Бактерии – самые многочисленные жители планеты Земля. Они заселили ее в глубокой древности и продолжают существовать поныне. Некоторые виды даже мало изменились с тех пор. Бактерии полезные и вредные буквально окружают нас везде (и даже проникают внутрь других организмов). При довольно примитивном одноклеточном строении они являются одной из самых, наверное, эффективных форм живой природы и выделяются в особое царство.
Эти микроорганизмы, что называется, в воде не тонут и в огне не горят. Буквально: выдерживают температуры до плюс 90 градусов, заморозку, отсутствие кислорода, давление – высокое и низкое. Можно сказать, что в них природа вложила огромный запас прочности.
Как правило, бактериям, в изобилии населяющим наши тела, не уделяется должного внимания. Ведь они настолько малы, что, кажется, не имеют никакого существенного значения. Те, кто думает так, в значительной мере ошибаются. Бактерии полезные и вредные давно и надежным образом «колонизировали» другие организмы, успешно сосуществуют с ними. Да, их нельзя увидеть без помощи оптики, но они могут принести пользу или причинить вред нашему телу.
Врачи говорят, что если сложить вместе только лишь бактерии, обитающие в кишечнике, и взвесить – получится что-то около трех килограммов! С такой огромной армией нельзя не считаться. В кишечник человека непрерывно попадали многие из микроорганизмов, но только некоторые виды находят там благоприятные условия для проживания и жизнедеятельности. А в процессе эволюции даже образовали постоянную микрофлору, которая призвана выполнять важные физиологические функции.
Бактерии в жизни человека давно уже играют важную роль, хотя до самого последнего времени человек об этом и не догадывался. Они помогают своему хозяину в пищеварении и выполнении ряда других функций. Что же представляют собой эти невидимые соседи?
99% населения постоянно проживают в кишечнике. Они ярые приверженцы и помощники человека.
Необходимо знать также, что при соответствующих негативных условиях все эти представители флоры кишечника (исключение – бифидобактерии) могут вызвать заболевания.
Основные функции этих бактерий – помочь нам в процессе пищеварения. Замечено, что у человека при неправильном питании может возникать дисбактериоз. Как результат – застои и плохое самочувствие, запоры и прочие неудобства. При нормализации сбалансированности питания болезнь, как правило, отступает.
Еще одна функция этих бактерий – сторожевая. Они следят за тем, какие бактерии полезные. За тем, чтобы «чужаки» не проникали в их сообщество. Если, к примеру, в кишечник пытается проникнуть возбудитель дизентерии - шигелла Зонне, они убивают ее. Однако, стоит заметить, что такое происходит только в организме относительно здорового человека, с хорошим иммунитетом. В противном случае – риск заболеть увеличивается в разы.
Примерно 1% в организме здорового индивидуума составляют так называемые условно-патогенные микробы. Они относятся к непостоянной микрофлоре. При нормальных условиях они выполняют определенные функции, не приносящие вред человеку, работают на благо. Но в определенной ситуации могут проявить себя в качестве вредителей. Это в основном стафилококки и различного рода грибы.
Вообще-то, весь пищеварительный тракт имеет неоднородную и непостоянную микрофлору – бактерии полезные и вредные. Пищевод содержит таких же обитателей, как и в ротовой полости. В желудке находятся лишь некоторые, устойчивые к кислоте: лактобациллы, хеликобактеры, стрептококки, грибы. В тонкой кишке микрофлора также немногочисленна. Больше всего бактерий находится в толстой кишке. Так, испражняясь, человек способен выделять свыше 15 триллионов микроорганизмов в сутки!
Она также, безусловно, велика. Выделяют несколько глобальных функций, без которых все живое на планете наверняка уже давно бы прекратило свое существование. Самая важная – санитарная. Бактерии поедают отмершие организмы, находящиеся в природе. Они, по сути своей, работают своеобразными дворниками, не позволяя накапливаться отложениям мертвых клеток. По-научному их называют сапротрофы.
Еще одна немаловажная роль бактерий – участие во всемирном круговороте веществ на суше и на море. На планете Земля все вещества в биосфере переходят от одного организма к другому. Без некоторых бактерий этот переход попросту стал бы невозможен. Неоценима роль бактерий, например, в круговороте и воспроизводстве такого важного элемента, как азот. В почве существуют определенные бактерии, которые делают из азота в воздухе азотистые удобрения для растений (микроорганизмы проживают прямо в их корнях). Такой симбиоз между растениями и бактериями изучается наукой.
Как уже было сказано, бактерии – самые многочисленные жители биосферы. А соответственно, могут и должны участвовать в пищевых цепочках, свойственных природе животных и растений. Конечно же, для человека, например, бактерии не являются основной частью рациона (разве что можно использовать в качестве пищевой добавки). Однако существуют организмы, питающиеся бактериями. Этими организмами, в свою очередь, питаются другие животные.
Эти сине-зеленые водоросли (устаревшее название данных бактерий, в корне неправильное с научной точки зрения) способны вырабатывать огромное количество кислорода в результате фотосинтеза. Когда-то давно именно они начали насыщать нашу атмосферу кислородом. Цианобактерии продолжают успешно это делать и по сей день, образуя определенную часть кислорода в современной атмосфере!
fb.ru
Слово «бактерии» у большинства людей ассоциируется с чем-то неприятным и с угрозой для здоровья. В лучшем случае вспоминаются кисломолочные продукты. В худшем – дисбактериоз, чума, дизентерия и прочие неприятности. А бактерии есть везде, они бывают плохие и хорошие. Что же могут скрывать микроорганизмы?
Бактерия в переводе с греческого значит «палочка». Это название не говорит о том, что имеются в виду вредные бактерии. Такое название им дали из-за формы. Большинство этих одиночных клеток выглядят как палочки. Также они бывают в виде треугольников, квадратов, звездчатых клеток. В течение миллиарда лет бактерии не меняют внешний облик, могут меняться только внутренне. Они могут быть подвижные и неподвижные. Бактерия состоит из одной клетки. Снаружи она покрыта тонкой оболочкой. Это позволяет ей сохранять форму. Внутри клетки нет ядра, хлорофилла. Есть рибосомы, вакуоли, выросты цитоплазмы, протоплазма. Самая большая бактерия была найдена в 1999 году. Её назвали "Серая жемчужина Намибии". Бактерия и бацилла обозначают одно и то же, только имеют разное происхождение.
В нашем организме постоянно происходит борьба, которую ведут вредные и полезные бактерии. Благодаря этому процессу, человек получает защиту от различных инфекций. Различные микроорганизмы окружают нас на каждом шагу. Они живут на одежде, летают в воздухе, они вездесущи.
Наличие бактерий во рту, а это порядка сорока тысяч микроорганизмов, защищает десна от кровотечения, от пародонтоза и даже от ангины. Если у женщины нарушается микрофлора, у неё могут начаться гинекологические заболевания. Соблюдение элементарных правил личной гигиены поможет избежать таких сбоев.
От состояния микрофлоры полностью зависит иммунитет человека. Только в желудочно-кишечном тракте находится почти 60% всех бактерий. Остальные расположились в дыхательной системе и в половой. В человеке живет порядка двух килограммов бактерий.
Только что родившийся малыш имеет стерильный кишечник. После его первого вздоха в организм попадает множество микроорганизмов, с которыми ранее он не был знаком. При первом прикладывании малыша к груди мать передает с молоком полезные бактерии, которые помогут нормализовать микрофлору кишечника. Не зря врачи настаивают на том, чтобы мать сразу после рождения своего ребенка покормила его грудью. Также они рекомендуют продлить такое кормление как можно дольше.
Полезные бактерии бывают: молочнокислые, бифидобактерии, кишечная палочка, стрептомиценты, микоризы, цианобактерии.
Все они играют важную роль в жизни человека. Одни из них предотвращают появление инфекций, другие используют в производстве лекарственных препаратов, третьи поддерживают баланс в экосистеме нашей планеты.
Вредные бактерии могут вызвать у человека ряд серьезных заболеваний. Например, дифтерию, сибирскую язву, ангину, чуму и многие другие. Они легко передаются от заразившегося человека через воздух, еду, прикосновение. Именно вредные бактерии, названия которых будут приведены ниже, портят продукты питания. От них появляется неприятный запах, происходит гниение и разложение, они вызывают заболевания.
Бактерии могут быть грамположительными, грамотрицательными, палочковидными.
Названия | Место обитания | Вред |
Микобактерии | пища, вода | туберкулез, проказа, язва |
Столбнячная палочка | почва, кожа, пищеварительный тракт | столбняк, мышечные спазмы, дыхательная недостаточность |
Палочка чумы (рассматривается специалистами как биологическое оружие) | только в организме человека, грызунов и млекопитающих | бубонная чума, пневмония, кожные инфекции |
Хеликобактер пилори | слизистая оболочка желудка человека | гастрит, пептическая язва, вырабатывает цитоксины, аммиак |
Сибироязвенная палочка | почва | сибирская язва |
Палочка ботулизма | пища, зараженная посуда | отравление |
Вредные бактерии способны долгое время находиться в организме и всасывать полезные вещества из него. При этом они способны вызвать инфекционное заболевание.
Одна из самых устойчивых бактерий – это метициллин. Его знают больше под названием «золотистый стафилококк» (Staphylococcus aureus). Этот микроорганизм способен вызвать не одно, а несколько инфекционных заболеваний. Некоторые виды этих бактерий стойки к воздействию мощных антибиотиков и антисептиков. Штаммы этой бактерии могут жить в верхних отделах дыхательных путей, в открытых ранах и мочевыводящих каналах каждого третьего жителя Земли. Для человека с сильным иммунитетом это не представляет опасности.
Вредные бактерии для человека – это также патогены под названием Salmonella typhi. Они являются возбудителями острой инфекции кишечника и брюшного тифа. Такие виды бактерий, вредных для человека, опасны тем, что вырабатывают токсические вещества, которые крайне опасны для жизни. При протекании болезни происходит интоксикация организма, очень сильная лихорадка, высыпания на теле, увеличивается печень и селезенка. Бактерия очень стойка к разным внешним воздействиям. Хорошо живет в воде, на овощах, фруктах и прекрасно размножается в продуктах из молока.
К самым опасным бактериям относится также бактерия Clostridium tetan. Она вырабатывает яд под названием «столбнячный экзотоксин». Люди, которые заражаются этим патогеном, испытывают страшные боли, судороги и очень тяжело умирают. Болезнь называется столбняк. Несмотря на то что вакцину создали ещё в 1890 году, каждый год на Земле от неё умирает 60 тысяч человек.
И ещё одна бактерия, которая способна привести к смерти человека, - это Mycobacterium tuberculosis. Она вызывает туберкулез, который устойчив к воздействию лекарств. При несвоевременном обращении за помощью человек может умереть.
Вредные бактерии, названия микроорганизмов изучают со студенческой скамьи медики всех направлений. Здравоохранение ежегодно ищет новые методы для профилактики распространения инфекций, опасных для жизни человека. При соблюдении мер профилактики не придется тратить силы на поиск новых способов борьбы с такими заболеваниями.
Для этого необходимо вовремя выявлять источник появления инфекции, определить круг заболевших и возможных пострадавших. Обязательно необходимо изолировать тех, кто заражен, и провести дезинфекцию очага заражения.
Второй этап – это уничтожение путей, через которые могут передаваться вредные бактерии. Для этого проводят соответствующую пропаганду среди населения.
Под контроль берут объекты питания, водоемы, склады с хранением продовольствия.
Каждый человек может противостоять вредным бактериям, всячески укрепляя свой иммунитет. Здоровый образ жизни, соблюдение элементарных правил гигиены, защита себя при половом контакте, использование стерильных одноразовых медицинских инструментов и оборудования, полное ограничение от общения с людьми, находящимися на карантине. При попадании в эпидемиологический район или в очаг заражения необходимо строго выполнять все требования санитарно-эпидемиологических служб. Ряд инфекций приравниваются по своему воздействию к бактериологическому оружию.
fb.ru
реферат на тему «полезные бактерии? «
Известно, что если долго хранить вино, оно постепенно превращается в уксус. Об этом люди знали, вероятно, с тех пор, как научились делать вино. Но лишь в XIX в. Луи Пастер (см. ст. «Луи Пастер») установил, что это превращение вызывают попавшие в вино уксуснокислые бактерии. С их помощью получают уксус.
Различные бактерии помогают человеку изготавливать шёлк, производить кофе, табак.
Один из самых перспективных способов применения бактерий был открыт только к концу XX в. Оказывается, можно ввести в организм бактерии ген какого-либо нужного человеку белка (хотя и совершенно не нужного бактерии) — например, ген инсулина. Тогда бактерия начнёт его вырабатывать. Прикладная наука, которая делает возможным проведение подобных операций, называется генной инженерией. После долгого и трудного поиска учёным удалось наладить бактериальное «производство» этого вещества (инсулина), жизненно необходимого больным диабетом. В будущем, вероятно, станет возможно по заказу превращать бактерии в микроскопические «фабрики» по производству тех или иных белков.
Внимание, только СЕГОДНЯ!
trapswag.ru
Мало кто из людей задумывается о том, что вокруг нас живут и постоянно размножаются миллионы бактерий . Какова же роль бактерий в жизни человека? Влияние бактерий на организм человека нельзя недооценивать. Полезные и вредные бактерии поселяются как снаружи (на коже) так и внутри (в кишечнике) каждого человека с момента его рождения. Между всеми бактериями, присущими человеческому организму, идет постоянная борьба за питательные вещества, нужные им для размножения, при этом полезные бактерии способны уничтожать болезнетворные бактерии. Независимо от вида пищи употребляемой человеком (мясо, молоко, растения), внутри ротовой полости, на языке и зубах, образуется накопление бактерий, питающихся микрочастичками пищи. Люди уже сотни лет занимаются чисткой зубов и делают это не только с целью очищения зубов от застрявших кусочков пищи, но и для предотвращения появления плохого (гнилостного) запаха изо рта. Побочным продуктом жизнедеятельности всех бактерий является запах, газообразование свойственно как гнилостным так и кисломолочным бактериям, используемых людьми для производства продуктов питания (лактобактерии). На поверхности человеческой кожи бактерии начинают активно размножаться, когда люди потеют (летом или после занятий спортом) или же этот процесс возникает в местах повреждения кожи. Пот не имел бы запаха, если бы был просто водой, но через потовые железы выделяется жир, являющийся для бактерий пищей (на ткани он проявляется желтым цветом). А его резкий неприятный запах появляется после того, как бактерии начинают активно перерабатывать питательные вещества. Для очищения подмышечных впадин от бактерий всегда рекомендуют душ и мыло, но если нет возможности ими воспользоваться, то появление запаха можно предотвратить, если протереть подмышки перекисью водорода. Если покраснела кожа вокруг царапины или мелкого пореза – это признак начала воспалительного процесса, возникшего из-за попадания бактерий на поврежденный участок кожи. Это место надо обработать дезинфицирующим раствором (перекись водорода, йод или одеколон), чтобы не допустить развития заражения крови (сепсис).
Условия, в которых происходит размножение бактерий разных видов, схожи между собой. Для этого им требуется тепло (от +15 С до +35 С), влажность, темнота и питательные вещества — такие условия бактерии находят на теле любого человека в области паха и подмышечных впадин. Некоторым бактериям даже не нужен кислород — анаэробные бактерии, развивающиеся внутри старых консервов, при попадании в организм провоцируют развитие ботулизма. Холод делает бактерии малоподвижными, солнечный свет (ультрафиолет) разрушает бактерии также как и термообработка. Сухой теплый воздух высушивает бактерии, превращая их в споры, которые долгое время сохраняют способность к возобновлению своей деятельности при попадании в питательную среду.
В дикой природе бактерии перерабатывают отходы животных, они ускоряют процесс их разложения и образования веществ, насыщающих почву, передающую эти вещества растениям. Без вмешательства бактерий поверхность всей планеты была бы покрыта толстым слоем не переработанных отходов. Эту ситуацию легко увидеть на мусорных свалках, где накопилось много отходов искусственного происхождения, которые не являются пищей для бактерий. Вода из канализационных стоков больших городов проходит стадию очистки бактериями на очистительных станциях и подается в трубы водопровода. Без симбиоза с бактериями травоядные животные, так же как и люди, не смогли бы перерабатывать целлюлозу (растительную клетчатку) на глюкозу, дающую энергетический заряд всему телу. Простого пережевывания растительной пищи не достаточно для правильного расщепления растительной клетчатки, из которой организм способен синтезировать и усваивать многие витамины. Этот процесс необходим и при переваривании фруктовой мякоти, которая также имеет в своей структуре волокна, особенно если речь идет о кожуре фрукта. Волокна, которые не способны переработать бактерии (обезвоженная оболочка растений, кора деревьев), становятся пищей для грибковой плесени.
Кисломолочные бактерии, попадающие в желудок вместе с кисломолочной продукцией, способствуют перевариванию и усваиванию питательных веществ содержащихся в молоке. К новорожденным детям такие бактерии передаются с молоком матери в первый же день, без этих бактерий сразу появляется дисбактериоз, который возникает как при отравлении, так и при отсутствии полезных бактерий. Самое главное правило при назначении правильного лечения дисбактериоза у детей и взрослых это выявление причины его появления: после лечения антибиотиками в желудке отсутствуют полезные бактерии или не вырабатываются ферменты. У взрослых людей употребляющих свежее молоко часто возникает диарея, а при употреблении кисломолочных продуктов такое встречается редко. Почему? Пастеризованное молоко не содержит в себе живых кисломолочных бактерий, которые производители добавляют в продукцию только на втором этапе — переработки молока в кисломолочные продукты (кефир, творог, твердый сыр). Бактерии необходимы для заквашивания растительной пищи: только естественные процессы брожения бактерий позволяют без кипячения превратить свежую белокочанную капусту в квашеную, засолить на зиму огурцы или помидоры.
Болезнетворные бактерии опасны для человеческого организма, так как они являются переносчиками многих инфекционных заболеваний. Такие бактерии передаются от человека к человеку через ручки входных дверей и перила лестниц, поверхность немытых фруктов и овощей, при кашле или чиханье.
Гнилостные бактерии, проникнув в кишечник вместе с какой-то пищей, в процессе размножения выделяют большое количество газа, вызывая сильное вздутие живота, колики, чувство тошноты. Появляется чувство сильного давления на все внутренние органы. А при труднопроходимости пищи (запор) из-за такого вздутия кишечника на его стенках могут появиться разрывы – такие случаи не редки для травоядных животных, съевших подгнившие фрукты.
muvrasil.ru
Статьи раздела "Что мы знаем о микробах"
Бактерии живут на планете Земля более 3,5 млрд. лет. За это время они многому научились и ко многому приспособились. Теперь они помогают человеку. Бактерии и человек стали неразлучны. Суммарная масса бактерий огромна. Она составляет около 500 миллиардов тонн.
Полезные бактерии выполняют две самые важные экологические функции — они фиксируют азот и участвуют в минерализации органических остатков. Роль бактерий в природе носит глобальный характер. Они участвуют в перемещении, концентрации и рассеивании химических элементов в биосфере земли.
Велико значение бактерий, полезных для человека. Они составляют 99% всей популяции, которые заселяют его организм. Благодаря им человек живет, дышит и питается.
Важна роль бактерий в жизни человека. Они полностью обеспечивают его жизнедеятельность.
Бактерии довольно просто устроены. Ученые предполагают, что они первыми появились на планете Земля.
Человеческий организм населяют и полезные и вредные бактерии. Существующий баланс между организмом человека и бактериями отшлифовывался веками.
Как подсчитали ученые, в организме человека содержится от 500 до 1000 всевозможных видов бактерий или триллионы этих удивительных жильцов, что составляет до 4-х кг совокупного веса. До 3-х килограмм микробных тел находится только в кишечнике. Остальная их часть находится в мочеполовых путях, на коже и других полостях человеческого тела. Микробы заполняют организм новорожденного уже с первых минут его жизни и окончательно формируют состав кишечной микрофлоры к 10-13 годам.
В кишечнике обитают стрептококки, лактобактерии, бифидобактерии, энтеробактерии, грибы, кишечные вирусы, непатогенные простейшие. Лактобактерии и бифидобактерии составляют 60% кишечной флоры. Состав этой группы всегда постоянный, они самые многочисленные и осуществляющие основные функции.
Значение бактерий этого вида огромно.
Рис. 1. На фото бифидобактерии. Компьютерная визуализация.
Значение бактерий этого вида для человека большое.
Рис. 2. На фото кишечная палочка (трехмерное компьютерное изображение).
Рис. 3. На фото полезные бактерии — лактобактерии (трехмерное компьютерное изображение).
Аммонифицирующие микробы (вызывающие гниение) с помощью ряда имеющихся у них ферментов способны разлагать останки погибших животных и растений. При разложении белков выделяются азот и аммиак.
Уробактерии разлагают мочевину, которую человек и все животные планеты выделяют ежесуточно. Ее количество огромно и достигает 50 млн. тонн в год.
Определенный вид бактерий участвует в окислении аммиака. Этот процесс называется нитрофикацией.
Денитрифицирующие микробы возвращают молекулярный кислород из почвы в атмосферу.
Рис. 4. На фото полезные бактерии — аммонифицирующие микробы. Они подвергают останки погибших животных и растений разложению.
Значение бактерий в жизнедеятельности человека, животных, растений, грибов и бактерий огромно. Как известно, для нормального их существования необходим азот. Но усваивать азот в газообразном состоянии бактерии не могут. Оказывается, связывать азот и образовывать аммиак умеют сине-зеленые водоросли (Цианобактерии), свободноживущие азотофиксаторы и особые клубеньковые бактерии. Все эти полезные бактерии производят до 90% связанного азота и вовлекают до 180 млн. т. азота в азотный фонд почвы.
Клубеньковые бактерии прекрасно сожительствуют с бобовыми растениями и облепихой.
Такие растения, как люцерна, горох, люпин и другие бобовые имеют на своих корнях так называемые «квартиры» для клубеньковых бактерий. Эти растения высаживаются на истощенные почвы для обогащения их азотом.
Рис. 5. На фото клубеньковые бактерии на поверхности корневого волоска бобового растения.
Рис. 6. Фото корня бобового растения.
Рис. 7. На фото полезные бактерии — цианобактерии.
Углерод является важнейшим клеточным веществом животного и растительного мира, а так же мира растений. Он составляет 50% сухого остатка вещества клетки.
Много углерода содержится в клетчатке, которой питаются животные. В их желудке клетчатка под действием микробов разлагается и далее, в виде навоза, попадает наружу.
Разлагают клетчатку целлюлозные бактерии. В результате их работы почва обогащается гумусом, что значительно повышает ее плодородие, а углекислота возвращается в атмосферу.
Рис. 8. Зеленым цветом окрашены внутриклеточные симбионты, желтым – масса перерабатываемой древесины.
В белках и липидах содержится большое количество фосфора, минерализация которого осуществляется Вас. megatherium (из рода гнилостных бактерий).
Железобактерии участвуют в процессах минерализации органических соединений, содержащих железо. В результате их деятельности в болотах и озерах образуется большое количество железной руды и железомарганцевых отложений.
Серобактерии живут в воде и почве. Их много в навозе. Они участвуют в процессе минерализации серосодержащих веществ органического происхождения. В процессе разложения органических серосодержащих веществ выделяется газ сероводород, который крайне ядовит для окружающей среды, в том числе для всего живого. Серобактерии в результате своей жизнедеятельности превращают этот газ в неактивное безвредное соединение.
Рис. 9. Несмотря на кажущуюся безжизненность, в реке Рио Тинто жизнь всё-таки есть. Это различные, окисляющие железо, бактерии и множество других их видов, которые можно встретить только в этом месте.
Рис. 10. Зелёные серобактерии в колонне Виноградского.
Бактерии, принимающие активное участие в минерализации органических соединений, считаются чистильщиками (санитарами) планеты Земля. С их помощью органические вещества погибших растений и животных превращаются в перегной, который почвенные микроорганизмы превращают в минеральные соли, так необходимые для построения корневой, стеблевой и листовой систем растений.
Рис. 11. Минерализация органических веществ, поступающих в водоем, происходит в результате биохимического окисления.
Клетки растительных организмов связываются друг с другом (цементируются) специальным веществом, которое называется пектин. Некоторые виды маслянокислых бактерий обладают способностью сбраживать это вещество, которое при нагревании превращая в студенистую массу (пектис). Эта особенность используется при замачивании растений, содержащих много волокон (лен, конопля).
Рис. 12. Существует несколько способов получения тресты. Самым распространённым является биологический способ, при котором связь волокнистой части с окружающими тканями разрушается под влиянием микроорганизмов. Процесс брожения пектиновых веществ лубяных растений называется мочкой, а вымоченная солома — трестой.
Бактерии, очищающие воду, стабилизируют уровень ее кислотности. С их помощью сокращаются донные отложения, улучшается здоровье рыб и растений, живущих в воде.
Недавно группой ученых из разных стран были обнаружены бактерии, которые разрушают детергенты, входящие в состав синтетических моющих средств и некоторые лекарственные препараты.
Рис. 13. Широко применяется деятельность ксенобактерий для очистки почв и водоемов, загрязненных нефтепродуктами.
Рис. 14. Пластиковые купола, очищающие воду. В них содержатся гетеротрофные бактерии, питаюшиеся углеродосодержащими материалами, и автотрофные бактерии, питаюшиеся аммиак- и азотсодержащие материалами. Система трубок поддерживает их жизнеобеспечение.
Способность тионовых сероокисляющих бактерий используется для обогащения медных и урановых руд.
Рис. 15. На фото полезные бактерии — Тиобациллы и Acidithiobacillus ferrooxidans (электронная микрофотография). Они способны извлекать ионы меди для выщелачивания отходов, которые образуются при флотационном обогащении сульфидных руд.
Маслянокислые микробы находятся повсюду. Насчитывается более 25-и видов этих микробов. Они принимают участие в процессе разложения белков, жиров и углеводов.
Маслянокислое брожение вызывают анаэробные спорообразующие бактерии, относящиеся к роду клостридиум. Они способны сбраживать различные сахара, спирты, органические кислоты, крахмал, клетчатку.
Рис. 16. На фото маслянокислые микроорганизмы (компьютерная визуализация).
Множество видов животного мира питается растениями, основу которых составляет клетчатка. Переваривать клетчатку (целлюлозу) животным помогают особые микробы, местом пребывания которых являются определенные отделы желудочно-кишечного тракта.
Жизнедеятельность животных сопровождается выделением огромного количества навоза. Из него некоторые микроорганизмы могут производить метан («болотный газ»), который используется, как топливо и сырье в органическом синтезе.
Рис. 17. Газ метан как топливо для автомобилей.
Роль бактерий в жизни человека огромна. Широко применяются в пищевой промышленности молочнокислые бактерии:
К молочнокислым бактериям относятся молочные стрептококки, сливочные стрептококки, палочки болгарская, ацидофильная, зерновая термофильная и огуречная. Бактерии рода стрептококков и лактобацилл придают продуктам более густую консистенцию. В результате их жизнедеятельности улучшается качество сыров. Именно они придают сыру определенный сырный аромат.
Рис. 18. На фото полезные бактерии — лактобактерии (розовый цвет), болгарская палочка и термофильный стрептококк.
Рис. 19. На фото полезные бактерии — кефирный (тибетский или молочный) гриб и молочнокислые палочки перед непосредственным внесением в молоко.
Рис. 20. Кисломолочная продукция.
Рис. 21. Термофильные стрептококки (Streptococcus thermophilus) применяются при приготовлении сыра моцарелла.
Рис. 22. Вариантов плесневого пенициллина множество. Бархатистая корочка, зеленоватые прожилки, неповторимый вкус и лекарственно-аммиачный аромат сыров уникален. Грибной вкус сыров зависит от места и длительности созревания.
Рис. 23. Бифилиз – биопрепарат для приема внутрь, содержащий массу живых бифидобактерий и лизоцим.
В пищевой промышленности используются преимущественно вид дрожжей Saccharomyces cerevisiae. Они осуществляют спиртовое брожение, из-за чего широко применяются в хлебопекарном деле. Спирт при выпечке испаряется, а пузырьки углекислого газа формируют хлебный мякиш.
Дрожжи содержат до 65% белка, 10% которого составляют незаменимые аминокислоты, что позволяет их широко использовать в процессе обогащения пищи для человека белками и корма для животных. Кроме того дрожжи содержат много жиров и витаминов.
С 1910 года дрожжи стали добавлять в колбасы. Дрожжи вида Saccharomyces cerevisiae применяются для производства вин, пива и кваса.
Рис. 24. Чайный гриб – это дружеский симбиоз уксусной палочки и дрожжевых грибков. Он появился в наших краях еще в прошлом веке.
Рис. 25. Дрожжи сухие и мокрые широко используются в хлебопекарной промышленности.
Рис. 26. Вид клеток дрожжей Saccharomyces cerevisiae под микроскопом и Saccharomyces cerevisiae — «настоящие» винные дрожжи.
Еще Пастер доказал, что в уксуснокислом окислении принимают участие особые микроорганизмы — уксусные палочки, которые широко встречаются в природе. Они поселяются на растения, проникают в созревшие овощи и фрукты. Их много в квашеных овощах и фруктах, вине, пиве и квасе.
Способность уксусных палочек окислять этиловый спирт до уксусной кислоты используется сегодня для получения уксуса, применяемого в пищевых целях и при заготовке кормов для животных — силосовании (консервировании).
Рис. 27. Процесс силосования кормов. Силос — сочный корм, обладающий высокой кормовой ценностью.
Изучение жизнедеятельности микробов позволило ученым применять некоторые бактерии для синтеза антибактериальных препаратов, витаминов, гормонов и ферментов.
Они помогают бороться со многими инфекционными и вирусными заболеваниями. Чаще всего антибиотики продуцируют актиномицеты, реже – немицеллярные бактерии. Пенициллин, полученный из плесневых грибов, разрушает клеточную оболочку бактерий. Стрептомицеты продуцируют стрептомицин, который инактивирует рибосомы микробных клеток. Сенные палочки или Bacillus subtilis закисляют среду обитания. Они угнетают рост гнилостных и условно патогенных микроорганизмов за счет образования целого ряда веществ антимикробной направленности. Сенная палочка продуцирует ферменты, разрушающие вещества, которые образуются в результате гнилостного распада тканей. Они участвуют в синтезе аминокислот, витаминов и иммуноактивных соединений.
Используя технологию генной инженерии, сегодня ученые научились использовать кишечную палочку для производства инсулина и интерферона.
Ряд бактерий предполагается использовать для получения специального белка, который можно будет добавлять в корм скоту и в пищу человеку.
Рис. 28. На фото споры сенной палочки или Bacillus subtilis (окрашены в синий цвет).
Рис. 29. Биоспорин-Биофарма — отечественный препарат, содержащий апатогенные бактерии рода Bacillus.
Сегодня широко используется методика применения фитобактерий для производства безопасных гербицидов. Токсины Bacillus thuringiensis выделяют опасные для насекомых Cry-токсины, что позволяет использовать эту особенность микроорганизмов в борьбе с вредителями растений.
Протеазы или протеолитические ферменты расщепляют пептидные связи между аминокислотами, из которых состоят белки. Амилаза расщепляет крахмал. Сенная палочка (B. subtilis) продуцирует протеазы и амилазы. Бактериальные амилазы используются при производстве стирального порошка.
Рис. 30. Изучение жизнедеятельности микробов позволяет ученым применять некоторые их свойства для блага человека.
Значение бактерий в жизни человека огромно. Полезные бактерии являются постоянными спутниками человека много тысячелетий. Задача человечества — не нарушить это тонкое равновесие, которое сложилось между микроорганизмами, живущими внутри нас и в окружающей среде. Роль бактерий в жизни человека огромна. Ученые постоянно открывают полезные свойства микроорганизмов, использование которых в повседневной жизни и на производстве ограничивается только их свойствами.
К содержанию ↑ ССЫЛКИ ПО ТЕМЕСтатьи раздела "Что мы знаем о микробах"Самое популярноеПОНРАВИЛАСЬ СТАТЬЯ?
Подпишитесь на нашу рассылку!
Наша страница вконтакте Новые статьи Популярные статьи Похожие статьи О микробах и болезнях © 2018 Наверхmicrobak.ru
Две важнейшие экологические функции бактерий – фиксация азота и минерализация органических останков. Связывание молекулярного азота бактериями с образованием аммиака (азотфиксация) и последующая нитрификация аммиака – жизненно важный процесс, поскольку растения не могут усваивать газообразный азот. Примерно 90 % связанного азота производится бактериями, в основном, сине-зелёными водорослями и бактериями рода ризобиум (Rhyzobium), симбиотирующими с бобовыми растениями.
Бактерии широко применяются в пищевой промышленности для производства сыров и кисломолочной продукции, квашения капусты (при этом образуются органические кислоты). Бактерии используются для выщелачивания руд (прежде всего, медных и урановых), для очистки сточных вод от органических останков, при обработке шёлка и кож, для борьбы с сельскохозяйственными вредителями, для производства медицинских препаратов (например, интерферона). Некоторые бактерии поселяются в пищеварительном тракте травоядных млекопитающих, обеспечивая переваривание клетчатки.
Бактерии приносят не только пользу, но и вред. Они размножаются в пищевых продуктах, вызывая тем самым их порчу. Чтобы приостановить размножение, продукты пастеризуют (выдерживают полчаса при температуре 61–63 °C), хранят на холоде, высушивают (вяление или копчение), солят или маринуют.
Бактерии вызывают тяжёлые заболевания у человека (туберкулёз, сибирскую язву, ангину, пищевые отравления, гонорею и др.), животных и растений (например, бактериальный ожог яблонь). Благоприятные внешние условия увеличивают скорость размножения бактерий и могут вызвать эпидемии. Болезнетворные бактерии проникают в организм воздушно-капельным путем, через раны и слизистую оболочку, пищеварительный тракт. Симптомы болезней, вызываемых бактериями, обычно объясняются действием ядов, вырабатываемых этими микроорганизмами или образующихся при их разрушении. Естественная защита организмов человека и высших животных основана на фагоцитозе бактерий белыми кровяными тельцами и иммунной системе, вырабатывающей антитела, которые связывают и удаляют из кровотока чужеродные белки и углеводы. Кроме того, против бактерий существуют природные и синтетические лекарственные средства (например, пенициллин, разрушающий клеточную оболочку бактерии, или стрептомицин, инактивирующий рибосомы бактерий).
Симптомы бактериальных инфекций
Боли в животе.
Тошнота.
Также для каждой инфекционной болезни выделяют свои симптомы.
Причины бактериальных инфекций
Патогенные бактерии вызывают инфекции. Патогенными могут стать и бактерии естественной микробной флоры человека, например, при ослаблении иммунитета или вследствие других причин начинают более обычного размножаться определенные штаммы бактерий. Однако чаще всего бактерии, вызывающие заболевание, в организм человека попадают извне, например, при контакте с больным или бактерионосителем. Обычно бактерии попадают в организм человека через рот или нос, но в кровеносную или лимфатическую систему они могут проникнуть через открытые раны.
Заболевания, вызываемые бактериями
Бактерии вызывают множество заболеваний. Например, стрептококки вызывают ангину; пневмококки часто являются причиной воспаления среднего уха; микобактерии вызывают туберкулез; менингококки способствую появлению воспаления оболочек головного и (или) спинного мозга (менингит). Другие известные бактериальные инфекции - столбняк, сибирская язва, тиф, холера и чума. Бактерии вызывают и некоторые детские заболевания, например, коклюш, скарлатину, дифтерию.
Лечение бактериальных инфекций
После создания очень эффективных лекарств - антибиотиков, большинство бактериальных инфекций не столь опасно, как раньше. Антибиотики - это органические вещества, образуемые микроорганизмами и обладающие способностью убивать микробы. Антибиотиками называются также антибактериальные вещества, извлекаемые из растительных и животных клеток. Они применяются в виде таблеток, внутривенных и внутримышечных инъекций. Одни антибиотики задерживают рост и размножение бактерий, другие их убивают. К первой группе антибиотиков, оказывающей бактериостатическое действие, относятся тетрациклины, хлорамфеникол; ко второй, оказывающей бактерицидное действие - пенициллин, рифамицин и аминоглюкозиды.
Уберечься от бактериальных инфекций можно, избегая контактов с инфицированными людьми, правильно обрабатывая пищевые продукты и соблюдая правила личной гигиены. Легкие инфекции обычно проходят сами собой. От некоторых бактериальных инфекций можно сделать прививки. Прежде всего, рекомендуется делать прививки детям против детских болезней, а также при путешествии в экзотические страны.
Врач, прежде всего, установит точный диагноз бактериальной инфекции. Без дополнительных исследований антибиотики назначаются только больным обычными инфекционными заболеваниями, диагностика которых не составляет особого труда. В тяжелых случаях необходимо установить возбудителей инфекции: существуют бактерии, устойчивые к определенным группам антибиотиков.
Течение болезни
У некоторых людей антибиотики вызывают аллергическую реакцию - обычно это высыпания на коже. В таких случаях необходимо обратиться к врачу, который пропишет другое лекарство. Если больной, не обратив внимания на аллергическую реакцию, примет антибиотики повторно, то возможен анафилактический шок с вероятностью смертельного исхода.
Если, принимая антибиотики, не соблюдать указаний врача, то бактерии, находящиеся в организме, могут выработать устойчивость к данным антибиотикам.
Бактерии и человек
Тысячелетиями человек использовал молочнокислых бактерий для производства сыра, йогурта, кефира, уксуса, а также квашения.
В настоящее время разработаны методики по использованию фитопатогенных бактерий в качестве безопасных гербицидов, энтомопатогенных — вместо инсектицидов. Наиболее широкое применение получила Bacillus thuringiensis, выделяющая токсины (Cry-токсины), действующие на насекомых. Помимо бактериальных инсектицидов, в сельском хозяйстве нашли применение бактериальные удобрения.
Бактерии, вызывающие болезни человека, используются как биологическое (бактериологическое) оружие; кроме того, в качестве такого оружия могут использоваться бактериальные токсины.
Благодаря быстрому росту и размножению, а также простоте строения, бактерии активно применяются в научных исследованиях по молекулярной биологии, генетике, генной инженерии и биохимии. Самой хорошо изученной бактерией стала Escherichia coli. Информация о процессах метаболизма бактерий позволила производить бактериальный синтез витаминов, гормонов, ферментов, антибиотиков и др.
Перспективным направлением является обогащение руд с помощью сероокисляющих бактерий, очистка бактериями загрязнённых нефтепродуктами или ксенобиотиками почв и водоёмов.
В кишечнике человека в норме обитает от 300 до 1000 видов бактерий общей массой до 1 кг, а численность их клеток на порядок превосходит численность клеток человеческого организма[10]. Они играют важную роль в переваривании углеводов, синтезируют витамины, вытесняют патогенные бактерии. Можно образно сказать, что микрофлора человека является дополнительным «органом», который отвечает за пищеварение и защиту организма от инфекций.[
Наряду с другими микроорганизмами широко распространены в почве воде, воздухе, заселяют (колонизируют) кожу и слизистые оболочки человека и животных. Некоторые из бактерий используются в пищевой промышленности (например, для приготовления молочнокислых продуктов), в медицине для восстановления нормальной микрофлоры толстой кишки путем применения препаратов, содержащих лиофильно высушенные Б. (бифидобактерии, лактобактерии, кишечные палочки), а также в биотехнологии для получения биологически активных соединений.
Наибольшее распространение имеют сапрофитные Б. Они питаются мертвыми органическими остатками, участвуют в минерализации органических веществ — аммонификации, нитрификации, а также в фиксации азота (клостридии, азотобактеры, микобактерии, сине-зеленые водоросли и др.). Сапрофиты участвуют в круговороте углерода, кислорода, азота, фосфора, серы, железа, некоторые из них расщепляют целлюлозу, кератин, окисляют и образуют углеводороды — метан, пропан и др. Ставится вопрос о применении некоторых сапрофитов для очистки сточных вод, разрушения (биодеградации) различных отходов. Широкое применение находят сапрофиты в биотехнологии для получения различных биологически активных соединений (интерферонов, интерлейкинов, инсулина и др.).
Относительно небольшую часть бактерий разделяют на патогенные и условно-патогенные. Патогенные Б. являются возбудителями инфекционных болезней (Инфекционные болезни) человека и животных. Условно-патогенными микроорганизмами являются представители нормальной микрофлоры человека (Микрофлора человека). При ослаблении резистентности организма условно-патогенные Б. вызывают гнойно-воспалительные процессы.
studfiles.net
Содержание
Роль микроорганизмов в природе и сельском хозяйстве
Классификация микроорганизмов по способам питания. Сущность автотрофного и гетеротрофного питания. Сапрофиты и паразиты.
Методы определения суммарной биохимической активности почвенной микрофлоры
Характеристика микробов клеточной организации
Широкое распространение микроорганизмов свидетельствует об их огромной роли в природе. При их участии происходит разложение различных органических веществ в почвах и водоемах, они обусловливают круговорот веществ и энергии в природе; от их деятельности зависит плодородие почв, формирование каменного угля, нефти, многих других полезных ископаемых. Микроорганизмы участвуют в выветривании горных пород и прочих природных процессах.
Многие микроорганизмы используют в промышленном и сельскохозяйственном производстве. Так, хлебопечение, изготовление кисломолочных продуктов, виноделие, получение витаминов, ферментов, пищевых и кормовых белков, органических кислот и многих веществ, применяемых в сельском хозяйстве, промышленности и медицине, основаны на деятельности разнообразных микроорганизмов. Особенно важно использование микроорганизмов в растениеводстве и животноводстве. От них зависит обогащение почвы азотом, борьба с вредителями сельскохозяйственных культур при помощи микробных препаратов, правильное приготовление и хранение кормов, создание кормового белка, антибиотиков и веществ микробного происхождения для кормления животных.
Микроорганизмы оказывают положительное влияние на процессы разложения веществ неприродного происхождения — ксенобиотиков, искусственно синтезированных, попадающих в почвы и водоемы и загрязняющих их.
Наряду с полезными микроорганизмами существует большая группа так называемых болезнетворных, или патогенных, микроорганизмов, вызывающих разнообразные болезни сельскохозяйственных животных, растений, насекомых и человека. В результате их жизнедеятельности возникают эпидемии заразных болезней человека и животных, что сказывается на развитии экономики и производительных сил общества.
Последние научные данные не только существенно расширили представления о почвенных микроорганизмах и процессах, вызываемых ими в окружающей среде, но и позволили создать новые отрасли в промышленности и сельскохозяйственном производстве. Например, открыты антибиотики, выделяемые почвенными микроорганизмами, и показана возможность их использования для лечения человека, животных и растений, а также при хранении сельскохозяйственных продуктов. Обнаружена способность почвенных микроорганизмов образовывать биологически активные вещества: витамины, аминокислоты, стимуляторы роста растений — ростовые вещества и т.д. Найдены пути использования белка микроорганизмов для кормления сельскохозяйственных животных. Выделены микробные препараты, усиливающие поступление в почву азота из воздуха.
Открытие новых методов получения наследственно измененных форм полезных микроорганизмов позволило шире применять микроорганизмы в сельскохозяйственном и промышленном производстве, а также в медицине. Особенно перспективно развитие генной, или генетической, инженерии. Ее достижения обеспечили развитие биотехнологии, появление высокопродуктивных микроорганизмов, синтезирующих белки, ферменты, витамины, антибиотики, ростовые вещества и другие, необходимые для животноводства и растениеводства продукты.
С микроорганизмами человечество соприкасалось всегда, тысячелетия даже не догадываясь об этом. С незапамятных времен люди наблюдали брожение теста, готовили спиртные напитки, сквашивали молоко, делали сыры, переносили различные заболевания, в том числе эпидемические. Свидетельством последнего в библейских книгах служит указание о повальной болезни (вероятно, чуме) с рекомендациями сжигать трупы и делать омовения.
Однако до середины прошлого века даже никто не представлял, что разного рода бродильные процессы и заболевания могут быть следствием деятельности ничтожно малых существ.
В соответствии с принятой сейчас классификацией микроорганизмы по типу питания разделяют на ряд групп в зависимости от источников потребления энергии и углерода. Так, выделяют фототрофы, пользующиеся энергией солнечного света, и хемотрофы, энергетическим материалом для которых служат разнообразные органические и неорганические вещества.
В зависимости от того, в какой форме микроорганизмы получают из окружающей среды углерод, их подразделяют на две группы: автотрофные («сами себя питающие»), использующие в качестве единственного источника углерода диоксид углерода, и гетеротрофные («питающиеся за счет других»), получающие углерод в составе довольно сложных восстановленных органических соединений.
Таким образом, по способу получения энергии и углерода микроорганизмы можно подразделить на фотоавтотрофы, фотогетеротрофы, хемоавтотрофы и хемогетеротрофы. Внутри группы в зависимости от природы окисляемого субстрата, называемого донором электронов (Н-донором), в свою очередь, выделяют органотрофы, потребляющие энергию при разложении органических веществ, и литотрофы (от греч. lithos — камень), получающие энергию за счет окисления неорганических веществ. Поэтому в зависимости от используемого микроорганизмами источника энергии и донора электронов следует различать фотоорганотрофы, фотолитотрофы, хемоорганотрофы и хемолитотрофы. Таким образом, выделяют восемь возможных типов питания.
Каждой группе микроорганизмов присущ определенный тип питания. Ниже приведено описание наиболее распространенных типов питания и краткий перечень микроорганизмов, их осуществляющих.
При фототрофии источник энергии — солнечный свет. Фотолитоавтотрофия — тип питания, характерный для микроорганизмов, использующих энергию света для синтеза веществ клетки из С02 и неорганических соединений (Н2 0, Н2 S, S°), т.е. осуществляющих фотосинтез. К данной группе относят цианобактерий, пурпурных серных бактерий и зеленых серных бактерий.
Цианобактерий (порядок Суаnobасtеriа1еs), как и зеленые растения, восстанавливают С02 до органического вещества фотохимическим путем, используя водород воды:
С02 + Н2 0 свет-› (Сh3 O) * + O2
Пурпурные серные бактерии (семейство Chromatiaceae) содержат бактериохлорофиллы а и b, обусловливающие способность данных микроорганизмов к фотосинтезу, и различные каротиноидные пигменты.
Для восстановления С02 в органическое вещество бактерии данной группы используют водород, входящий в состав Н2 5. При этом в цитоплазме накапливаются гранулы серы, которая затем окисляется до серной кислоты:
С02 + 2Н2 S свет-› (Сh3 O) + Н2 + 2S
3CO2 + 2S + 5h3 O свет-› 3 (СН2 0) + 2Н2 S04
Пурпурные серные бактерии обычно бывают облигатными анаэробами.
Зеленые серные бактерии (сем. Chlorobiaceae) содержат зеленые бактериохлорофиллы с, и, в небольшом количестве бактериохлорофилла, а также различные каротиноиды. Как и пурпурные серные бактерии, они строгие анаэробы и способны окислять в процессе фотосинтеза сероводород, сульфиды и сульфиты, накапливая серу, которая в большинстве случаев окисляется до 50^"2 .
Фотоорганогетеротрофия — тип питания, характерный для микроорганизмов, которые для получения энергии помимо фотосинтеза могут использовать еще и простые органические соединения. К этой группе относятся пурпурные несерные бактерии.
Пурпурные несерные бактерии (семейство Rhjdospirillaceae) содержат бактериохлорофиллы а и b, а также различные каротиноиды. Они не способны окислять сероводород (Н2 S), накапливать серу и выделять ее в окружающую среду.
При хемотрофии энергетический источник — неорганические и органические соединения. Хемолитоавтотрофия — тип питания, характерный для микроорганизмов, получающих энергию при окислении неорганических соединений, таких, как Н2, Nh5+, N02-, Fе2+, Н2 S, S°, S0з2 — , S2 0з2-, СО и др. Сам процесс окисления называют хемосинтезом. Углерод для построения всех компонентов клеток хемолитоавтотрофы получают из диоксида углерода.
Хемосинтез у микроорганизмов (железобактерий и нитрифицирующих бактерий) был открыт в 1887-1890 гг. известным русским микробиологом С.Н. Виноградским. Хемолитоавтотрофию осуществляют нитрифицирующие бактерии (окисляют аммиак или нитриты), серные бактерии (окисляют сероводород, элементарную серу и некоторые простые неорганические соединения серы), бактерии, окисляющие водород до воды, железобактерии, способные окислять соединения двухвалентного железа, и т.д.
Представление о количестве энергии, получаемой при процессах хемолитоавтотрофии, вызываемых указанными бактериями, дают следующие реакции:
Nh4 + 11/2 02 — HN02 + Н2 0 + 2,8 • 105 Дж
HN02 + 1/2 02 — HN03 + 0,7 • 105 Дж
Н2 S + 1/2 02 — S + Н2 0 + 1,7• 105 Дж
S + 11/2 02 — Н2 S04 + 5,0 • 105 Дж
Н2 + 1/2 02 — Н2 0 + 2,3 • 105 Дж
2FеС03 + 1/2 02 + ЗН2 0 — 2Fе (ОН) 3 + 2С02 + 1,7 • 105 Дж
Хемоорганогетеротрофия — тип питания, характерный для микроорганизмов, получающих необходимую энергию и углерод из органических соединений. Среди данных микроорганизмов многие аэробные и анаэробные виды, обитающие в почвах и других субстратах.
Среди хемоорганогетеротрофов выделяют сапротрофов, живущих за счет разложения мертвых органических материалов, и паразитов, питающихся в тканях живых организмов. В последнем случае имеются в виду паратрофия и паратрофы, т.е. облигатные внутриклеточные паразиты, которые вне клетки хозяина развиваться не могут (риккетсии и др.).
Считают, что из известных наиболее широко распространены в живом мире два типа питания — фотолитоавтотрофия и хемоорганогетеротрофия. Первый тип питания характерен для высших растений, водорослей и ряда бактерий, второй — для животных, грибов и многих микроорганизмов. Остальные типы питания встречаются лишь у отдельных групп бактерий, живущих в особых, специфичных условиях среды.
Установлена способность многих микроорганизмов переходить с одного типа питания на другой. Например, водородокисляющие бактерии при наличии 02, на средах с углеводами или органическими кислотами способны переключаться с хемолитоавтотрофии на хемоорганогетеротрофию. Поэтому их называют факультативными хемолитоавтотрофами. Микроорганизмы, не способные расти в отсутствие специфичных неорганических доноров электронов (например, нитрифицирующие и некоторые другие бактерии), называют облигатными хемолитоавтотрофами.
У микроорганизмов отмечена и так называемая миксотрофия. Это тип питания, при котором микроорганизм — миксотроф — одновременно использует различные возможности питания, например, сразу окисляя органические и минеральные соединения, или источником углерода для него одновременно могут служить диоксид углерода и органическое вещество и т.д.
В природе широко распространены микроорганизмы, источниками энергии и углерода для которых служат одноуглеродные соединения (метан, метанол, формиат, метиламин и др.). Данные микроорганизмы называют С1 использующими формами, или метилотрофами, а тип их питания — метилотрофией. В группе метилотрофных бактерий выделяют облигатные и факультативные виды. Первые способны расти в результате использования только одноуглеродных соединений, вторые — и на средах с другими веществами. Среди метилотрофов есть микроорганизмы разных систематических групп.
48. Участие микроорганизмов в круговороте серы. Процеесы минерализации органических соединений серы, сульфофикация, десульфофикация, характеристика возбудителей, условия, определяющие их развитие. Значение превращений серы в природе и для сельского хозяйства.
Сера — необходимый питательный элемент для организмов. В почве она встречается в форме сульфатов — СаS04 • 2Н2 0, Nа2 S04, К2 S04 (Nh5 ) 2 S04, сульфидов — FеS2, Na2 S, ZnS и органических соединений. Сера содержится в аминокислотах белков растений, животных и микроорганизмов, валовые ее запасы в почвах сравнительно невелики, и растения часто испытывают недостаток в ней.
Органические и неорганические формы серы под влиянием деятельности микроорганизмов подвергаются в почве различным превращениям. Направление трансформаций соединений серы регулируется в основном факторами внешней среды. Органические соединения серы могут быть разрушены и минерализованы. В определенных условиях восстановленные неорганические соединения серы подвергаются окислению микроорганизмами, а окисленные (сульфаты, сульфиты и др.), наоборот, могут быть восстановлены в Н2 S.
Среди активных окислителей восстановленных неорганических соединений серы можно выделить четыре группы микроорганизмов:
тионовые бактерии, представленные родами Thiobacillus, Thiosphaera, Thiomicrospira, Thiodendron и Sulfolobus;
одноклеточные и многоклеточные (нитчатые) формы, образующие трихомы и относящиеся к родам Achromatium, Thiobacterium, Thiospira, Beggiatoa, Thiothrix, Thioploca и др.;
фотосинтезирующие пурпурные и зеленые серные бактерии, а также некоторые цианобактерии;
хемоорганогетеротрофные организмы родов Bacillus, Pseudomonas актиномицеты и грибы (Penicillium, Aspergillus).
Микроорганизмы первой группы обитают в почве. Нитчатые формы встречаются главным образом в грязевых водоемах, возможно, их развитие в затопленных почвах, содержащих восстановленные формы серных соединений. Фотосинтезирующие бактерии обитают в водной среде (пруды, морские лагуны, озера и т.д.).
Наиболее широко распространены тионовые бактерии рода Thiobacillus, впервые выделенные из морского ила в 1902 г. Натансоном, а в 1904 г. — М. Бейеринком. Представители данного рода способны окислять тиосульфат, сероводород, сульфиды, тетратионаты и тиоцианаты. Наиболее интересны виды: Т. thiooxidans, Т. thioparus, Т. novellus,T. denitrificans, Т. ferrooxidans и др.
Бактерии рода Thiobacillus представляют собой неспорообразующие грамотрицательные палочки длиной от 1 до 4 мкм, диаметром около 0,5 мкм. Большинство видов рода подвижны и передвигаются посредством полярного жгутика. Источником углерода для синтеза углеводов и других органических соединений бактерии служат С02 и бикарбонаты.
За исключением Т. novellus и некоторых других видов, относящихся к факультативным хемолитоавтотрофам и хемолитогетеротрофам представители рода Thiobacillus облигатные хемолитоавтотрофы, т.е. живут за счет энергии, выделяющейся при окислении неорганических соединений серы. Ход окислительных процессов, вызываемых серными бактериями, может быть представлен следующими уравнениями:
2S + 3O2 +2h3O→ 2h3SO4
5NA2S2O3 + 4O2+h3O→5NA2SO4+h3SO4+4S
2NA2S2O3+ 1/2O2+ h3O→NA2S4O6+2NAOH
Тетратионаты могут подвергаться дальнейшему окислению до серной кислоты:
NA2S4O6+SO2+6H+→NA2SO4+3h3SO4
Гипотетическая цепь реакций окисления элементарной серы бактериями рода Thiobacillus может быть представлена в следующем виде:
ТИОСУЛЬФАТ ТЕТРАТИОНАТ
S0→S2O3²→S4O6²
↑ ↓
SO4²←SO3²←S3O6²
СУЛЬФАТ СУЛЬФИТ ТРИТИОНАТ
По современным представлениям, сера из среды поступает в клеточную вакуоль тиобактерии, наполненную валютином, путем диффузии и накапливается в виде запасного вещества. Далее сера может окисляться по мере надобности, причем скорость процесса зависит от площади соприкосновения элемента с бактериальными клетками. Последнее позволяет предположить, что на клеточной поверхности бактерий действуют ферменты, способствующие поступлению серы внутрь клетки, и под их влиянием сера восстанавливается до сульфидного иона, окисление которого происходит в дольнейщем внутриклеточное. Sulfolobussp. И Thiobacillusferrooxidans кроме окисления серы обладают также способностью окислять двухвалентное железо FE2+.
Тионовые бактерии — облигатные аэробы, за исключением Т. Denitrificans, который в присутствии нитрата развивается как анаэроб. В последнее время обнаружены сероокисляющие бактерии, способные к жизнедеятельности при pH 2…3 и температуре 70…75С и сохраняющие жизнеспособность при 90С. Это термоацидофильные архебактерии, факультативные хемолитоавтотрофы рода Sulfolobus. Распространены они в термальных серных источниках.
Одноклеточные бесцветные серобактерии представлены родами Ahromatium, Thiobacterium, Macromonas, Thiospira и др. эти организмы имеют сферическую, овальную, палочковидную или извитую форму, есть подвижные и неподвижные, грамотрицательные. К многоклеточным бесцветным (нитчатым) серным бактериям относят микроорганизмы родов Beggiatoa, Thiop1оса, Thiothrix и др. Они окисляют сероводород до элементарной серы, которая временно откладывается внутри клеток. Установлена способность бактерий указанных родов окислять серу и использовать органические вещества. Способность автотрофного усвоения СО 2 для снабжения клеток углеродом пока не доказана. Процессы окисления сульфида и серы можно представить по следующим уравнениям:
Н2 S +1 /2 02 — S + Н2 0
S+ 11 /2 02 + Н2 0 — Н2 S04
Окисляют соединения серы также фотолитоавтотрофные пурпурные и зеленые серные бактерии. Они обычно обитают в среде, где имеется Н2 S. Большой роли в почвах не играют.
Серу могут окислять многие хемоорганогетеротрофные микроорганизмы. Например, некоторые виды родов Bacillus, Pseudomonas, актиномицетов и грибов окисляют порошковидную серу. Хемоорганогетеротрофные организмы окисляют серу в присутствии органических веществ. Процесс ее окисления экзотермический, но хемоорганогетеротрофные микроорганизмы не используют выделяющуюся энергию. Такое превращение представляется для них побочным процессом в главном направлении метаболизма. Окисление серы хемоорганогетеротрофными микроорганизмами идет довольно медленно и слабо.
Бактерии, окисляющие неорганические соединения серы, применяют при разработке месторождений полезных ископаемых. Так, проведены исследования, которые позволили начать применение окисляющих серу бактерий из рода Thiobacillus (Т. ferrooxidans) для выщелачивания бедных сульфидных руд. Наиболее практически освоены методы микробиологического выщелачивания меди из минералов, в которых медь соединена с серой. Обработке подвергают отвалы бедных руд на поверхности или под землей. Аналогично бактерии рода Thiobacillus можно использовать для получения различных металлов и редких элементов из минералов, содержащих серу.
Использование микробов в качестве «металлургов» экономически выгодно. Стоимость меди, полученной микробиологическим выщелачиванием, обходится в два с половиной раза дешевле, чем гидрометаллургическим способом. Микробиологический способ разработки полезных ископаемых применяют во многих странах мира.
Восстановление неорганических соединений серы осуществляется при разнообразных обменных процессах. Сульфаты могут быть источником серы, как для микро-, так и для макроорганизмов. Усвоение данных соединений сопровождается восстановлением серы в биосинтетических процессах так называемой ассимиляционной сульфатредукции. Указанный процесс характерен для всех живых организмов. Если растворимые сульфаты закрепляются в клетках микроорганизмов, процесс обозначают как иммобилизацию серы.
В плохо аэрированных, затопляемых почвах, с дефицитом кислорода, а также в водах лиманов, некоторых морей и других водоемов в зоне анаэробиоза происходит микробиологическое восстановление сульфатов. Такой процесс называют диссимиляционной сульфатредукцией, или сульфатным дыханием.
Бактерии, вызывающие восстановление сульфатов, подразделяют на неспорообразующие — род Desulfovibrio и спорообразующие — род Desulfotomaculum. К роду Desulfovibrio относят неспороносные грамотрицательные изогнутые палочки, иногда S-образные или спиральные, имеющие полярные жгутики и отличающиеся большой подвижностью. Это облигатные анаэробы, мезофилы (оптимальная температура 30˚С). Обнаружены в морской воде или иле, пресной воде и почве. Типичный вид — Desulfovibriodesulfuricans. Известны также D. vulgaris и D. gigas. Среди представителей рода встречаются галофилы.
Бактерии рода Desulfotomaculum представлены грамотрицательными, прямыми или изогнутыми спорообразующими подвижными палочками с перитрихальным расположением жгутиков. Это облигатные анаэробы, восстанавливающие сульфаты до сульфидов. Они обнаружены в пресных водах, почвах, геотермальных областях, некоторых испорченных продуктах, в кишечнике насекомых и рубце животных. Desulfotomaculumnigrificans может превращать сульфаты в сульфиды при высоких температурах (оптимально 55 °С). К роду Desulfotomaculum относят также D. orientis, представленный изогнутыми палочками, D.ruminis и D. acetooxidans, имеющие прямые палочки.
Обнаружен ряд новых сульфатредуцирующих бактерий, — в частности, рода Desulfobacter с неспорообразующими палочками, родов DesulfoсоссиsDesulfosarcina, представленных кокковыми формами, рода Desulfoпета, — имеющих нитевидную форму и передвигающихся скольжением.
Сульфатредуцирующие бактерии — специализированная группа микроорганизмов, использующих сульфат как акцептор электронов (водорода) в анаэробных условиях для окисления органических соединений или водорода. Вопреки ранее распространенным представлениям Сульфатредуцирующие бактерии неспособны к автотрофному связыванию СО2 и нуждаются в готовых органических веществах, т.е. относятся к хемоорганогетеротрофам. Донором электронов (водорода) служат углеводы, органические кислоты, спирты, а также молекулярный водород. Водород окисляемых органических субстратов переносится на окисленные соединения серы (сульфаты, сульфиты, тиосульфаты), которые восстанавливаются до Н2 S.
Анаэробное окисление органических веществ сульфатредуцирующими бактериями (Desulfotomaculumnigrificans, D. оrientis, D.ruminis, D. аcetooxidans, desulfuricans и др.) неполное ведет к аккумуляции уксусной кислоты и ее солей как конечного продукта:
2Ch4CHOHCOONa + MgSO4 → h3S + 2Ch4COONa + CO2 + MgCO3 + h3O
ЛАКТАТ НАТРИЯ АЦЕТАТ НАТРИЯ
Восстановлению могут подвергаться и другие соединения серы, например тиосульфаты и молекулярная сера. Восстановление SO3² — до Sx˚ осуществляют облигатно-анаэробные бактерии. Clostridiumthermosulfurogenes, выделенные из термального источника. Это хемоорганогетеротрофы, термофилы, они могут вызывать брожение с образованием этанола, молочной и уксусной кислот, Н2, осуществляют гидролиз пектина икрахмала. Восстановление тиосульфата. CL. Thermosulforogenes выполняют с образованием молекулярной среды, которая откладывается на их клеточных стенках и выделяется в среду.
Молекулярную серу могут восстанавливать до h3S многие термоацедофильные облигатно-анаэробные архебактерии — Desulfuroccucusmucosus, pyrococcusfuriosus, Thermoproteustenax и др. перечисленные виды обитают в кислых гидротермальных источниках. Так, для pyrococcusfuriosus оптимальная реакция среды составляет ph 1, температурный оптиум — 100 ˚С. В анаэробных условиях серу могут восстанавливать архебактерии рода Sulfolobus, которые, как указывалось выше, в аэробных условиях серу окисляют.
Значительное количество сероводорода образуется при минерализации белковых соединений. Возбудителями данного процесса служат бактерии родов Psedomonos, Baccilus, Proteus, Clostridium и др. Считают, что биогенная сера, которая поступает в атмосферу в виде органических летучих соединений, представляет главным образом продукт жизнедеятельности бактерий, минерализующие белковые вещества.
Сульфатредуцирующие бактерии наносят определенный ущерб, разрушая материалы, неустойчивые к сероводороду. Например, указанные организмы разлагают нефтяные продукты, загрязняют сероводородом промышленный газ и т.д. Деятельность сульфатредуцирующих бактерий — одна из причин коррозии металлического оборудования в анаэробной зоне. Считают, что ущерб от коррозии трубопроводов под землей наполовину может быть отнесен на счет этих микроорганизмов.
Сероводород токсичен, поэтому при накоплении его в почве растительность быстро погибает. Если сероводород образуется в водоеме, то растения и животные в нем тоже гибнут. В некоторых озерах, лиманах и даже в открытом море на определенной глубине (в черном море на глубине 200 м) сероводород накапливается в таком количестве, что полностью подавляет развитие живых существ.
В то же время бактерии, восстанавливающие сульфаты, игра большую роль в геологических процессах. Они образуют НзS, участвующий в образовании серных руд. При окислении сероводород серными бактериями появляются залежи серы промышленного значения. Сульфатредуцирующие бактерии участвуют и в образовании сульфидных руд.
При анализе почв устанавливают не только состав их микронаселения, но и суммарную биохимическую активность почв. Одним из показателей такой активности служит нитрификационная способность почвы, характеризующая мобилизуемость азотного запаса почвы в результате деятельности микроорганизмов.
Нитрификационную способность устанавливают по нарастанию в почве количества нитратов после выдерживания при определенных условиях в термостате. По результатам такого анализа можно судить о потенциальной способности почвы накапливать то или иное количество минерального азота. Если в начале опыта в почву внести соль аммония, то по накоплению нитратов можно получить дополнительное представление об энергии работы нитрифицирующих бактерий.
При изучении почвенной биодинамики определяют выделение почвой СО2 — Данная проба показывает в основном интенсивность разложения в почве органических соединений.
Можно установить быстроту распада в почве любого химического вещества учетом продуктов распада или убыли внесенного в почву соединения. Для этого в почву помещают полосы бумаги или лучше льняной ткани, закрепленной на стекле, — метод «аппликаций». Периодически материал извлекают из почвы, просматривают и фиксируют на нем зоны распада
Метод аппликаций весьма показателен при решении некоторых агрономических задач. Например, он помогает выявить интенсивность процессов в разных горизонтах пахотного слоя, установить действие различных удобрений, мелиорирующих средств и т.д.
Для оценки активности почвы исследуют также ферменты, находящиеся в почве. В основном их продуцируют микроорганизмы. Поэтому между показателями активности ферментов почвы и определенными микробиологическими процессами намечается коррелятивная зависимость.
Подобная связь отмечена, например, между активностью инверта-зы и интенсивностью дыхания почвы, активностью оксидазы и динамикой нитратов. Абсолютное значение отдельных показателей активности ферментов, по данным ученых, неодинаково у почв разных климатических зон, что может быть использовано в диагностических целях.
При отмирании микроорганизмов окружающая среда еще более обогащается ферментами, которые в значительной части адсорбируются почвенными коллоидами, что способствует стабилизации последних. Отмечено, что ферментные процессы в почве прекращаются при значительно более низкой влажности, чем деятельность микроорганизмов. Следовательно, биохимические процессы могут протекать даже в относительно сухих почвах. Определение активности ферментов почвы, как показано А.Ш. Галстяном, может дать представление об их плодородии.
В зависимости от теоретических или практических задач почвенные микробиологи пользуются различными комплексами методов анализа почвы.
Распад льняной ткани под действием микроорганизмов в черноземе: а, б, в — в течение одного, двух, трех месяцев соответственно
Систематика, или таксономия, — распределение, классификация организмов по группам — таксонам в соответствии с определенными признаками, а также установление родственных связей между ними. Изучение основных групп микроорганизмов полезно предварить знакомством с принципами их номенклатуры. Номенклатура — это система наименований, применяемых в определенной области знаний.
Любая система номенклатуры и таксономии требует совершенного знания объектов. Чтобы получить информацию, необходимую для наименования и классификации микроорганизмов, изучают все многообразие и все особенности внешней и внутренней структуры микроба, его физиологические и биохимические свойства, а также процессы, вызываемые микроорганизмом в естественной среде его обитания.
С основными характеристиками микроба знакомятся в следующем порядке: определяют, каков внешний вид микроорганизма — его форма, подвижность (наличие жгутиков и их расположение), наличие капсул и способность к образованию эндоспор, способность окрашиваться по Граму; выясняют особенности обмена веществ, способы получения энергии; наконец, определяют, каким образом он изменяет внешнюю среду, в которой растет, и как окружающая среда влияет на его жизнедеятельность.
В последнее время в связи с развитием биологии выявлены новые подходы к характеристике микроорганизмов, что оказало положительное воздействие на их систематику. В частности, определенную ценность имеют методы геносистематики, позволяющие непосредственно охарактеризовать наследственные свойства (генотип) микроорганизмов и таким образом дополнить их описание, которое до последнего времени отражало исключительно структурные и функциональные свойства (фенотип). Данные о генотипе микроорганизма получают при помощи двух основных методов анализа выделенных нуклеиновых кислот: определения нуклеотидного состава ДНК и изучения химической гибридизации нуклеиновых кислот, изолированных из разных микроорганизмов.
По соотношениям пар пуриновых и пиримидиновых оснований в молекуле ДНК выявляют генетические различия между группами микроорганизмов. Второй метод помогает установить гомологию ДНК при гибридизации пары исследуемых молекул, выделенных из разных микроорганизмов. Если наблюдается высокая степень связывания молекул ДНК (80...90% и более), то можно говорить о гомологии первичной структуры и близком генетическом родстве микроорганизмов (филогенетические связи). Низкая степень гомологии (50%) характеризует достаточно отдаленные генетические связи между микроорганизмами.
В систематике микроорганизмов иногда используют нумерическую таксономию, предложенную современником Карла Линнея М. Адансоном. В основу адансоновской, или нумерической, таксономии положены следующие принципы: равномерность изучаемых признаков организмов; доведение их количества до максимальной величины; выделение каждой таксономической группы по числу совпадающих признаков. Указанный подход к систематике микроорганизмов достаточно объективен, однако для его реализации необходимы обширные математические расчеты с использованием электронно-вычислительных машин.
После подробного изучения микроорганизму дают научное название, которое должно быть выражено двумя латинскими словами, как этого требует биноминальная номенклатура, предложенная еще в XVIII в.К. Линнеем. Первое слово — название рода, обычно оно латинского происхождения, пишется с прописной буквы и характеризует какой-либо морфологический или физиологический признак микроорганизма, либо фамилию ученого, открывшего микроорганизм, либо особый отличительный признак, например место обитания.
Второе слово пишется со строчной буквы, оно обозначает видовое название микроорганизма и, как правило, представляет собой производное от существительного, дающего описание цвета колонии, источника происхождения микроорганизма, вызываемого этим микроорганизмом процесса или болезни и некоторых других отличительных признаков. Например, название Bacillusalbus указывает, что микроорганизм грамположителен, представляет собой спорообразующую аэробную палочку (свойства рода Bacillus), а видовое название характеризует цвет колонии (albus — белый).
Названия микроорганизмам присваиваются в соответствии с правилами Международного кодекса номенклатуры бактерий, введенного с 1 января 1980 г., они едины во всех странах мира. В классификации для группирования родственных микроорганизмов используют следующие таксономические категории: вид (species), род (genus), семейство (familia), порядок (ordo), класс (classis), отдел (divisio), царство (regnum).
Вид — основная таксономическая единица, представляет собой совокупность особей одного генотипа, обладающих хорошо выраженным фенотипическим сходством. Вид подразделяют на подвиды или варианты.
В микробиологии часто пользуются терминами " штамм" или «клон». Штамм — более узкое понятие, чем вид. Обычно штаммами называют культуры микроорганизмов одного и того же вида, выделенные из различных природных сред (почв, водоемов, организмов и т.д.) или из одной и той же среды, но в разное время. Штаммы одного вида могут быть близки по своим свойствам или различаться по отдельным признакам.
В то же время характерные свойства разных штаммов не выходят за пределы вида.
Клон — это культура, полученная из одной клетки. Совокупность (популяция) микроорганизмов, состоящую из особей одного вида, называют чистой культурой.
Согласно современным представлениям, живой мир нашей планеты подразделяют на четыре царства: растения (Р1аntае), животные (Animalia), грибы (Мусота) и прокариоты (Procaryotae). Однако в последнее время пересмотрены классификации высших таксонов живого мира в связи с тем, что среди прокариот обнаружена группа бактерий, отличающаяся особой макромолекулярной организацией клеток и уникальными биохимическими особенностями. Бактерии этой группы назвали архебактериями (предположительно одна из самых древних групп живых организмов на Земле) и отнесли к новому царству архебактерий.
Выделение нового царства архебактерий обусловило необходимость разделять прокариоты и эукариоты на уровне надцарств. В связи с этим система высших таксонов живого мира выглядит следующим образом:
Надцарства Царства.
Прокариоты Архебактерии, цианобактерии, зубактерии
Эукариоты Растения, животные, грибы.
В биологии выделяют две систематики живых организмов — филогенетическую, или естественную, и искусственную.
Микробиология еще не располагает достаточными данными об эволюции и филогении микроорганизмов, позволяющим построить естественную систематику, подобную той, что создана для высших растений и животных. Современные системы классификации микроорганизмов, по существу, искусственные. Они играют роль диагностических ключей, или определителей, которыми пользуются главным образом при идентификации того или иного микроорганизма. Известны «определитель родов бактерий» В. Б.Д. Скерман (1975) и «определитель бактерий и актиномицетов» Н.А. Красильникова.
Необходимость создания естественной систематики микроорганизмов побуждает ученых искать подход к установлению эволюционных и родственных связей. Одно из важных направлений такой работы основано на исследовании состава и первичной структуры рибосомальных частиц 16s и 5SpРНК, а также транспортной РНК, в соответствии с которыми царство Procaryotae подразделяют на две группы: Eubacteria и Archeobacteria. Группа Eubacteria подразделяется на три отдела: Gracilicutes, Firmicutes, Mollicutes.
В настоящем учебнике приведено описание наиболее важных групп микроорганизмов в соответствии с последним, девятым изданием (1984)«определителя бактерий» Д.Х. Берги. В этом определителе все прокариотные микроорганизмы объединены в царство Procariotae, которое подразделено на четыре отдела — Gracilicutes, Firmicutes, Tenericutes, Mendosicutes. В свою очередь, отделы делят на классы, порядки, семейства, роды, виды. Микроорганизмы разделены на четыре отдела главным образом на основании наличия или отсутствия клеточных стенок и их вида, а на классы, порядки, семейства, роды, виды — по совокупности морфологических и физиолого-биохимических признаков.
www.ronl.ru