Уже сейчас на сайте вы можете воспользоваться более чем 20 000 рефератами, докладами, шпаргалками, курсовыми и дипломными работами.Присылайте нам свои новые работы и мы их обязательно опубликуем. Давайте продолжим создавать нашу коллекцию рефератов вместе!!!
Вы согласны передать свой реферат (диплом, курсовую работу и т.п.), а также дальнейшие права на хранение, и распространение данного документа администрации сервера "mcvouo.ru"?
Дата добавления: март 2006г.
Радиация 1. Основные понятия, термины и определения
Радиация, проникающая радиация, радиационная защита, защита от ионизирующих и рентгеновских излучений, нуклиды, радионуклиды и т. п.
Многообразие этих терминов, которые в какой-то степени повторяют друг друга, нередко приводит к неоднозначному пониманию и толкованию.
С некоторым допущением можно сказать, что радиация - это явление, происходящее в радиоактивных элементах, ядерных реакторах, при ядерных взрывах, сопровождающееся испусканием частиц и различными излучениями, в результате чего возникают вредные и опасные факторы, воздействующие на людей. Следовательно, термин “ионизирующие излучения” есть одна из сторон проявления физико-химических процессов, протекающих в радиоактивных элементах. Термин “проникающая радиация” следует понимать как поражающий фактор ионизирующих излучений, возникающих, например, при взрыве атомного реактора. Ионизирующее излучение - это любое излучение, вызывающее ионизацию среды, т. е. протекание электрических токов в этой среде, в том числе и в организме человека, что часто приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям.
2. Источники и виды ионизирующих излучений
Источниками ионизирующих излучений являются радиоактивных элементы и их изотопы, ядерные реакторы, ускорители заряженными частиц и др. рентгеновские установки и высоковольтные источники постоянного тока относятся к источникам рентгеновского излучения.
Здесь следует отметить, что при нормальном режиме их эксплуатации радиационная опасность незначительна. Она наступает при возникновении аварийного режима и может долго проявлять себя при радиоактивном заражении местности. Ионизирующие излучения разделяются на два вида: электромагнитное (гамма-излучение и рентгеновское излучение) и корпускулярное, представляющее собойa- и b-частицы, нейтроны и др.
По своим свойствам a-частицы обладают малой проникающей способностью и не представляют опасности до тех пор, пока радиоактивные вещества, испускающиеa-частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.
b-частицы могут проникать в ткани организма на глубину один – два сантиметра. Большой проникающей способностью обладает g-излучение, которое распространяется со скоростью света; его может задержать лишь толстая свинцовая или бетонная плита.
3. Понятие о нуклидах и радионуклидах
Ядра всех изотопов химических элементов образуют группу “нуклидов”. Большинство нуклидов нестабильны, т. е. они все время превращаются в другие нуклиды. Например, атом урана-238 время от времени испускает два протона и два нейтрона (a-частицы). Уран превращается в торий-234, но торий также нестабилен. В конечном итоге эта цепочка превращений оканчивается стабильным нуклидом свинца. Самопроизвольный распад нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид - радионуклидом. При каждом распаде высвобождается энергия, которая и передается дальше в виде излучения. Поэтому можно сказать, что в определенной степени испускание ядром частицы, состоящей из двух протонов и двух нейтронов, - этоa-излучение, испускание электрона - b-излучение, и, в некоторых случаях, возникает g-излучение. Образование и рассеивание радионуклидов приводит к радиоактивному заражению воздуха, почвы, воды, что требует постоянного контроля их содержания и принятия мер по нейтрализации.
4. Радиация вокруг нас
Как все-таки действует радиация на человека и окружающую среду? Это одна из многих сегодняшних проблем, которая приковывает к себе внимание огромного количества людей.
Радиация действительно опасна: в больших дозах она приводит к поражению тканей, живой клетки, в малых - вызывает раковые явления и способствует генетическим изменениям.
Однако опасность представляют вовсе не те источники радиации, о которых больше всего говорят. Радиация, связанная с развитием атомной энергетики, составляет лишь малую долю, существенную часть облучения население получает от естественных источников радиации: из космоса и от радиоактивных веществ, находящихся в земной коре, от применения рентгеновских лучей в медицине, во время полета на самолете, от каменного угля, сжигаемого в бесчисленном количестве различными котельными и т. д.
Сама по себе радиоактивность - явление не новое, как считают некоторые, связывая ее возникновение со строительством АЭС и появлением ядерных боеприпасов. Она существовала на Земле задолго до зарождения жизни. С тех пор как образовалась наша Вселенная (порядка 20 миллиардов лет назад), радиация постоянно наполняет космическое пространство.
Многие удивляются, узнав, что человек, хотя в чрезвычайно малой мере, но тоже радиоактивен. В его мышцах, костях и других тканях присутствуют мизерные количества радиоактивных веществ.
Однако с момента открытия радиации как явления не прошло и ста лет. Так как основную часть дозы облучения население получает от естественных источников, то большинства из них избежать просто невозможно. Человек подвергается двум видам облучения: внешнему и внутреннему. Дозы облучения сильно различаются и зависят, главным образом, от того, где люди живут.
4. 1. Источники внешнего облучения
Радиоактивный фон, создаваемый космическими лучами (0, 3 мЗв/год), дает чуть меньше половины всего внешнего облучения (0, 65 мЗв/год), получаемого населением. Нет такого места на Земле, куда бы ни проникали космические лучи. При этом надо отметить, что Северный и Южный полюса получают больше радиации, чем экваториальные районы. Происходит это из-за наличия у Земли магнитного поля, силовые линии которого входят и выходят у полюсов.
Однако более существенную роль играет место нахождения человека. Чем выше поднимается он над уровнем моря, тем сильнее становится облучение, ибо толщина воздушной прослойки и ее плотность по мере подъема уменьшается, а следовательно, падают защитные свойства.
Те, кто живет на уровне моря, в год получают дозу внешнего облучения приблизительно 0, 3 мЗв, на высоте 4000 метров–уже 1, 7 мЗв. На высоте 12 км доза облучения за счет космических лучей возрастает приблизительно в 25 раз по сравнению с земной. Экипажи и пассажиры самолетов при перелете на расстояние 2400 км получают дозу облучения 10 мкЗм (0, 01 мЗв или 1 мбэр), при полете из Москвы в Хабаровск эта цифра уже составит 40– 50 мкЗв. Здесь играет роль не только продолжительность, но и высота полета. Земная радиация, дающая ориентировочно 0, 35 мЗв/год внешнего облучения, исходит в основном от тех пород полезных ископаемых, которые содержат калий– 40, рубидий – 87, уран – 238, торий –232. Естественно, уровни земной радиации на нашей планете неодинаковы и колеблются большей частью от 0, 3 до 0, 6 мЗв/год. Есть такие места, где эти показатели во много раз выше.
4. 2. Внутреннее облучение населения
Внутренне облучение населения от естественных источников на две трети происходит от попадания радиоактивных веществ в организм с пищей, водой и воздухом. В среднем человек получает около 180 мкЗв/год за счет калия–40, который усваивается организмом вместе с нерадиоактивным калием, необходимым для жизнедеятельности. Нуклиды свинца– 210, полония –210 концентрируются в рыбе и моллюсках. Поэтому люди, потребляющие много рыбы и других даров моря, получают относительно высокие дозы внутреннего облучения. Жители северных районов, питающиеся мясом оленя, тоже подвергаются более высокому облучению, потому что лишайник, который употребляют олени в пищу зимой, концентрирует в себе значительные количества радиоактивных изотопов полония и свинца.
Недавно ученые установили, что наиболее весомым из всех естественных источников радиации является радиоактивный газ радон - это невидимый, не имеющий ни вкуса, ни запаха газ, который в 7, 5 раз тяжелее воздуха. В природе радон встречается в двух основных видах: радон– 222 и радон –220. Основная часть радиации исходит не от самого радона, а от дочерних продуктов распада, поэтому значительную часть дозы облучения человек получает от радионуклидов радона, попадающих в организм вместе с вдыхаемым воздухом. Радон высвобождается из земной коры повсеместно, поэтому максимальную часть облучения от него человек получает, находясь в закрытом, непроветриваемом помещении нижних этажей зданий, куда газ просачивается через фундамент и пол. Концентрация его в закрытых помещениях обычно в 8 раз выше, чем на улице, а на верхних этажах ниже, чем на первом.
Дерево, кирпич, бетон выделяют небольшое количество газа, а вот гранит и железо - значительно больше. Очень радиоактивны глиноземы. Относительно высокой радиоактивностью обладают некоторые отходы промышленности, используемые в строительстве, например, кирпич из красной глины (отходы производства алюминия), доменный шлак (в черной металлургии), зольная пыль (образуется при сжигании угля).
Другими источниками поступления радона в жилые помещения являются вода и природный газ. Надо помнить, что в сырой воде его намного больше, а при кипячении радон улетучивается, поэтому основную опасность представляет собой его попадание в легкие с парами воды. Чаще всего это происходит в ванной комнате при приеме горячего душа.
Точно такую же опасность радон представляет, смешиваясь под землей с природным газом, который при сжигании в кухонных плитах, отопительных и других нагревательных приборах попадает в помещение. Концентрация его сильно увеличивается при отсутствии хороших вытяжных систем.
Также нельзя забывать, что при сжигании угля значительная часть его компонентов спекается в шлак или золу, где концентрируются радиоактивные вещества. Более легкая из них часть - зольная пыль - уносится в воздух, что также приводит к дополнительному облучению людей.
Из печек и каминов всего мира вылетает в атмосферу зольной пыли не меньше, чем из труб электростанции.
За последние десятилетия человек усиленно занимался проблемами ядерной физики. Он создал сотни искусственных радионуклидов, научился использовать возможности атома в самых различных отраслях - в медицине, при производстве электро- и тепловой энергии, изготовлении светящихся циферблатов часов, множества приборов, при поиске полезных ископаемых и в военном деле. Все это, естественно, приводит к дополнительному облучению людей. В большинстве случаев дозы невелики, но иногда техногенные источники оказываются во много тысяч раз интенсивнее, чем естественные.
Медицинские процедуры и методы лечения, связанные с применением радиоактивности, вносят основной вклад в дозу, получаемую человеком от техногенных источников. Так, при рентгенографии зубов человек получает местное разовое облучение 0, 03 Зв (3 бэр), при при рентгенографии желудка - 0, 3 Зв (30 бэр), при флюорографии– 3, 7 мЗв (370 мбэр).
Ядерные взрывы тоже вносят свою лепту в увеличение дозы облучения человека. Радиоактивные осадки от испытаний в атмосфере разносятся по всей планете, повышая общий уровень загрязненности. Испытания эти проходили в два периода:
первый (1954 – 1958 гг. ), когда взрывы проводили Великобритания, США и СССР; второй (1961 – 1962 гг. ) – более значительный, когда взрывы проводили в основном США и СССР.
Всего ядерных испытаний в атмосфере произведено: Китаем – 193, СССР – 142, Францией – 45, США – 22, Великобританией –21. После 1980 года взрывы в атмосфере практически прекратились. Подземные же испытания продолжаются до сих пор.
Атомная энергетика, хотя и вносит в суммарное облучение населения незначительный вклад, является предметом интенсивных споров. Если ядерные установки работают нормально, то и выбросы радиоактивных материалов в окружающую среду очень малы.
Каждому понятно, что доза облучения от ядерного реактора зависит от времени и расстояния. Чем дальше человек живет от АЭС, тем меньшую дозу он получает. Дело в том, что большинство радионуклидов, выбрасываемых в атмосферу, быстро распадаются, и поэтому они имеют только местное значение. Конечно, есть и долгоживущие, которые могут распространяться по всему земному шару и оставаться в окружающей среде практически бесконечно.
Другим источником загрязнения радиоактивными веществами служат рудники и обогатительные фабрики. В процессе переработки урановой руды образуется огромное количество отходов - “хвостов”, которые остаются радиоактивными в течение миллионов лет. Они - главный долгоживущий источник облучения населения. Подводя итог, надо сказать, что средние дозы облучения от атомной энергетики весьма малы по сравнению с дозами, получаемыми от естественных источников (более 1%).
В промышленности и в быту из-за применения различных технических средств люди тоже получают дополнительное, хотя и небольшое, облучение. Например, работники, которые участвуют в производстве люминофоров с использованием радиоактивных материалов, на заводах стройиндустрии и промплощадках, где используются установки промышленной дефектоскопии. Под землей повышенные дозы получают шахтеры, рудокопы, золотодобытчики. Достается и персоналу курортов с радоновыми источниками.
Самым распространенным бытовым облучателем являются часы со светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую ту, что обусловлена утечкой на АЭС. На расстоянии 1 метра от циферблата излучение, как правило, в 10000 раз слабее, чем в 1 сантиметре.
Источник рентгеновского излучения - цветной телевизор. При просмотре, например, одного хоккейного матча человек получает облучение 0, 1мкЗв (1мкбэр). Если смотреть передачи в течении года ежедневно по 3 часа, то доза облучения составит 5 мкЗв.
Таким образом, в современных условиях при наличии высокого естественного радиационного фона, при действующих технологических процессах каждый житель Земли ежегодно получает дозу облучения в среднем 2– 3 мЗв (200 – 300 мбэр).
5. Воздействие и критерии опасности ионизирующих излучений 5. 1. Воздействие ионизирующих излучений
Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные вещества, т. е. частицы, попадают внутрь организма с пищей, через органы дыхания).
Однократное облучение вызывает биологические нарушения, которые зависят от суммарной поглощенной дозы. Так при дозе до 0, 25 Гр видимых нарушений нет, но уже при 4–5 Гр смертельные случаи составляют 50% от общего числа пострадавших, а при 6 Гр и более - 100% пострадавших. (Здесь: Гр– грей).
Основной механизм действия связан с процессами ионизации атомов и молекул живой материи, в частности молекул воды, содержащихся в клетках. Они-то как раз и подвергаются интенсивному разрушению. Вызванные изменения могут быть обратимыми или необратимыми и протекать в хронической форме лучевой болезни.
5. 2. Критерии опасности ионизирующих излучений
Степень воздействия ионизирующих излучений на живой организм зависит от мощности дозы облучения, продолжительности этого воздействия и вида излучения и радионуклида, попавшего внутрь организма.
Для количественной оценки ионизирующего действия рентгеновского и g-излучения в сухом атмосферном воздухе используется понятие экспозиционной дозы. За единицу экспозиционной дозы принимают кулон на килограмм (Кл/кг). Применяется также внесистемная единица - рентген (Р): 1Р = 2, 58*10-4 Кл/кг. Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой и измеряется в системе СИ в греях (1 Гр = 1 Дж/кг). Применяется также прежняя единица–рад (1 рад = 0, 01 Гр). Но этот критерий не учитывает того, что при одинаковой поглощенной дозеa-частицы гораздо опаснее b-частиц и g-излучения. Поэтому введена величина эквивалентной дозы, измеряемая в зивертах (1 Зв = 1 Дж/кг). Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиоактивную опасность для организма разных видов ионизирующего излучения.
Для оценки эквивалентной дозы применяется также единица БЭР (биологический эквивалент рада): 1БЭР = 0, 01 Зв.
Эффективная эквивалентная доза –эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению; она также измеряется в зивертах.
В 1996 году, в соответствии с Законом РФ “О радиационной безопасности населения”, введены дозовые пределы: для персонала–20мЗв (миллизиверт) в год при производственной деятельности с источниками ионизирующих излучений и 1 мЗв для населения.
6. Методы и средства защиты от ионизирующих излучений
Включают в себя организационные. Гигиенические, технические и лечебно-профилактические мероприятия, а именно:
увеличение расстояния между оператором и источником; сокращение продолжительности работы в поле излучения; экранирование источника излучения; дистанционное управление; использование манипуляторов и роботов; полная автоматизация технологического процесса;
использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;
постоянный контроль за уровнем излучения и за дозами облучения персонала. Защита от внутреннего облучения заключается в устранении непосредственного контакта работающих с радиоактивными и предотвращение попадания их в воздух рабочей зоны.
Необходимо руководствоваться нормами радиационной безопасности, в которых приведены категории облучаемых лиц, дозовые пределы и мероприятия по защите, и санитарными правилами, которые регламентируют размещение помещений и установок, место работ, порядок получения, учета и хранения источников излучения, требования к вентиляции, пылегазоочистке, обезвреживанию радиоактивных отходов идр.
7. Краткий комментарий закона РФ “О радиационной безопасности населения”
С начала 1996 года в РФ действует Закон “О радиоактивной безопасности населения”.
Принципиальная основа Закона РФ заключается в новой стратегии радиационной защиты, предусматривающей в качестве основного показателя оценки уровня радиационного благополучия населения среднюю эффективную дозу, получаемую им от всех источников ионизирующего излучения.
Предусмотрено возмещение ущерба здоровью граждан, проживающих вблизи радиационно-опасных предприятий и на территории, где могут быть превышения дозовых пределов.
В Законе указываются конкретные значения основных дозовых пределов, которые снижены для работающих с излучением в 2, 5 раза, а для населения– в 5 раз по сравнению с ранее действовавшими нормами. Проведение мероприятий, связанных с введением в действие новых основных дозовых пределов, предусматривается за счет собственных средств предприятий. Кроме того, за счет средств предприятий и средств экологических фондов будет внедряться государственная система социально-экономической компенсации граждан за повышенный риск, связанный с проживанием в районах расположения радиационно-опасных объектов. За счет средств федерального бюджета осуществлять разработка единой государственной системы учета и контроля доз облучения персонала, работающего с радиоактивными источниками, и населения, подвергшегося воздействию источников излучения естественного и искусственного происхождения, а также составление карт-схем, атласов радиоактивного загрязнения и создание банка данных.
Скачен 1286 раз.
mcvouo.ru
ФГБОУ ВПО
«Алтайский государственный аграрный университет»
Реферат на тему:
Радиация
Выполнила:
Студентка 1 курса
526 группы
Хрипкова Анастасия Анатольевна
Проверил:
Поскотинова Ольга Николаевна
Барнаул 2013
Содержание
Введение 2
1. Открытие радиоактивности 2
2. Радиация в медицине 3
3. Виды радиации 4
4. Радиоактивность и ядерная энергия 5
5. Радиоактивные ряды 8
6. Счетчик Гейгера 8
7. Правило смещения 8
8. Период полураспада 10
9. Закон радиоактивного распада 10
10. Атомные электростанции 11
11. О вредности радиоактивного излучения 11
Заключение………….………………………………………………………………………………. 12
Введение
Мне, как будущему ветеринарному врачу очень интересно и важно знать о явлении радиоактивности и о ее влиянии на живые организмы. Многие люди воспринимают слово радиация как обозначение чего-то страшного, смертельного и при этом абсолютно непонятного. Это нечто, которое прорывается наружу после взрыва атомной электростанции, быстро проникает в воздух, воду и почву и убивает всё живое, или же поражает тяжёлыми болезнями. Но не многие знают, что радиация используется в медицине в диагностических целях и для лечения болезней. Радиация эффективна при лечении рака, так как она лишает раковые клетки возможности размножения. Клетки рака более подвержены губительному воздействию радиации, чем здоровые клетки. Радиация используется для лечения многих видов рака, и уже несколько десятилетий с ее помощью лечат рак предстательной железы. И поэтому моя задача рассказать об этом явлении более подробно.
1. Открытие радиоактивности
Явление естественной радиоактивности открыл французский физик А.Беккерель в 1896 г. Он случайно обнаружил, что кусок урановой руды засвечивает фотопленку, плотно упакованную в черную бумагу. В то время физики не смогли объяснить наблюдаемое явление, и неизвестное излучение сначала назвали икс-лучами. А.Беккерель занялся изучением неизвестных лучей, и 23 ноября 1896 года мировая научная общественность узнала, что эти лучи свойственно испускать урану или его соединениям. С 1897 г. к изучению Х-лучей подсоединились супруги Мария Склодовская и Пьер Кюри. Со временем М. Склодовская-Кюри обнаружила, что способность урана испускать Х-лучи присуща и торию. Она же ввела в обиход новое название для веществ, таких как уран и торий, - радиоактивные. Супругам Кюри наука обязана также открытием еще двух веществ, природная активность которых в сотни, раз превышает активность урана, - это полоний и радий. В этот же период в Кембридже директор Кавендишской лаборатории профессор Дж.Дж.Томсон изучал так называемые катодные лучи, открытые в 1895 г. В.Рентгеном. Это лучи, которые излучает накаленный катод электронно-лучевой трубки под воздействием ультрафиолетового света. Исследования Томсона позволили сделать вывод, что радиоактивное и катодное излучения имеют общую природу. Так была открыта искусственная радиоактивность.
2. Радиация в медицине
В последние годы эта проблема стала особенно актуальной. В современной медицине радиотерапия является одним из трех ключевых методов лечения онкологических заболеваний (двумя другими являются химиотерапия и традиционная хирургия). При этом, если отталкиваться от тяжести побочных эффектов, лучевая терапия переносится гораздо легче. В особо тяжелых случаях пациенты могут получать очень высокую суммарную дозу – до 6 грей (при том, что доза порядка 7-8 Грей, является смертельной). Но даже при такой огромной дозе, когда больной выздоравливает, он зачастую возвращается к полноценной жизни здорового человека – даже дети, рожденные бывшими пациентами клиник лучевой терапии, не обнаруживают никаких признаков врожденных генетических отклонений, связанных с облучением.
Радиотерапия - это облучение опухоли потоком лучей, иногда применяется и в лечении доброкачественных опухолей, препятствует росту, размножению и распространению раковых клеток на здоровые ткани. В большинстве случаев позволяет полностью удалить опухоль! Иногда применяется вместе с химиотерапией. В некоторых же случаях, метод радиотерапии используют в предоперационный период (для уменьшения размеров опухоли) или в послеоперационный (для предотвращения размножения раковых клеток). Принцип действия радиотерапии в том, что клетка на 60-70% состоит из воды, поэтому поток частиц радиоактивного излучения взаимодействует, прежде всего, с водой, что приводит к ее радиационному разложению. Любая клетка обладает наибольшей уязвимостью для облучения в период деления. Особенность клеток злокачественных и доброкачественных опухолей заключается в том, что они очень интенсивно делятся, следовательно, они гораздо чувствительнее к облучению по сравнению с клетками здоровой ткани. Это дает возможность подобрать условия облучения губительные для вредных клеток и относительно безопасных для здоровых. Радиоизотопная диагностика - использование радиоактивных изотопов и меченных ими соединений для распознавания заболеваний. Из типов воздействия радиотерапией выделяют: Контактный - Контактное воздействие производится при непосредственном приложении источника излучения к ткани опухоли. В связи с этим данный метод, пусть и менее вредный для окружающих тканей, используется значительно реже. При дистанционном волновом воздействии между очагом воздействия и источником излучения лежат здоровые ткани. Чем их больше, тем сложнее доставить необходимую дозу излучения к очагу, и тем больше побочных эффектов терапии. Но, несмотря на наличие серьезных побочных эффектов, этот метод наиболее распространен. Это обусловлено тем, что он наиболее универсален и доступен в использовании. Внутритканевой метод - в ткани, содержащие опухолевый очаг, вводятся закрытые источники в виде проволок игл, капсул, или открытые источники, растворы к Брахетерапия - вид радиотерапии, когда источник излучения вводится внутрь поражённого органа. Смысл метода заключается в возможности подведения максимальных доз лучевой терапии непосредственно на опухолевый очаг. Широко используется в лечении опухолей шейки матки, тела матки, влагалища, пищевода, прямой кишки, языка и предстательной железы, что изображено на рисунках ниже. Радиохирургия - медицинская процедура, состоящая в однократном облучении высокой дозой ионизирующего излучения доброкачественных и злокачественных опухолей, и др. патологических очагов с целью их уничтожения или приостановки функционирования. Чаще всего используется при опухолях мозга. Нейтрон-захватная терапия - Вид лечения с использованием реакций, возникающих между радиочувствительными медикаментами и нейтронами. При этом в опухоли предварительно накапливают бор, что повышает ее чувствительность к нейтронному излучению. Затем опухоль облучают. Протонная терапия - использует протоны для облучения больной ткани, причем наиболее часто при терапии канцерогенных заболеваний. Как проводится радиотерапия? Лечение с помощью лучевой терапии (радиотерапии) непременно включает в себя планирование. Проводится рентген, чтобы как можно более точно определить место новообразования. Таким образом, можно облучать именно опухоль, почти не затрагивая здоровые ткани. Далее врач радиолог с помощью техника определяет местоположение опухоли и очерчивает границы поля, которое подвергается воздействию излучения, рассчитывает дозу и определяет вид облучения. Возможные побочные эффекты радиотерапии: У некоторых пациентов могут наблюдаться чувство усталости, пропажу аппетита. Поэтому во время лечения особенно важны правильное питание и хороший отдых.
3. Виды радиации
Различают несколько видов радиации.
4. Радиоактивность и ядерная энергия
Фотоны из ядра:
Фотоны возникают, когда в электронной оболочке электроны возвращаются из возбужденного состояния в основное. Бывают фотоны, длина волны которых в 100 миллионов раз меньше, чем у видимого света, зато энергия в 100 миллионов раз выше. Они возникают не в электронной оболочке, а в ядре так называемых радиоактивных элементов. Атомное ядро тоже можно привести в возбужденное состояние. Когда оно возвращается в основное, испускаются фотоны с высокой энергией. Такие фотоны порождают так называемое гамма (γ)-излучение, один из трех видов радиоактивного излучения. Другие два, альфа (α)- и бета (β)-, будут подробно рассмотрены далее.
Чтобы понять, как возникает радиоактивное излучение, вспомним строение атомного ядра. Оно состоит из двух видов нуклонов: протонов и нейтронов. Между нуклонами действуют огромные силы притяжения, так называемые ядерные. Эти силы невероятно велики, однако действуют они насовсем небольших расстояниях — только внутри ядра между непосредственно соседствующими нуклонами. На электронах эти ядерные силы уже вообще не сказываются. Ядерные силы всегда порождают притяжение — между нейтронами, между нейтронами и протонами и даже между положительно заряженными протонами.
Ядерные силы настолько велики, что почти невозможно представить. Чтобы оторвать друг от друга нуклоны в ядре, требуются невероятные количества энергии. Для наглядности рассмотрим следующий пример: если взять грамм гелия и отделить от каждого атома по одному нейтрону, понадобится 500 миллиардов джоулей. Такого количества энергий альпинисту хватит для 80000 восхождений на Эверест. Чтобы обеспечить такую потребность в энергии шоколадом, альпинисту пришлось бы съесть 250000 плиток.
Чем тяжелее элемент, тем больше нуклонов в ядре, в том числе и протонов. Помимо ядерных сил притяжения, между положительно заряженными протонами действуют и значительные электрические силы отталкивания. Однако сила отталкивания растет непропорционально числу протонов. Скажем, если их количество увеличить в десять раз, сила отталкивания возрастет в сто. Поэтому при большом числе протонов атомное ядро может стать нестабильным. Если в ядре достаточно нейтронов, силы притяжения возобладают, и ядро останется стабильным. Однако если стабилизирующих нейтронов мало, то ядро не сможет существовать бесконечно: рано или поздно оно распадется.
Альфа-излучение:
При распаде атомного ядра возникает три вида радиоактивного излучения: α-, β- и γ-. При α-излучении из ядра вылетают маленькие "пакеты", состоящие из двух протонов и двух нейтронов. Эти "пакеты" идентичны ядру атома гелия.
Излучающее ядро теряет 4 нуклона. Отдавая при этом 2 протона, оно лишается и 2 электронов из оболочки. Таким образом, атом превращается в другой химический элемент. Тяжелый металл радий, например, после альфа-распада переходит в благородный газ радон.
Если при радиоактивном распаде альфа-частицы просто "выпадали" бы из ядра, то такое излучение не представляло бы опасности и не могло бы причинить вреда нашим клеткам. Но в действительности альфа-частицы вылетают из атомного ядра с невероятно высокой скоростью до 20000 километров в секунду. Это более 70 миллионов километров в час.
Несмотря на высокую скорость, альфа-частицы легко остановить, и они не могут попасть вглубь вещества: по сравнению с бета-частицами они огромны и поэтому не обладают такой проникающей способностью. Лист бумаги, легкая летняя одежда, даже внешний роговой слой нашей кожи уже способны задержать их.
Однако они очень опасны, если, например, вдохнуть или проглотить радиоактивную пыль. В наших незащищенных внутренних органах за свой короткий путь альфа-частицы успевают разрушить ближайшие клетки и нанести серьезный вред. Если задетая клетка и выживает, часто возникают раковые новообразования с летальным исходом. Можно сказать, что внутри нашего тела альфа-лучи закладывают бомбу замедленного действия.
Бета-излучение:
Теперь понятно, почему элемент становится нестабильным, когда число протонов значительно превышает число нейтронов. Удивительно, но ядро становится нестабильным и тогда, когда число нейтронов заметно превышает число протонов — в природе встречается и такое. Нестабильность ядер, богатых нейтронами, обусловлена сочетанием множества факторов, понятных только профессиональным физикам-ядерщикам.
Чтобы достичь стабильного состояния, ядро стремится избавиться от избыточных нейтронов. Однако это весьма сложно, поскольку нейтроны удерживаются мощными ядерными силами.
Чтобы "отделаться" от лишних нейтронов, природа придумала одну хитрость: нейтрон распадается на протон и электрон. Протон остается в ядре, электрон его покидает. При этом скорость только что возникшего электрона может приближаться к скорости света — 300000 км/с.
Эти быстрые электроны формируют уже опоминавшиеся бета-излучение. Бета-излучение проникает в тела глубже, чем альфа-, однако причиняет меньше вреда, поскольку легче проходит сквозь вещество. Его воздействие распределяется на множество клеток, поэтому последствия для каждой отдельной клетки не так серьезны.
Гамма-излучение:
Сильная отдача вылетающих бета-частиц приводит ядро в возбужденное состояние. Разумеется, оно нестабильно, и ядро возвращается в основное состояние. Энергия возбуждения высвобождается в форме фотона с высокой энергией и чрезвычайно короткой длиной волны. Эти фотоны представляют собой гамма-излучение. (Поскольку гамма-излучение возникает лишь при ядерных переходах, а не при распаде ядра, термин "гамма-распад" не вполне корректен, скорее его можно назвать "гамма-переходом".)
γ-излучение обладает огромной энергией и может нанести живым существам значительный ущерб. Проникая в тело, оно повреждает клетки, а во многих случаях и генетическую информацию.
γ-излучение можно сравнить с рентгеновским, которое тоже проходит через наше тело и уже давно служит важным медицинским инструментом. Однако энергия квантов рентгеновского излучения не так высока, как у γ-квантов. Просвечивая рентгеновскими лучами человеческое тело, исследуют, например, переломы костей.
γ-лучами можно, к примеру, просвечивать сварные швы несущих поверхностей самолетов для поиска разрывов, возникающих под избыточной нагрузкой.
γ-лучи без проблем проходят даже через толстые свинцовые плиты.
Их энергия примерно в 1000 раз выше, чем у рентгеновских, однако и те и другие почти одинаково опасны для организма. Поэтому при облучении рентгеновскими лучами следует избегать больших доз.
5. Радиоактивные ряды
Часто распад ядра происходит в несколько последовательных этапов. Это называется радиоактивным рядом. Через альфа-распады ядро постепенно уменьшает свое число нуклонов, пока не достигнет стабильного конечного состояния — в большинстве радиоактивных рядов это элемент свинец. Нередко между альфа-распадами происходят еще и бета-распады, сопровождаемые гамма-переходами. Представленный радиоактивный ряд состоит из 15 ступеней, ведущих от урана к стабильному свинцу.
myunivercity.ru
Федеральное агентство по образованию РФ
ГОУ ВПО “Марийский государственный педагогический институт им. Н.К.Крупской”
Кафедра физики
Курсовая работа
Радиация и человек
Работу выполнила:
ФИО
студентка 32 гр.
Научный руководитель:
ФИО
к.ф.-м.н., доцент
Йошкар-Ола
2008
Содержание
Введение
Естественный фон ионизирующих излучений. Внешнее и внутреннее облучение
Космическая радиация
Земная радиация
Особенности внешнего и внутреннего облучения
Ионизирующая радиация в повседневной жизни
Особенности действия радиации на организм человека
Острая лучевая болезнь
Охрана здоровья людей от вредного действия ионизирующей радиации
Заключение
Литература
Введение
Вселенная, мировое пространство пронизано лучистой энергией. Если скопления материи в виде звезд, планет, блуждающих комет и метеоритов в масштабах Вселенной – редкие явления, то потоки лучей, порождаемые ими, наполняют все пространство. В каждой его точке ежесекундно можно обнаружить потоки излучений – радиацию. Огромные массы вещества в недрах звезд, вступая в ядерные реакции, превращаются в лучистую энергию, выделяемую в окружающее пространство. Вспышки новых звезд, рождение и гибель галактик, сжатие и концентрация вещества при затухании звезд и другие еще далеко не познанные, но постоянно происходящие во Вселенной превращения материи сопровождаются огромными выбросами лучистой энергии в виде электромагнитных колебаний всех диапазонов и потоков элементарных частиц и корпускул, начиная от неуловимого нейтрино и кончая тяжелыми ядрами атомов.
Человечество с глубокой древности знало только о сравнительно небольшой части спектра электромагнитных излучений – узкой полосе видимого света. Благотворное влияние солнечного света, под живительными лучами которого поспевают урожаи на полях, стало первым знанием человека о зависимости жизни на Земле от лучистой энергии Солнца. Прошло много столетий, прежде, чем человечество поняло, что вся энергия, используемая при сжигании дров, нефти, каменного угля – это лучистая энергия Солнца, аккумулированная земной растительностью.
Зрение, позволяющее воспринимать всю красоту и многокрасочность окружающего мира и ориентироваться в пространстве, также исследуется в течение столетий. В настоящее время хорошо известны и оптическое устройство глаза, и тонкие фотохимические реакции, преобразующие кванты света в нервные импульсы. Мы знаем и о замечательном устройстве зрительных центров в центральной нервной системе, позволяющем с огромной скоростью анализировать интенсивность, длины волн и пространственное расположение потоков квантов, падающих на сетчатку глаза.
Область невидимых излучений лежит как в стороне более длинных, так и более коротких волн. Диапазон радиоволн только начинает интересовать биолога. Еще не ясно, воздействуют ли они на живые системы. Все больший интерес вызывают сантиметровые и миллиметровые волны. В последние годы стали накапливаться факты об их воздействии на биологические объекты. Использование этих излучений в промышленности возрастает, поэтому их возможное влияние на человека – вопрос, имеющий не только теоретический интерес. Ультракороткие и инфракрасные волны оказывают тепловое воздействие на ткани организмов, что широко используется в медицинской практике и сельском хозяйстве. Не менее интересна и область корпускулярных ионизирующих излучений, таких, как α — и β — лучи радионуклидов, потоки электронов и протонов, генерируемые современными ускорителями, нейтроны атомных реакторов или π-мезоны и ядра тяжелых нуклидов – космических лучей. Корпускулярные излучения обладают высокой энергией, часто большой проникающей способностью, активно взаимодействуют с атомами и молекулами живых организмов, вызывая ионизацию, образование высокореактивных свободных радикалов, ядерные реакции. Все это может иметь глубокие последствия для жизнедеятельности клетки, ткани, организма. Ввиду сходства воздействия на вещество корпускулярных и таких электромагнитных излучений, как рентгеновские и γ-лучи, их часто объединяют в группу ионизирующей радиации.
При каждом таком акте распада высвобождается энергия, которая и передаётся дальше в виде излучения. Испускание ядром частицы, состоящей из двух протонов и двух нейтронов, как в случае распада U238, называется α-излучением; испускание электрона, как в случае распада тория-234, называется β-излученим и т.д. Различные ядра высвобождают свою энергию различными способами, в форме электромагнитных волн и/или потоков частиц. Разные виды излучения сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.
α -излучение представляет собой поток тяжелых частиц положительно заряженных ядер гелия, состоящих из двух протонов и двух нейтронов, испускаемых атомами таких тяжелых элементов, как уран, радий, радон и плутоний. В воздухе альфа-излучение проходит не более пары сантиметров (наиболее высокоэнергетические альфа-частицы могут пройти слой воздуха при нормальном атмосферном давлении не более 11 см или слой воды до -150 мкм) и полностью задерживается листом бумаги или эпидермисом, внешним омертвевшим слоем кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа — частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными. Альфа-излучение в 20 раз опаснее гамма-излучения.
Бета-излучение — это электроны, которые значительно меньше альфа-частиц и могут проникать в ткани организма через кожу на 1-2 см. Оно может быть задержано листом металла, оконным стеклом, обычной одеждой. Бета-излучение поражает незащищенную кожу и глаза. Если частицы, испускающие бета-излучение, попадут в организм, они будут облучать внутренние ткани.
Гамма-излучение — это электромагнитное излучение высокой энергии, которое обладает большой проникающей способностью, изменяющейся в широких пределах. Ионизирующая способность гамма-излучения значительно меньше, чем у альфа- и бета- частиц. С того момента, как гамма-излучение попадает в вещество, его интенсивность начинает снижаться. На своем пути оно повсеместно сталкивается с атомами. Такое взаимодействие с клетками тела может повредить кожу и внутренние ткани. Плотные материалы, такие, как свинец, бетон, являются отличными барьерами на пути гамма-лучей.
Рентгеновское излучение — аналогично гамма-излучению, испускаемому ядрами, но оно получается искусственно в рентгеновской трубке, которая сама по себе не радиоактивна. Поскольку рентгеновская трубка питается электричеством, то испускание рентгеновских лучей может быть включено или выключено с помощью выключателя.
Нейтронное излучение обладает высокой проникающей способностью, поэтому наносит вред всем органам, но наиболее чувствительным к нейтронному излучению является хрусталик глаза. Нейтроны проникают глубже, чем гамма-лучи и могут быть остановлены только толстым бетонным, водяным или парафиновым барьером.
В качестве единицы измерения поглощенной ионизирующей радиации в современной единой системе единиц принято такое ее количество, которое соответствует энергии в 1Дж, поглощенной 1 кг ткани. Эта единица получила название грей (Гр) в честь крупного английского радиобиолога Л.Грея. В качестве единицы измерения ионизирующей радиации чаще используют величину в 100 раз меньшую – рад.1
Также введена величина эквивалентной дозы, измеряемая в зивертах (1 Зв = 1 Дж/кг). Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиоактивную опасность для организма разных видов ионизирующего излучения.
Для оценки эквивалентной дозы применяется также единица БЭР (биологический эквивалент рада): 1БЭР = 0,01 Зв.
Естественный фон ионизирующих излучений. Внешнее и внутреннее облучение
Где бы мы ни находились – на знойном юге или на далеком севере, в долинах или высоко в горах, на свежем воздухе или в помещении, на отдыхе в санатории или на работе, окруженные современной техникой, на пароходе, в поезде или в самолете – наше тело постоянно пронизывается высокоэнергетическими фотонами и корпускулами ионизирующей радиации. Падая на организм извне, они проникают во все ткани и органы, где отдают свою энергию молекулам и структурам клеток.
В большом количестве они зарождаются внутри нашего тела от находящихся в нем радиоактивных веществ, и тогда вероятность их поглощения тканями повышается. Речь идет о высокоэнергетических фотонах и частицах. Их энергия во много раз превышает энергию любой химической связи в молекуле. Столкновение таких частиц с молекулами нашего тела – это, как правило, катастрофа для молекулы: она распадается, меняет свою конфигурацию, теряет одни свойства и приобретает совсем иные.
Расчеты показывают, что каждую секунду в организме человека весом в 70 кг в среднем происходит около 500 тыс. таких молекулярных катастроф, 500 тыс. столкновений молекул с ионизирующими частицами, сопровождающихся временным или постоянным изменением свойств этих молекул.
Облучение от естественных источников ни на минуту не останавливается: секунды, минуты, часы, дни, годы непрерывно идет эта микробомбардировка наших клеток. Ее последствия только за последние годы становятся ясны благодаря многочисленным радиобиологическим исследованиям. И, как часто бывает в науке, то, что казалось очевидным еще несколько лет назад, приобретает новое освещение в свете полученных фактов. Если в 40-х и даже в начале 50-х годов ученые имели вообще очень смутные представления о естественном фоне радиации, то теперь уже ясно, что его нельзя игнорировать, обсуждая такие проблемы, как происхождение жизни, эволюция, старение, канцерогенез и многое другое. Мы различаем внешнее облучение от источников, расположенных вне организма, и внутреннее – от инкорпорированных, т.е. включенных в организм радиоактивных нуклидов. Внешнее облучение слагается из облучения вторичными космическими лучами, достигающими биосферы Земли, и излучениями радионуклидов, рассеянных в окружающих нас земных породах и строительных материалах.
Космическая радиация
Из недр мирового пространства, от звезд нашей галактики, а возможно и других галактик, в межпланетное пространство постоянно направлен поток первичных космических лучей, состоящий из высокоэнергетичных протонов, ионов гелия, тяжелых частиц, электронов, фотонов и нейтрино. Значительный вклад в этот поток вносит и наше Солнце, испускающее, помимо видимого света, мощное ультрафиолетовое излучение и поток высокоэнергетичных протонов.
Первый барьер, с которым сталкиваются космические лучи на пути к биосфере, — магнитное поле Земли, отклоняющее заряженные частицы космической радиации, не дающее им даже достичь верхних слоев атмосферы. Отклоненные магнитным полем частицы как бы обтекают нашу планету на расстоянии от одного до восьми земных радиусов, образуя радиационные пояса с большой интенсивностью облучения. (Радиация в этих поясах обусловлена электронами и протонами с энергиями от десятка кэВ до сотен МэВ.) Радиационные пояса Земли, представляющие большую опасность для космонавтов (полеты с людьми всегда планируются с расчетом минимального пребывания в пространстве радиационных поясов), не влияют на радиационную обстановку на земной поверхности.
--PAGE_BREAK--Магнитное поле Земли создает мощную защиту нашей планеты от галактической космической радиации. Мощную, но не абсолютную. Часть высокоэнергетичных лучей прорывается через магнитные поля и постоянно бомбардирует верхние слои атмосферы. Исследования, проведенные на ракетах и спутниках, показали, что мощность такого облучения закономерно изменяется в связи с 11- летним солнечным циклом.
Причину подобных изменений выяснил английский исследователь Е.Н.Паркер в 1966-1967 гг. Оказалось, что в годы солнечной активности усиливаются потоки плазмы, низкоэнергетичных протонов и электронов, испускаемых Солнцем, известные в астрономии под названием «солнечного ветра». Солнечный ветер оказывает влияние на магнитные поля Земли, усиливая их способность отклонять галактические космические лучи. Излучения солнечного ветра малоэнергетичны и также не пробиваются через магнитные поля. В годы усиленной солнечной активности вследствие увеличения магнитной защиты интенсивность космического облучения Земли снижается, и наоборот, наибольшая облученность Земли космической радиацией наблюдается в годы спокойного Солнца.
Высокоэнергетичные (40-100 МэВ) космические лучи, прошедшие через магнитное поле, врываются в атмосферу. Очень немногие из них проникают через всю атмосферу и достигают поверхности Земли. Большинство же, сталкиваясь с атомами азота, кислорода, углерода, атмосферы, взаимодействует с ядрами этих атомов, и, образно выражаясь, разбивает их вдребезги, рождая множество новых частиц: протонов, нейтронов, π-мезонов (пионов), μ-мезонов (мионов)(3), образующих вторичное космическое излучение. Так как эти частицы тоже обладают энергией в десятки МэВ, то, сталкиваясь с другими ядрами, они порождают новые потоки излучений, образуя каскад вторичных космических лучей.
Часть нейтронов захватывается ядрами азота, образуя радиоактивный углерод С14. Мионы легко проникают в нижнюю часть атмосферы и доходят до поверхности Земли, составляя космическую часть естественного фона радиации.
На уровне моря вторичные космические лучи в виде потока нейтронов, мионов и электронов составляют около 30% от всего облучения биосферы. С высотой доза облучения от космических лучей значительно возрастает. Для жителей гор (1,5-2 км над уровнем моря) она почти в два раза выше, чем для жителей равнин. На высоте 10 км, на которой проходят трассы современной реактивной авиации, облученность космической радиацией уже на порядок выше, чем на уровне моря. На высоте 20 км она возрастает более чем на два порядка.
Эта высота интересна с двух точек зрения:
На такой высоте будут летать в ближайшем будущем пассажирские сверхзвуковые самолеты. Следует отметить, что на такой высоте резко увеличивается количество высокоэнергетичных тяжелых частиц, почти не достигающих поверхности Земли. Радиация от солнечных вспышек, фактически не влияющая на дозы облучения на поверхности Земли, на высоте 20 км будет резко увеличивать дозы облучения в сотни и даже в тысячи раз.
Высота в 20 км интересна и с другой точки зрения. В тропических широтах Земли мощные потоки нагретого воздуха уносят в верхние слои атмосферы значительное количество микроорганизмов, бактерий, спор, организмов морского планктона. Определение плотности органического вещества на разных высотах показало, что именно на высоте 15-20 км она достигает наибольшей величины – до 10 частиц (аэронов) на 1 см3. На этой высоте аэроны будут находиться 3-4 месяца, медленно передвигаясь в области средних широт. Принимая во внимание высокую мощность космических лучей, доза, полученная микроорганизмами, может достигнуть нескольких рад. В средних широтах облученные микроорганизмы войдут в нижние слои атмосферы и выпадут с осадками на поверхность Земли.
Глубокая проникающая способность вторичных космических лучей объясняется большой энергией. Вот почему так трудно избавиться от их постоянного воздействия. Для проведения экспериментов с резко пониженным космическим облучением физики оборудуют специальные лаборатории в туннелях, проложенных у основания высоких гор. В таблице представлены дозы облучения человека космическими излучениями в разных условиях существования.
Место пребывания
Доза за определенный отрезок времени, мрад
Час
Месяц
Год
Средние широты на уровне моря
0,04
2,3
28
Горы на высоте 1,5-2 км
0,06-0,08
3,5-4,6
42-56
Реактивный самолет (высота 10 км)
0,4
-
-
Сверхзвуковой самолет (высота 20 км)
4
-
-
Сверхзвуковой самолет во время солнечной вспышки
400-4000
-
-
Земная радиация
Все живое на Земле находится под постоянным воздействием излучений от рассеянных в окружающей нас природе радиоактивных нуклидов. Одни из них постоянно образуются в атмосфере и на поверхности Земли в результате ядерных реакций, осуществляемых космическими лучами. Как уже говорилось выше, захват нейтрона атомом азота ведет к образованию радиоактивного углерода С14. За счет ядерных столкновений образуются радионуклиды Н3 (тритий), Ве7 (радиоактивный изотоп бериллия), Na22 и Na24 (радиоактивные изотопы натрия). С точки зрения внешних облучателей С14и Н3 не принимаются во внимание ввиду очень мягкого излучения этих изотопов. Радиоактивные бериллий и натрий дают высокоэнергетичные и, следовательно, глубоко проникающие β — и γ-излучения, т.е. участвуют во внешнем облучении организмов. Однако их образуется настолько мало, что удельный вклад в общую облученность оказывается ничтожным.
Иначе дело обстоит с естественными радионуклидами, такими, как уран, торий и радиоактивный изотоп калия К40, и продуктами их распада. Как известно, уран-238 образует целую серию продуктов распада. Многие короткоживущие, промежуточно образующиеся нуклиды, являются также и β-излучателями. Природный радий, например, излучает α-, β — и γ-лучи, так как всегда содержит некоторое количество таких продуктов распада (дочерние элементы).
Длительно живущие элементы – уран, радий, свинец-210 – составляют значительную часть земного излучения. Радон всегда присутствует в приземном воздухе, вызывая облучение поверхности тела и легких при его вдыхании. То же можно сказать и о втором широко распространенном естественном радионуклиде – тории Th332, имеющем время полураспада (в.п.) 1,41*1010 года. При распаде радиоактивного тория образуются радий228 (в.п. 5,8 лет), торий-228 (в.п. 1,9 года), короткоживущий радон-220 (в.п. 55 с), превращаясь в конечном результате в стабильный изотоп свинца Pb208.
Наконец, третий, самый распространенный естественный радионуклид – это радиоактивный 40К постоянно сопровождающий природный, стабильный калий, имеющий время полураспада 1,26*109 лет и испускающий при распаде β=1,38 МэВ и γ=1,46 МэВ лучи.
Облучение от земных радионуклидов в большей степени зависит от снежного покрова, влажности почвы и даже времени суток. Действительно, слой снега и большая влажность экранируют излучения почвы, и общая доза в приземной атмосфере снижается. Ночью с понижением температуры газообразный радон рассеивается медленнее, чем днем в жаркую погоду, и доза облучения на поверхности возрастает.
В различных частях света, в разных странах и отдельных местностях концентрация естественных радионуклидов подвержена значительным колебаниям, и соответственно изменяется средняя облученность населения.
Заметно меняется облученность тела человека в зависимости от времени, которое он проводит в закрытых помещениях: дома, на службе, на заводах, в шахтах. Следует учитывать два обстоятельства: материал, из которого построено помещение, и качество вентиляции. Последнее обстоятельство связано с концентрацией радона, в основном действующего на ткани легких.
Воздействие строительных материалов может проявляться двояко. С одной стороны, они защищают наше тело от внешней радиации, поглощая ее в своей толщи. С другой стороны, многие строительные материалы сами богаты радиоактивными естественными нуклидами и поэтому могут повышать мощность облучения в помещениях. Такие строительные материалы, как дерево, тепловые прокладки (войлок, стружки), почти не содержат или содержат очень мало радиоактивных нуклидов. В деревянных помещениях средний уровень облученности меньше, чем снаружи, вне дома. Отношение мощностей облучения внутри дома к внешнему облучению оказывается меньше единицы – 0,7-0,6 (коэффициент защиты). Низко радиоактивны и большинство пластиков, природный цемент, мрамор, дающие коэффициент защиты 0,8-0,9. С другой стороны, такие строительные материалы, как гранит, кирпич и бетон, имеющие в своем составе естественные радионуклиды, собственным излучением перекрывают защиту от внешнего облучения, и коэффициент возрастает от 1,3 до 1,7. Так, например, измерения, проведенные во многих домах в Швеции, показали, что средняя мощность облучения вне помещения в 90 мрад/год в деревянных домах снижалась до 57, в кирпичных поднималась до 112, а в бетонных достигала 172 мрад/год. Обратная зависимость наблюдалась в колебаниях облучения в районах с повышенной естественной радиоактивностью. Например, исследования, проведенные в районе Керала (Индия), показали, что в легких деревянных, бамбуковых и глиняных хижинах облучение было высоким (в некоторых местностях достигало 2800 мрад/год), так как эти материалы не защищали от высокого внешнего фона, а в кирпичных и цементных зданиях проявлялась защита, и мощность дозы снижалась до 500-700 мрад/год.
Таким образом, внешнее облучение в биосфере на поверхности Земли в нормальных условиях, примерно на высоте 1 м от ее поверхности, слагается из космических лучей (28,3 мрад/год) и земной радиации (32 мрад/год). В сумме организм человека получает 60 мрад/ год. Эта величина заметно больше в горах и районах повышенной радиоактивности.
Особенности внешнего и внутреннего облучения
Естественные радионуклиды постоянно вовлекаются в круговорот веществ, который так характерен для живых организмов. Пути и степень их проникновения в живые организмы будут зависеть от природы радионуклида. Радиоактивный изотоп углерода С14 постоянно образуется в верхних слоях атмосферы благодаря ядерной реакции космических лучей (нейтронов) с азотом:
n+N14→p+C14
Окисляясь с кислородом или озоном, этот углерод превращается в радиоактивную углекислоту:
С14+О2→ C14 О2
Последняя, равномерно перемешиваясь с обычной углекислотой (на что уходит около года), поглощается зелеными листьями растений в процессе фотосинтеза.
Хорошо известно, что все части растения строятся из продуктов фотосинтеза. Таким образом, углеводы, жиры, белки и другие компоненты растений, содержащие углерод, будут слабо радиоактивны и, поступая в качестве пищи в организм животного и человека, создают постоянно действующий небольшой уровень внутреннего облучения. Период полураспада С14 очень велик (5720 лет), поэтому он существует тысячелетия на нашей планете.
Установлено, что скорость образования С14 в верхних слоях атмосферы составляет 2,28 атома в 1 см3 в секунду. Это значит, что за год его образуется 0,038 МКи. Эта цифра согласуется с содержанием С14 в атмосфере в целом, которое равно 3,8 МКи.
В атмосфере содержится около 1/60 части всего углерода (биосфера, океан, осадочные породы). На нашей планете около 230 МКи С14, чио сообщает природному углероду активность, равную 6,1 пКи на1 г углерода. Это очень слабая активность, дающая за год облучение тканей человека в пределах 0,5-2,2 мрад.
Значительно больший вклад в суммарную активность вносит такой природный нуклид, как радиоактивный изотоп калия К40. в обычном калии всегда содержится в очень небольшом количестве (0,0118%) радиоактивный изотоп К40. Без калия не происходит нормального развития организмов, без него невозможна жизнь. Содержание калия строго регулируется как в животном, так и в растительном организмах. Его концентрация в растениях выше, чем в живых тканях. Существуют специальные механизмы, работающие в биомембранах, которые регулируют распределение калия в организме человека. Его содержание в эритроцитах крови достигает 460 мг%, в мышцах – 360 мг%, в головном мозге – 330 мг%. Калия мало в костной ткани (50 мг%) и значительно меньше в сыворотке крови (20 мг%). В мужском организме по сравнению с женским его больше, особенно в период полового созревания. Молодой, энергично функционирующий организм содержит больше калия на 1 кг веса, чем старый. Эти данные получены при обследовании 859 человек обоего пола в камерах, позволяющих учитывать уровень и спектр излучения всего тела.
продолжение --PAGE_BREAK--Соответственно содежанию калия меняется и облученность ткани от К40. Исходя из его среднего содержания в человеческом организме (200 мг%), можно рассчитать, что К40 усилит общую мощность облучения на 19 мрад/год. В различных тканях эта величина колеблется: в гонадах 9-21, ткани легких 10-24 и в костном мозге 16-38 мрад/год.
Уран, торий, радий повсеместно распространены в земной коре. Как показали специальные эксперименты, торий почти не усваивается растениями. Его содержание ничтожно мало в собираемом урожае и в зеленой массе растений, поэтому его можно не рассматривать как внутренний излучатель в организмах растений, животных и человека.
Иначе ведут себя уран и радий. Соли урана из почвы поступают в растение. Некоторые виды растений активно концентрируют уран. Было даже предложено использовать некоторые виды как своеобразные индикаторы присутствия урана в окружающей среде.
С растительной пищей уран попадает в организм животных и человека (около 0,2-0,9 пКи в день). Это количество в отдельных местностях, богатых урановыми солями, может повышаться до 1,2 пКи в день. Очень немного урана (1,4*10-3 пКи в день) поглощается за счет вдыхания пыли окружающего воздуха, которая всегда содержит небольшие количества этого нуклида. Значительно большие количества урана могут поступить в организм человека за счет воды некоторых минеральных источников. Если обычная питьевая вода содержит менее 0,03 пКи/л урана, то в некоторых местностях его содержание в воде доходит до 20 пКи/л.
Внутреннее облучение по сравнению с внешним отличается рядом особенностей:
Если при внешнем облучении учитывалось только γ-излучение, то при внутреннем основное действие оказывают α — и β-излучения, имеющие возможность действовать непосредственно на жизненно важные ткани и органы человека.
Большинство радиоактивных изотопов накапливается в определенных тканях, что приводит к неравномерному облучению отдельных частей организма.
Внутреннее облучение действует все время, пока радиоактивные вещества находятся внутри организма.
Данные радиобиологических исследований показывают, что не все органы и ткани человеческого организма обладают одинаковой чувствительностью к облучению. Наиболее чувствительны гонады – половые железы и органы кроветворения. Поэтому помимо общей дозы облучения, получаемой человеком, необходимо также знать дозу, получаемую гонадами.
В приведенной ниже таблице представлены данные Научного комитета ООН по действию атомной радиации – мощности доз внешнего и внутреннего облучения от естественных источников в районах, не обладающих повышенным фоном радиоактивности. В таблице отдельно показана доза, полученная за счет α-частиц и нейтронов, обладающих большей биологической эффективностью, чем γ-лучи и β-частицы. Приведенные данные для внешнего облучения могут изменяться в зависимости от географических условий.
Годичные дозы, получаемые организмом человека в результате внешнего и внутреннего облучения от естественных источников.
Источники облучения
Получаемая доза, мрад/год
Гонады
Клетки кости
Костный мозг
Внешнее облучение
Космические лучи
Излучение земли
28
50
28
50
28
50
Внутреннее облучение
Калий-40
Рубидий-87
Углерод-14
Радий-226
Радий-223
Полоний-210
Радон-222
20
0,3
0,7
-
-
0,3
0,3
15
0,3
1,6
0,6
0,7
2,1
0,3
15
0,3
1,6
0,03
0,03
0,3
0,3
Итого
100
99
96
%-α-частиц и нейтронов
1,3
4,4
1,4
Ионизирующая радиация в повседневной жизни
Радиационное воздействие от атомных электростанций вряд ли увеличит естественный уровень радиоактивности на нашей планете. Для тревоги нет оснований, особенно при сопоставлении пользы от атомных электростанций с их неизмеримо малым влиянием на радиоактивность окружающей нас среды. Все подсчеты велись крупномасштабно: в отношении всей планеты и человечества на десятки лет вперед. Естественно, возникает вопрос: а не сталкиваемся ли мы с невидимыми лучами в повседневной жизни? Не создает ли человек вокруг себя дополнительные источники радиации при той или иной деятельности, не пользуемся ли мы этими источниками, подчас не ассоциируя их с действием атомной радиации?
В современной жизни человек действительно создает ряд воздействующих на него источников, иногда очень слабых, а подчас и достаточно сильных.
Рассмотрим хорошо известные рентгеновские диагностические аппараты, которыми снабжены все поликлиники и с которыми мы сталкиваемся при всевозможных профилактических обследованиях, проводимых в массовом масштабе среди населения. Статистика показывает, что количество лиц, проходящих рентгеновское обследование, возрастает с каждым годом на 5-15% в зависимости от страны, уровня медицинского обслуживания. Все мы хорошо знаем, какую огромную пользу приносит современной медицине рентгенодиагностика. Человек заболел. Врач усматривает признаки серьезного заболевания. Рентгеновское обследование часто дает решающие данные, следуя которым врач назначает лечение и спасает жизнь человеку. Во всех этих случаях уже не важно, какую дозу облучения получит больной при той или иной процедуре. Речь идет о заболевшем человеке, о ликвидации непосредственной угрозы его здоровью, и в этой ситуации вряд ли уместно рассматривать возможные отдаленные последствия от самой процедуры облучения.
Но за последнее десятилетие в медицине наметилась тенденция усиленного использования рентгеновских обследований здорового населения, начиная от школьников и призывников в армию и кончая населением зрелого возраста – в порядке диспансеризации. Конечно, врачи и здесь ставят перед собой гуманные цели: своевременно выявить начало еще скрытой болезни, чтобы вовремя и с большим успехом начать лечение. В результате тысячи, сотни тысяч здоровых людей проходят через рентгеновские кабинеты. В идеале врачи стремятся такие обследования проводить ежегодно. В результате общая облученность населения повышается. О каких же дозах облучения идет речь при медицинских обследованиях?
Научный комитет по изучению действия атомной радиации при ООН тщательно изучил этот вопрос, и полученные выводы многих удивили. Оказалось, что на сегодняшний день наибольшую дозу облучения население получает именно от медицинских обследований. Подсчитав общую среднюю дозу облучения для всего населения развитых стран от различных источников радиации, комитет обнаружил, что облученность от силовых реакторов даже к 2000 г. вряд ли превысит 2 — 4% от естественной радиации, от радиоактивных осадков 3 — 6 %, а от медицинских облучений население ежегодно получает дозы, достигающие 20% естественного фона.
Каждое диагностическое «просвечивание» дает на исследуемый орган облучение, начиная от дозы, равной годовой дозе от естественного фона (примерно 0,1 рад), до дозы, превышающей его в 50 раз (до 5 рад). Особый интерес представляют дозы, получаемые при диагностических просвечиваниях критическими тканями, такими как гонады (повышение вероятности генетического повреждения потомства) или кроветворные ткани, такие, как костный мозг.
В среднем медицинские диагностические «просвечивания» рентгеном для населения развитых стран (Англия, Япония, СССР, США, Швеция и др.) составляют среднюю годовую дозу, равную одной пятой части естественного фона радиации.
Это, конечно, в среднем очень большие дозы, сопоставимые с естественным фоном, и вряд ли здесь уместно говорить о какой-либо опасности. Тем не менее, современная техника позволяет уменьшить дозовые нагрузки при профилактических осмотрах, и это должно быть использовано.
Значительного снижения дозы облучения при рентгеновских обследованиях можно достигнуть, совершенствуя аппаратуру, защиту, повышая чувствительность регистрирующих устройств и сокращая время облучения.
Где еще в нашей повседневной жизни мы сталкиваемся с повышенной ионизирующей радиацией?
Одно время широкое распространение получили часы со светящимся циферблатом. Люминесцирующая масса, наносимая на циферблат, включала в свой состав соли радия. Излучения радия возбуждали люминесцирующую краску, и она светилась в темноте голубоватым светом. Но γ-излучение радия с энергией 0,18 МэВ проникало за пределы часов и облучало окружающее пространство. Обычные ручные светящиеся часы содержали от 0,015 до 4,5 мКи радия. Расчет показал, что наибольшую дозу радиации (около 2 — 4 рад) за год получают мышечные ткани руки. Мышечная ткань сравнительно радиоустойчива, и это обстоятельство не тревожило радиобиологов. Но светящиеся часы, находящиеся на руке очень много времени, расположены на уровне гонад и, следовательно, могут вызвать значительное облучение этих радиочувствительных клеток. Именно поэтому были предприняты специальные расчеты дозы, приходящейся на эти ткани за год.
Исходя из расчетов, что часы находятся на руке 16 часов в сутки, была вычислена возможная доза облучения гонад. Она оказалась лежащей в пределах от 1 до 60 мрад/год. Значительно большую дозу можно получить от больших карманных светящихся часов, особенно если их носить в кармане жилета. При этом доза облучения может возрасти до 100 мрад. Обследование продавцов, стоящих за прилавком со множеством светящихся часов, показало, что доза облучения была около 70 мрад. Подобные дозы, удваивающие естественный радиоактивный фон, увеличивают вероятность появления наследственных повреждений в потомстве. Вот почему Международное агентство по мирному использованию атомной энергии в 1967 г. рекомендовало заменить радий в светящихся массах такими радионуклидами, как тритий (Н3) или прометий – 147 (Рm147), обладающими мягким β-излучением, полностью поглощаемым часовой оболочкой.
Нельзя не упомянуть о множестве светящихся приборов в кабинах самолетов, пультах управления и др. Конечно, уровни радиации очень различны в зависимости от количества приборов, их расположения и удаленности от работающего, что постоянно должны учитывать органы санитарного надзора.
продолжение --PAGE_BREAK--Далее речь пойдет о телевизоре, который используется в повседневной жизни любого гражданина. Телевизоры распространены в современном обществе столь широко, что вопрос о дозе радиации, поступающей от телевизора, был тщательно исследован. Интенсивность слабого вторичного излучения экрана, бомбардируемого электронным пучком, зависит от напряжения, под которым работает данная система телевизора. Как правило, черно-белые телевизоры, работающие при напряжении в 15 кВ, дают на поверхности экрана дозы 0,5 – 1 мрад/ч. Однако это мягкое излучение поглощается стеклянным или пластиковым покрытием трубки, и уже на расстоянии 5 см от экрана радиация практически не обнаруживается.
Иначе обстоит дело с цветными телевизорами. Работая на значительно большем напряжении, они дают от 0,5 до 150 мрад/ч вблизи экрана на расстоянии 5 см. предположим, вы смотрите цветной телевизор три – четыре дня в неделю по три часа в день. В год получим от 1 до 80 рад (не мрад, а рад!). эта цифра уже значительно превосходит естественный фон облучения. В действительности получаемые людьми дозы значительно меньше. Чем больше расстояние от человека до телевизора, тем меньше доза облучения – она падает пропорционально квадрату расстояния.
Радиация от телевизора не должна нас волновать. Системы телевизоров все время совершенствуется, и внешняя радиация их снижается.
Еще один источник слабых излучений в нашей повседневной жизни – это изделия из цветной керамики и майолики. Для создания характерного цвета глазури, придающего художественную ценность керамической посуде, вазам и блюдам из майолики, издревле используются соединения урана, образующие жаропрочные краски. Уран – долгоживущий естественный радионуклид – всегда содержит дочерние продукты распада, дающие достаточно жесткое β-излучение, легко обнаруживаемое современными счетчиками вблизи поверхности керамических изделий. Интенсивность излучения быстро падает с расстоянием, и если в квартирах на полках стоят керамические кувшины, майоликовые блюда или статуэтки, то, любуясь ими на расстоянии 1-2 м, человек получает исчезающее малую дозу облучения. Несколько иначе обстоит дело с довольно распространенными керамическими кофейными и чайными сервизами. Чашку держат в руках, прикасаются к ней губами. Правда, такие контакты кратковременны, и значительного облучения не происходит.
Были проведены соответствующие расчеты для наиболее распространенных керамических чашек для кофе. Если в течение дня 90 мин непосредственно соприкасаться с керамической посудой, то за год от β-радиации руки могут получить дозу облучения от 2 до 10 рад. Эта доза в 100 раз превосходит естественный фон облучения.
Интересная проблема возникла в ФРГ и США в связи с широким применением для изготовления искусственных фарфоровых зубов особой запатентованной массы, в состав которой входили соединения урана и церия. Эти добавки вызывали слабую флуоресценцию фарфоровых зубов. Зубные протезы являлись слабыми источниками радиации. Но так как они постоянно находятся во рту, то десна получали ощутимую дозу. Был издан специальный закон, регламентирующий содержание урана в фарфоре искусственных зубов (не выше 0,1%). Даже при таком содержании ротовой эпителий будет получать в год дозу около 3 рад, т.е. дозу в 30 раз большую, чем от естественного фона.
Некоторые сорта оптических стекол изготовляют с добавлением в их состав тория (18-30%). Изготовление линз для очков из такого стекла приводило к слабому, но постоянно действующему облучению глаз. Сейчас содержание тория в стеклах для очков регламентируется законом.
Особенности действия радиации на организм человека
Различные виды ионизирующих излучений вызывают у человека и животных однотипное заболевание – лучевую болезнь. Быстрота и характер проявления, а также глубина радиационных поражений зависят от ряда факторов, в частности, от поглощенной дозы, ее мощности, реактивности организма и, наконец, от условий облучения.
В процессе опытов на лабораторных животных при их общем облучении свыше 100 рад было установлено, что средняя продолжительность жизни после облучения зависит от поглощенной дозы. При облучении порядка 100 рад у собак лишь несколько сокращается продолжительность жизни; при облучении 100-150 рад отмечается заболевание различной тяжести, и длительность жизни животного резко сокращается. При облучении 1000-15000 рад наступает гибель животных на третьи-четвертые сутки после воздействия радиации, а при облучении свыше 20 000 рад животные погибают несколько секунд спустя после облучения либо во время облучения – так называемая смерть под лучом (молекулярная смерть).
Имеются наблюдения, показывающие, что при одинаковых поглощенных дозах в случаях меньшей мощности дозы вредное действие излучения снижается. Это связывают с процессами восстановления поврежденных тканей за время между сеансами облучения. Однако многократные повторные облучения при малой мощности облучения также вызывают заболевание. На основании имеющихся статистических данных о лучевой болезни у человека, а также на основании результатов, полученных на высших млекопитающих, разработаны положения о предельно допустимых дозах радиации, т.е. максимальных поглощенных дозах, получение которых не вызывает заметных соматических нарушений в организме человека. Такой дозой для человека в настоящее время является 0,1 бэр в неделю сверх естественного фона для лиц, работающих с радиоактивными источниками, 0,01 бэр в неделю для лиц, косвенно соприкасающихся с таковыми, и 0,001 бэр для всех остальных людей. Существенную роль в развитии радиационного поражения играют индивидуальные особенности организма.
Важную роль в развитии последствий воздействия радиации играют условия облучения. Человек и животное может получить определенную дозу различными путями:
Общее облучение организма, которое происходит при воздействии рентгеновских и γ-лучей, а также нейтронов;
Местное (локальное) внешнее облучение отдельных частей тела;
Внутреннее (инкорпорированное) облучение при попадании в организм радиоактивных веществ – α-, β-, γ-излучателей.
Последнее связано с быстротой всасывания и выведения, с преимущественной локализацией данного вещества в определенном органе, а также с периодом полкраспада данного радиоактивного изотопа. Большую опасность, например, представляет Sr90 (Т=28 лет), локализующийся в костной ткани. Наиболее тяжелые последствия вызывает общее облучение. При местном облучении могут быть поглощены дозы во много раз больше, чем при общем облучении, что используется при лучевой терапии. Летальная доза при локальном воздействии зависит и от того, какой орган облучается, так как надо учитывать, что облученный орган всегда взаимодействует с соседними, необлученными.
Причиной лучевой болезни может быть любой вид ионизирующей радиации и все указанные способы ее воздействия на организм: общее облучение, большое местное облучение, внутреннее облучение, лучевая терапия, длительное действие малых мощностей поглощенной дозы. По течению различают острую и хроническую лучевую болезнь.
Острая лучевая болезнь
Острая лучевая болезнь возникает после тотального однократного внешнего равномерного облучения. ОЛБ может протекать в легкой, средней тяжести и тяжелой форме. Между величиной поглощенной дозы в организме и средней продолжительностью жизни существует строгая зависимость.
Было обнаружено, что зависимость времени наступления гибели самых разнообразных объектов от дозы носит ступенчатый характер. Соответствующая кривая для человека, описывающая зависимость средней продолжительности жизни от дозы излучения, состоит из 3-х участков. Начальный участок охватывает диапазон доз от 200 до 800рад, когда средняя продолжительность жизни не превышает 40 суток. На первый план при этих дозах выступает нарушение кроветворения. При дозах до 3000рад (продолжительность жизни около 8 суток) ведущим становится поражение кишечника, а при еще больших дозах (продолжительность жизни 2 суток и менее) смерть наступает от повреждения центральной нервной системы.
В течении ОЛБ выделяют четыре периода:
Начальный – наблюдается сразу после облучения, он длится от нескольких часов до 1-2 суток. Признаками лучевого поражения в этот период является задержка митотической активности в кроветворных клетках. В этот период усиливаются обменные процессы и повышаются функции основных органов и систем.
Скрытый, латентный — характеризуется изменениями в крови больного, связанными с начинающимся угнетением кроветворения. Длительность периода зависит от поглощенной дозы от двух недель до нескольких чаов.
Период выраженных явлений, или период разгара болезни – характерны кровоизлияния во внутренние органы, резкое подавление кроветворения, повышение проницаемости естественных барьеров и мембран, что способствует распространение в организме микробов и различных токсических веществ. Он длится в легких случаях в течение нескольких дней, в тяжелых – 2-3 недели.
Период исхода, или период восстановления.
Если доза облучения основной массы тела достигает 500-1000рад и более, то выживание невозможно, несмотря на медицинский уход и терапию (в Чернобыле — 19 погиб./1 жив.).
При дозах 200-500 рад выживание возможно, но необходимо своевременное и квалифицированное лечение (в Чернобыле — 7погиб./14 жив.).
При дозах 100-200 рад выживание вполне вероятно без специального решения, т.к. поражение не столь сильное, чтобы вызвать существенное угнетение костного мозга (в Чернобыле – 1 погиб./31 жив.).
При дозах менее 100 рад выживание несомненно, а клиническая симптоматика не требует медицинского вмешательства (40 чел. в Чернобыле).
Кроме указанных периодов, можно говорить еще об отдаленных последствиях воздействия радиации, которые могут проявляться в различных формах спустя 10-20 лет.
Хроническая лучевая болезнь
Хроническая лучевая болезнь развивается в результате продолжительного облучения организма в малых дозах – мощности дозы 0,1-0,5рад/сутки после накопления суммарных доз около 100рад. Своеобразие ХЛБ состоит в том, что в активно размножающихся тканях благодаря интенсивным процессам клеточного обновления длительное время сохраняется возможность структурного восстановления целостности ткани. В то же время такие радиоустойчивые системы, как нервная, сердечно-сосудистая, эндокринная отвечают на хроническое лучевой воздействие сложным комплексом функциональных реакций. В течении хронической лучевой болезни выделяются три периода:
период ранних изменений
период развития осложнений
период тяжелых необратимых изменений в организме
Охрана здоровья людей от вредного действия ионизирующей радиации
Проблема защиты людей от вредного, опасного действия ионизирующей радиации разрабатывается уже давно. В 1905 г. на первом конгрессе германских рентгенологов был поднят вопрос о законодательной охране труда рентгенологов. В Советском Союзе действовало санитарное законодательство, регламентирующее правила использования источников ионизирующей радиации гигиены, являющийся научным и методологическим центром по разработке проблем радиационной гигиены.
Искусственные источники ионизирующей радиации, по оценке ООН по изучению действия радиации, создают в среднем за год дозы на половые железы порядка 40 мрад; в то время как от естественных источников эта доза равняется 100 мрад, т.е в 2,5 раза больше.
Таким образом, увеличение лучевого воздействия за счет искусственных источников радиации относительно невелико. Учитывая же колеблемость естественного фона радиации и способность организма приспосабливаться к повышению радиационного фона в некоторых пределах, следует признать такие изменения величины лучевого воздействия в достаточной степени безопасными для здоровья.
Однако необходимо отметить, что эти дозы – средние для всего населения. В отдельных случаях могут быть значительные отклонения. Так если каждый человек в результате использования ионизирующей радиации в терапевтических целях в среднем получает 10 мрад в год, то больной, подвергающийся радиотерапии, может получить тысячи и десятки тысяч рад.
В настоящее время, когда прошло уже несколько лет после запрещения испытаний ядерного оружия в трех средах, опасность, связанная с действием радиоактивных осадков, значительно уменьшилась. Доза, создаваемая ими, исчисляется в среднем в пределах 2-5 мрад за год, т.е составляет единицы процентов от дозы, получаемой от природной радиации.
Основной вклад в дозу от искусственных источников радиации вносят рентгенодиагностические процедуры. В среднем он составляет 25 мрад за год. В крупных городах развитых стран эта доза значительно выше. Так для Нью-Йорка она достигает 150 мрад.
продолжение --PAGE_BREAK--Сами по себе такие дозы не опасны для здоровья. Однако в отдельных случаях они могут быть значительно выше и тогда возникает проблема генетических повреждений. Поэтому во всех странах принимаются меры, ограждающие население, и в первую очередь молодых людей, способных к деторождению, от нерационального применения рентгеновских лучей с диагностической целью.
В Советском Союзе проводится специальный комплекс мероприятий с целью снижения лучевых воздействий при рентгенодиагностических процедурах. Осуществляется постоянный контроль за технической неисправностью аппаратуры и соответствием оборудования рентгенодиагностических кабинетов санитарным требованиям. Ограничены массовые рентгенодиагностические обследования. Они не проводятся у детей. У беременных женщин в связи с высокой радиочувствительностью плода рентгенодиагностические процедуры проводятся только в крайних случаях, по жизненно важным показаниям.
В то же время современная диагностика болезней во многом основывается на результатах рентгеновских исследований, значение которых в этом отношении трудно переоценить. При проведении многих профилактических мероприятий используются массовые рентгенодиагностические обследования. Поэтому нет оснований отказываться от использования столь мощного диагностического средства. Тем более, что рентгеновская аппаратура постоянно совершенствуется. Это позволяет постепенно снижать величину радиационных воздействий.
Так, внедряется электронно-оптический преобразователь (ЭОП), способный снимать изображение с экрана рентгеновского аппарата и передавать его на экран телевизора. Такое устройство позволяет почти в десять раз снижать величину лучевого воздействия на пациента.
Широкое распространение получили часы со светящимися циферблатами, содержащими радиоактивные вещества. В среднем краска на циферблате содержит 1,5 мккюри радия, что создает дозу порядка 1 мрад в год. Однако, если содержание радия в краске выше, эта доза может быть большей и достигать 4-80 мрад.
В больших часовых магазинах, как показали измерения, проведенные в ФРГ, продавцы получали от циферблатов со светящимися красками дозу, составляющую 75% от дозы, создаваемой естественным фоном радиации.
Телевизоры имеют очень широкое распространение. В 1967 году в Советском Союзе было около 70 млн. телезрителей, т.е. около трети населения. Телевизионная трубка – кинескоп — излучает мягкие рентгеновы лучи, и если не предусмотрена необходимая защита, то доза рентгеновских лучей, получаемая телезрителями, может достигнуть нежелательных размеров. Из-за недостаточной защиты в цветных телевизорах фирме “General Electric” пришлось заменить более 100 тыс. кинескопов. Этот вопрос обсуждался в конгрессе США, так как вызвал широкий резонанс у населения.
В Советском Союзе был установлен ГОСТ, предусматривающий, что выпускаемые телевизоры могут создавать дозу на расстоянии 50 см от экрана, не превышающую13 мкр в час. Такая доза за год на все население составит 0,5% от дозы, создаваемой естественным уровнем ионизирующей радиации.
Для лиц, непосредственно работающих с источниками излучения, малые дозы радиации приобретают характер профессиональной вредности. Эта группа людей пока относительно невелика. Для обеспечения их безопасности в Советском Союзе величина лучевого воздействия ограничена в законодательном порядке; к работе с источниками ионизирующей радиации допускается только здоровые взрослые люди, получающие целый ряд льгот: укороченный рабочий день, дополнительный отпуск, специальное питание. Все эти мероприятия создают условия, при которых профессиональные лучевые воздействия не вызывают существенные изменения в состоянии здоровья.
В 1996 году, в соответствии с Законом РФ “О радиационной безопасности населения”, введены дозовые пределы: для персонала – 20мЗв (миллизиверт) в год при производственной деятельности с источниками ионизирующих излучений и 1 мЗв для населения.
Методы и средства защиты от ионизирующих излучений включают в себя организационные, гигиенические, технические и лечебно-профилактические мероприятия, а именно:
увеличение расстояния между оператором и источником;
сокращение продолжительности работы в поле излучения;
экранирование источника излучения;
дистанционное управление;
использование манипуляторов и роботов;
полная автоматизация технологического процесса;
использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;
постоянный контроль за уровнем излучения и за дозами облучения персонала.
Защита от внутреннего облучения заключается в устранении непосредственного контакта работающих с радиоактивными веществами и предотвращение попадания их в воздух рабочей зоны.
Необходимо руководствоваться нормами радиационной безопасности, в которых приведены категории облучаемых лиц, дозовые пределы и мероприятия по защите, и санитарными правилами, которые регламентируют размещение помещений и установок, место работ, порядок получения, учета и хранения источников излучения, требования к вентиляции, пылегазоочистке, обезвреживанию радиоактивных отходов и др.
С начала 1996 года в РФ действует Закон “О радиоактивной безопасности населения”.Принципиальная основа Закона РФ заключается в новой стратегии радиационной защиты, предусматривающей в качестве основного показателя оценки уровня радиационного благополучия населения среднюю эффективную дозу, получаемую им от всех источников ионизирующего излучения.
Предусмотрено возмещение ущерба здоровью граждан, проживающих вблизи радиационно-опасных предприятий и на территории, где могут быть превышения дозовых пределов. В Законе указываются конкретные значения основных дозовых пределов, которые снижены для работающих с излучением в 2,5 раза, а для населения – в 5 раз по сравнению с ранее действовавшими нормами. Проведение мероприятий, связанных с введением в действие новых основных дозовых пределов, предусматривается за счет собственных средств предприятий. Кроме того, за счет средств предприятий и средств экологических фондов будет внедряться государственная система социально-экономической компенсации граждан за повышенный риск, связанный с проживанием в районах расположения радиационно-опасных объектов. За счет средств федерального бюджета — осуществлять разработка единой государственной системы учета и контроля доз облучения персонала, работающего с радиоактивными источниками, и населения, подвергшегося воздействию источников излучения естественного и искусственного происхождения, а также составление карт-схем, атласов радиоактивного загрязнения и создание банка данных.
В заключение следует подчеркнуть, что действие ионизирующей радиации не опасно для здоровья, если разумно, осторожно обращаться с источниками излучения. Наши знания позволяют установить границы опасных лучевых воздействий. В то же время надо всегда помнить, что неосторожное обращение с источниками радиации может привести к нежелательным, а иногда и тяжелым последствиям.
Заключение
Итак, мы рассмотрели радиационную обстановку на нашей планете. Все живые организмы, и человек в том числе, постоянно находятся в радиационном поле малой интенсивности. Наше тело каждую секунду на протяжении всей жизни пронизывается высокоэнергетичными квантами γ-радиации, бомбардируется элементарными частицами больших энергий. Облученность нашего организма обусловлена космической радиацией, излучениями радионуклидов, рассеянных в окружающих нас породах, водах и атмосфере, радионуклидов, инкорпорированных в наши ткани и органы.
Облученность от естественных источников радиации увеличилась за последние десятилетия за счет использования авиатранспорта, испытаний ядерного оружия, ввода в строй многочисленных атомных электростанций, широкого использования рентгенодиагностики в медицине, использования радиоизотопов и электронных устройств в быту.
Дозы облучения, получаемые человеком от всех этих источников, невелики. Для сравнения вкладов различных источников в общую усредненную дозу для всего населения Земли они были сопоставлены с естественным фоном радиации, который был принят за 100 мрад/год. Результаты такого сопоставления приведены ниже.
Доза мрад/год
Естественный фон радиации
100
Медицинская диагностика
19,1
От ядерных испытаний, осуществленных в период 1951-1976 гг.(сред.)
8,2
От бытовых источников
0,82
От действующих атомных электростанций
0,16
От использования воздушного транспорта
0,10
От использования фосфорно-калийных удобрений
0,01
От тепловых электростанций
0,005
Наибольший вклад в облученность населения вносит медицинская диагностика, дающая около 20% естественного фона. Все ядерные испытания, проведенные до 1976 года, дают годичную облученность, более чем в два раза меньшую по сравнению с медицинской диагностикой. Еще на порядок меньше облученность от бытовых источников, и только около одной десятой процента от естественного фона радиации мы получаем от работающих электростанций.
По мере того как ученые все больше узнают свойства «невидимых лучей», постигают последствия их действия на живые организмы и на окружающую нас природу, осваивают возможности использования этих лучей в медицине, сельском хозяйстве и промышленности – все новые и новые увлекательные задачи и проблемы открываются их взору, становятся на повестку дня и ждут своего разрешения. Остановимся только на некоторых из них.
Исключительно большой практический интерес имеет проблема одновременного действия ионизирующей радиации и ряда других физических и химических факторов окружающей нас среды. Два аспекта этой проблемы особенно злободневны. Первый заключается в возможности уменьшить разрушающее действие радиации путем одновременного воздействия другого физического или химического фактора. Проблема защиты от вредного действия радиации – одна из самых актуальных проблем.
Второй аспект возник, когда были сделаны наблюдения о значительном усилении – синергизме – радиобиологических эффектов при одновременном воздействии других факторов. Проблема синергизма оказалась весьма актуальной при оценке возможных последствий загрязнения окружающей нас среды и при использовании ионизирующей радиации в медицине и промышленности. Рассмотрим несколько примеров, поясняющих подходы к решению поставленных задач и перспективность работы в этих направлениях.
Как уже говорилось ранее, при облучении организма в тканях, клетках возникает множество свободных радикалов, действие которых на клеточные структуры и вызывает поражающий эффект радиации. Возникла мысль ввести перед облучением безвредные для организма вещества, активно реагирующие со свободными радикалами. Они будут перехватывать эти радикалы и не дадут им возможности подействовать на жизненно важные структуры клетки – осуществляется защита. Подобные вещества так и назвали – «перехватчики радикалов». Имеется ряд веществ, защищающих по этому принципу. Радиобиологи давно установили, что присутствие кислорода усиливает действие облучения – так называемый кислородный эффект. Были предложены вещества, временно снижающие концентрацию кислорода в тканях организма, т.е. вызывающие гипоксию. Оказалось, что в состоянии гипоксии организм более устойчив к действию радиации.
Чем интенсивнее идут процессы обмена, чем быстрее делятся клетки в тканях, тем чувствительней они к вредному действию радиации. Биохимикам были известны вещества, снижающие процессы обмена, замедляющие деление клеток. Оказалось, что введение этих веществ перед облучением обеспечивает защитный эффект.
В клетках и тканях организмов всегда присутствуют вещества, препятствующие окислению ненасыщенных жирных кислот, которые входят в структуру клеточных биомембран. Эти вещества так и называют – антиоксиданты. При облучении организма резко усиливаются процессы окисления ненасыщенных жирных кислот. Природные антиоксиданты не справляются со своей задачей. Нарушается структура биомембран, их проницаемость, регулярные свойства, что углубляет вредные последствия облучения. Введение дополнительного количества антиоксидантов перед облучением – еще один путь защиты.
продолжение --PAGE_BREAK--Приведенные примеры наглядно показывают широкие возможности использования антагонизма в действии двух факторов для успешной защиты организмов от вредного действия радиации.
Не менее интересна в теоретическом и практическом аспекте проблема синергизма. О значении этой проблемы и о том внимании, которое уделяет ей мировая наука, можно судить хотя бы по международному конгрессу по радиационным исследованиям, состоявшемуся в мае 1979 г. в Японии, на котором проблеме синергизма было посвящено наибольшее количество симпозиумов, секционных заседаний. В центре внимания конгресса стояли вопросы возможности использовать явление синергизма для повышения эффективности радиационной терапии опухолей. Рентгеновские и γ-излучения уже давно используются в медицине для борьбы со злокачественными опухолями. Тонкий луч направляется на опухоль, он задерживает рост злокачественных клеток, разрушает их, на чем и основан терапевтический эффект. Но врач не может увеличить дозу сверх некоторого предела, так как в этом случае начинают поражаться другие ткани больного. Как усилить воздействия на опухоль, не увеличивая дозу облучения?
Была открыта возможность использования для этой цели синергизма при одновременном действии радиации и тепла. Ученые обнаружили по ряду показателей, что ткань опухоли более чувствительна к повышению температуры, чем нормальная ткань. Но только прогрев опухоли не давал лечебного эффекта. Однако, если одновременно с прогревом проводили лучевую терапию, то эффект значительно усиливался, проявлялось действие синергизма, что позволяло при умеренных дозах облучения получать хороший терапевтический эффект. Гипертермия при радиотерапии опухолей – еще один шаг вперед на этом трудном пути.
А вот пример использования синергизма совсем в другой области. Когда в жаркий летний день вы с удовольствием утоляете жажду стаканом фруктового сока, не приходит ли в голову мысль, а как сохраняется этот свежий сок без порчи, пока он дойдет от завода-изготовителя до потребителя?
Свежеприготовленный сок всегда содержит дрожжевые клетки и, постояв несколько дней, начинает бродить, что делает его непригодным к употреблению. Консервировать сок нагреванием до 100-1100С (обычный способ приготовления консервов) нельзя, так как это изменяет и обесценивает его свойства. Была предложена лучевая стерилизация. Однако, чтобы убить все дрожжевые организмы, потребовались очень высокие дозы облучения – до миллионов рад – что было и дорого и ухудшало качество сока. Решить вопрос удалось, используя явление синергизма – усиление эффекта при одновременном действии тепла и радиации. Только прогрев до 500 С не изменял его свойств, но зато повышал радиочувствительность дрожжевых клеток. Облучение при этой температуре уже при дозах 200-300 крад приводило к стерилизации сока, после чего сок хранился в течение нескольких месяцев, не теряя свойств натурального свежего напитка.
Еще один пример, где синергизм помог бы разрешить большие хозяйственно важные проблемы. Имеется в виду задача обеззараживания отходов больших животноводческих хозяйств. Это сложная проблема, если учесть, что только одно крупное хозяйство (на 100 тыс. голов) дает ежедневно около 3000 т отходов. Были предложены химические и радиационные методы обеззараживания. Однако и те и другие оказались нерентабельными из-за необходимости использовать большие количества химикатов для получения высоких доз облучения. Используя явление синергизма и здесь удалось наметить пути решения вопроса. Значительное усиление эффекта при одновременном действии химиката и радиации позволило резко снизить мощность и дозу облучения при затрате небольших количеств химикатов.
Все живое на Земле подвержено влиянию множества химических и физических факторов, которые действуют одновременно с радиацией. Каковы будут последствия одновременного действия ионизирующей радиации и радиоволн различных диапазонов, ультрафиолетовых и инфракрасных излучений? Как будет влиять радиация в жарком климате на экваторе и при низких температурах Крайнего Севера? Будет ли проявляться синергизм в мутагенном действии радиации при одновременном воздействии химических мутагенов, с каждым днем все более загрязняющих окружающих нас среду? Как скажется действие малых доз радиации в условиях крупных промышленных городов, в которых воздух загрязнен выхлопными газами автомобилей, окислами азота и серы химических заводов? Сейчас нет данных для исчерпывающего ответа на подобные вопросы, но все, что мы знаем о явлении синергизма, заставляет со всей серьезностью отнестись к ним и развернуть исследования в этом направлении.
В условиях постоянного действия малых доз радиации возникла и эволюционировала жизнь на нашей планете. Эпидемиологические и сравнительно-биологические исследования населения, животных, растений и микроорганизмов в районах с повышенным фоном естественной радиоактивности, несомненно, должны быть расширены. Они обогащают наши знания о результатах длительного действия малых доз ионизирующей радиации на биосферу. Решение вопроса о приспособлении организмов к повышенным уровням облучения, о стимулирующих, благоприятных влияниях малых доз радиации на существование популяций представляет огромный интерес, так же как и установление минимальных уровней, угнетающих, снижающих жизненные показатели популяций.
Все это – увлекательные и важные задачи для научного поиска и постановки новых экспериментов, для раздумий и размышлений. Это задачи, которые призваны решать отряды молодых ученых, заинтересовавшихся областью «невидимых лучей» вокруг нас – областью, исследуемой радиобиологией. Решение этих задач очень важно для всего человечества в настоящем и будущем.
Литература
Барабой В.А., Киричинский Б.Р. Ядерные излучения и жизнь. — М. 1972
Гродзенский Д.Э. Радиобиология. Биологическое действие ионизирующих излучений. — М 1963
Жербин Е.А, Комар В.Е, Хаксон К.П. Радиация, молекулы и клетки. – М. 1984
Кузин А.М. Невидимые лучи вокруг нас. — М: Наука. 1980
Кудрицкий Ю.К. Радиоактивность и жизнь. – Ленинград.1971
Писаревский А.Н, Габрилович И.М, Мережинский В.М. и др. Введение в радиационную биофизику. – Минск. 1968
www.ronl.ru
ИНСТИТУТ УПРАВЛЕНИЯ И ЭКОНОМИКИ
Г. САНКТ-ПЕТЕРБУРГ
Курсовая работа
По дисциплине Экология
По теме Радиация, ее влияние на организмчеловека
Ф.И.О.: Фогель В.Н.
Курс: 2
Факультет: социального управления
Специальность: социально-культурный сервис и туризм
Форма обучения: очная
____________
подпись
Проверил:___________________ ____________Ф.И.О. подпись
Калининград,
2002 г.Содержание
Введение 3
ГлаваII Радиация 41.1 Основныепонятия и единицы измерения 4ГлаваIII Влияние радиации на организмы 6ГлаваIV Источники радиационного излучения 102.1Естественные источники 10
2.2Источники, созданные человеком (техногенные) 11
Заключение 14
Списокиспользованной литературы 15
Введение
С давних времен человек совершенствовал себя, какфизически, так и умственно, постоянно создавая и совершенствуя орудия труда.Постоянная нехватка энергии заставляла человека искать и находить новыеисточники, внедрять их не заботясь о будущем. Таких примеров множество: паровойдвигатель побудил человека к созданию огромных фабрик, что за собой повлекломгновенное ухудшение экологи в городах. Другим примером служит созданиекаскадов гидроэлектростанций, затопивших огромные территории и изменившие донеузнаваемости экосистемы отдельных районов. В порыве за открытиями в конце XIXв. двумя учеными: Пьером Кюри и Марией Сладковской-Кюри было открыто явлениерадиоактивности. Именно это достижение поставило существование всей планеты подугрозу. За 100 с лишним лет человек наделал столько глупостей, сколько не делалза все свое существование. Давно уже прошла Холодная война, мы уже пережилиЧернобыль и многие засекреченные аварии на полигонах, однако проблемарадиационной угрозы никуда не ушла и посей день служит главной угрозойбиосфере.
Радиация играет огромную роль в развитии цивилизации наданном историческом этапе. Благодаря явлению радиоактивности был совершенсущественный прорыв в области медицины и в различных отраслях промышленности,включая энергетику. Но одновременно с этим стали всё отчётливее проявлятьсянегативные стороны свойств радиоактивных элементов: выяснилось, что воздействиерадиационного излучения на организм может иметь трагические последствия.Подобный факт не мог пройти мимо внимания общественности. И чем большестановилось известно о действии радиации на человеческий организм и окружающуюсреду, тем противоречивее становились мнения о том, насколько большую рольдолжна играть радиация в различных сферах человеческой деятельности.
К сожалению, отсутствие достоверной информации вызываетнеадекватное восприятие данной проблемы. Газетные истории о шестиногих ягнятахи двухголовых младенцах сеют панику в широких кругах. Проблема радиационногозагрязнения стала одной из наиболее актуальных. Поэтому необходимо прояснитьобстановку и найти верный подход. Радиоактивность следует рассматривать какнеотъемлемую часть нашей жизни, но без знания закономерностей процессов,связанных с радиационным излучением, невозможно реально оценить ситуацию.
Для этого создаются специальные международныеорганизации, занимающиеся проблемами радиации, в их числе существующая сконца 1920-х годов Международная комиссия по радиационной защите (МКРЗ), атакже созданный в 1955 году в рамках ООН Научный Комитет по действию атомнойрадиации (НКДАР).
Глава I
Радиация
Радиация существовала всегда. Радиоактивные элементывходили в состав Земли с начала ее существования и продолжают присутствовать донастоящего времени. Однако само явление радиоактивности было открыто всего столет назад.
В 1896 году французскийученый Анри Беккерель случайно обнаружил, что после продолжительногосоприкосновения с куском минерала, содержащего уран, на фотографическихпластинках после проявки появились следы излучения. Позже этим явлениемзаинтересовались Мария Кюри (автор термина “радиоактивность”) и ее муж ПьерКюри. В 1898 году они обнаружили, что в результате излучения уран превращаетсяв другие элементы, которые молодые ученые назвали полонием и радием. Ксожалению люди, профессионально занимающиеся радиацией, подвергали своездоровье, и даже жизнь опасности из-за частого контакта с радиоактивнымивеществами. Несмотря на это исследования продолжались, и в результатечеловечество располагает весьма достоверными сведениями о процессе протеканияреакций в радиоактивных массах, в значительной мере обусловленных особенностямистроения и свойствами атома.
Известно, что в состав атомавходят три типа элементов: отрицательно заряженные электроны движутся поорбитам вокруг ядра – плотно сцепленных положительно заряженных протонов иэлектрически нейтральных нейтронов. Химические элементы различают по количествупротонов. Одинаковое количество протонов и электронов обуславливаетэлектрическую нейтральность атома. Количество нейтронов может варьироваться, ив зависимости от этого меняется стабильность изотопов.
Большинство нуклидов (ядра всех изотопов химическихэлементов) нестабильны и постоянно превращаются в другие нуклиды. Цепочкапревращений сопровождается излучениями: в упрощенном виде, испускание ядромдвух протонов и двух нейтронов (a-частицы)называют a-излучением, испусканиеэлектрона – b-излучением, причем обаэтих процесса происходят с выделением энергию. Иногда дополнительно происходитвыброс чистой энергии, называемый g-излучением.
1.1 Основные термины и единицы измерения (терминология НКДАР)
Радиоактивный распад – весь процесс самопроизвольного распада нестабильногонуклида.
Радионуклид – нестабильный нуклид, способный к самопроизвольномураспаду.
Период полураспада изотопа – время, за котороераспадается в среднем половина всех радионуклидов данного типа в любомрадиоактивном источнике.
Радиационная активность образца – число распадов всекунду в данном радиоактивном образце; единица измерения – беккерель (Бк).
Поглощенная доза[1]– энергия ионизирующего излучения, поглощенная облучаемым телом (тканями организма),в пересчете на единицу массы.
Эквивалентная доза[2]– поглощенная доза, умноженная на коэффициент, отражающий способность данноговида излучения повреждать ткани организма.
Эффективная эквивалентная доза[3]– эквивалентная доза, умноженная на коэффициент, учитывающий разнуючувствительность различных тканей к облучению.
Коллективная эффективная эквивалентная доза[4]– эффективная эквивалентная доза, полученная группой людей от какого-либоисточника радиации.
Полная коллективная эффективная эквивалентная доза –коллективная эффективная эквивалентная доза, которую получат поколения людей откакого-либо источника за все время его дальнейшего существования”.
Глава II
Влияние радиациина организмы
Воздействие радиации наорганизм может быть различным, но почти всегда оно негативно. В малых дозахрадиационное излучение может стать катализатором процессов, приводящих к ракуили генетическим нарушениям, а в больших дозах часто приводит к полной иличастичной гибели организма вследствие разрушения клеток тканей.
Сложность в отслеживании последовательности процессов,вызванных облучением, объясняется тем, что последствия облучения, особенно принебольших дозах, могут проявиться не сразу, и зачастую для развития болезнитребуются годы или даже десятилетия. Кроме того, вследствие различнойпроникающей способности разных видов радиоактивных излучений они оказываютнеодинаковое воздействие на организм: a-частицы наиболее опасны, однако для a-излучения даже лист бумаги является непреодолимой преградой; b-излучение способно проходить в тканиорганизма на глубину один-два сантиметра; наиболее безобидное g-излучение характеризуется наибольшейпроникающей способностью: его может задержать лишь толстая плита изматериалов, имеющих высокий коэффициент поглощения, например, из бетона илисвинца.
Также различается чувствительность отдельных органов крадиоактивному излучению. Поэтому, чтобы получить наиболее достовернуюинформацию о степени риска, необходимо учитывать соответствующие коэффициентычувствительности тканей при расчете эквивалентной дозы облучения:
0,03 – костная ткань
0,03 – щитовидная железа
0,12 – красный костный мозг
0,12 – легкие
0,15 – молочная железа
0,25 – яичники или семенники
0,30 – другие ткани
1,00 – организм в целом.
Вероятность повреждения тканей зависит от суммарной дозы иот величины дозировки, так как благодаря репарационным способностям большинствоорганов имеют возможность восстановиться после серии мелких доз.
В таблице 1 приведены крайниезначения допустимых доз радиации:
Орган Допустимая доза Красный костный мозг 0,5-1 Гр. Хрусталик глаза 0,1-3 Гр. Почки 23 Гр. Печень 40 Гр. Мочевой пузырь 55 Гр. Зрелая хрящевая ткань >70 Гр. Примечание: Допустимая доза — суммарная доза, получаемая человеком в течение 5 недельТаблица1.
Тем не менее, существуютдозы, при которых летальный исход практически неизбежен. Так, например, дозыпорядка 100 г приводят к смерти через несколько дней или даже часов вследствиеповреждения центральной нервной системы, от кровоизлияния в результате дозыоблучения в 10-50 г смерть наступает через одну-две недели, а доза в 3-5 граммгрозит обернуться летальным исходом примерно половине облученных.
Знания конкретной реакции организмана те или иные дозы необходимы для оценки последствий действия больших дозоблучения при авариях ядерных установок и устройств или опасности облучения придлительном нахождении в районах повышенного ра-
диационногоизлучения, как от естественных источников, так и в случае радиоактивногозагрязнения. Однако даже малые дозы радиации не безвредны и их влияние наорганизм и
здоровьебудущих поколений до конца не изучено. Однако можно предположить, что радиацияможет вызвать, прежде всего, генные и хромосомные мутации, что в последствииможет привести к проявлению рецессивных мутаций.
Следует более подробно рассмотреть наиболеераспространенные и серьезные повреждения, вызванные облучением, а именно рак игенетические нарушения.
В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести кнеобратимым последствиям, но это не предопределено. Тем не менее, установлено,что вероятность заболевания возрастает прямо пропорционально дозе облучения.
Среди наиболее распространенных раковых заболеваний,вызванных облучением, выделяются лейкозы. Оценка вероятности летальногоисхода при лейкозе более надежна, чем аналогичные оценки для других видовраковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляютсебя, вызывая смерть в среднем через 10 лет после момента облучения. Залейкозами “по популярности” следуют: рак молочной железы, рак щитовидной железыи рак легких. Менее чувствительны желудок, печень, кишечник и другие органы иткани.
Воздействие радиологического излучения резко усиливаетсядругими неблагоприятными экологическими факторами (явление синергизма). Так,смертность от радиации у курильщиков заметно выше.
Что касается генетических последствий радиации, то онипроявляются в виде хромосомных аберраций (в том числе изменения числа илиструктуры хромосом) и генных мутаций. Генные мутации проявляются сразу впервом поколении (доминантные мутации) или только при условии, если у обоихродителей мутантным является один и тот же ген (рецессивные мутации), чтоявляется маловероятным.
Изучение генетических последствий облучения еще болеезатруднено, чем в случае рака. Неизвестно, каковы генетические повреждения приоблучении, проявляться они могут на протяжении многих поколений, невозможноотличить их от тех, что вызваны другими причинами.
Приходится оценивать появление наследственных дефектов учеловека по результатам экспериментов на животных.
При оценке риска НКДАРиспользует два подхода: при одном определяют непосредственный эффект даннойдозы, при другом – дозу, при которой удваивается частота появления потомков стой или иной аномалией по сравнению с нормальными радиационными условиями.
Так, при первом подходе установлено, что доза в 1 г,полученная при низком радиационном фоне особями мужского пола (для женщин оценкименее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих ксерьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллионживых новорожденных.
При втором подходе получены следующие результаты:хроническое облучение при мощности дозы в 1 г на одно поколение приведет кпоявлению около 2000 серьезных генетических заболеваний на каждый миллионживых новорожденных среди детей тех, кто подвергся такому облучению.
Оценки эти ненадежны, но необходимы. Генетические последствияоблучения выражаются такими количественными параметрами, как сокращениепродолжительности жизни и периода нетрудоспособности, хотя при этомпризнается, что эти оценки не более чем первая грубая прикидка. Так,хроническое облучение населения с мощностью дозы в 1 г на поколение сокращаетпериод трудоспособности на 50000 лет, а продолжительность жизни – также на50000 лет на каждый миллион живых новорожденных среди детей первого облученногопоколения; при постоянном облучении многих поколений выходят на следующиеоценки: соответственно 340000 лет и 286000 лет.
Существует три пути поступления радиоактивныхвеществ в организм: при вдыхание воздуха, загрязненного радиоактивнымивеществами, через зараженную пищу или воду, через кожу, а также при зараженииоткрытых ран. Наиболее опасен первый путь, поскольку:
· объем легочной вентиляции оченьбольшой
· значения коэффициента усвоения влегких более высоки.
Пылевые частицы, на которых сорбированы радиоактивные изотопы, при вдыхании воздуха через верхниедыхательные пути частично оседают в полости рта и носоглотке. Отсюда пыль поступает в пищеварительный тракт. Остальные частицы поступают в легкие. Степень задержки аэрозолей в легких зависит от дисперсионности. В легкихзадерживается около 20% всех частиц; при уменьшении размеров аэрозолейвеличина задержки увеличивается до 70%.
При всасывании радиоактивныхвеществ из желудочно-кишечного тракта имеет значение коэффициент резорбции, характеризующий долю вещества, попадающего из желудочно-кишечного тракта вкровь. В зависимости от природы изотопа коэффициент изменяется в широкихпределах: от сотых долей процента (для циркония, ниобия), до несколь-кихдесятков процентов (водород, щелочноземельные элементы). Резорбция черезнеповрежденную кожу в 200-300 раз меньше, чем через желудочно-кишечный тракт,и, как правило, не играет существенной роли.
При попадании радиоактивныхвеществ в организм любым путем они уже через несколько минутобнаруживаются в крови. Если поступление радиоактивных веществ былооднократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается.
Концентрации в крови долгоживущих изотопов в дальнейшем могут удерживаться практически на одномуровне в течение длительного времени вследствие обратного вымыванияотложившихся веществ.
Основные этапы воздействияизлучения на ткани показаны в таблице 2:
www.ronl.ru
Радиоактивный фон, создаваемый космическими лучами (0,3 мЗв/год), дает чуть меньше половины всего внешнего облучения (0,65 мЗв/год), получаемого населением. Нет такого места на Земле, куда бы ни проникали космические лучи. При этом надо отметить, что Северный и Южный полюса получают больше радиации, чем экваториальные районы. Происходит это из-за наличия у Земли магнитного поля, силовые линии которого входят и выходят у полюсов.
Однако более существенную роль играет место нахождения человека. Чем выше поднимается он над уровнем моря, тем сильнее становится облучение, ибо толщина воздушной прослойки и ее плотность по мере подъема уменьшается, а следовательно, падают защитные свойства.
Те, кто живет на уровне моря, в год получают дозу внешнего облучения приблизительно 0,3 мЗв, на высоте 4000 метров – уже 1,7 мЗв. На высоте 12 км доза облучения за счет космических лучей возрастает приблизительно в 25 раз по сравнению с земной. Экипажи и пассажиры самолетов при перелете на расстояние 2400 км получают дозу облучения 10 мкЗм (0,01 мЗв или 1 мбэр), при полете из Москвы в Хабаровск эта цифра уже составит 40 – 50 мкЗв. Здесь играет роль не только продолжительность, но и высота полета.
Земная радиация, дающая ориентировочно 0,35 мЗв/год внешнего облучения, исходит в основном от тех пород полезных ископаемых, которые содержат калий – 40, рубидий – 87, уран – 238, торий – 232. Естественно, уровни земной радиации на нашей планете неодинаковы и колеблются большей частью от 0,3 до 0,6 мЗв/год. Есть такие места, где эти показатели во много раз выше.
продолжение --PAGE_BREAK--4.2. Внутреннее облучение населения
Внутренне облучение населения от естественных источников на две трети происходит от попадания радиоактивных веществ в организм с пищей, водой и воздухом. В среднем человек получает около 180 мкЗв/год за счет калия – 40, который усваивается организмом вместе с нерадиоактивным калием, необходимым для жизнедеятельности. Нуклиды свинца – 210, полония – 210 концентрируются в рыбе и моллюсках. Поэтому люди, потребляющие много рыбы и других даров моря, получают относительно высокие дозы внутреннего облучения.
Жители северных районов, питающиеся мясом оленя, тоже подвергаются более высокому облучению, потому что лишайник, который употребляют олени в пищу зимой, концентрирует в себе значительные количества радиоактивных изотопов полония и свинца.
Недавно ученые установили, что наиболее весомым из всех естественных источников радиации является радиоактивный газ радон — это невидимый, не имеющий ни вкуса, ни запаха газ, который в 7,5 раз тяжелее воздуха. В природе радон встречается в двух основных видах: радон – 222 и радон – 220. Основная часть радиации исходит не от самого радона, а от дочерних продуктов распада, поэтому значительную часть дозы облучения человек получает от радионуклидов радона, попадающих в организм вместе с вдыхаемым воздухом.
Радон высвобождается из земной коры повсеместно, поэтому максимальную часть облучения от него человек получает, находясь в закрытом, непроветриваемом помещении нижних этажей зданий, куда газ просачивается через фундамент и пол. Концентрация его в закрытых помещениях обычно в 8 раз выше, чем на улице, а на верхних этажах ниже, чем на первом.
Дерево, кирпич, бетон выделяют небольшое количество газа, а вот гранит и железо - значительно больше. Очень радиоактивны глиноземы. Относительно высокой радиоактивностью обладают некоторые отходы промышленности, используемые в строительстве, например, кирпич из красной глины (отходы производства алюминия), доменный шлак (в черной металлургии), зольная пыль (образуется при сжигании угля).
Другими источниками поступления радона в жилые помещения являются вода и природный газ. Надо помнить, что в сырой воде его намного больше, а при кипячении радон улетучивается, поэтому основную опасность представляет собой его попадание в легкие с парами воды. Чаще всего это происходит в ванной комнате при приеме горячего душа.
Точно такую же опасность радон представляет, смешиваясь под землей с природным газом, который при сжигании в кухонных плитах, отопительных и других нагревательных приборах попадает в помещение. Концентрация его сильно увеличивается при отсутствии хороших вытяжных систем.
Также нельзя забывать, что при сжигании угля значительная часть его компонентов спекается в шлак или золу, где концентрируются радиоактивные вещества. Более легкая из них часть — зольная пыль — уносится в воздух, что также приводит к дополнительному облучению людей.
Из печек и каминов всего мира вылетает в атмосферу зольной пыли не меньше, чем из труб электростанции.
За последние десятилетия человек усиленно занимался проблемами ядерной физики. Он создал сотни искусственных радионуклидов, научился использовать возможности атома в самых различных отраслях - в медицине, при производстве электро- и тепловой энергии, изготовлении светящихся циферблатов часов, множества приборов, при поиске полезных ископаемых и в военном деле. Все это, естественно, приводит к дополнительному облучению людей. В большинстве случаев дозы невелики, но иногда техногенные источники оказываются во много тысяч раз интенсивнее, чем естественные.
Медицинские процедуры и методы лечения, связанные с применением радиоактивности, вносят основной вклад в дозу, получаемую человеком от техногенных источников. Так, при рентгенографии зубов человек получает местное разовое облучение 0,03 Зв (3 бэр), при при рентгенографии желудка - 0,3 Зв (30 бэр), при флюорографии – 3,7 мЗв (370 мбэр).
Ядерные взрывы тоже вносят свою лепту в увеличение дозы облучения человека. Радиоактивные осадки от испытаний в атмосфере разносятся по всей планете, повышая общий уровень загрязненности. Испытания эти проходили в два периода: Ø первый (1954 – 1958 гг.), когда взрывы проводили Великобритания, США и СССР;
Ø второй (1961 – 1962 гг.) – более значительный, когда взрывы проводили в основном США и СССР. Всего ядерных испытаний в атмосфере произведено: Китаем – 193, СССР – 142, Францией – 45, США – 22, Великобританией – 21. После 1980 года взрывы в атмосфере практически прекратились. Подземные же испытания продолжаются до сих пор.
Атомная энергетика, хотя и вносит в суммарное облучение населения незначительный вклад, является предметом интенсивных споров. Если ядерные установки работают нормально, то и выбросы радиоактивных материалов в окружающую среду очень малы.
Каждому понятно, что доза облучения от ядерного реактора зависит от времени и расстояния. Чем дальше человек живет от АЭС, тем меньшую дозу он получает. Дело в том, что большинство радионуклидов, выбрасываемых в атмосферу, быстро распадаются, и поэтому они имеют только местное значение. Конечно, есть и долгоживущие, которые могут распространяться по всему земному шару и оставаться в окружающей среде практически бесконечно.
Другим источником загрязнения радиоактивными веществами служат рудники и обогатительные фабрики. В процессе переработки урановой руды образуется огромное количество отходов - «хвостов», которые остаются радиоактивными в течение миллионов лет. Они - главный долгоживущий источник облучения населения. Подводя итог, надо сказать, что средние дозы облучения от атомной энергетики весьма малы по сравнению с дозами, получаемыми от естественных источников (более 1%).
В промышленности и в быту из-за применения различных технических средств люди тоже получают дополнительное, хотя и небольшое, облучение. Например, работники, которые участвуют в производстве люминофоров с использованием радиоактивных материалов, на заводах стройиндустрии и промплощадках, где используются установки промышленной дефектоскопии. Под землей повышенные дозы получают шахтеры, рудокопы, золотодобытчики. Достается и персоналу курортов с радоновыми источниками.
Самым распространенным бытовым облучателем являются часы со светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую ту, что обусловлена утечкой на АЭС. На расстоянии 1 метра от циферблата излучение, как правило, в 10000 раз слабее, чем в 1 сантиметре.
Источник рентгеновского излучения - цветной телевизор. При просмотре, например, одного хоккейного матча человек получает облучение 0,1мкЗв (1мкбэр). Если смотреть передачи в течении года ежедневно по 3 часа, то доза облучения составит 5 мкЗв.
Таким образом, в современных условиях при наличии высокого естественного радиационного фона, при действующих технологических процессах каждый житель Земли ежегодно получает дозу облучения в среднем 2 – 3 мЗв (200 – 300 мбэр). продолжение --PAGE_BREAK--
www.ronl.ru