. Эйнштейн проработал там с 1902 по 1909 г. Он считал это время самым счастливым и плодотворным периодом своей жизни: служебные обязанности оставляли ему достаточно времени для размышлений над научными проблемами.

Наиболее удачным оказался для Эйнштейна 1905 год. В течение него 26-летний физик опубликовал в журнале пять статей, которые представляли собой подлинные шедевры научной мысли. Работа «Об одной эвристической точке зрения на возникновение и превращение света» содержала смелую гипотезу о световых квантах — элементарных частицах электромагнитного излучения, летящих в мировом пространстве наподобие пуль. Гипотеза Эйнштейна позволила объяснить фотоэлектрический эффект: появление тока при освещении вещества коротковолновым излучением. Эффект был открыт в 1886 г. Генрихом Герцем и не укладывался в рамки волновой теории света. За эту работу позднее Эйнштейн был удостоен Нобелевской премии. Ею была открыта новая — квантовая — эпоха в развитии физики. Она создала идейную основу для знаменитой модели атома Резерфорда — Бора, по которой свет излучается и поглощается порциями (квантами), и гениальной концепции «волн материи» Луи де Бройля. Незадолго до того Макс Планк установил, что тепло тоже излучается квантами. Теперь стало ясно, что причина этого — не в излучающих атомах, а в самом свете. Свет обладает как волновыми, так и корпускулярными (от лат. corpusculum — «мельчайшая частица») свойствами. Таким образом был осуществлён гениальный синтез двух, казалось бы, несовместимых точек зрения на природу света, высказанных в своё время Гюйгенсом и Ньютоном.

Статью «К электродинамике движущихся тел» можно рассматривать как введение в специальную теорию относительности — СТО, которая произвела переворот в представлениях о пространстве и времени.

Статья «Зависит ли инерция тела от содержания в нём энергии?» завершает создание релятивистской (от лат. relativus — «относительный») теории. Здесь впервые бьша доказана связь между массой и энергией, в современных обозначениях — Е = mc2. Эйнштейн писал: «… если тело отдаёт энергию Е в виде излучения, то его масса уменьшается на Е/с2… Масса тела есть мера содержащейся в нём энергии».

Это открытие вышло за пределы физики, техники и философии и до сегодняшнего дня косвенно определяет судьбу человечества. Ведь атомная энергия — это не что иное, как превратившаяся в энергию масса.

Появление столь эпохальных работ не принесло Эйнштейну быстрого признания. И хотя с ним переписывались и встречались такие известные учёные, как Макс Планк и Вильгельм Вин, Арнольд Зоммерфельд и Макс Борн, он всё ещё вынужден был продолжать работать в патентном бюро. Только весной 1909 г. Эйнштейна избрали профессором теоретической физики в цюрихском Политехникуме, и он смог уйти из бюро.

Растущее признание Эйнштейна выразилось, наконец, в избрании его членом Прусской академии наук в 1913 г. Он приехал в Берлин в начале 1914 г. Здесь Эйнштейн получил исключительно благоприятные условия для продолжения своей научной работы. Казалось бы, всё складывалось как нельзя благополучно, но через четыре месяца началась Первая мировая война. Шовинистический угар охватил и научные круги Германии. Однако Эйнштейн отказался подписать проникнутый духом лживого «патриотизма» манифест, под которым стояла подпись великого Планка. Во время войны учёный неизменно выступал с позиции последовательного

пацифизма.

Война не прервала научного творчества Эйнштейна. В 1916 г. он опубликовал «Основы общей теории относительности».

Вскоре Эйнштейн понял, что его теория должна определять общую структуру Вселенной. Первая релятивистская космологическая модель мира была представлена им в статье «Вопросы космологии и общая теория относительности» (1917 г.). Вселенная Эйнштейна, устроенная и живущая по законам общей теории относительности (ОТО), статична, неизменна. Она имеет конечную массу, т. е. конечное число звёзд, галактик и конечный объём. К Большой Вселенной приложимы законы неевклидовой геометрии. Её пространство искривлено под действием тяготеющих масс таким образом, что световой луч, выходящий из какой-либо точки, распространяясь по кратчайшей линии в искривлённом трёхмерном пространстве, снова вернётся к своей исходной точке. Вселенная Эйнштейна оказалась замкнутой на себя. Она была конечна, но безгранична, так как не имела ни «стенок», ни пространства «за стенками».

Вся жизнь Эйнштейна была посвящена научным исследованиям. В 1921 г. он получил Нобелевскую премию за «заслуги в области теоретической физики и в особенности за открытие закона фотоэлектрического эффекта». Присуждение этой премии еврею резко подогрело профашистские антисемитские настроения в Германии. Нападки на Эйнштейна усилились, дело дошло даже до угроз убийства. Однако он продолжал активную научную работу, читал много публичных лекций. Он часто путешествовал, способствуя восстановлению международных научных связей, нарушенных мировой войной. Но когда осенью 1932 г. он выехал в США, это оказалось окончательным прощанием с родиной.

В январе 1933 г. к власти пришёл Гитлер. Нацисты планировали исключить еврея Эйнштейна из Прусской академии наук Своим заявлением о выходе из Академии от 28 марта 1933 г. Эйнштейн разрушил этот план. Учёный отказался от германского гражданства и вынужден был поселиться в США Он стал постоянным сотрудником Института высших исследований (англ. Institute for Advanced Study) вПринстоне. В тот период своей научной деятельности он пытался создать единую теорию поля, т.е. теорию, которая объединила бы все существующие физические поля. Долгие годы он продолжал упорно работать, но уровень развития физики в то время не позволил продвинуться так далеко. Сам Эйнштейн говорил о своей теории как о незавершённой.

Живя в Америке, Эйнштейн пристально следил за развитием политической ситуации в Европе. Открытие деления ядра урана его встревожило. В письме, которое 11 октября 1939 г. бьшо передано Президенту США Рузвельту, Эйнштейн обратил внимание на реальную возможность создания ядерного оружия. По его мнению, США должны были как можно скорее создать атомную бомбу, чтобы исключить возможную монополию на её обладание фашистской Германией. Через несколько лет, однако, Эйнштейн решительно осудил американское правительство, когда на японские города Хиросиму и Нагасаки были сброшены атомные бомбы. Незадолго до смерти Альберт Эйнштейн и философ Бертран Рассел обратились с воззванием к правительствам великих держав, в котором они предостерегали человечество от самоуничтожения в атомной войне.

Альберт Эйнштейн скончался в Принстоне 18 апреля 1955 г.

Пожалуй, будет не вполне правильным сказать, что он жил и работал в XX веке. Скорее, наоборот, XX век останется в истории как век, в котором жил Эйнштейна.

Литература.

    Энциклопедия для детей. Т. 14. Техника. Издательство “Аванта+”

www.ronl.ru

Реферат на тему: Эйнштейн Альберт

Реферат на тему: Эйнштейн Альберт

Эйнштейн (Einstein) Альберт (14.3.1879, Ульм, Германия, — 18.4.1955, Принстон, США), физик, создатель относительности теории и один из создателей квантовой теории и статистической физики. С 14 лет вместе с семьей жил в Швейцарии. По окончании Цюрихского политехникума (1900) работал учителем сначала в Винтертуре, затем в Шафхаузене. В 1902 получил место эксперта в федеральном патентном бюро в Берне, где работал до 1909. В эти годы Э. были созданы специальная теория относительности, выполнены исследования по статистической физике, броуновскому движению, теории излучения и др. Работы Э. получили известность, и в 1909 он был избран профессором Цюрихского университета, затем Немецкого университета в Праге (1911—12). В 1912 возвратился в Цюрих, где занял кафедру в Цюрихском политехникуме. В 1913 был избран членом Прусской и Баварской АН и в 1914 переехал в Берлин, где был директором физического института и проф. Берлинского университета. В берлинский период Э. завершил создание общей теории относительности, развил далее квантовую теорию излучения. За открытие законов фотоэффекта и работы в области теоретической физики Э. была присуждена Нобелевская премия (1921). В 1933 он был вынужден покинуть Германию, впоследствии в знак протеста против фашизма отказался от германского подданства, вышел из состава академии и переехал в Принстон (США), где стал членом Института высших исследований. В этот период Э. пытался разработать единую теорию поля и занимался вопросами космологии. Работы по теории относительности. Главное научное достижение Э. — теория относительности, которая по существу является общей теорией пространства, времени и тяготения. Господствовавшие до Э. представления о пространстве и времени были сформулированы И. Ньютоном в конце 17 в. и не вступали в явное противоречие с фактами, пока развитие физики не привело к появлению электродинамики и вообще к изучению движений со скоростями, близкими к скорости света. Уравнения электродинамики (Максвелла уравнения) оказались несовместимыми с уравнениями классической механики Ньютона. Противоречия особенно обострились после осуществления Майкельсона опыта, результаты которого не могли быть объяснены в рамках классической физики. Специальная, или частная, теория относительности, предметом которой является описание физических явлений (и в том числе распространения света) в инерциальных системах отсчёта, была опубликована Э. в 1905 в почти завершенном виде. Одно из её основных положений — полная равноправность всех инерциальных систем отсчёта — делает бессодержательными понятия абсолютного пространства и абсолютного времени ньютоновской физики. Физический смысл сохраняют лишь те выводы, которые не зависят от скорости движения инерциальной системы отсчёта. На основе этих представлений Э. вывел новые законы движения, сводящиеся в случае малых скоростей к законам Ньютона, а также дал теорию оптических явлений в движущихся телах. Обращаясь к гипотезе эфира, он приходит к выводу, что описание электромагнитного поля не требует вообще какой-либо среды и что теория оказывается непротиворечивой, если помимо принципа относительности ввести и постулат о независимости скорости света от системы отсчёта. Глубокий анализ понятия одновременности и процессов измерения интервалов времени и длины (частично проведённый также А. Пуанкаре) показал физическую необходимость сформулированного постулата. В том же (1905) году Э. опубликовал статью, где показал, что масса тела m пропорциональна его энергии Е, и в следующем году вывел знаменитое соотношение Е = mc2 (с — скорость света в вакууме). Большое значение для завершения построения специальной теории относительности имела работа Г. Минковского о четырёхмерном пространстве—времени. Специальная теория относительности стала необходимым орудием физических исследований (например, в ядерной физике и физике элементарных частиц), её выводы получили полное экспериментальное подтверждение. Специальная теория относительности оставляла в стороне явление тяготения. Вопрос о природе гравитации, а также об уравнениях гравитационного поля и законах его распространения не был в ней даже поставлен. Э. обратил внимание на фундаментальное значение пропорциональности гравитационной и инертной масс (принцип эквивалентности). Пытаясь согласовать этот принцип с инвариантностью четырёхмерного интервала, Э. пришёл к идее зависимости геометрии пространства — времени от материи и после долгих поисков вывел в 1915—16 уравнение гравитационного поля (уравнение Эйнштейна, см. Тяготение). Эта работа заложила основы общей теории относительности. Э. сделал попытку применить своё уравнение к изучению глобальных свойств Вселенной. В работе 1917 он показал, что из принципа её однородности можно получить связь между плотностью материи и радиусом кривизны пространства — времени. Ограничиваясь, однако, статической моделью Вселенной, он был вынужден ввести в уравнение отрицательное давление (космологическую постоянную), чтобы уравновесить силы притяжения. Верный подход к проблеме был найден А. А. Фридманом, который пришёл к идее расширяющейся Вселенной. Эти работы положили начало релятивистской космологии. В 1916 Э. предсказал существование гравитационных волн, решив задачу о распространении гравитационного возмущения. Тем самым было завершено построение основ общей теории относительности. Общая теория относительности объяснила (1915) аномальное поведение орбиты планеты Меркурий, которое оставалось непонятным в рамках ньютоновской механики, предсказала отклонение луча света в поле тяготения Солнца (обнаружено в 1919—22) и смещение спектральных линий атомов, находящихся в поле тяготения (обнаружено в 1925). Экспериментальное подтверждение существования этих явлений стало блестящим подтверждением общей теории относительности. Развитие общей теории относительности в трудах Э. и его сотрудников связано с попыткой построения единой теории поля, в которой электромагнитное поле должно быть органически соединено с метрикой пространства — времени, как и поле тяготения. Эти попытки не привели к успеху, однако интерес к указанной проблеме возрос в связи с построением релятивистской квантовой теории поля. Работы по квантовой теории. Э. принадлежит важная роль в разработке основ квантовой теории. Он ввёл представление о дискретной структуре поля излучения и на этой основе вывел законы фотоэффекта, а также объяснил люминесцентные и фотохимические закономерности. Идеи Э. о квантовой структуре света (опубликована в 1905) находились в кажущемся противоречии с волновой природой света, которое нашло разрешение только после создания квантовой механики. Успешно развивая квантовую теорию, Э. в 1916 приходит к разделению процессов излучения на самопроизвольные (спонтанные) и вынужденные (индуцированные) и вводит Эйнштейна коэффициенты А и В, определяющие вероятности указанных процессов. Следствием рассуждений Э. оказался статистический вывод Планка закона излучения из условия равновесия между излучателями и излучением. Эта работа Э. лежит в основе современной квантовой электроники. Применяя такое же статистическое рассмотрение уже не к излучению света, а к колебаниям кристаллической решётки, Э. создаёт теорию теплоёмкости твёрдых тел (1907, 1911). В 1909 он выводит формулу для флуктуации энергии в поле излучения. Эта работа явилась подтверждением его квантовой теория излучения и сыграла важную роль в становлении теории флуктуаций. Первая работа Э. в области статистической физики появилась в 1902. В ней Э., не зная о трудах Дж. У. Гиббса, развивает свой вариант статистической физики, определяя вероятность состояния как среднее по времени. Такой взгляд на исходные положения статистической физики приводит Э. к разработке теории броуновского движения (опубл. в 1905), которая легла в основу теории флуктуаций. В 1924, познакомившись со статьей Ш. Бозе по статистике световых квантов и оценив её значение, Э. опубликовал статью Бозе со своими примечаниями, в которых указал на непосредственное обобщение теории Бозе на идеальный газ. Вслед за этим появилась работа Э. по квантовой теории идеального газа; так возникла Бозе — Эйнштейна статистика. Разрабатывая теорию подвижности молекул (1905) и исследуя реальность токов Ампера, порождающих магнитные моменты, Э. пришёл к предсказанию и экспериментальному обнаружению совместно с нидерландским физиком В. де Хаазом эффекта изменения механического момента тела при его намагничивании (Эйнштейна — де Хааза эффект). Научные труды Э. сыграли большую роль в развитии современной физики. Специальная теория относительности и квантовая теория излучения явились основой квантовой электродинамики, квантовой теории поля, атомной и ядерной физики, физики элементарных частиц, квантовой электроники, релятивистской космологии и др. разделов физики и астрофизики. Идеи Э. имеют огромное методологическое значение. Они изменили господствовавшие в физике со времён Ньютона механистические взгляды на пространство и время и привели к новой, материалистической картине мира, основанной на глубокой, органические связи этих понятий с материей и её движением, одним из проявлений этой связи оказалось тяготение. Идеи Э. стали основной составной частью современной теории динамической, непрерывно расширяющейся Вселенной, позволяющей объяснить необычайно широкий круг наблюдаемых явлений. Открытия Э. были признаны учёными всего мира и создали ему международный авторитет. Э. очень волновали общественно-политическое события 20—40-х гг., он решительно выступал против фашизма, войны, применения ядерного оружия. Он принял участие в антивоенной борьбе в начале 30-х гг. В 1940 Э. подписал письмо к президенту США, в котором указал на опасность появления ядерного оружия в фашистской Германии, что стимулировало организацию ядерных исследований в США. Э. был членом многих научных обществ и академий мира, в том числе почётным членом АН СССР (1926).

scholarum.ru

Реферат - Жизнь и творчество Альберта Эйнштейна

Реферат

Тема: Жизнь и творчество Альберта Эйнштейна

Содержание

Введение

1 Начало пути

2 Бюро патентов. Первые шаги к признанию

3 Знаменитые теории Альберта Эйнштейна

3.1. Броуновское движение

3.2 Кванты и фотоэффект

3.3 Частная (специальная) теория относительности

3.4 Общая теория относительности

4 Калейдоскоп изобретений и экспериментов

5 Эмиграция

Заключение

Список использованной литературы

Введение

Эйнштейн Альберт (1879-1955), физик-теоретик, один из основателей современной физики. Создатель специальной и общей теории относительности, коренным образом изменивших представления о пространстве, времени и материи. В 1905 году в статье «К электродинамике движущихся тел» разработал основы специальной теории относительности, изложив новые законы движения. В основу своей теории положил два постулата: специальный принцип относительности, являющийся обобщением механического принципа относительности Галилея на любые физические явления и принцип постоянства скорости света в вакууме.

Оба постулата и теория, построенная на их основе, заставили пересмотреть ряд основных положений классической физики Ньютона, установил новый взгляд на мир, новые пространственно-временные представления. В том же 1905 году открыл закон взаимосвязи массы и энергии заключенной в телах. Это соотношение Эйнштейна лежит в основе расчета энергетического баланса ядерных реакций, в основе всей ядерной физики. В 1915 году завершил создание общей теории относительности или современной релятивистской теории тяготения, установил связь между пространством временем и материей. Вывел уравнение, описывающее поле тяготения.

Автор основополагающих трудов по квантовой теории света: ввел понятие фотона, установил законы фотоэффекта, основной закон фотохимии, предсказал индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе-Эйнштейна. С 1933 года работал над проблемами космологии и единой теории поля.

Эйнштейн лауреат Нобелевской премии 1921 года, член многих академий наук, в частности иностранный член АН СССР.

Цель данной работы: ознакомиться с жизнью и творчеством великого ученого-физика Альберта Эйнштейна.

Структура работы: работа состоит из введения, 4 глав, заключения и списка использованной литературы. Общий объем работы 25 страниц.

1 Начало пути

Альберт Эйнштейн родился в старинном немецком городе Ульме, но через год семья переселилась в Мюнхен, где отец Альберта, Герман Эйнштейн, и дядя Якоб организовали небольшую компанию «Электротехническая фабрика Я.Эйнштейна и К°». Вначале дела компании, занимавшейся усовершенство-ванием приборов дугового освещения, электроизмерительной аппаратурой и генераторами постоянного тока, шли довольно успешно. Но в 90-х гг. 19 века, в связи с расширением строительства крупных электроцентралей и линий дальних электропередач, возник целый ряд мощных электротехнических фирм. Надеясь спасти компанию, братья Эйнштейны в 1894 году перебрались в Милан, однако через два года, не выдержав конкуренции, компания прекратила свое существование.

Альберт до трех лет не говорил, но уже в ранние годы проявлял необычайное любопытство в отношении того, как устроен окружающий мир, и способность понимать сложные математические идеи. В 12-летнем возрасте он сам по книгам выучил евклидовую геометрию.

Дядя Якоб уделял много времени маленькому племяннику. «Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии», — так Эйнштейн в воспоминаниях, говорил об учебнике евклидовой геометрии. Часто дядя задавал мальчику математические задачи, и тот «испытывал подлинное счастье, когда справлялся с ними».

Родители отдали Альберта сначала в католическую начальную школу, а затем в мюнхенскую классическую гимназию Луитпольда, известную как прогрессивное и весьма либеральное учебное заведение, но которую он так и не окончил. И в школе, и в гимназии Альберт приобрел не лучшую репутацию. Чтение научно-популярных книг породило у юного Эйнштейна, по его собственному выражению, «прямо-таки фантастическое свободомыслие». В своих воспоминаниях М.Борн писал: «Уже в ранние годы Эйнштейн показал неукротимую волю к независимости. Он ненавидел игру в солдаты, потому что это означало насилие». Позже Эйнштейн говорил, что людям, которым доставляет удовольствие маршировать под звуки марша, головной мозг достался зря, они вполне могли бы довольствоваться одним спинным.

Тупая регламентация и скука в мюнхенской школе отталкивала молодого Эйнштейна. Когда постоянные деловые неудачи заставили семью в 1894 году покинуть Германию и переехать в Италию, в Милан, 15-летний Эйнштейн воспользовался этой возможностью и бросил школу. Еще год он провел вместе с родителями в Милане.В октябре 1895 года шестнадцатилетний Эйнштейн пешком отправился из Милана в Цюрих, чтобы поступить в Федеральную высшую техническую школу — знаменитый Политехникум, для поступления в который не требовалось свидетельства об окончании средней школы. Блестяще сдав вступительные экзамены по математике, физике и химии, он, однако, с треском провалился по другим предметам. Ректор Политехникума, оценив незаурядные математические способности Эйнштейна, направил его для подготовки в кантональную школу в Аарау (в 20 милях к западу от Цюриха), которая в то время считалась одной из лучших в Швейцарии. Год, проведенный в этой школе, которой руководил серьезный ученый и прекрасный педагог А.Таухшмид, оказался и очень полезным, и — по контрасту с казарменной обстановкой в Пруссии — приятным.

Выпускные экзамены в Аарау Эйнштейн сдал вполне успешно (кроме экзамена по французскому языку), что дало ему право на зачисление в Политехникум в Цюрихе. «Поли», как его обычно называли студенты и преподаватели,– в те годы по праву считался одним из лучших вузов мира по уровню преподавания точных наук и технических дисциплин. Кафедру физики там возглавлял профессор В.Г.Вебер, прекрасный лектор и талантливый экспериментатор, занимавшийся в основном вопросами электротехники. Поначалу он был принят очень хорошо, но затем отношения между Эйнштейном и руководителями кафедры физики Вебером и Перне стали складываться далеко не лучшим образом и в конце концов перешли во взаимную враждебность. В какой-то мере это объяснялось чисто научными причинами. Отличаясь консерватизмом взглядов на электромагнитные явления, Вебер не принимал теории Максвелла, представлений о поле и придерживался концепции дальнодействия. Его студенты узнавали прошлое физики, но не ее настоящее и, тем более, будущее. Эйнштейн же изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное) и как можно экспериментально обнаружить движение относительно эфира. Он тогда не знал об опытах Майкельсона и независимо от него предложил свою интерференционную методику. Но опыты, придуманные Эйнштейном, со страстью работавшим в физическом практикуме, не имели шансов осуществиться. «Скепсис» Вебера в отношении задуманных Эйнштейном экспериментов по обнаружению «эфирного ветра» вполне понятен: он просто не верил в существование эфира. Конечно, Вебер в конце концов оказался в этом прав, но вера его проистекала не из глубокого анализа состояния электродинамики на рубеже столетий, а, наоборот, из ее полного игнорирования. Понятно, что архаичные взгляды профессора и его столь слабая осведомленность в наиболее актуальных вопросах физической науки не могли не уронить его авторитет в глазах студента, в своем самообразовании ушедшего уже гораздо дальше.

Преподаватели недолюбливали строптивого студента. «Вы умный малый, Эйнштейн, очень умный малый, но у вас есть большой недостаток — вы не терпите замечаний», — сказал ему как-то Вебер, и этим определялось многое.

В книгах об Эйнштейне Вебер неизменно выступает в качестве, так сказать, отрицательного героя. И действительно, трудное положение, в котором оказался будущий великий физик после окончания Поли, целиком дело рук Вебера, но не следует забывать, сколь нелегким студентом был молодой Эйнштейн. Конфликт с Вебером дорого обошелся Эйнштейну: весьма успешно сдав выпускные экзамены и получив диплом об окончании Политехникума, он остался без работы. Вебер не только не захотел взять его ассистентом (у него на кафедре в это время были две вакансии, на которые он принял выпускников другого факультета), но даже использовал свое влияние, чтобы помешать Эйнштейну получить какое-нибудь другое место.

2 Бюро патентов. Первые шаги к признанию

После окончания Политехникума молодой дипломированный преподаватель физики (Эйнштейну шел тогда двадцать второй год) жил в основном у родителей в Милане и два года не мог найти постоянной работы. Только в 1902 году, по рекомендации друзей, он получил наконец место эксперта в федеральном Бюро патентов в Берне. Незадолго до этого Эйнштейн сменил гражданство и стал швейцарским подданным.

Эйнштейн был зачислен в Патентное бюро на должность технического эксперта III класса (а не II, как он хотел) с годичным испытательным сроком – он должен был овладеть техническими дисциплинами и черчением. Испытательный срок затянулся более чем на два года. Только в сентябре 1904 года Эйнштейн стал полноправным техническим экспертом III класса, а вопрос о переводе его на должность эксперта II класса был решен только в 1906 году, когда его «звездные» работы были уже опубликованы.

К моменту поступления в бюро Эйнштейна, оно было для своего времени учреждением весьма высокого класса. Четко отлаженная деятельность патентного ведомства, несомненно, способствовала промышленному развитию Швейцарии в начале нашего столетия. Служащие бюро работали в просторных светлых помещениях, оборудованных по последнему слову тогдашней оргтехники. Технические эксперты Бюро патентов получали жалованье на уровне университетских профессоров. Все они были специалисты высокого класса, в большинстве своем закончившие, как и Эйнштейн, цюрихский Политехникум.

Служба в бернском Бюро патентов, несомненно, оказала влияние на многие события его жизни. По словам самого Эйнштейна, которые звучат, правда, несколько парадоксально, именно она позволила ему спокойно и плодотворно работать в области теоретической физики. Обретенная, благодаря этой удовлетворительно оплачиваемой работе финансовая независимость, устойчивость положения позволили Эйнштейну построить семью. Через несколько месяцев после устройства на работу он женился на своей бывшей цюрихской однокурснице Милеве Марич, родом из Сербии, которая была на четыре года старше его. Их семейная жизнь сложилась неудачно. Для Эйнштейна физика всегда была на первом месте. Оно же было практически и единственным.

Технический эксперт был обязан подвергать проверке, оценке и корректировке поступающие патентные заявки, решать спорные вопросы с изобретателями, выписывать авторские удостоверения. Это была работа не только с бумагами. Эксперт был обязан проводить испытания действующих патентуемых моделей или образцов. За день приходилось обрабатывать не менее трех заявок. Рабочий день служащего Патентного бюро длился восемь часов. К тому же Эйнштейн должен был, по крайней мере, в первые годы, находить время для освоения технического черчения. Директор бюро Галлер был приверженцем жесткой дисциплины. Себя и своих коллег Эйнштейн называл «батраками», «патентными рабами», а само учреждение «светским монастырем». Эйнштейна как знатока электродинамики Максвелла загрузили в первую очередь «электрическими» патентами.

В бюро патентов Эйнштейн проработал семь с лишним лет, считая эти годы самыми счастливыми в жизни. Скорее всего, он имел в виду не материальные блага, к которым он всегда относился с большой долей безразличия, и не наличие якобы свободного времени для занятий наукой. В непростой бернский период своей жизни Эйнштейн взялся за сложные нетривиальные задачи и успешно решил их. Он с оптимизмом говорил: «…после восьми часов работы остается еще восемь часов на всякую всячину, да еще есть воскресенье». Макс Борн писал: «Чтобы успешно заниматься наукой в виде побочного труда, нужно было быть Эйнштейном».

Должность «патентного служки» постоянно занимала его ум различными научными и техническими вопросами, но оставляла достаточно времени для самостоятельной творческой работы. Ее результаты к середине «счастливых бернских лет» составили содержание научных статей, которые изменили облик современной физики, принесли Эйнштейну мировую славу.

Годы работы в Патентном бюро были счастливыми и благодаря так называемой «Академии Олимпа». В первые месяцы пребывания в Берне Эйнштейн дал объявление о частных уроках. На объявление откликнулся Морис Соловин, изучавший в Цюрихском университете философию. Уроки быстро переросли в обсуждения различных проблем. Соловин предложил вместе читать по вечерам интересные книги. Вскоре к ним присоединился Конрад Габихт, приехавший в Берн для завершения своего математического образования. Свой кружок молодые люди назвали «Академия Олимпа».Они собирались после работы и читали сочинения Спинозы, Юма, Ампера, Гельмгольца, Римана, Пуанкаре, трактаты математиков Дедекинда и Клиффорда и многое другое. Они читали такие шедевры мировой литературы: «Антигона» Софокла, «Рождественские рассказы» Диккенса, «Дон–Кихот» Сервантеса.

Соловин вспоминал: «Прочитывалась одна страница, иногда только полстраницы, а порой только одна фраза, после чего следовало обсуждение, которое, могло затянуться на много дней». Друзей объединяло искреннее стремление учиться, познавать то, что не давала высшая школа. Вскоре к ним примкнул Микеланжело Бессо. По рекомендации Эйнштейна он поступил в 1904 году в Бернское патентное бюро. С работы они часто возвращались вместе и вели нескончаемые беседы. Бессо обладал энциклопедическими знаниями, был заядлым спорщиком. Эйнштейн потом писал, что не знал «лучшего резонатора новых идей». Бессо был первым, кому Эйнштейн рассказал о теории относительности. Статью «К электродинамике движущихся тел» Эйнштейн заканчивает словами: «В заключение отмечу, что мой друг и коллега М.Бессо явился верным помощником при разработке изложенных здесь проблем и что я обязан ему рядом ценных указаний». Заседания «академии» чаще всего проходили на квартире Эйнштейна. Когда в 20-х годах журналисты спросили, где была создана теория относительности, он без колебаний назвал адрес своей бернской квартиры.

Ученая степень доктора философии была присвоена Эйнштейну в 1905 году, но только в 1908 году он был утвержден приват-доцентом в Берне, а в 1909 году принял приглашение занять место экстраординарного профессора теоретической физики в Цюрихском университете и покинул Патентное бюро в Берне.

3 Знаменитые теории Альберта Эйнштейна

3.1 Броуновское движение

Год 1905 стал знаменательным в истории физики.

В этом году Эйнштейн опубликовал три важнейшие работы, сыгравшие выдающуюся роль во всем последующем развитии физики ХХ века. В первой из них, посвященной броуновскому движению, он сделал важные предсказания о движении взвешенных в жидкости частиц, обусловленном столкновениями с молекулами. Предсказания позднее подтвердились на опыте.

Во второй работе, посвященной фотоэффекту, Эйнштейн высказал революционную гипотезу о природе света: при определенных обстоятельствах свет можно рассматривать как поток частиц, фотонов, энергия которых пропорциональна частоте световой волны. Практически не нашлось физиков, которые согласились бы с этой идеей Эйнштейна. Потребовались два десятилетия напряженных усилий экспериментаторов и теоретиков, чтобы картина фотонов стала общепризнанной в рамках квантовой механики.

Но наиболее революционной стала третья работа Эйнштейна «К электродинамике движущихся тел», в которой с необычайной ясностью были изложены идеи частной теории относительности (ЧТО), разрушившей классические представления о пространстве-времени, существовавшие со времени Ньютона.

Первая из этих статей — «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории», вышедшая в 1905 году, была посвящена теории броуновского движения.

Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 году английским ботаником Р.Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований.

Эйнштейн связал движение частиц, наблюдаемое в микроскоп, со столкновениями этих частиц с невидимыми молекулами; кроме того, он предсказал, что наблюдение броуновского движения позволяет вычислить массу и число молекул, находящихся в данном объеме. Эта работа Эйнштейна имела особое значение потому, что существование молекул, считавшихся не более чем удобной абстракцией, в то время еще ставилось под сомнение.

Решения важнейшего для физики вопроса о реальности атомов Эйнштейн ждет не от туманных натурфилософских рассуждений и не от бесконечных словопрений, а от прямого, так сказать «лобового», опыта, причем, как видно, ждет с нетерпением. «Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы!» — таким восклицанием заканчивается статья. Для Эйнштейна эта статья не отвлеченная «игра ума», не еще одна публикация в солидном журнале, укрепляющая его репутацию в научном мире; нет, ему чрезвычайно интересно, просто необходимо — и причем поскорее — убедиться в том, что атомы, о которых говорят уже более 2000 лет, действительно существуют.

В 1908 году Ж.Перрен с сотрудниками серией тонких и систематических экспериментальных работ блестяще подтвердили все выводы Эйнштейна, касающиеся броуновского движения, и из прямых опытов получили для числа Авогадро значение, лежащее в пределах от 6,5·1023 до 7,2·1023 (современное значение 6,02·1023) и согласующееся с более ранними косвенными оценками. После этих работ отрицать реальность атомов было уже невозможно.

Но все это произошло, как уже говорилось, только в 1908 году, а пока Эйнштейн продолжает изыскивать возможные флуктуационные эксперименты. В декабре 1905 года он заканчивает свою вторую статью по броуновскому движению, «дополняющую в некоторых пунктах» предыдущую работу.

3.2 Кванты и фотоэффект

В том же 1905 вышла и другая работа Эйнштейна — «Об одной эвристической точке зрения на возникновение и превращение света». За пять лет до этого М.Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Физический смысл квантов оставался неясным, но величина кванта равна произведению некоторого числа (постоянной Планка) и частоты излучения.

Эйнштейн выдвинул теорию, согласно которой свет не только излучается и поглощается, но и состоит из дискретных, далее неделимых порций, квантов света. Они представляют собой частицы, которые движутся в пустоте со скоростью 300 000 километров в секунду. Впоследствии (в двадцатые годы) эти частицы получили название фотонов. Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования «красной границы», то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.

Идея Эйнштейна состояла в том, чтобы установить соответствие между фотоном (квантом электромагнитной энергии) и энергией выбитого с поверхности металла электрона. Каждый фотон выбивает один электрон. Кинетическая энергия электрона (энергия, связанная с его скоростью) равна энергии, оставшейся от энергии фотона за вычетом той ее части, которая израсходована на то, чтобы вырвать электрон из металла. Чем ярче свет, тем больше фотонов и больше число выбитых с поверхности металла электронов, но не их скорость. Более быстрые электроны можно получить, направляя на поверхность металла излучение с большей частотой, так как фотоны такого излучения содержат больше энергии.

В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Энергия Е каждой порции излучения в полном соответствии с гипотезой Планка пропорциональна частоте:

E = hv, где h — постоянная Планка.

Из того, что свет, как показал Планк, излучается порциями, еще не вытекает прерывистая структура самого света. Ведь и минеральную воду продают в бутылках, но отсюда совсем не следует, что вода имеет прерывистую структуру и состоит из неделимых частей. Лишь явление фотоэффекта показало, что свет имеет прерывистую структуру: излученная порция световой энергии E = hv сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

Кинетическую энергию фотоэлектрона можно найти, применив закон сохранения энергии. Это уравнение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии в световом пучке и поэтому определяет число электронов, вырванных из металла. Скорость же электронов согласно определяется только частотой света и работой выхода, зависящей от рода металла и состояния его поверхности. От интенсивности света она не зависит.

Для каждого вещества фотоэффект наблюдается лишь в том случае, если частота v света больше минимального значения. Ведь чтобы вырвать электрон из металла даже без сообщения ему кинетической энергии, нужно совершить работу выхода А. Следовательно, энергия кванта должна быть больше этой работы. Предельную частоту, называют красной границей фотоэффекта.

Для цинка красной границе соответствует длина волны м (ультрафиолетовое излучение). Именно этим объясняется опыт по прекращению фотоэффекта с помощью стеклянной пластинки, задерживающей ультрафиолетовые лучи.

Работа выхода у алюминия или железа больше, чем у цинка. Поэтому в опыте использовалась цинковая пластина. У щелочных металлов работа выхода, напротив, меньше, а длина волны, соответствующая красной границе, больше. Пользуясь уравнением Эйнштейна можно найти постоянную Планка h. Для этого нужно экспериментально определить частоту света v, работу выхода А и измерить кинетическую энергию фотоэлектронов. Точно такое же значение было найдено Планком при теоретическом изучении совершенно другого явления — теплового излучения. Совпадение значений постоянной Планка, полученных различными методами, подтверждает правильность предположения о прерывистом характере излучения и поглощения света веществом. Уравнение Эйнштейна, несмотря на свою простоту, объясняет основные закономерности фотоэффекта. В современной физике фотон рассматривается как одна их элементарных частиц. Таблица элементарных частиц уже многие десятки лет начинается с фотона.

Эйнштейн выдвинул еще одну смелую гипотезу, предположив, что свет обладает двойственной природой. Как показывают проводившиеся на протяжении веков оптические эксперименты, свет может вести себя как волна, но, как свидетельствует фотоэлектрический эффект, и как поток частиц. Правильность предложенной Эйнштейном интерпретации фотоэффекта была многократно подтверждена экспериментально, причем не только для видимого света, но и для рентгеновского и гамма-излучения.

Таким образом, Эйнштейну принадлежит теоретическое открытие фотона, экспериментально обнаруженного в 1922 году А.Комптоном. А в 1924 году Луи де Бройль сделал еще один шаг в преобразовании физики, предположив, что волновыми свойствами обладает не только свет, но и материальные объекты, например электроны. Идея де Бройля также нашла экспериментальное подтверждение и заложила основы квантовой механики.

Работы Эйнштейна позволили объяснить флуоресценцию, фотоионизацию и загадочные вариации удельной теплоемкости твердых тел при различных температурах и др., которые не могла объяснить электромагнитная теория света.

В 1922 году Эйнштейну была вручена Нобелевская премия по физике 1921 года «за заслуги перед теоретической физикой, и особенно за открытие закона фотоэлектрического эффекта». «Закон Эйнштейна стал основой фотохимии так же, как закон Фарадея – основой электрохимии»,– заявил на представлении нового лауреата Сванте Аррениус из Шведской королевской академии. Условившись заранее о выступлении в Японии, Эйнштейн не смог присутствовать на церемонии и свою Нобелевскую лекцию прочитал лишь через год после присуждения ему премии.

3.3 Частная (специальная) теория относительности

Наибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в том же 1905 году, в статье «К электродинамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. В то время большинство физиков полагало, что световые волны распространяются в эфире – загадочном веществе, которое, как принято было думать, заполняет всю Вселенную. Однако обнаружить эфир экспериментально никому не удавалось. Поставленный в 1887 году Альбертом А. Майкельсоном и Эдвардом Морли эксперимент по обнаружению различия в скорости света, распространяющегося в гипотетическом эфире вдоль и поперек направления движения Земли, дал отрицательный результат. Если бы эфир был носителем света, который распространяется по нему в виде возмущения, как звук по воздуху, то скорость эфира должна была бы прибавляться к наблюдаемой скорости света или вычитаться из нее, подобно тому как река влияет, с точки зрения стоящего на берегу наблюдателя, на скорость лодки, идущей на веслах по течению или против течения.

Нет оснований утверждать, что специальная теория относительности Энштейна была создана непосредственно под влиянием эксперимента Майкельсона-Морли, но в основу ее были положены два универсальных допущения, делавших излишней гипотезу о существовании эфира: все законы физики одинаково применимы для любых двух наблюдателей, независимо от того, как они движутся относительно друг друга, свет всегда распространяется в свободном пространстве с одной и той же скоростью, независимо от движения его источника. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.

Выводы, сделанные из этих допущений, изменили представления о пространстве и времени: ни один материальный объект не может двигаться быстрее света; с точки зрения стационарного наблюдателя, размеры движущегося объекта сокращаются в направлении движения, а масса объекта возрастает, чтобы скорость света была одинаковой для движущегося и покоящегося наблюдателей, движущиеся часы должны идти медленнее. Даже понятие стационарности подлежит тщательному пересмотру. Движение или покой определяются всегда относительно некоего наблюдателя. Наблюдатель, едущий верхом на движущемся объекте, неподвижен относительно данного объекта, но может двигаться относительно какого-либо другого наблюдателя. Поскольку время становится такой же относительной переменной, как и пространственные координаты x, y и z, понятие одновременности также становится относительным. Два события, кажущихся одновременными одному наблюдателю, могут быть разделены во времени, с точки зрения другого.

Из других выводов, к которым приводит специальная теория относительности, заслуживает внимание эквивалентность массы и энергии. Масса m представляет собой своего рода «замороженную» энергию E, с которой связана соотношением E = mc2, где c – скорость света. Таким образом, испускание фотонов света происходит ценой уменьшения массы источника.

Релятивистские эффекты, как правило, пренебрежимо малые при обычных скоростях, становятся значительными только при больших, характерных для атомных и субатомных частиц. Потеря массы, связанная с испусканием света, чрезвычайно мала и обычно не поддается измерению даже с помощью самых чувствительных химических весов. Однако специальная теория относительности позволила объяснить такие особенности процессов, происходящих в атомной и ядерной физике, которые до того оставались непонятными. Почти через сорок лет после создания теории относительности физики, работавшие над созданием атомной бомбы, сумели вычислить количество выделяющейся при ее взрыве энергии на основе дефекта (уменьшения) массы при расщеплении ядер урана.

Восприятие работ Эйнштейна было неоднозначным. Многие ученые их попросту не понимали, и это происходило из-за специфических взглядов Эйнштейна на структуру правильных теорий и на связь между теорией и экспериментом. Хотя Эйнштейн и признавал, что единственным источником знаний является опыт, он был также убежден, что научные теории являются свободными творениями человеческой интуиции и что основания, на которых зиждется хорошая теория, не обязательно должны быть логически связаны с опытом. Идеальная теория, по Эйнштейну, должна базироваться на минимально возможном количестве постулатов и описывать максимально возможное количество явлений. Именно эта «скупость» на постулаты, свойственная всей научной деятельности Эйнштейна, делала его работы труднодоступными для коллег. Однако, ряд выдающихся физиков сразу поддержал молодого ученого, и среди них — Макс Планк. Именно он помог Эйнштейну перебраться из патентного бюро в Цюрихе сначала в Прагу, а затем в Берлин на должность директора Института физики кайзера Вильгельма.

3.4 Общая теория относительности

В 1905 году Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1914 году принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. Путь, приведший Эйнштейна к успеху, был трудным и извилистым. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М.Гроссмана в 1912 году появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915 годом. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия? Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства — времени.

Общая теория относительности охватывала все возможные движения, в том числе и ускоренные (т.е. происходящие с переменной скоростью). Господствовавшая ранее механика, берущая начало из работ Исаака Ньютона, становилась частным случаем, удобным для описания движения при относительно малых скоростях. Эйнштейну пришлось заменить многие из введенных Ньютоном понятий. Такие аспекты ньютоновской механики, как, например, отождествление гравитационной и инертной масс, вызывали у него беспокойство. По Ньютону, тела притягивают друг друга, даже если их разделяют огромные расстояния, причем сила притяжения, или гравитация, распространяется мгновенно. Гравитационная масса служит мерой силы притяжения. Что же касается движения тела под действием этой силы, то оно определяется инерциальной массой тела, которая характеризует способность тела ускоряться под действием данной силы.

Он произвел так называемый «мысленный эксперимент». Если бы человек в свободно падающей коробке, например в лифте, уронил ключи, то они не упали бы на пол: лифт, человек и ключи падали бы с одной и той же скоростью и сохранили бы свои положения относительно друг друга. Так происходило бы в некой воображаемой точке пространства вдали от всех источников гравитации. Один из друзей Эйнштейна заметил по поводу такой ситуации, что человек в лифте не мог бы отличить, находится ли он в гравитационном поле или движется с постоянным ускорением. Эйнштейновский принцип эквивалентности, утверждающий, что гравитационные и инерциальные эффекты неотличимы, объяснил совпадение гравитационной и инертной массы в механике Ньютона. Затем Эйнштейн расширил картину, распространив ее на свет. Если луч света пересекает кабину лифта «горизонтально», в то время как лифт падает, то выходное отверстие находится на большем расстоянии от пола, чем входное, так как за то время, которое требуется лучу, чтобы пройти от стенки к стенке, кабина лифта успевает продвинуться на какое-то расстояние. Наблюдатель в лифте увидел бы, что световой луч искривился. Для Эйнштейна это означало, что в реальном мире лучи света искривляются, когда проходят на достаточно малом расстоянии от массивного тела.

Общая теория относительности Эйнштейна заменила ньютоновскую теорию гравитационного притяжения тел пространственно-временным математическим описанием того, как массивные тела влияют на характеристики пространства вокруг себя. Согласно этой точке зрения, тела не притягивают друг друга, а изменяют геометрию пространства-времени, которая и определяет движение проходящих через него тел. Как однажды заметил коллега Эйнштейна, американский физик Дж.А.Уилер, «пространство говорит материи, как ей двигаться, а материя говорит пространству, как ему искривляться».Для проверки своей теории предложил три эффекта: искривление светового луча в поле тяготения Солнца, смещение перигелия Меркурия и гравитационное красное смещение. Эти эффекты, как показали последующие эксперименты, действительно действуют и количественно правильно предсказывались общей теорией относительности.

В декабре 1915 года на заседании Академии наук в Берлине Эйнштейн доложил, наконец, окончательные уравнения общей теории относительности. Эта теория стала вершиной творчества Эйнштейна, и, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Однако понимание общей теории относительности пришло не сразу. Первые три года эта теория интересовала узкий круг специалистов и была понятна лишь десятку избранных.

Ситуация резко изменилась в 1919 году, так как в этом году удалось проверить прямыми наблюдениями одно из парадоксальных предсказаний общей теории относительности — искривление луча света от далекой звезды полем тяготения Солнца. Такое наблюдение возможно только во время полного солнечного затмения. Именно в 1919 г. такое затмение можно было наблюдать в районах земного шара с обычно хорошей погодой, что позволяло провести максимально точное фотографирование видимого положения звезд на небе в момент полного затмения. Экспедиция, снаряженная английским астрофизиком сэром Артуром Эддингтоном, сумела получить данные, подтвердившие предсказание Эйнштейна. Буквально в один день Эйнштейн стал знаменит на весь мир.

Обрушившаяся на него слава не поддается описанию. Теория относительности на долгое время стала предметом салонных бесед. Газеты всех стран были переполнены статьями о теории относительности, вышло множество популярных книг, в которых авторы пытались объяснить обывателям суть этой теории. Университеты упрашивали его работать у них в качестве преподавателя, ученые из различных стран мира обращались к нему за советом, а политические партии и всевозможные благотворительные организации и фонды сражались между собой за его поддержку и помощь, он был избран почетным членом множества академий.

Пришло, наконец, признание.

Слово и мнение Эйнштейна стало одним из самых авторитетных в мире. В 1920-е гг. Эйнштейн много ездит по свету, участвует в международных конференциях. Особенно важна была роль Эйнштейна в дискуссиях, развернувшихся в конце 1920-х гг. по концептуальным проблемам квантовой механики. Беседы и споры Эйнштейна с Бором на эти темы стали знаменитыми.

Портреты Эйнштейна появились на обложках иллюстрированных журналов, его имя мелькало в заголовках ежедневных газет. Аудитории, где Эйнштейн читал лекции в Берлинском университете, во время «релятивистской шумихи» были всегда переполнены, иногда число слушателей превышало тысячу человек. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952 году, которое он не принял.

Свою мировую славу Эйнштейн начал воспринимать как тягостное бремя.Его научный триумф вышел далеко за рамки естественных наук. Он совершает многочисленные зарубежные поездки. Журнал «Scientific American» профинансировал конкурс на самое понятное объяснение теории относительности с призом в 5 тысяч долларов. Эйнштейн пошутил, что среди своих друзей он один не участвовал: «Я боялся, что не справлюсь». Любопытно (или символично), что победитель конкурса Болтон был сотрудником Британского патентного бюро.

4 Калейдоскоп изобретений и экспериментов

В период интенсивных исследований по общей теории относительности, Эйнштейн обратился к экзотическим лабораторным экспериментам. Он пишет своему другу Микеле Бессо: «Эксперимент скоро закончится… Изумительная работа… Какую же изощренность демонстрирует природа, когда пытаешься проникнуть в ее тайны… я все еще увлекаюсь проведением опытов». Речь идет о гиромагнитных явлениях микрочастиц, а именно, о повороте свободно подвешенного ферромагнитного образца при его намагничивании внешним магнитным полем. Этот уникальный опыт был поставлен совместно с зятем выдающего голландского теоретика Хендрика Лоренца – де Гаазом. Эйнштейн преодолел трудности, с которыми не смогли справиться многие маститые экспериментаторы.

Малоизвестно, что Эйнштейн с различными соавторами имел более двух десятков патентов. Интересно и то, что, уйдя из бернского патентного бюро, получив мировую известность как физик, Эйнштейн не расстался с патентной деятельностью. Например, совместно с Л.Сциллардом в конце 1920-х годов были запатентованы три типа холодильных машин, насосы для холодильных машин, компрессор, устройства для сжижения газов и паров (они нашли применение в атомной технике).

Совместно с Гольдштейном запатентовано устройство для передачи звука, основанное на явлении магнитострикции. В 1936 году со своим другом, врачом Г.Буки он запатентовал фотокамеру с автоматической подстройкой под уровень освещенности. Эйнштейн часто выступал в качестве патентного эксперта. В 1916 году (создание общей теории относительности!) он писал Бессо: «У меня сейчас снова весьма забавная экспертиза в одном патентном процессе».

Эйнштейн сыграл значительную роль в признании Г.Аншютца изобретателем гироскопического компаса. Известно, что он участвовал в патентной тяжбе между фирмами АЭГ и Сименс в 1929 году. Во время второй мировой войны Эйнштейн сотрудничал с министерством военно-морского флота США в качестве научно-технического эксперта. В его обязанности входила оценка изобретений, поступающих в министерство.

5 Эмиграция

Эйнштейн не без колебаний принял предложение переехать в Берлин. Но возможность общения с крупнейшими немецкими учеными, в числе которых был и Планк, привлекала его. Но политическая и нравственная атмосфера в Германии делалась все тягостнее и тягостнее, антисемитизм поднимал голову. В 1933 году, когда власть захватили фашисты, Эйнштейн навсегда покинул Германию. На этих драматических событиях заканчивается европейский период жизни Эйнштейна.

В знак протеста против фашизма он отказался от германского подданства и вышел из состава Прусской и Баварской Академий наук.

Переехав в США, Эйнштейн занял должность профессора физики в новом институте фундаментальных исследований в Принстоне (штат Нью-Джерси). Он продолжал заниматься вопросами космологии, а также усиленно искал пути построения единой теории поля, которая бы объединила гравитацию, электромагнетизм (а возможно, и остальное). И хотя реализовать эту программу ему не удалось, это не поколебало репутации Эйнштейна как одного из величайших естествоиспытателей всех времен.

Маленький университетский городок Принстон в США приютил Эйнштейна. Никаких особых мер для обеспечения его личной безопасности не принималось, жители были дружелюбны, называли его «старый док», а студенты распевали про него песенки.

В Принстоне Эйнштейн стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был скромным, приветливым и несколько эксцентричным человеком, с которым можно было столкнуться прямо на улице. В часы досуга он любил музицировать. Начав учиться игре на скрипке в шесть лет, Эйнштейн продолжал играть всю жизнь, иногда в ансамбле с другими физиками. Ему нравился парусный спорт, который, как он полагал, необыкновенно способствует размышлениям над физическими проблемами.

Приезд Эйнштейна был для Америки огромным событием. Почти сразу же Эйнштейн был приглашён президентом Рузвельтом в Белый дом (ведь у них были общие интересы – огромное увлечение парусным спортом).

Но спокойной жизни в тихом американском городке не получилось. Среди физиков – иностранцев, оказавшихся в эмиграции в США, росла тревога по возможному созданию атомной бомбы в Германии. Они обратились к Эйнштейну с просьбой обратиться к американскому президенту. Сегодня, когда известные ученые обсуждают важные экологические проблемы, вопросы противоракетной обороны и многие другие, важные для общества вопросы, раздаются голоса, что не следует смешивать науку с политикой. Эйнштейн же был убежден, что на каждом учёном лежит моральная ответственность за судьбу человечества. И учёный обязан донести до людей суть своих работ и объяснить возможные последствия. Поэтому Эйнштейн и физик Лео Сциллард направили письмо Франклину Рузвельту, где сообщали об открытии деления ядер урана и предупреждали об опасности создания ядерного оружия. Это был импульс к развертыванию «Манхэттенского проекта» по созданию атомной бомбы.

После второй мировой войны, потрясенный ужасающими последствиями использования атомной бомбы против Японии и все ускоряющейся гонкой вооружений, Эйнштейн стал горячим сторонником мира, считая, что в современных условиях война представляла бы угрозу самому существованию человечества. Незадолго до смерти он поставил свою подпись под воззванием Бертрана Рассела, обращенным к правительствам всех стран, предупреждающим их об опасности применения водородной бомбы и призывающим к запрету ядерного оружия. Эйнштейн выступал за свободный обмен идеями и ответственное использование науки на благо человечества.

18 апреля 1955 года в 1 час 25 минут перестало биться сердце великого творца. Эйнштейн скончался в Принстоне от аневризмы аорты. Весь мир скорбел. Но Эйнштейн завещал, чтобы не было ни похорон, ни могилы, ни памятника. Всего десять самых близких человек шли за гробом. Тело было предано кремации, пепел развеян по ветру над рекой Дэлавер.

Река по имени Время продолжает свое течение и где-то несет его прах.

Заключение

Имя Альберта Эйнштейна вошло в перечень самых выдающихся людей XX столетия и одного из величайших ученых всех времен.

Эйнштейн обогатил физику с присущей только ему силой прозрения и непревзойденной игрой воображения. С детских лет он воспринимал мир как гармоническое познаваемое целое, «стоящее перед нами наподобие великой и вечной загадки». По его собственному признанию, он верил в «Бога Спинозы, являющего себя в гармонии всего сущего». Именно это «космическое религиозное чувство» побуждало Эйнштейна к поиску объяснения природы с помощью системы уравнений, которая обладала бы большой красотой и простотой.

И сегодня, спустя 100 лет после выхода в свет «звездных» статей, посвященных принципам относительности, квантовой и молекулярной теориям, проблема, волновавшая Эйнштейна, по-прежнему будоражит умы ученых мира. Выражение E = mc2 – это крылатая фраза, знакомая широкой публике так же, как строки Шекспира.

Величие, сделанного Эйнштейном в науке, трудно переоценить. Сейчас нет практически ни одной ветви современной физики, где, так или иначе, не присутствовали бы фундаментальные понятия квантовой механики или теории относительности.

Но, пожалуй, еще важнее уверенность, которую своими трудами вселил в ученых Эйнштейн, что природа познаваема и ее законы красивы. Стремление к этой красоте и составляло смысл жизни великого ученого.

Список использованной литературы

1. Кузнецов Б.Г. Эйнштейн. Жизнь, смерть, бессмертие. 5-е изд., перераб. и доп. — М.: Наука, 1985.

2. Лауреаты Нобелевской премии. Энциклопедия. Пер. с англ. — М.: «Прогресс», 1992.

3. Сноу Ч.П. Портреты и размышления. — М.: изд. «Прогресс», 1985.

4. Френкель В.Я., Явелов Б.Е. Эйнштейн: изобретения и эксперимент.2-е изд., перераб. и дополн. – М.: изд. «Наука», 1990.

5. Хофман Б. Альберт Эйнштейн: творец и бунтарь. История физики. — Пер. с англ. – М.: «Прогресс», 1983.

6. Явелов Б.Е., Френкель В.Я. Патентный эксперт Эйнштейн//Сб. Пути в незнакомое, — М.: Советский писатель, 1983

www.ronl.ru

Жизнь и творчество Альберта Эйнштейна

Реферат

Тема: Жизнь и творчество Альберта Эйнштейна

Содержание

Введение

1 Начало пути

2 Бюро патентов. Первые шаги к признанию

3 Знаменитые теории Альберта Эйнштейна

3.1. Броуновское движение

3.2 Кванты и фотоэффект

3.3 Частная (специальная) теория относительности

3.4 Общая теория относительности

4 Калейдоскоп изобретений и экспериментов

5 Эмиграция

Заключение

Список использованной литературы

Введение

Эйнштейн Альберт (1879-1955), физик-теоретик, один из основателей современной физики. Создатель специальной и общей теории относительности, коренным образом изменивших представления о пространстве, времени и материи. В 1905 году в статье «К электродинамике движущихся тел» разработал основы специальной теории относительности, изложив новые законы движения. В основу своей теории положил два постулата: специальный принцип относительности, являющийся обобщением механического принципа относительности Галилея на любые физические явления и принцип постоянства скорости света в вакууме.

Оба постулата и теория, построенная на их основе, заставили пересмотреть ряд основных положений классической физики Ньютона, установил новый взгляд на мир, новые пространственно-временные представления. В том же 1905 году открыл закон взаимосвязи массы и энергии заключенной в телах. Это соотношение Эйнштейна лежит в основе расчета энергетического баланса ядерных реакций, в основе всей ядерной физики. В 1915 году завершил создание общей теории относительности или современной релятивистской теории тяготения, установил связь между пространством временем и материей. Вывел уравнение, описывающее поле тяготения.

Автор основополагающих трудов по квантовой теории света: ввел понятие фотона, установил законы фотоэффекта, основной закон фотохимии, предсказал индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе-Эйнштейна. С 1933 года работал над проблемами космологии и единой теории поля.

Эйнштейн лауреат Нобелевской премии 1921 года, член многих академий наук, в частности иностранный член АН СССР.

Цель данной работы: ознакомиться с жизнью и творчеством великого ученого-физика Альберта Эйнштейна.

Структура работы: работа состоит из введения, 4 глав, заключения и списка использованной литературы. Общий объем работы 25 страниц.

1 Начало пути

Альберт Эйнштейн родился в старинном немецком городе Ульме, но через год семья переселилась в Мюнхен, где отец Альберта, Герман Эйнштейн, и дядя Якоб организовали небольшую компанию «Электротехническая фабрика Я.Эйнштейна и К°». Вначале дела компании, занимавшейся усовершенство-ванием приборов дугового освещения, электроизмерительной аппаратурой и генераторами постоянного тока, шли довольно успешно. Но в 90-х гг. 19 века, в связи с расширением строительства крупных электроцентралей и линий дальних электропередач, возник целый ряд мощных электротехнических фирм. Надеясь спасти компанию, братья Эйнштейны в 1894 году перебрались в Милан, однако через два года, не выдержав конкуренции, компания прекратила свое существование.

Альберт до трех лет не говорил, но уже в ранние годы проявлял необычайное любопытство в отношении того, как устроен окружающий мир, и способность понимать сложные математические идеи. В 12-летнем возрасте он сам по книгам выучил евклидовую геометрию.

Дядя Якоб уделял много времени маленькому племяннику. «Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии», — так Эйнштейн в воспоминаниях, говорил об учебнике евклидовой геометрии. Часто дядя задавал мальчику математические задачи, и тот «испытывал подлинное счастье, когда справлялся с ними».

Родители отдали Альберта сначала в католическую начальную школу, а затем в мюнхенскую классическую гимназию Луитпольда, известную как прогрессивное и весьма либеральное учебное заведение, но которую он так и не окончил. И в школе, и в гимназии Альберт приобрел не лучшую репутацию. Чтение научно-популярных книг породило у юного Эйнштейна, по его собственному выражению, «прямо-таки фантастическое свободомыслие». В своих воспоминаниях М.Борн писал: «Уже в ранние годы Эйнштейн показал неукротимую волю к независимости. Он ненавидел игру в солдаты, потому что это означало насилие». Позже Эйнштейн говорил, что людям, которым доставляет удовольствие маршировать под звуки марша, головной мозг достался зря, они вполне могли бы довольствоваться одним спинным.

Тупая регламентация и скука в мюнхенской школе отталкивала молодого Эйнштейна. Когда постоянные деловые неудачи заставили семью в 1894 году покинуть Германию и переехать в Италию, в Милан, 15-летний Эйнштейн воспользовался этой возможностью и бросил школу. Еще год он провел вместе с родителями в Милане. В октябре 1895 года шестнадцатилетний Эйнштейн пешком отправился из Милана в Цюрих, чтобы поступить в Федеральную высшую техническую школу — знаменитый Политехникум, для поступления в который не требовалось свидетельства об окончании средней школы. Блестяще сдав вступительные экзамены по математике, физике и химии, он, однако, с треском провалился по другим предметам. Ректор Политехникума, оценив незаурядные математические способности Эйнштейна, направил его для подготовки в кантональную школу в Аарау (в 20 милях к западу от Цюриха), которая в то время считалась одной из лучших в Швейцарии. Год, проведенный в этой школе, которой руководил серьезный ученый и прекрасный педагог А.Таухшмид, оказался и очень полезным, и — по контрасту с казарменной обстановкой в Пруссии — приятным.

Выпускные экзамены в Аарау Эйнштейн сдал вполне успешно (кроме экзамена по французскому языку), что дало ему право на зачисление в Политехникум в Цюрихе. «Поли», как его обычно называли студенты и преподаватели,– в те годы по праву считался одним из лучших вузов мира по уровню преподавания точных наук и технических дисциплин. Кафедру физики там возглавлял профессор В.Г.Вебер, прекрасный лектор и талантливый экспериментатор, занимавшийся в основном вопросами электротехники. Поначалу он был принят очень хорошо, но затем отношения между Эйнштейном и руководителями кафедры физики Вебером и Перне стали складываться далеко не лучшим образом и в конце концов перешли во взаимную враждебность. В какой-то мере это объяснялось чисто научными причинами. Отличаясь консерватизмом взглядов на электромагнитные явления, Вебер не принимал теории Максвелла, представлений о поле и придерживался концепции дальнодействия. Его студенты узнавали прошлое физики, но не ее настоящее и, тем более, будущее. Эйнштейн же изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное) и как можно экспериментально обнаружить движение относительно эфира. Он тогда не знал об опытах Майкельсона и независимо от него предложил свою интерференционную методику. Но опыты, придуманные Эйнштейном, со страстью работавшим в физическом практикуме, не имели шансов осуществиться. «Скепсис» Вебера в отношении задуманных Эйнштейном экспериментов по обнаружению «эфирного ветра» вполне понятен: он просто не верил в существование эфира. Конечно, Вебер в конце концов оказался в этом прав, но вера его проистекала не из глубокого анализа состояния электродинамики на рубеже столетий, а, наоборот, из ее полного игнорирования. Понятно, что архаичные взгляды профессора и его столь слабая осведомленность в наиболее актуальных вопросах физической науки не могли не уронить его авторитет в глазах студента, в своем самообразовании ушедшего уже гораздо дальше.

Преподаватели недолюбливали строптивого студента. «Вы умный малый, Эйнштейн, очень умный малый, но у вас есть большой недостаток — вы не терпите замечаний», — сказал ему как-то Вебер, и этим определялось многое.

В книгах об Эйнштейне Вебер неизменно выступает в качестве, так сказать, отрицательного героя. И действительно, трудное положение, в котором оказался будущий великий физик после окончания Поли, целиком дело рук Вебера, но не следует забывать, сколь нелегким студентом был молодой Эйнштейн. Конфликт с Вебером дорого обошелся Эйнштейну: весьма успешно сдав выпускные экзамены и получив диплом об окончании Политехникума, он остался без работы. Вебер не только не захотел взять его ассистентом (у него на кафедре в это время были две вакансии, на которые он принял выпускников другого факультета), но даже использовал свое влияние, чтобы помешать Эйнштейну получить какое-нибудь другое место.

2 Бюро патентов. Первые шаги к признанию

После окончания Политехникума молодой дипломированный преподаватель физики (Эйнштейну шел тогда двадцать второй год) жил в основном у родителей в Милане и два года не мог найти постоянной работы. Только в 1902 году, по рекомендации друзей, он получил наконец место эксперта в федеральном Бюро патентов в Берне. Незадолго до этого Эйнштейн сменил гражданство и стал швейцарским подданным.

Эйнштейн был зачислен в Патентное бюро на должность технического эксперта III класса (а не II, как он хотел) с годичным испытательным сроком – он должен был овладеть техническими дисциплинами и черчением. Испытательный срок затянулся более чем на два года. Только в сентябре 1904 года Эйнштейн стал полноправным техническим экспертом III класса, а вопрос о переводе его на должность эксперта II класса был решен только в 1906 году, когда его «звездные» работы были уже опубликованы.

К моменту поступления в бюро Эйнштейна, оно было для своего времени учреждением весьма высокого класса. Четко отлаженная деятельность патентного ведомства, несомненно, способствовала промышленному развитию Швейцарии в начале нашего столетия. Служащие бюро работали в просторных светлых помещениях, оборудованных по последнему слову тогдашней оргтехники. Технические эксперты Бюро патентов получали жалованье на уровне университетских профессоров. Все они были специалисты высокого класса, в большинстве своем закончившие, как и Эйнштейн, цюрихский Политехникум.

Служба в бернском Бюро патентов, несомненно, оказала влияние на многие события его жизни. По словам самого Эйнштейна, которые звучат, правда, несколько парадоксально, именно она позволила ему спокойно и плодотворно работать в области теоретической физики. Обретенная, благодаря этой удовлетворительно оплачиваемой работе финансовая независимость, устойчивость положения позволили Эйнштейну построить семью. Через несколько месяцев после устройства на работу он женился на своей бывшей цюрихской однокурснице Милеве Марич, родом из Сербии, которая была на четыре года старше его. Их семейная жизнь сложилась неудачно. Для Эйнштейна физика всегда была на первом месте. Оно же было практически и единственным.

Технический эксперт был обязан подвергать проверке, оценке и корректировке поступающие патентные заявки, решать спорные вопросы с изобретателями, выписывать авторские удостоверения. Это была работа не только с бумагами. Эксперт был обязан проводить испытания действующих патентуемых моделей или образцов. За день приходилось обрабатывать не менее трех заявок. Рабочий день служащего Патентного бюро длился восемь часов. К тому же Эйнштейн должен был, по крайней мере, в первые годы, находить время для освоения технического черчения. Директор бюро Галлер был приверженцем жесткой дисциплины. Себя и своих коллег Эйнштейн называл «батраками», «патентными рабами», а само учреждение «светским монастырем». Эйнштейна как знатока электродинамики Максвелла загрузили в первую очередь «электрическими» патентами.

В бюро патентов Эйнштейн проработал семь с лишним лет, считая эти годы самыми счастливыми в жизни. Скорее всего, он имел в виду не материальные блага, к которым он всегда относился с большой долей безразличия, и не наличие якобы свободного времени для занятий наукой. В непростой бернский период своей жизни Эйнштейн взялся за сложные нетривиальные задачи и успешно решил их. Он с оптимизмом говорил: «…после восьми часов работы остается еще восемь часов на всякую всячину, да еще есть воскресенье». Макс Борн писал: «Чтобы успешно заниматься наукой в виде побочного труда, нужно было быть Эйнштейном».

Должность «патентного служки» постоянно занимала его ум различными научными и техническими вопросами, но оставляла достаточно времени для самостоятельной творческой работы. Ее результаты к середине «счастливых бернских лет» составили содержание научных статей, которые изменили облик современной физики, принесли Эйнштейну мировую славу.

Годы работы в Патентном бюро были счастливыми и благодаря так называемой «Академии Олимпа». В первые месяцы пребывания в Берне Эйнштейн дал объявление о частных уроках. На объявление откликнулся Морис Соловин, изучавший в Цюрихском университете философию. Уроки быстро переросли в обсуждения различных проблем. Соловин предложил вместе читать по вечерам интересные книги. Вскоре к ним присоединился Конрад Габихт, приехавший в Берн для завершения своего математического образования. Свой кружок молодые люди назвали «Академия Олимпа». Они собирались после работы и читали сочинения Спинозы, Юма, Ампера, Гельмгольца, Римана, Пуанкаре, трактаты математиков Дедекинда и Клиффорда и многое другое. Они читали такие шедевры мировой литературы: «Антигона» Софокла, «Рождественские рассказы» Диккенса, «Дон–Кихот» Сервантеса.

Соловин вспоминал: «Прочитывалась одна страница, иногда только полстраницы, а порой только одна фраза, после чего следовало обсуждение, которое, могло затянуться на много дней». Друзей объединяло искреннее стремление учиться, познавать то, что не давала высшая школа. Вскоре к ним примкнул Микеланжело Бессо. По рекомендации Эйнштейна он поступил в 1904 году в Бернское патентное бюро. С работы они часто возвращались вместе и вели нескончаемые беседы. Бессо обладал энциклопедическими знаниями, был заядлым спорщиком. Эйнштейн потом писал, что не знал «лучшего резонатора новых идей». Бессо был первым, кому Эйнштейн рассказал о теории относительности. Статью «К электродинамике движущихся тел» Эйнштейн заканчивает словами: «В заключение отмечу, что мой друг и коллега М.Бессо явился верным помощником при разработке изложенных здесь проблем и что я обязан ему рядом ценных указаний». Заседания «академии» чаще всего проходили на квартире Эйнштейна. Когда в 20-х годах журналисты спросили, где была создана теория относительности, он без колебаний назвал адрес своей бернской квартиры.

Ученая степень доктора философии была присвоена Эйнштейну в 1905 году, но только в 1908 году он был утвержден приват-доцентом в Берне, а в 1909 году принял приглашение занять место экстраординарного профессора теоретической физики в Цюрихском университете и покинул Патентное бюро в Берне.

3 Знаменитые теории Альберта Эйнштейна

3.1 Броуновское движение

Год 1905 стал знаменательным в истории физики.

В этом году Эйнштейн опубликовал три важнейшие работы, сыгравшие выдающуюся роль во всем последующем развитии физики ХХ века. В первой из них, посвященной броуновскому движению, он сделал важные предсказания о движении взвешенных в жидкости частиц, обусловленном столкновениями с молекулами. Предсказания позднее подтвердились на опыте.

Во второй работе, посвященной фотоэффекту, Эйнштейн высказал революционную гипотезу о природе света: при определенных обстоятельствах свет можно рассматривать как поток частиц, фотонов, энергия которых пропорциональна частоте световой волны. Практически не нашлось физиков, которые согласились бы с этой идеей Эйнштейна. Потребовались два десятилетия напряженных усилий экспериментаторов и теоретиков, чтобы картина фотонов стала общепризнанной в рамках квантовой механики.

Но наиболее революционной стала третья работа Эйнштейна «К электродинамике движущихся тел», в которой с необычайной ясностью были изложены идеи частной теории относительности (ЧТО), разрушившей классические представления о пространстве-времени, существовавшие со времени Ньютона.

Первая из этих статей - «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории», вышедшая в 1905 году, была посвящена теории броуновского движения.

Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 году английским ботаником Р.Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований.

Эйнштейн связал движение частиц, наблюдаемое в микроскоп, со столкновениями этих частиц с невидимыми молекулами; кроме того, он предсказал, что наблюдение броуновского движения позволяет вычислить массу и число молекул, находящихся в данном объеме. Эта работа Эйнштейна имела особое значение потому, что существование молекул, считавшихся не более чем удобной абстракцией, в то время еще ставилось под сомнение.

Решения важнейшего для физики вопроса о реальности атомов Эйнштейн ждет не от туманных натурфилософских рассуждений и не от бесконечных словопрений, а от прямого, так сказать «лобового», опыта, причем, как видно, ждет с нетерпением. «Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы!» - таким восклицанием заканчивается статья. Для Эйнштейна эта статья не отвлеченная «игра ума», не еще одна публикация в солидном журнале, укрепляющая его репутацию в научном мире; нет, ему чрезвычайно интересно, просто необходимо - и причем поскорее - убедиться в том, что атомы, о которых говорят уже более 2000 лет, действительно существуют.

В 1908 году Ж.Перрен с сотрудниками серией тонких и систематических экспериментальных работ блестяще подтвердили все выводы Эйнштейна, касающиеся броуновского движения, и из прямых опытов получили для числа Авогадро значение, лежащее в пределах от 6,5·1023 до 7,2·1023 (современное значение 6,02·1023) и согласующееся с более ранними косвенными оценками. После этих работ отрицать реальность атомов было уже невозможно.

Но все это произошло, как уже говорилось, только в 1908 году, а пока Эйнштейн продолжает изыскивать возможные флуктуационные эксперименты. В декабре 1905 года он заканчивает свою вторую статью по броуновскому движению, «дополняющую в некоторых пунктах» предыдущую работу.

3.2 Кванты и фотоэффект

В том же 1905 вышла и другая работа Эйнштейна — «Об одной эвристической точке зрения на возникновение и превращение света». За пять лет до этого М.Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Физический смысл квантов оставался неясным, но величина кванта равна произведению некоторого числа (постоянной Планка) и частоты излучения.

Эйнштейн выдвинул теорию, согласно которой свет не только излучается и поглощается, но и состоит из дискретных, далее неделимых порций, квантов света. Они представляют собой частицы, которые движутся в пустоте со скоростью 300 000 километров в секунду. Впоследствии (в двадцатые годы) эти частицы получили название фотонов. Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования «красной границы», то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.

Идея Эйнштейна состояла в том, чтобы установить соответствие между фотоном (квантом электромагнитной энергии) и энергией выбитого с поверхности металла электрона. Каждый фотон выбивает один электрон. Кинетическая энергия электрона (энергия, связанная с его скоростью) равна энергии, оставшейся от энергии фотона за вычетом той ее части, которая израсходована на то, чтобы вырвать электрон из металла. Чем ярче свет, тем больше фотонов и больше число выбитых с поверхности металла электронов, но не их скорость. Более быстрые электроны можно получить, направляя на поверхность металла излучение с большей частотой, так как фотоны такого излучения содержат больше энергии.

В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Энергия Е каждой порции излучения в полном соответствии с гипотезой Планка пропорциональна частоте:

E = hv, где h — постоянная Планка.

Из того, что свет, как показал Планк, излучается порциями, еще не вытекает прерывистая структура самого света. Ведь и минеральную воду продают в бутылках, но отсюда совсем не следует, что вода имеет прерывистую структуру и состоит из неделимых частей. Лишь явление фотоэффекта показало, что свет имеет прерывистую структуру: излученная порция световой энергии E = hv сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

Кинетическую энергию фотоэлектрона можно найти, применив закон сохранения энергии. Это уравнение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии в световом пучке и поэтому определяет число электронов, вырванных из металла. Скорость же электронов согласно определяется только частотой света и работой выхода, зависящей от рода металла и состояния его поверхности. От интенсивности света она не зависит.

Для каждого вещества фотоэффект наблюдается лишь в том случае, если частота v света больше минимального значения. Ведь чтобы вырвать электрон из металла даже без сообщения ему кинетической энергии, нужно совершить работу выхода А. Следовательно, энергия кванта должна быть больше этой работы. Предельную частоту, называют красной границей фотоэффекта.

Для цинка красной границе соответствует длина волны м (ультрафиолетовое излучение). Именно этим объясняется опыт по прекращению фотоэффекта с помощью стеклянной пластинки, задерживающей ультрафиолетовые лучи.

Работа выхода у алюминия или железа больше, чем у цинка. Поэтому в опыте использовалась цинковая пластина. У щелочных металлов работа выхода, напротив, меньше, а длина волны, соответствующая красной границе, больше. Пользуясь уравнением Эйнштейна можно найти постоянную Планка h. Для этого нужно экспериментально определить частоту света v, работу выхода А и измерить кинетическую энергию фотоэлектронов. Точно такое же значение было найдено Планком при теоретическом изучении совершенно другого явления — теплового излучения. Совпадение значений постоянной Планка, полученных различными методами, подтверждает правильность предположения о прерывистом характере излучения и поглощения света веществом. Уравнение Эйнштейна, несмотря на свою простоту, объясняет основные закономерности фотоэффекта. В современной физике фотон рассматривается как одна их элементарных частиц. Таблица элементарных частиц уже многие десятки лет начинается с фотона.

Эйнштейн выдвинул еще одну смелую гипотезу, предположив, что свет обладает двойственной природой. Как показывают проводившиеся на протяжении веков оптические эксперименты, свет может вести себя как волна, но, как свидетельствует фотоэлектрический эффект, и как поток частиц. Правильность предложенной Эйнштейном интерпретации фотоэффекта была многократно подтверждена экспериментально, причем не только для видимого света, но и для рентгеновского и гамма-излучения.

Таким образом, Эйнштейну принадлежит теоретическое открытие фотона, экспериментально обнаруженного в 1922 году А.Комптоном. А в 1924 году Луи де Бройль сделал еще один шаг в преобразовании физики, предположив, что волновыми свойствами обладает не только свет, но и материальные объекты, например электроны. Идея де Бройля также нашла экспериментальное подтверждение и заложила основы квантовой механики.

Работы Эйнштейна позволили объяснить флуоресценцию, фотоионизацию и загадочные вариации удельной теплоемкости твердых тел при различных температурах и др., которые не могла объяснить электромагнитная теория света.

В 1922 году Эйнштейну была вручена Нобелевская премия по физике 1921 года «за заслуги перед теоретической физикой, и особенно за открытие закона фотоэлектрического эффекта». «Закон Эйнштейна стал основой фотохимии так же, как закон Фарадея – основой электрохимии»,– заявил на представлении нового лауреата Сванте Аррениус из Шведской королевской академии. Условившись заранее о выступлении в Японии, Эйнштейн не смог присутствовать на церемонии и свою Нобелевскую лекцию прочитал лишь через год после присуждения ему премии.

3.3 Частная (специальная) теория относительности

Наибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в том же 1905 году, в статье «К электродинамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. В то время большинство физиков полагало, что световые волны распространяются в эфире – загадочном веществе, которое, как принято было думать, заполняет всю Вселенную. Однако обнаружить эфир экспериментально никому не удавалось. Поставленный в 1887 году Альбертом А. Майкельсоном и Эдвардом Морли эксперимент по обнаружению различия в скорости света, распространяющегося в гипотетическом эфире вдоль и поперек направления движения Земли, дал отрицательный результат. Если бы эфир был носителем света, который распространяется по нему в виде возмущения, как звук по воздуху, то скорость эфира должна была бы прибавляться к наблюдаемой скорости света или вычитаться из нее, подобно тому как река влияет, с точки зрения стоящего на берегу наблюдателя, на скорость лодки, идущей на веслах по течению или против течения.

Нет оснований утверждать, что специальная теория относительности Энштейна была создана непосредственно под влиянием эксперимента Майкельсона-Морли, но в основу ее были положены два универсальных допущения, делавших излишней гипотезу о существовании эфира: все законы физики одинаково применимы для любых двух наблюдателей, независимо от того, как они движутся относительно друг друга, свет всегда распространяется в свободном пространстве с одной и той же скоростью, независимо от движения его источника. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.

Выводы, сделанные из этих допущений, изменили представления о пространстве и времени: ни один материальный объект не может двигаться быстрее света; с точки зрения стационарного наблюдателя, размеры движущегося объекта сокращаются в направлении движения, а масса объекта возрастает, чтобы скорость света была одинаковой для движущегося и покоящегося наблюдателей, движущиеся часы должны идти медленнее. Даже понятие стационарности подлежит тщательному пересмотру. Движение или покой определяются всегда относительно некоего наблюдателя. Наблюдатель, едущий верхом на движущемся объекте, неподвижен относительно данного объекта, но может двигаться относительно какого-либо другого наблюдателя. Поскольку время становится такой же относительной переменной, как и пространственные координаты x, y и z, понятие одновременности также становится относительным. Два события, кажущихся одновременными одному наблюдателю, могут быть разделены во времени, с точки зрения другого.

Из других выводов, к которым приводит специальная теория относительности, заслуживает внимание эквивалентность массы и энергии. Масса m представляет собой своего рода «замороженную» энергию E, с которой связана соотношением E = mc2, где c – скорость света. Таким образом, испускание фотонов света происходит ценой уменьшения массы источника.

Релятивистские эффекты, как правило, пренебрежимо малые при обычных скоростях, становятся значительными только при больших, характерных для атомных и субатомных частиц. Потеря массы, связанная с испусканием света, чрезвычайно мала и обычно не поддается измерению даже с помощью самых чувствительных химических весов. Однако специальная теория относительности позволила объяснить такие особенности процессов, происходящих в атомной и ядерной физике, которые до того оставались непонятными. Почти через сорок лет после создания теории относительности физики, работавшие над созданием атомной бомбы, сумели вычислить количество выделяющейся при ее взрыве энергии на основе дефекта (уменьшения) массы при расщеплении ядер урана.

Восприятие работ Эйнштейна было неоднозначным. Многие ученые их попросту не понимали, и это происходило из-за специфических взглядов Эйнштейна на структуру правильных теорий и на связь между теорией и экспериментом. Хотя Эйнштейн и признавал, что единственным источником знаний является опыт, он был также убежден, что научные теории являются свободными творениями человеческой интуиции и что основания, на которых зиждется хорошая теория, не обязательно должны быть логически связаны с опытом. Идеальная теория, по Эйнштейну, должна базироваться на минимально возможном количестве постулатов и описывать максимально возможное количество явлений. Именно эта «скупость» на постулаты, свойственная всей научной деятельности Эйнштейна, делала его работы труднодоступными для коллег. Однако, ряд выдающихся физиков сразу поддержал молодого ученого, и среди них - Макс Планк. Именно он помог Эйнштейну перебраться из патентного бюро в Цюрихе сначала в Прагу, а затем в Берлин на должность директора Института физики кайзера Вильгельма.

3.4 Общая теория относительности

В 1905 году Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1914 году принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. Путь, приведший Эйнштейна к успеху, был трудным и извилистым. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М.Гроссмана в 1912 году появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915 годом. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия? Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства — времени.

Общая теория относительности охватывала все возможные движения, в том числе и ускоренные (т.е. происходящие с переменной скоростью). Господствовавшая ранее механика, берущая начало из работ Исаака Ньютона, становилась частным случаем, удобным для описания движения при относительно малых скоростях. Эйнштейну пришлось заменить многие из введенных Ньютоном понятий. Такие аспекты ньютоновской механики, как, например, отождествление гравитационной и инертной масс, вызывали у него беспокойство. По Ньютону, тела притягивают друг друга, даже если их разделяют огромные расстояния, причем сила притяжения, или гравитация, распространяется мгновенно. Гравитационная масса служит мерой силы притяжения. Что же касается движения тела под действием этой силы, то оно определяется инерциальной массой тела, которая характеризует способность тела ускоряться под действием данной силы.

Он произвел так называемый «мысленный эксперимент». Если бы человек в свободно падающей коробке, например в лифте, уронил ключи, то они не упали бы на пол: лифт, человек и ключи падали бы с одной и той же скоростью и сохранили бы свои положения относительно друг друга. Так происходило бы в некой воображаемой точке пространства вдали от всех источников гравитации. Один из друзей Эйнштейна заметил по поводу такой ситуации, что человек в лифте не мог бы отличить, находится ли он в гравитационном поле или движется с постоянным ускорением. Эйнштейновский принцип эквивалентности, утверждающий, что гравитационные и инерциальные эффекты неотличимы, объяснил совпадение гравитационной и инертной массы в механике Ньютона. Затем Эйнштейн расширил картину, распространив ее на свет. Если луч света пересекает кабину лифта «горизонтально», в то время как лифт падает, то выходное отверстие находится на большем расстоянии от пола, чем входное, так как за то время, которое требуется лучу, чтобы пройти от стенки к стенке, кабина лифта успевает продвинуться на какое-то расстояние. Наблюдатель в лифте увидел бы, что световой луч искривился. Для Эйнштейна это означало, что в реальном мире лучи света искривляются, когда проходят на достаточно малом расстоянии от массивного тела.

Общая теория относительности Эйнштейна заменила ньютоновскую теорию гравитационного притяжения тел пространственно-временным математическим описанием того, как массивные тела влияют на характеристики пространства вокруг себя. Согласно этой точке зрения, тела не притягивают друг друга, а изменяют геометрию пространства-времени, которая и определяет движение проходящих через него тел. Как однажды заметил коллега Эйнштейна, американский физик Дж.А.Уилер, «пространство говорит материи, как ей двигаться, а материя говорит пространству, как ему искривляться». Для проверки своей теории предложил три эффекта: искривление светового луча в поле тяготения Солнца, смещение перигелия Меркурия и гравитационное красное смещение. Эти эффекты, как показали последующие эксперименты, действительно действуют и количественно правильно предсказывались общей теорией относительности.

В декабре 1915 года на заседании Академии наук в Берлине Эйнштейн доложил, наконец, окончательные уравнения общей теории относительности. Эта теория стала вершиной творчества Эйнштейна, и, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Однако понимание общей теории относительности пришло не сразу. Первые три года эта теория интересовала узкий круг специалистов и была понятна лишь десятку избранных.

Ситуация резко изменилась в 1919 году, так как в этом году удалось проверить прямыми наблюдениями одно из парадоксальных предсказаний общей теории относительности - искривление луча света от далекой звезды полем тяготения Солнца. Такое наблюдение возможно только во время полного солнечного затмения. Именно в 1919 г. такое затмение можно было наблюдать в районах земного шара с обычно хорошей погодой, что позволяло провести максимально точное фотографирование видимого положения звезд на небе в момент полного затмения. Экспедиция, снаряженная английским астрофизиком сэром Артуром Эддингтоном, сумела получить данные, подтвердившие предсказание Эйнштейна. Буквально в один день Эйнштейн стал знаменит на весь мир.

Обрушившаяся на него слава не поддается описанию. Теория относительности на долгое время стала предметом салонных бесед. Газеты всех стран были переполнены статьями о теории относительности, вышло множество популярных книг, в которых авторы пытались объяснить обывателям суть этой теории. Университеты упрашивали его работать у них в качестве преподавателя, ученые из различных стран мира обращались к нему за советом, а политические партии и всевозможные благотворительные организации и фонды сражались между собой за его поддержку и помощь, он был избран почетным членом множества академий.

Пришло, наконец, признание.

Слово и мнение Эйнштейна стало одним из самых авторитетных в мире. В 1920-е гг. Эйнштейн много ездит по свету, участвует в международных конференциях. Особенно важна была роль Эйнштейна в дискуссиях, развернувшихся в конце 1920-х гг. по концептуальным проблемам квантовой механики. Беседы и споры Эйнштейна с Бором на эти темы стали знаменитыми.

Портреты Эйнштейна появились на обложках иллюстрированных журналов, его имя мелькало в заголовках ежедневных газет. Аудитории, где Эйнштейн читал лекции в Берлинском университете, во время «релятивистской шумихи» были всегда переполнены, иногда число слушателей превышало тысячу человек. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952 году, которое он не принял.

Свою мировую славу Эйнштейн начал воспринимать как тягостное бремя. Его научный триумф вышел далеко за рамки естественных наук. Он совершает многочисленные зарубежные поездки. Журнал «Scientific American» профинансировал конкурс на самое понятное объяснение теории относительности с призом в 5 тысяч долларов. Эйнштейн пошутил, что среди своих друзей он один не участвовал: «Я боялся, что не справлюсь». Любопытно (или символично), что победитель конкурса Болтон был сотрудником Британского патентного бюро.

4 Калейдоскоп изобретений и экспериментов

В период интенсивных исследований по общей теории относительности, Эйнштейн обратился к экзотическим лабораторным экспериментам. Он пишет своему другу Микеле Бессо: «Эксперимент скоро закончится… Изумительная работа… Какую же изощренность демонстрирует природа, когда пытаешься проникнуть в ее тайны… я все еще увлекаюсь проведением опытов». Речь идет о гиромагнитных явлениях микрочастиц, а именно, о повороте свободно подвешенного ферромагнитного образца при его намагничивании внешним магнитным полем. Этот уникальный опыт был поставлен совместно с зятем выдающего голландского теоретика Хендрика Лоренца – де Гаазом. Эйнштейн преодолел трудности, с которыми не смогли справиться многие маститые экспериментаторы.

Малоизвестно, что Эйнштейн с различными соавторами имел более двух десятков патентов. Интересно и то, что, уйдя из бернского патентного бюро, получив мировую известность как физик, Эйнштейн не расстался с патентной деятельностью. Например, совместно с Л.Сциллардом в конце 1920-х годов были запатентованы три типа холодильных машин, насосы для холодильных машин, компрессор, устройства для сжижения газов и паров (они нашли применение в атомной технике).

Совместно с Гольдштейном запатентовано устройство для передачи звука, основанное на явлении магнитострикции. В 1936 году со своим другом, врачом Г.Буки он запатентовал фотокамеру с автоматической подстройкой под уровень освещенности. Эйнштейн часто выступал в качестве патентного эксперта. В 1916 году (создание общей теории относительности!) он писал Бессо: «У меня сейчас снова весьма забавная экспертиза в одном патентном процессе».

Эйнштейн сыграл значительную роль в признании Г.Аншютца изобретателем гироскопического компаса. Известно, что он участвовал в патентной тяжбе между фирмами АЭГ и Сименс в 1929 году. Во время второй мировой войны Эйнштейн сотрудничал с министерством военно-морского флота США в качестве научно-технического эксперта. В его обязанности входила оценка изобретений, поступающих в министерство.

5 Эмиграция

Эйнштейн не без колебаний принял предложение переехать в Берлин. Но возможность общения с крупнейшими немецкими учеными, в числе которых был и Планк, привлекала его. Но политическая и нравственная атмосфера в Германии делалась все тягостнее и тягостнее, антисемитизм поднимал голову. В 1933 году, когда власть захватили фашисты, Эйнштейн навсегда покинул Германию. На этих драматических событиях заканчивается европейский период жизни Эйнштейна.

В знак протеста против фашизма он отказался от германского подданства и вышел из состава Прусской и Баварской Академий наук.

Переехав в США, Эйнштейн занял должность профессора физики в новом институте фундаментальных исследований в Принстоне (штат Нью-Джерси). Он продолжал заниматься вопросами космологии, а также усиленно искал пути построения единой теории поля, которая бы объединила гравитацию, электромагнетизм (а возможно, и остальное). И хотя реализовать эту программу ему не удалось, это не поколебало репутации Эйнштейна как одного из величайших естествоиспытателей всех времен.

Маленький университетский городок Принстон в США приютил Эйнштейна. Никаких особых мер для обеспечения его личной безопасности не принималось, жители были дружелюбны, называли его «старый док», а студенты распевали про него песенки.

В Принстоне Эйнштейн стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был скромным, приветливым и несколько эксцентричным человеком, с которым можно было столкнуться прямо на улице. В часы досуга он любил музицировать. Начав учиться игре на скрипке в шесть лет, Эйнштейн продолжал играть всю жизнь, иногда в ансамбле с другими физиками. Ему нравился парусный спорт, который, как он полагал, необыкновенно способствует размышлениям над физическими проблемами.

Приезд Эйнштейна был для Америки огромным событием. Почти сразу же Эйнштейн был приглашён президентом Рузвельтом в Белый дом (ведь у них были общие интересы – огромное увлечение парусным спортом).

Но спокойной жизни в тихом американском городке не получилось. Среди физиков – иностранцев, оказавшихся в эмиграции в США, росла тревога по возможному созданию атомной бомбы в Германии. Они обратились к Эйнштейну с просьбой обратиться к американскому президенту. Сегодня, когда известные ученые обсуждают важные экологические проблемы, вопросы противоракетной обороны и многие другие, важные для общества вопросы, раздаются голоса, что не следует смешивать науку с политикой. Эйнштейн же был убежден, что на каждом учёном лежит моральная ответственность за судьбу человечества. И учёный обязан донести до людей суть своих работ и объяснить возможные последствия. Поэтому Эйнштейн и физик Лео Сциллард направили письмо Франклину Рузвельту, где сообщали об открытии деления ядер урана и предупреждали об опасности создания ядерного оружия. Это был импульс к развертыванию «Манхэттенского проекта» по созданию атомной бомбы.

После второй мировой войны, потрясенный ужасающими последствиями использования атомной бомбы против Японии и все ускоряющейся гонкой вооружений, Эйнштейн стал горячим сторонником мира, считая, что в современных условиях война представляла бы угрозу самому существованию человечества. Незадолго до смерти он поставил свою подпись под воззванием Бертрана Рассела, обращенным к правительствам всех стран, предупреждающим их об опасности применения водородной бомбы и призывающим к запрету ядерного оружия. Эйнштейн выступал за свободный обмен идеями и ответственное использование науки на благо человечества.

18 апреля 1955 года в 1 час 25 минут перестало биться сердце великого творца. Эйнштейн скончался в Принстоне от аневризмы аорты. Весь мир скорбел. Но Эйнштейн завещал, чтобы не было ни похорон, ни могилы, ни памятника. Всего десять самых близких человек шли за гробом. Тело было предано кремации, пепел развеян по ветру над рекой Дэлавер.

Река по имени Время продолжает свое течение и где-то несет его прах.

Заключение

Имя Альберта Эйнштейна вошло в перечень самых выдающихся людей XX столетия и одного из величайших ученых всех времен.

Эйнштейн обогатил физику с присущей только ему силой прозрения и непревзойденной игрой воображения. С детских лет он воспринимал мир как гармоническое познаваемое целое, «стоящее перед нами наподобие великой и вечной загадки». По его собственному признанию, он верил в «Бога Спинозы, являющего себя в гармонии всего сущего». Именно это «космическое религиозное чувство» побуждало Эйнштейна к поиску объяснения природы с помощью системы уравнений, которая обладала бы большой красотой и простотой.

И сегодня, спустя 100 лет после выхода в свет «звездных» статей, посвященных принципам относительности, квантовой и молекулярной теориям, проблема, волновавшая Эйнштейна, по-прежнему будоражит умы ученых мира. Выражение E = mc2 – это крылатая фраза, знакомая широкой публике так же, как строки Шекспира.

Величие, сделанного Эйнштейном в науке, трудно переоценить. Сейчас нет практически ни одной ветви современной физики, где, так или иначе, не присутствовали бы фундаментальные понятия квантовой механики или теории относительности.

Но, пожалуй, еще важнее уверенность, которую своими трудами вселил в ученых Эйнштейн, что природа познаваема и ее законы красивы. Стремление к этой красоте и составляло смысл жизни великого ученого.

Список использованной литературы

  1. Кузнецов Б.Г. Эйнштейн. Жизнь, смерть, бессмертие. 5-е изд., перераб. и доп. - М.: Наука, 1985.

  2. Лауреаты Нобелевской премии. Энциклопедия. Пер. с англ. - М.: «Прогресс», 1992.

  3. Сноу Ч.П. Портреты и размышления. - М.: изд. «Прогресс», 1985.

  4. Френкель В.Я., Явелов Б.Е. Эйнштейн: изобретения и эксперимент. 2-е изд., перераб. и дополн. – М.: изд. «Наука», 1990.

  5. Хофман Б. Альберт Эйнштейн: творец и бунтарь. История физики. - Пер. с англ. – М.: «Прогресс», 1983.

  6. Явелов Б.Е., Френкель В.Я. Патентный эксперт Эйнштейн//Сб. Пути в незнакомое, - М.: Советский писатель, 1983

topref.ru

Реферат - Альберт Эйнштейн - Биографии

Эйнштейн

Эйнштейн вырос в свободомыслящей мелкобуржуазной семье, чьи предки из поколения в поколение жили в Швабии (юго-западная часть Германии). По происхождению они были евреями, но безразлично относились к религии. Жизнь семьи была сносной, хотя и беспечной, но они никогда не были так бедны, как Уэллсы или Резерфорды.

В детстве Эйнштейн не был особенно способным ребенком. Он казался отсталым (как и Черчилль), поздно начал говорить. Все это кажется несколько странным, особенно для будущего математика. Как правило, математические способности проявляются в очень раннем возрасте. Многие из выдающихся математиков уже задавали вопросы о больших или бесконечно больших числах, когда им не было и трех лет (рассказы об этом вполне достоверны, скажем, в отношении Харди и Дирака). Я лично наблюдал за одним действительно талантливым юным математиком, которому было четыре года. И я полагаю, что теперь, когда начали внимательно изучать этот ярко выраженный и особенный талант, мы будем знать, есть ли у ребенка математические способности, еще до того, как он научился читать.

Итак, в детстве Эйнштейн не проявлял математических способностей, но не следует думать, что он был вовсе лишен их. Они просто не обнаруживались в раннем возрасте. С десяти лет в нем стали заметны признаки быстрого развития, но это было быстрое развитие не интеллекта, а характера.

Его родители, которые вполне могли быть и католиками, если бы они вообще были верующими, отдали сына в католическую начальную школу. Он отнесся к ней равнодушно. Десяти лет его определили в одну из гимназий Мюнхена. Ее он возненавидел по тем же причинам, по которым ненавидел и в семьдесят лет: гимназия была пропитана милитаристским духом, а ему раз и навсегда, на всю жизнь, стал ненавистен немецкий милитаризм. Дети маршировали, учителя рявкали — это была не школа, а казарма. Уже в десять лет он отвергал всякую муштру. Он приходил в ужас от принуждения в любом виде или в любой форме — физической, эмоциональной или умственной. Zwang. Знаю ли я это немецкое слово, спросил он у меня, когда мы говорили об английских нравах. Так вот, в мюнхенской гимназии он впервые ополчился на этот Zwang.

Zwang — насилие (нем.).

В десять лет он, казалось, с такой же уверенностью полагался на свой разум, как и в семьдесят. В детстве у него был период религиозного настроения. Но недолго. Очень скоро в центре его внимания стал разум, и в двенадцать лет он исповедовал нечто вроде космической религии неверующего, которая сохранилась у него на всю жизнь. Но он так часто произносил слово «бог», что вводил этим людей в заблуждение. Ребенком он действительно пережил глубокое религиозное чувство, но когда потом говорил о боге, то вовсе не имел в виду то, что под этим понимали верующие. «Я верю в бога Спинозы, который раскрывается в гармонии всего сущего, а не в того бога, который управляет судьбами и поступками людей», — говорил он уже в зрелом возрасте.

В ранней юности он сам пришел к этому умозаключению, когда был еще скромным учеником мюнхенской гимназии. С такой же самостоятельностью он решил, чем он будет заниматься. У него были хорошие — но не больше того — успехи в физике и математике. Но он не выносил большинства школьных предметов и вовсе не хотел преуспевать в них. В этом он весьма отличался от многих одаренных мальчиков и почти от всех будущих ученых. В школьные годы Резерфорд, например (он тоже был творчески самобытным человеком), учился всему тому, чему его учили, и учился отлично. Харди не любил свою школу в Уинчестере, но он стремился проявить себя, чтобы получить награду и стипендии в Тринити-колледже. Для Эйнштейна соревнование ничего не значило, оно не соблазняло его. Здесь снова можно заметить духовное сходство с молодым Черчиллем, не способным или не желающим проявить прилежание в школе. Только написание английских эссе доставляло ему радость.

Отец Эйнштейна был неудачным коммерсантом. В Мюнхене дела у него шли плохо, и он переехал в Милан, где стало еще хуже. Сына, которому тогда было пятнадцать лет, родители оставили в Мюнхене, чтобы он окончил гимназию. Разлука с семьей мало повлияла на мальчика, уже отличавшегося независимым умом, но, оставшись один, он в эти шесть месяцев принял окончательное решение.

Приехав в Милан, он объявил свое решение родным, которые, по-видимому, одобрили его. Во-первых, он решил бросить мюнхенскую гимназию, которую ненавидел, и не сдавать выпускных экзаменов, которые презирал. Во-вторых, порвать с еврейской общиной, в которой он еще формально состоял. И в-третьих, самое тяжелое, отказаться от немецкого подданства. Он решил не иметь обязательств, которые были бы ему навязаны. Его уверенность в себе была безграничной. Он полагался только на самого себя.

В результате он сразу же провалился на вступительных экзаменах в Политехнический институт в Цюрихе. Он хотел поступить туда, чтобы стать инженером-электриком, что выглядит несколько странно в свете легенды о его непрактичности. На самом же деле о непрактичности Эйнштейна можно говорить ничуть не больше, чем о рассеянности Харди, но шаблонные представления трудно искоренить.

Хотя отец Эйнштейна не мог найти денег, лучшие члены семьи Эйнштейнов, разбросанные по всей Европе, решили, что получить образование.в Цюрихе действительно неплохо, и были готовы наскрести деньги на обучение молодого Эйнштейна. И уж неудивительно, что он сдал вступительные экзамены по тем предметам, которые изучал, и провалился по остальным.

Итак, молодой Эйнштейн, уже достигший такой степени зрелости, какую не встретишь у многих людей почтенного возраста, вынужден был провести один год в швейцарской кантональной школе. Затем он перебирается в Цюрих и поступает на педагогический факультет Политехникума, желая теперь стать учителем физики. Естественно, он тут же сталкивается с тем же Zwang, с которым не в силах мириться. Не то, чтобы ему не нравилась Швейцария, которую он считал цивилизованной и демократической страной. Нет, на этот раз Zwang — это экзамены. Они так подавляют и сковывают его ум, что в течение целого года по окончании института Эйнштейн не хочет заниматься научными проблемами.

Швейцарская кантональная школа — В Швейцарии нет единой системы народного образования, и каждый кантон имеет свое школьное законодательство и управление; общим для всех кантонов является обязательное обучение детей от 6—7 до 15—16 лет; начальная школа бывает 7—9-летняя и состоит из двух ступеней.

Впрочем, в институте ему очень повезло. Он учился у Минковского, выдающегося ученого, который после опубликования первых эйнштейновских работ признал, что ученик намного превзошел его (хотя учился Эйнштейн с ленцой). Цюрихский Политехникум был хорошим учебным заведением, и общий уровень преподавания был там достаточно высоким. У Эйнштейна появились друзья, которые восторгались им, как высшим существом. В Цюрихе Эйнштейн, вероятно, находился в таких же благоприятных условиях, как и Харди в Кембридже.

Словом, Эйнштейн получил диплом, но стал безработным. Одно время казалось, что ему никогда не найти себе работы. Раза два удалось временно устроиться преподавателем. Пока он учился, родители помогали ему, а теперь они ожидали, что он сам будет зарабатывать себе на жизнь. У Эйнштейна был единственный поношенный костюм (с этим он легко мирился) и маловато еды (с чем примириться было куда труднее). Ему помог верный и любящий друг Марсель Гроссман, впоследствии сам ставший видным ученым. Он уговорил своего отца, состоятельного швейцарского промышленника, куда-нибудь устроить Эйнштейна.

В Берне, вскоре после поступления на работу в патентное бюро, он женился. Об этом браке и о его первой жене существуют противоречивые свидетельства. Сербская девушка Милева Марич, ставшая его первой женой, училась вместе с ним в Цюрихе и была на четыре года старше его. Вот, пожалуй, и все, что о ней достоверно известно. Большинство швейцарских знакомых Эйнштейна считали ее угрюмой, малоодаренной, хотя она, вероятно, просто была скрытным, меланхоличным человеком. Ни то ни другое нельзя считать привлекательным, но иные источники говорят о ее чисто славянском отношении к жизни и очаровательной беззащитности.

Эйнштейну было двадцать шесть лег, когда у него родился первый сын. К этому времени он уже избавился от горькой нужды и, продолжая работать в патентном бюро, опубликовал (в 1905 году) в «Анналах физики» пять научных статей. Среди них три работы принадлежат к числу величайших в истории физики.

В одной, очень просто написанной, давалось квантовое объяснение фотоэлектрического эффекта — за эту работу через шестнадцать лет он был удостоен Нобелевской премии.

Другая рассматривала так называемое броуновское движение, иначе говоря, беспорядочные колебания мельчайших частиц, находящихся во взвешенном состоянии в жидкости. Эйнштейн показал, что движение этих частиц подчиняется конкретному статистическому закону. Это было похоже на фокус иллюзиониста: то, что казалось загадочным и почти чудесным, становилось предельно простым и понятным после объяснения. Если раньше кто-либо из физиков мог сомневаться в реальном существовании молекул и атомов, то теперь статья Эйнштейна давала почти прямое доказательство этому. Самое убедительное доказательство, о котором мог мечтать теоретик!

Третья статья излагала специальную теорию относительности, соединявшую в одно целое материю, пространство и время.

Между тем семейная жизнь у него не ладилась. Никто не может сказать, как глубоко это повлияло на него. К тому времени, когда он переехал в Прагу, семейный разлад все более углублялся. Вообще его пребывание в Праге было не из самых приятных. Приглашенный в Пражский университет на должность профессора, Эйнштейн становится чиновником империи Габсбургов. При назначении на должность требовалось, чтобы он объявил о своей религиозной принадлежности. Эйнштейн давно.и окончательно порвал с еврейской общиной, но в Австрии был силен антисемитизм, и это было достаточным основанием для него, чтобы заявить о своем происхождении.

Эйнштейн не падал духом, и по-прежнему громко звучал его смех. До нас дошли трогательные рассказы о его игре на скрипке в одном из литературных салонов Праги, где велись споры о Kанте, Гегеле и Фихте и исполнялась камерная музыка. Там часто бывал не известный еще в те времена Франц Кафка, но вряд ли они когда-нибудь говорили друг с другом. Между ними было мало общего.

Но и в атмосфере милитаристского угара ему удалось обрести покой и в личной жизни, и в творчестве. Во всяком случае, он был счастлив, переехав в Берлин, где он встретился со своим дядей и его дочерью Эльзой, которая недавно развелась после неудачного замужества. Быть может, он полюбил ее, но нам трудно судить об этом. Мы знаем лишь, что после развода с Милевой Марич он женился на Эльзе. Нетребовательная, жизнерадостная, умеющая распознавать людей, она всю жизнь ограждала его от житейских неприятностей. В отличие от первой жены, которая изучала математику, Эльза ничего не понимала в работах Эйнштейна. Это был один из тех браков, какие нередко бывают у великих ученых: он давал Эйнштейну свободу и оставлял наедине с самим собой. До встречи с Эльзой у него был период спада в научной работе. Почти сразу после женитьбы он стал работать с особой энергией и достиг небывалого творческого подъема.

Общая теория относительности была опубликована в 1916 году, и, как только с ней познакомились в Англии (куда она дошла, преодолев рогатки, воздвигнутые войной), наши ученые пришли к заключению, что она почти безоговорочно верна. «Это величайшее открытие в науке со времен Ньютона», — заявили они. На основании этой теории Эйнштейном было сделано, в частности, предсказание, которое могло быть сразу же проверено астрономами. В своей статье он просил их произвести эту проверку. Английские астрономы решили это сделать. В марте 1917 года они объявили, что 29 мая 1919 года, когда произойдет полное солнечное затмение, должна быть произведена решающая проверка общей теории относительности.

Все это дела давно минувших дней. Проверка, конечно, дала требуемое подтверждение.

Как только была опубликована общая теория относительности (а слава пришла к Эйнштейну еще до ее подтверждения), он занял в общественной жизни такое положение, какое вряд ли займет в будущем другой ученый. Никто, собственно, не знает, почему, но он вошел в общественное сознание всего мира, став живым символом науки и властителем дум двадцатого века. Казалось, что люди снова хотят возвеличить человеческий разум и изгладить из памяти ужасы войны. Благоговея перед Эйнштейном, они, в сущности, не понимали значения того, перед чем они благоговели. Но как бы то ни было, они верили, что перед ними существо высшего порядка.

Эйнштейн всегда более трезво, чем большинство его коллег, оценивал политическую обстановку в Германии. Он видел, как под поверхностью Веймарской республики бродят темные силы. Как только Гитлер пришел к власти, Эйнштейн гораздо быстрее многих политических деятелей понял, что ожидает мир в будущем. Значит, следовало расстаться с надеждами на международный пацифизм. Эйнштейну было ясно, что нацистская империя должна быть уничтожена, и он открыто выступал против Гитлера.

Его не было в Германии, когда Гитлер стал канцлером. Эйнштейн был смелым человеком, но он понимал, что если он вернется в Германию, то фашисты убьют его. Большую часть 1933 года он прожил в маленьком фламандском приморском городке Ден-Хаан (Кок-сюр-Мер). Там он основал своего рода интеллектуальный двор для беженцев. Ден-Хаан стал временной столицей германоязычного научного мира. Между прочим, это самое милое местечко на побережье Фландрии, где был приятный обычай называть улицы в честь великих людей. У них были улицы Шекспира, Данте, Рембрандта и так далее. Но они не назвали ни одну улицу именем своего наиболее выдающегося жителя.

Последние годы жизни Эйнштейн постоянно болел. Его мучила болезнь кишечника, печени и под конец тяжелое заболевание аорты. Он был лишен житейских удобств, часто страдал от острой боли, но оставался приветливым и спокойным, не обращая внимания на свою болезнь и приближение смерти. И продолжал работать. Смерть он встретил спокойно. «Свою задачу на земле я выполнил», — сказал он безо всякого сожаления.

В то воскресенье ночью на столике у его кровати лежала рукопись. В ней были новые уравнения, приводящие к единой теории поля, которую он никак не мог завершить. Он надеялся, что завтра боли утихнут и он сможет поработать над рукописью. Но на рассвете произошло прободение стенки аорты, и он умер.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.